[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4280682B2 - 車両の操舵装置 - Google Patents

車両の操舵装置 Download PDF

Info

Publication number
JP4280682B2
JP4280682B2 JP2004184448A JP2004184448A JP4280682B2 JP 4280682 B2 JP4280682 B2 JP 4280682B2 JP 2004184448 A JP2004184448 A JP 2004184448A JP 2004184448 A JP2004184448 A JP 2004184448A JP 4280682 B2 JP4280682 B2 JP 4280682B2
Authority
JP
Japan
Prior art keywords
steering
vehicle
motion state
angle
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004184448A
Other languages
English (en)
Other versions
JP2006007843A (ja
Inventor
武志 後藤
隆一 黒沢
憲司 十津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2004184448A priority Critical patent/JP4280682B2/ja
Priority to EP05013385A priority patent/EP1609696B1/en
Priority to DE602005004204T priority patent/DE602005004204T2/de
Priority to US11/157,801 priority patent/US7295908B2/en
Publication of JP2006007843A publication Critical patent/JP2006007843A/ja
Application granted granted Critical
Publication of JP4280682B2 publication Critical patent/JP4280682B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • B62D6/003Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels in order to control vehicle yaw movement, i.e. around a vertical axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Description

本発明は、車両を操舵するために運転者によって操作される操舵ハンドルと、転舵輪を転舵するための転舵アクチュエータと、操舵ハンドルの操作に応じて転舵アクチュエータを駆動制御して転舵輪を転舵する転舵制御装置とを備えたステアリングバイワイヤ方式の車両の操舵装置に関する。
近年、この種のステアリングバイワイヤ方式の操舵装置の開発は、積極的に行なわれるようになった。そして、例えば下記特許文献1は、操舵角および車速を検出し、操舵角の増加に従って減少するとともに車速の増加に従って増加する伝達比を計算し、この伝達比で操舵角を除算することにより前輪の転舵角(ラック軸の変位量)を計算して、同計算した転舵角に前輪を転舵するようにした操舵装置が示されている。また、この操舵装置においては、検出ハンドル操舵角を時間微分した操舵速度に応じて前記計算した転舵角を補正することにより、前輪の転舵応答性・追従性を高めるようにしている。さらに、検出車速および検出ハンドル操舵角を用いて目標ヨーレートを計算し、この計算した目標ヨーレートと検出した実ヨーレートとの差に応じて前記計算した転舵角を補正することにより、車両の挙動状態を考慮した転舵制御を実現するようにもなっている。
また、下記特許文献2には、操舵トルクおよびハンドル操舵角を検出し、操舵トルクおよびハンドル操舵角の増加に従って増加する2つの転舵角をそれぞれ計算し、これらの計算した両転舵角を加算した転舵角に前輪を転舵するようにした操舵装置が示されている。この操舵装置においては、車速も検出して、この検出車速により前記両転舵角を補正して、転舵特性を車速に応じて変更するようにしている。
特開2000−85604号公報 特開平11−124047号公報
しかし、上記従来の装置のいずれにおいても、車両を操舵するための運転者による操舵ハンドルに対する操作入力値である操舵角および操舵トルクを検出し、これらの検出した操舵角および操舵トルクを用いて前輪の転舵角を直接的に計算して、この計算した転舵角に前輪を転舵するようにしている。しかし、これらの前輪の転舵制御は、従前の操舵ハンドルと転舵輪との機械的な連結を外してはいるものの、操舵ハンドルの操作に対する前輪の操舵方法としては、操舵ハンドルの操作位置または操作力に対応させて前輪の転舵角を決定するという基本的な技術思想は全く同じであり、これらの転舵方法では、人間の感覚特性に対応して前輪の転舵角が決定されていないので、運転者は違和感を覚えるとともに車両の運転操作が難しかった。
すなわち、前記従来の装置においては、運転者が知覚し得ない転舵角が操舵ハンドルの操作に対応させて直接的に決定され、同転舵角に応じた前輪の転舵によって車両が旋回する。そして、運転者はこの車両の旋回に起因した車両の横加速度、ヨーレートおよび旋回曲率を触覚または視覚により感じ取り、操舵ハンドルの操作にフィードバックして車両を所望の態様で旋回させていた。言い換えれば、運転者による操舵ハンドルの操作に対する前輪の転舵角は人間の知覚し得ない物理量であり、運転者の操舵操作に対して直接的に決定される転舵角は運転者の知覚特性に合わせて決められたものではないため違和感を覚え、これが車両の運転を難しくしていた。
また、上記従来の装置においても、検出車速および検出ハンドル操舵角を用いて計算した目標ヨーレートと、検出した実ヨーレートとの差に応じて決定転舵角を補正するようにしているが、これは車両の挙動状態を考慮した転舵角の単なる補正であって、時々刻々と変化する車両の操舵特性(例えば、路面と車輪との摩擦力の変化に伴う横滑りによる操舵特性の変化など)や、操舵ハンドルの操作により運転者が知覚するであろうヨーレートに応じて転舵角を決定しているわけではない。したがって、この場合も、運転者の操舵操作に対して決定される転舵角は運転者の知覚特性に合わせて決められたものではなく、車両の運転を難しくしていた。
本発明者等は、上記問題に対処するために、運転者による操舵ハンドルの操作に対して、人間の知覚特性に合わせて車両を操舵することができる車両の操舵装置の研究に取り組んだ。このような人間の知覚特性に関し、ウェーバー・ヘフナー(Weber-Fechner)の法則によれば、人間の感覚量は与えられた刺激の物理量の対数に比例すると言われている。言い換えれば、人間の操作量に対して人間に与えられる刺激の物理量を操作量が変位の場合には指数関数的に、操作量がトルクの場合にはべき乗関数的に変化させれば、操作量と物理量との関係を人間の知覚特性に合わせることができる。本発明者等は、このウェーバー・ヘフナーの法則を車両の操舵操作に適用し、次のようなことを発見した。
車両の運転にあたっては、操舵ハンドルの操作によって車両は旋回し、この車両の旋回によって横加速度やヨーレートなどの車両の運動状態量が変化し、運転者はこの車両の運動状態量を触覚により感じ取るものである。したがって、前記操舵ハンドルに対する運転者の操作に対して、運転者が知覚し得る車両の運動状態量を指数関数的またはべき乗関数的に変化させるようにすれば、運転者は、知覚特性に合わせて操舵ハンドルを操作して車両を運転できることになる。
本発明は、上記発見に基づくもので、その目的は、運転者による操舵ハンドルの操作に対して、人間の知覚特性に合った運動状態量を正確に発生させて車両を操舵させることにより、車両の運転を易しくした車両の操舵装置を提供することにある。
上記目的を達成するために、本発明の特徴は、車両を操舵するために運転者によって操作される操舵ハンドルと、転舵輪を転舵するための転舵アクチュエータと、前記操舵ハンドルの操作に応じて前記転舵アクチュエータを駆動制御して転舵輪を転舵する転舵制御装置とを備えたステアリングバイワイヤ方式の車両の操舵装置において、前記転舵制御装置を、前記操舵ハンドルに対する運転者の操作入力値を検出する操作入力値検出手段と、車両の旋回に関係して運転者が知覚し得る車両の運動状態を表していて前記操舵ハンドルに対する操作入力値と予め定めた指数関係またはべき乗関係にある車両の見込み運動状態量を、前記検出された操作入力値を用いて計算する運動状態量計算手段と、前記計算された見込み運動状態量で車両が運動するために必要な前記転舵輪の転舵角を、前記計算された見込み運動状態量を用いて計算する転舵角計算手段と、車両の実際の運動状態を表す実運動状態量を検出する運動状態量検出手段と、前記検出された実運動状態量に基づいて、実際の車両の旋回状態に関係する操舵特性量を計算する操舵特性量計算手段と、前記計算された見込み運動状態量発生時期と同見込み運動状態量に相当する前記実運動状態量が発生する時期との間の位相差を小さくするために、前記計算された操舵特性量を用いて前記計算された転舵角を補正する転舵角補正手段と、前記補正された転舵角に応じて前記転舵アクチュエータを制御して前記転舵輪を同計算された転舵角に転舵する転舵制御手段とで構成したことにある。この場合、前記転舵角補正手段は、さらに、前記転舵制御手段が前記転舵アクチュエータの制御を開始して前記転舵輪を転舵角に転舵するまでの応答遅れを小さくするために、前記計算された操舵特性量を用いて前記計算された転舵角を補正するとよい。
また、本発明の他の特徴は、車両を操舵するために運転者によって操作される操舵ハンドルと、転舵輪を転舵するための転舵アクチュエータと、前記操舵ハンドルの操作に応じて前記転舵アクチュエータを駆動制御して転舵輪を転舵する転舵制御装置とを備えたステアリングバイワイヤ方式の車両の操舵装置において、前記転舵制御装置を、前記操舵ハンドルに対する運転者の操作入力値を検出する操作入力値検出手段と、車両の旋回に関係して運転者が知覚し得る車両の運動状態を表していて前記操舵ハンドルに対する操作入力値と予め定めた指数関係またはべき乗関係にある車両の見込み運動状態量を、前記検出された操作入力値を用いて計算する運動状態量計算手段と、前記計算された見込み運動状態量で車両が運動するために必要な前記転舵輪の転舵角を、前記計算された見込み運動状態量を用いて計算する転舵角計算手段と、車両の実際の運動状態を表す実運動状態量を検出する運動状態量検出手段と、前記検出された実運動状態量に基づいて、実際の車両の旋回状態に関係する操舵特性量として車両が旋回することにより発生する横滑りを表す横滑り角を計算する操舵特性量計算手段と、前記計算された見込み運動状態量を発生させるために、前記計算された横滑り角を用いて前記計算された転舵角を補正する転舵角補正手段と、前記補正された転舵角に応じて前記転舵アクチュエータを制御して前記転舵輪を同計算された転舵角に転舵する転舵制御手段とで構成したことにもある。れらの場合、前記見込み運動状態量は、例えば、車両に発生する横加速度またはヨーレートの少なくとも一方である。そして、これらの車両の操舵装置において、さらに、操舵ハンドルの操作に対して反力を付与する反力装置を設けておくとよい。
また、操作入力値検出手段を、例えば、操舵ハンドルの変位量を検出する変位量センサで構成することができ、この場合、運動状態量計算手段を、前記検出された変位量を操舵ハンドルに付与される操作力に変換する操作力変換手段と、前記変換された操作力を見込み運動状態量に変換する運動状態量変換手段とで構成するとよい。そして、操作力変換手段は変位量を同変位量と指数関係にある操作力に変換し、運動状態量変換手段は操作力を同操作力と指数関係に有る見込み運動状態量に変換するとよい。
また、操作入力値検出手段を、例えば、操舵ハンドルに付与される操作力を検出する操作力センサで構成することもでき、この場合には、運動状態量計算手段を、前記検出された操作力を見込み運動状態量に変換する運動状態量変換手段で構成するとよい。そして、運動状態量変換手段は、操作力を同操作力とべき乗関係にある見込み運動状態量に変換するとよい。そして、これらの車両の操舵装置において、さらに、操舵ハンドルの操作に対して反力を付与する反力装置を設けておくとよい。
上記のように構成した本発明においては、まず、操舵ハンドルに対する運転者の操作入力値が、車両の旋回に関係して運転者が知覚し得る車両の運動状態を表していて操舵ハンドルに対する操作入力値と予め定めた指数関係またはべき乗関係にある車両の見込み運動状態量(横加速度やヨーレートなど)に変換される。そして、この変換された見込み運動状態量に基づいて、同見込み運動状態量で車両が運動するために必要な転舵輪の転舵角が計算される。この計算された転舵角は、見込み運動状態量を正確に発生させるように補正され、同補正された転舵角に転舵輪が転舵される。したがって、転舵輪の転舵によって車両が旋回すると、この旋回により、運転者には、前記ウェーバー・ヘフナーの法則による「与えられた刺激の物理量」として前記見込み運動状態量が与えられる。そして、この見込み運動状態量は操舵ハンドルへの操作入力値に対して指数関数的またはべき乗関数的に変化するものであるので、運転者は、人間の知覚特性に合った運動状態量を知覚しながら、操舵ハンドルを操作できる。なお、横加速度やヨーレートについては、運転者が車両内の各部位との接触により触覚的に感じ取ることができる。その結果、本発明によれば、運転者は、人間の知覚特性に合わせて操舵ハンドルを操作できるので、運転者は違和感を覚えることなく車両の運転が簡単になる。
ここで、転舵角の補正においては、実際に車両が旋回しているときの車両の旋回状態に関係する操舵特性量(例えば、車両に発生している横滑り角など)に基づいて補正されるため、より正確なタイミングで見込み運動状態量を発生させることができる。すなわち、実際に車両に実運動状態量が発生する時期と見込み運動状態量の発生を見込んだ時期との間に位相差(位相的なズレや遅れ)が生じることによって、運転者は違和感を覚える。この位相差は、例えば、車両に発生している横滑り角などの変化に起因して予め想定された旋回状態と実際の旋回状態とが異なることに起因して生じる。そして、この位相差は、時間の経過とともに実際の車両の旋回状態が予め想定された旋回状態と一致するまでの時間差と考えることができる。したがって、現在車両に発生している横滑り角などを考慮して転舵角を補正することにより、実際の車両の旋回状態を早期に予め想定された旋回状態と一致させることができ、車両は見込み運動状態量に相当する実運動状態量が発生するまでの時間差すなわち位相差を小さくして旋回することができる。その結果、運転者は違和感を覚えることがなく正確に発生した見込み運動状態量を知覚することができて運転がより簡単になる。
さらに、運転者は、例えば、車両を直進状態から旋回状態となるように操舵ハンドルを操作した場合において、見込み運動状態量を知覚し始めるまでに違和感を覚える場合がある。すなわち、運転者は、操舵ハンドルの操作に対して転舵輪が転舵を開始し、見込み運動状態量(実運動状態量)を知覚し始めるまでの応答遅れ(過渡応答遅れ)が大きい場合には、操舵ハンドルをより多く操作しなければならず違和感を覚える。ここで、運転者が応答遅れ(過渡応答遅れ)を大きいと感じるのは、車両に横滑りが発生することによって車両の走行方向が所望の方向にすばやく変化しないと知覚した場合に感じられる。したがって、現在の車両に発生している横滑り角などを考慮して転舵角を補正することにより、応答遅れなく車両を旋回させることができる。その結果、運転者は、操舵ハンドルの操作に対する応答遅れ(過渡応答遅れ)を感じにくくなるとともに、正確に発生した見込み運動状態量を知覚することができて運転がより簡単になる。
a.第1実施形態
以下、本発明の第1実施形態に係る車両の操舵装置について図面を用いて説明する。図1は、第1実施形態に係る車両の操舵装置を概略的に示している。
この操舵装置は、転舵輪としての左右前輪FW1,FW2を転舵するために、運転者によって回動操作される操作部としての操舵ハンドル11を備えている。操舵ハンドル11は操舵入力軸12の上端に固定され、操舵入力軸12の下端は電動モータおよび減速機構からなる反力アクチュエータ13に接続されている。反力アクチュエータ13は、運転者の操舵ハンドル11の回動操作に対して反力を付与する。
また、この操舵装置は、電動モータおよび減速機構からなる転舵アクチュエータ21を備えている。この転舵アクチュエータ21による転舵力は、転舵出力軸22、ピニオンギア23およびラックバー24を介して左右前輪FW1,FW2に伝達される。この構成により、転舵アクチュエータ21からの回転力は転舵出力軸22を介してピニオンギア23に伝達され、ピニオンギア23の回転によりラックバー24が軸線方向に変位して、このラックバー24の軸線方向の変位により、左右前輪FW1,FW2は左右に転舵される。
次に、これらの反力アクチュエータ13および転舵アクチュエータ21の回転を制御する電気制御装置について説明する。電気制御装置は、操舵角センサ31、転舵角センサ32、車速センサ33およびヨーレートセンサ34を備えている。
操舵角センサ31は、操舵入力軸12に組み付けられて、操舵ハンドル11の中立位置からの回転角を検出して操舵角θとして出力する。転舵角センサ32は、転舵出力軸22に組み付けられて、転舵出力軸22の中立位置からの回転角を検出して実転舵角δ(左右前輪FW1,FW2の転舵角に対応)として出力する。なお、操舵角θおよび実転舵角δは、中立位置を「0」とし、左方向の回転角を正の値で表すとともに、右方向の回転角を負の値でそれぞれ表す。車速センサ33は、車速Vを検出して出力する。ヨーレートセンサ34は、車両の実ヨーレートγを検出して出力する。なお、実ヨーレートγも、左方向への回頭(旋回方向)を正で表し、右方向への回頭(旋回方向)を負で表す。
これらのセンサ31〜34は、電子制御ユニット36に接続されている。電子制御ユニット36は、CPU、ROM、RAMなどからなるマイクロコンピュータを主要構成部品とするもので、プログラムの実行により反力アクチュエータ13および転舵アクチュエータ21の作動をそれぞれ制御する。電子制御ユニット36の出力側には、反力アクチュエータ13および転舵アクチュエータ21を駆動するための駆動回路37,38がそれぞれ接続されている。駆動回路37,38内には、反力アクチュエータ13および転舵アクチュエータ21内の電動モータに流れる駆動電流を検出するための電流検出器37a,38aが設けられている。電流検出器37a,38aによって検出された駆動電流は、両電動モータの駆動を制御するために、電子制御ユニット36にフィードバックされている。
次に、上記のように構成した第1実施形態の動作について、電子制御ユニット36内にてコンピュータプログラム処理により実現される機能を表す図2の機能ブロック図を用いて説明する。電子制御ユニット36は、操舵ハンドル11への反力付与を制御するための反力制御部40と、操舵ハンドル11の回動操作に基づいて運転者の感覚特性に対応した左右前輪FW1,FW2の目標転舵角δdを決定するための感覚適合制御部50と、目標転舵角δdに基づいて左右前輪FW1,FW2を転舵制御するための転舵制御部60とからなる。
運転者によって操舵ハンドル11が回動操作されると、操舵角センサ31によって操舵ハンドル11の回転角である操舵角θが検出されて、同検出された操舵角θを反力制御部40および感覚適合制御部50にそれぞれ出力する。反力制御部40においては、運転者によって操舵ハンドル11が回動操作されると、変位−トルク変換部41が、操舵ハンドル11の操舵角θの絶対値が正の所定値θz未満であれば下記式1に従って操舵角θの一次関数である反力トルクTzを計算し、操舵角θの絶対値が正の所定値θz以上であれば下記式2に従って操舵角θの指数関数である反力トルクTzを計算する。ここで、式1の一次関数と式2の指数関数とは、操舵角θzで連続的に接続されるものであり、例えば、式2の指数関数における操舵角θzでの原点「0」を通る接線を式1の一次関数として採用するとよい。なお、式1に関しては、一次関数に限定されるものではなく、操舵角θが「0」のときに反力トルクTzが「0」となり、かつ、式2の指数関数と連続的に接続される関数であれば、種々の関数を採用することができる。
Tz=a・θ (|θ|<θz) …式1
Tz=To・exp(K1・θ) (θz≦|θ|) …式2
ここで、前記式1中のaは一次関数の傾きを表す定数である。また、前記式2中のTo,K1は定数であり、特に、定数Toは運転者が知覚し得る最小操舵トルクである。なお、定数K1に関しては後述する感覚適合制御部50の説明時に詳しく説明する。さらに、前記式1および式2中の操舵角θは、前記検出操舵角θの絶対値を表しているものとし、検出操舵角θが正であれば定数aおよび定数Toを負の値とするとともに、検出操舵角θが負であれば、定数aおよび定数Toを前記負の定数aおよび前記負の定数Toと同じ絶対値を有する正の値とする。なお、前記式1,2の演算に代えて、操舵角θに対する反力トルクTzを記憶した図3に示すような特性の変換テーブルを用いて、反力トルクTzを計算するようにしてもよい。
この計算された反力トルクTzは、駆動制御部42に供給される。駆動制御部42は、駆動回路37から反力アクチュエータ13内の電動モータに流れる駆動電流を入力し、同電動モータに反力トルクTzに対応した駆動電流が流れるように駆動回路37をフィードバック制御する。この反力アクチュエータ13内の電動モータの駆動制御により、同電動モータは、操舵入力軸12を介して操舵ハンドル11に反力トルクTzを付与する。したがって、運転者は、操舵ハンドル11の回動操作を開始し、操舵角が操舵角θz未満のときは一次関数的に変化する反力トルクTzを感じ、また、操舵角が操舵角θz以上のときは指数関数的に変化する反力トルクTzを感じながら、操舵ハンドル11を回動操作することになる。言い換えれば、運転者は、このように変化する反力トルクTzと等しい操舵トルクを操舵ハンドル11に加えながら、操舵ハンドル11を回動操作することになる。
具体的に説明すると、運転者が操舵ハンドル11を中立位置から回動操作すると、所定の操舵角θz未満であれば、前記式1に従ってすなわち検出操舵角θに対して一次関数的に変化する反力トルクTzが計算される。そして、検出操舵角θが所定の操舵角θz以上となれば、前記式2に従ってすなわち検出操舵角θに対して指数関数的に変化する反力トルクTzが計算される。このとき、所定の操舵角θzにて、反力トルクTzが前記式1に従う計算から前記式2に従う計算に変更されるときには、前記式1すなわち一次関数と前記式2すなわち指数関数とが連続的に接続されるため、運転者は、前記変更に伴う反力トルクTzの違和感を覚えることがない。そして、検出操舵角θが所定の操舵角θz以上のときには、操舵角θと反力トルクTzの関係が上述したウェーバー・ヘフナーの法則に従うものとなるため、運転者は、操舵ハンドル11から人間の知覚特性に合った感覚を受けながら、操舵ハンドル11を回動操作できる。
一方、運転者が操舵ハンドル11を中立位置方向へ回動操作すると、検出操舵角θが所定の操舵角θz以上であれば、運転者は、上述したように、ウェーバー・ヘフナーの法則に従った反力トルクTzすなわち操舵角θに対して指数関数的に変化する反力トルクTzを知覚しながら操舵ハンドル11を操作する。そして、中立位置近傍、言い換えると、検出操舵角θが所定の操舵角θz未満となれば、運転者が知覚する反力トルクTzは、前記式2から前記式1に変更されて計算される。このように、前記式2から前記式1に変更して反力トルクTzを計算することにより、反力トルクTzは操舵角θに対して一次関数的に「0」に収束する。
ここで、操舵ハンドル11の中立位置までの反力トルクTzの計算において前記式2に従った場合には、前記式2の操舵角θが「0」であるにもかかわらず、反力トルクTzが所定値Toとなる。このとき、運転者が操舵ハンドル11を中立位置から僅かに回動した場合には、反力トルクToにより、操舵ハンドル11が中立位置方向への回動振動が発生する。これにより、操舵ハンドル11の中立位置にて反力トルクTzが付与される状況では、操舵ハンドル11に振動が発生するため好ましくない。しかしながら、上述したように、検出操舵角θが所定の操舵角θz未満において、操舵角θに対して、詳しくは操舵角θの絶対値の減少に対して、反力トルクTzを連続的に「0」に収束させる前記式1に従って計算することにより、操舵ハンドル11の中立位置では反力トルクTzを「0」とすることができる。したがって、操舵ハンドル11の中立位置における振動の発生を防止することができる。
また、感覚適合制御部50に入力された操舵角θは、変位−トルク変換部51にて前記式1,2と同様な下記式3,4に従って操舵トルクTdを計算する。この操舵トルクTdの計算においても、式3に関しては、一次関数に限定されるものではなく、操舵角θが「0」のときに操舵トルクTdが「0」となり、かつ、式4の指数関数と連続的に接続される関数であれば、種々の関数を採用することができる。
Td=a・θ (|θ|<θz) …式3
Td=To・exp(K1・θ) (θz≦|θ|) …式4
この場合も、前記式3中のaは一次関数の傾きを表す定数である。また、前記式4中のTo,K1は、前記式2と同様な定数である。さらに、前記式3および式4中の操舵角θは、前記検出操舵角θの絶対値を表しているものであるが、検出操舵角θが正であれば定数aおよび定数Toを正の値とするとともに、検出操舵角θが負であれば定数aおよび定数Toを前記正の定数aおよび定数Toと同じ絶対値を有する負の値とする。なお、この場合も、前記式3,4の演算に代えて、操舵角θに対する操舵トルクTdを記憶した図3に示すような特性の変換テーブルを用いて、操舵トルクTdを計算するようにしてもよい。
この計算された操舵トルクTdは、トルク−横加速度変換部52に供給される。トルク−横加速度変換部52は、運転者が操舵ハンドル11の回動操作により見込んでいる見込み横加速度Gdを下記式5に従って計算する。
Gd=C・TdK2 (To≦|Td|) …式5
ただし、式5中のC,K2は定数である。また、前記式5中の操舵トルクTdは前記式3,4を用いて計算した操舵トルクTdの絶対値を表しているものであり、前記計算した操舵トルクTdが正であれば定数Cを正の値とするとともに、前記計算した操舵トルクTdが負であれば定数Cを前記正の定数Cと同じ絶対値を有する負の値とする。また、操舵トルクTdが所定値To未満である場合には、見込み横加速度Gdが「0」に保たれる。これにより、操舵ハンドル11が中立位置(操舵角θが略「0」)に保たれる場合には、見込み横加速度Gdが「0」に保たれ、運転者の知覚特性に合わせることができる。なお、この場合も、前記式5の演算に代えて、操舵トルクTdに対する見込み横加速度Gdを記憶した図4に示すような特性の変換テーブルを用いて、見込み横加速度Gdを計算するようにしてもよい。
ここで、前記式5について説明しておく。前記式4を用いて操舵トルクTdを消去すると、下記式6に示すようになる。
Gd=C・(To・exp(K1・θ))K2=C・ToK2・exp(K1・K2・θ)=Go・exp(K1・K2・θ) …式6
前記式6において、Goは定数C・ToK2であり、式6は、運転者による操舵ハンドル11の操舵角θに対して見込み横加速度Gdが指数関数的に変化していることを示す。そして、この見込み横加速度Gdは、車内の所定部位への運転者の体の一部の接触によって運転者が知覚し得る物理量であり、前述したウェーバー・ヘフナーの法則に従ったものである。したがって、運転者がこの見込み横加速度Gdに等しい横加速度を知覚しながら操舵ハンドル11を回動操作することができれば、操舵ハンドル11の回動操作と車両の操舵との関係を人間の知覚特性に対応させることができる。
このように、前記式5(すなわち前記式6)に示された見込み横加速度Gdは操舵ハンドル11の操作量である操舵角θに対して指数関数的に変化するものであるので、人間の知覚特性に合ったものである。さらに、運転者による操舵ハンドル11の回動操作にとって最も簡単な方法は操舵ハンドル11を一定速度ω(θ=ω・t)で回動することであり、この回動操作によれば、見込み横加速度Gdは下記式7に示すように時間tに対して指数関数的に変化する。したがって、これからも、前記見込み横加速度Gdに等しい横加速度を知覚しながら操舵ハンドル11を回動操作することができれば、運転者の操舵ハンドル11の回動操作が簡単になることがわかる。
Gd=Go・exp(K0・ω・t) …式7
ただし、K0は、K0=K1・K2の関係にある定数である。
次に、前記式1〜7で用いたパラメータK1,K2,C(所定値K1,K2,C)の決め方について説明しておく。なお、このパラメータK1,K2,Cの決め方についての説明では、前記式1〜7の操舵トルクTdおよび見込み横加速度Gdについては、操舵トルクTおよび横加速度Gとして扱う。前述したウェーバー・ヘフナーの法則によれば、「人間の知覚できる最小の物理量変化ΔSとその時点での物理量Sとの比ΔS/Sは、物理量Sの値によらず一定となり、その比ΔS/Sをウェーバー比という」ことになっている。本発明者等は、操舵トルクおよび横加速度に関し、前記ウェーバー・ヘフナーの法則が成立することを確認するとともに、ウェーバー比を決定するために、次のような実験を、男女、年齢、車両の運転歴などの異なる種々の人間に対して行った。
操舵トルクに関しては、車両の操舵ハンドルにトルクセンサを組付け、操舵ハンドルに検査用のトルクを外部から付与するとともに同検査用トルクを種々の態様で変化させながら、この検査用トルクに抗して人間が操舵ハンドルに操作力を加えて同操舵ハンドルを回転しないように調整する人間の操舵トルク調整能力を計測した。すなわち、前記状況下で、ある時点での検出操舵トルクをTとし、同検出操舵トルクTからの変化を知覚し得る最小の操舵トルク変化量をΔTとしたときの比の値ΔT/Tすなわちウェーバー比を種々の人間に対して計測した。この実験の結果によれば、操舵ハンドルの操作方向、操舵ハンドルを把持する手の状態、検査用トルクの大きさおよび方向によらず、種々の人間に対してウェーバー比ΔT/Tはほぼ一定の値となった。
横加速度に関しては、運転席の側方に壁部材を設けて同壁部材に人間の肩の押圧力を検出する力センサを組付け、壁部材の力センサに肩を接触させる。そして、壁部材に検査用の力を人間に対して横方向に外部から付与するとともに同検査用の力を種々の態様で変化させながら、この検査用の力に抗して人間が壁部材を押して壁部材が移動しないように調整する、すなわち姿勢を維持する人間の横力調整能力を計測した。すなわち、前記状況下で、ある時点での外部からの横力に耐えて姿勢を維持する検出力をFとし、同検出力Fからの変化を知覚し得る最小の力変化量をΔFしたときの比の値ΔF/Fすなわちウェーバー比を種々の人間に対して計測した。この実験の結果によれば、壁部材に付与される基準力の大きさおよび方向によらず、種々の人間に対してウェーバー比ΔF/Fはほぼ一定の値となった。
一方、前記式4を微分するとともに、同微分した式において式4を考慮すると、下記式8が成立する。
ΔT=To・exp(K1・θ)・K1・Δθ=T・K1・Δθ …式8
この式8を変形するとともに、前記実験により求めた操舵トルクに関するウェーバー比ΔT/TをKtとすると、下記式9が成立する。
K1=ΔT/(T・Δθ)=Kt/Δθ …式9
また、最大操舵トルクをTmaxとすれば、前記式4より下記式10が成立する。
Tmax=To・exp(K1・θmax) …式10
この式10を変形すれば、下記式11が成立する。
K1=log(Tmax/To)/θmax …式11
そして、前記式9および式11から下記式12が導かれる。
Δθ=Kt/K1=Kt・θmax/log(Tmax/To) …式12
この式12において、Ktは操舵トルクTのウェーバー比であり、θmaxは操舵角の最大値であり、Tmaxは操舵トルクの最大値であり、Toは人間が知覚し得る最小操舵トルクに対応するものであり、これらの値Kt,θmax,Tmax,Toはいずれも実験およびシステムによって決定される定数であるので、前記微分値Δθは前記式12を用いて計算できる。そして、この微分値Δθとウェーバー比Ktを用いて、前記式9に基づいて所定値(係数)K1も計算できる。
また、前記式5を微分するとともに、同微分した式において式5を考慮すると、下記式13が成立する。
ΔG=C・K2・TK2-1・ΔT=G・K2・ΔT/T …式13
この式13を変形し、かつ前記実験により求めた操舵トルクに関するウェーバー比ΔT/TをKtとするとともに、横加速度に関するウェーバー比ΔF/FをKaとすると下記式14,15が成立する。
ΔG/G=K2・ΔT/T …式14
K2=Ka/Kt …式15
この式15において、Ktは操舵トルクに関するウェーバー比であるとともに、Kaは横加速度に関するウェーバー比であって、共に定数として与えられるものであるので、これらのウェーバー比Kt,Kaを用いて、前記式15に基づいて係数K2も計算できる。
また、横加速度の最大値をGmaxとし、操舵トルクの最大値をTmaxとすれば、前記式5から下記式16が導かれる。
C=Gmax/TmaxK2 …式16
そして、この式16においては、GmaxおよびTmaxは実験およびシステムによって決定される定数であり、かつK2は前記式15によって計算されるものであるので、定数(係数)Cも計算できる。
以上のように、操舵角θの最大値θmax、操舵トルクTの最大値Tmax、横加速度Gの最大値Gmax、最小操舵トルクTo、最小感知横加速度Go、操舵トルクに関するウェーバー比Kt、および横加速度に関するウェーバー比Kaを、実験およびシステムによって決定すれば、前記式1〜6における係数K1,K2,Cを予め計算により決定しておくことができる。したがって、変位−トルク変換部41,51およびトルク−横加速度変換部52においては、前記式1〜7を用いて、運転者の知覚特性に合った反力トルクTz、操舵トルクTdおよび見込み横加速度Gdを計算できる。
ふたたび、図2の説明に戻ると、トルク−横加速度変換部52にて計算された見込み横加速度Gdは、転舵角変換部53に供給される。転舵角変換部53は、見込み横加速度Gdを発生するのに必要な左右前輪FW1,FW2の目標転舵角δdを計算するものであり、図5に示すように車速Vに応じて変化して見込み横加速度Gdに対する目標転舵角δdの変化特性を表すテーブルを有する。このテーブルは、車速Vを変化させながら車両を走行させて、左右前輪FW1,FW2の転舵角δと横加速度Gとを予め実測して収集したデータの集合である。そして、転舵角変換部53は、このテーブルを参照して、前記入力した見込み横加速度Gdと車速センサ33から入力した検出車速Vとに対応した目標転舵角δdを計算する。また、前記テーブルに記憶されている横加速度G(見込み横加速度Gd)と目標転舵角δdはいずれも正であるが、トルク−横加速度変換部52から供給される見込み横加速度Gdが負であれば、出力される目標転舵角δdも負となる。
この計算された目標転舵角δdは、転舵制御部60の転舵角補正部61に供給される。ここで、転舵角補正部61に供給される目標転舵角δdは、上述したように、転舵角変換部53が予め記憶した図5に示す変換テーブルに基づいて計算するものである。このように計算される目標転舵角δdは、実際の車両の旋回時における操舵特性(以下、この旋回時の操舵特性を動的な操舵特性という)、例えば、旋回時に発生する車両の横滑りを伴う旋回状態により変化する操舵特性などを考慮して計算されたものではなく、車両の検出車速Vに応じて一義的に決定される、言い換えれば、静的な操舵特性に基づくものである。したがって、この計算された目標転舵角δdで左右前輪FW1,FW2を転舵制御した場合には、予め想定された車両の旋回状態(詳しくは、目標転舵角δdで決定される旋回状態)が時々刻々と変化し、運転者が見込んでいる見込み横加速度Gdを正確に発生させることができない場合がある。
すなわち、実際の車両の旋回状態が予め想定された定常円旋回状態から変化することによって、車両に実際に発生する横加速度Gと予め想定された旋回状態による見込み横加速度Gdとが異なる場合がある。これにより、運転者は、見込み横加速度Gdの発生を見込んだ時期と実際に車両に見込み横加速度Gdに相当する横加速度が発生する時期との間に位相的なズレ(遅れ)を知覚したり、左右前輪FW1,FW2が目標転舵角δdに転舵制御されてこの目標転舵角δdで旋回を開始するまでの応答遅れ(以下、過渡応答遅れという)を知覚したりして違和感を覚える。この違和感を解消するために、転舵角補正部61は、ヨーレートセンサ34によって検出された実ヨーレートγを入力するとともに横滑り角演算部62から操舵特性量としての車両の横滑り角βを入力し、供給された目標転舵角δdを補正して補正目標転舵角δdaを計算する。
横滑り角演算部62は、トルク−横加速度変換部52から見込み横加速度Gdを入力するとともに、車速センサ33によって検出された車速Vおよびヨーレートセンサ34によって検出された実ヨーレートγをも入力する。そして、これら各値を用いて、見込み横加速度Gdで車両が旋回するときに発生する車両の横滑り角βを計算する。なお、横滑り角βは、右方向の横滑り角を正の値で表すとともに、左方向の横滑り角を負の値で表す。この横滑り角βを計算するにあたり、車両の旋回時に発生する横加速度Gとヨーレートセンサ34によって検出された実ヨーレートγとの関係は下記式17のように表すことができる。
G=V・(β’+γ) …式17
ただし、β’は車両の横滑り角βの時間微分値である。これにより、見込み横加速度Gdで車両が旋回するときの横滑り角βの時間微分値は、前記式17を変形した下記式18で示される。
β’=Gd/V−γ …式18
したがって、横滑り角演算部62は、見込み横加速度Gdで車両が旋回するときの横滑り角βを、下記式19に従ってすなわち前記式18を時間tで積分して計算する。
β=∫(Gd/V−γ)dt …式19
この計算された横滑り角βは転舵角補正部61に供給される。転舵角補正部61は、下記式20に従って目標転舵角δdを補正し、補正目標転舵角δdaを計算する。
δda=δd+(1+Kr/Kf)・β+(lf−lr・Kr/Kf)・γ/V …式20
ただし、前記式20中のKf,Krは車両の前輪および後輪のタイヤのコーナリングパワー(すなわち、車両旋回時におけるタイヤと路面間の摩擦力)であり、lf,lrは車両の前後の車軸から重心点までの距離である。また、前記式20の右辺第2項は車両の横滑りによって運転者が知覚する位相的なズレを補正する項であり、前記式20の右辺第3項は過渡応答遅れを補正する項である。
ここで、前記式20の導出について説明しておく。車両が旋回する際の横方向(詳しくは、横加速度が発生する方向)の運動状態は、下記式21によって表される。
m・V・β’+2・(Kf+Kr)・β+(m・V+2・(lf・Kf−lr・Kr)/V)・γ=2・Kf・δ …式21
ただし、前記式21中のmは車両の重量であり、Vは現在の車速であり、βは現在の車両の横滑り角であり、δは現在の転舵角を表すものである。そして、前記式18を用いて、前記式21の左辺の車両の横滑り角βの時間微分値β’を消去すると、下記式22に示すようになる。
m・G+2・(Kf+Kr)・β+2・(lf・Kf−lr・Kr)・γ/V=2・Kf・δ …式22
また、前記式22の両辺を2・Kfで除算して整理すると、転舵角δは下記式23に示すようになる。
δ=m/(2・Kf)・G+(1+Kr/Kf)・β+(lf−lr・Kr/Kf)/V・γ …式23
ここで、前記式23の右辺第1項は、係数m,Kfを車両の旋回時のある瞬間において定数とすれば、横加速度Gに依存して計算される項である。このため、横加速度Gを見込み横加速度Gdとすれば、前記式23の右辺第1項で計算される値は転舵角変換部53が静的な操舵特性に基づいて計算する目標転舵角δdの値とすることができ、計算される転舵角δを補正目標転舵角δdaとすれば、前記式20が導出される。
ここで、前記式20(または前記式23)の右辺第2項および第3項は、車両の運動状態に関連する項、すなわち、動的な操舵特性に基づいて計算される項であり、目標転舵角δdを補正する補正項である。具体的に説明すると、前記式20(前記式23)の右辺第2項は、係数Kf,Krを車両の旋回時のある瞬間において定数とすれば、横滑り角βに依存して計算される項である。言い換えれば、運転者が見込んだ見込み横加速度Gdを発生させるために想定される旋回方向と実際の車両の旋回方向との角度差が計算される項である。このため、この計算された角度差分を目標転舵角δdに加えて補正することにより、見込み横加速度Gdの発生を見込んだ時期と実際に車両に見込み横加速度Gdに相当する横加速度が発生する時期との位相的なズレ(遅れ)を補正することができる。
また、前記式20(前記式23)の右辺第3項は、係数lf,lr,Kf,Krおよび車速Vを車両の旋回時のある瞬間において定数とすれば、ヨーレートγに依存して計算される項である。言い換えれば、運転者が見込んだ見込み横加速度Gdを発生させるための旋回方向に対して、現在の車両の旋回方向を一致するように車両を回転(詳しくは、車両の重心位置における鉛直軸まわりの回転)させる回転角が計算される項である。このため、この計算された回転角分を目標転舵角δdに加えて補正することにより、過渡応答遅れを低減する、言い換えれば車両の旋回方向を運転者が見込んだ旋回方向にすばやく一致させることができる。
以上のように計算された補正目標転舵角δdaは、駆動制御部63に供給される。駆動制御部63は、転舵角センサ32によって検出された実転舵角δを入力し、左右前輪FW1,FW2が補正目標転舵角δdaに転舵されるように転舵アクチュエータ21内の電動モータの回転をフィードバック制御する。また、駆動制御部63は、駆動回路38から同電動モータに流れる駆動電流も入力し、転舵トルクに対応した大きさの駆動電流が同電動モータに適切に流れるように駆動回路38をフィードバック制御する。この転舵アクチュエータ21内の電動モータの駆動制御により、同電動モータの回転は、転舵出力軸22を介してピニオンギア23に伝達され、ピニオンギア23によりラックバー24を軸線方向に変位させる。そして、このラックバー24の軸線方向の変位により、左右前輪FW1,FW2は補正目標転舵角δdaに転舵される。
上記作動説明からも理解できるように、上記第1実施形態によれば、操舵ハンドル11に対する運転者の操作入力値としての操舵角θは変位−トルク変換部51によって操舵トルクTdに変換される。そして、同変換された操舵トルクTdはトルク−横加速度変換部52に供給され、見込み横加速度Gdに変換される。変換された見込み横加速度Gdは転舵角変換部53に供給され、同変換部53は目標転舵角δdを計算する。この計算された目標転舵角δdは転舵角補正部61に供給され、転舵角補正部61は横滑り角演算部62から横滑り角βおよびヨーレートセンサ34から実ヨーレートγを取得して目標転舵角δdを補正して補正目標転舵角δdaを計算する。そして、駆動制御部63により、左右前輪FW1,FW2は補正目標転舵角δdaに転舵される。
この場合、操舵トルクTdは、反力アクチュエータ13の作用によって運転者が操舵ハンドル11から知覚し得る物理量であるとともに、操舵角θに対して指数関数的に変化するものであるので、運転者はウェーバー・ヘフナーの法則に従った反力を感じながら人間の知覚特性に従って操舵ハンドル11を回動操作できる。また、見込み横加速度Gdは、運転者が入力した操舵角θから計算される操舵トルクTdに対してべき乗関数的(前記式5を前記式6に変形することにより操舵角θに対して指数関数的)に変化する。したがって、運転者はウェーバー・ヘフナーの法則に従った横加速度を感じながら人間の知覚特性に従って操舵ハンドル11を回動操作して、車両を旋回させることができる。その結果、運転者は、人間の知覚特性に合わせて操舵ハンドル11を操作できるので、車両の運転が簡単になる。
また、転舵角補正部61は、現在車両に発生している横滑りに伴う横滑り角βを考慮して、車両に実際に発生している実横加速度Gが運転者の見込んだ見込み横加速度Gdに正確に対応するように目標転舵角δdを補正するので、車両には操舵ハンドル11の操舵角θに正確に対応した見込み横加速度Gdが発生する。また、見込み横加速度Gdの発生に際しては、運転者が見込んだ発生時期との位相的なズレ(遅れ)や過渡応答遅れを低減することができる。その結果、運転者は、人間の知覚特性にさらに正確に合った横加速度(見込み横加速度Gd)を知覚しながら、操舵ハンドル11を操作できるようになるので、車両の運転がさらに簡単になる。
上記第1実施形態においては、前記式21において、前記式18を用いて横滑り角βの時間微分値であるβ’を消去して前記式20を導出した。そして、転舵角補正部61は、前記式20に従って、転舵角変換部53から供給された目標転舵角δdを、前記式19により計算される横滑り角βおよびヨーレートセンサ34により検出されるヨーレートγを用いて補正目標転舵角δdaを計算するように実施した。しかしながら、前記式17に従えば、前記式21中のヨーレートγを消去して補正目標転舵角δdaを計算することができる。このように、ヨーレートγを消去して補正目標転舵角δdaを計算することにより、車両の横方向の運動状態をより簡略化して(すなわち車両の運動状態量を少なくして)表すことができる。以下、この変形例について詳細に説明するが、この変形例においては、転舵角補正部61における補正目標転舵角δdaの計算式(前記式20)が異なること以外、他の構成については上記第1実施形態と同様であるため、その詳細な説明を省略する。
この変形例の場合には、図2に示す転舵角補正部61は、転舵角変換部53から供給された目標転舵角δdを下記式24に従って補正して補正目標転舵角δdaを計算する。
δda=δd+(1+Kr/Kf)・β−(lf−lr・Kr/Kf)/V・β’ …式24
ただし、前記式24中のKf,Krは車両の前輪および後輪のタイヤのコーナリングパワー(すなわち、車両旋回時におけるタイヤと路面間の摩擦力)であり、lf,lrは車両の前後の車軸から重心点までの距離である。また、前記式24の右辺第2項は車両の横滑りによって運転者が知覚する位相的なズレを補正する補正項であり、前記式24の右辺第3項は過渡応答遅れを補正する補正項である。
ここで、前記式24の導出について説明しておく。前記式24の導出に際しては、前記式17を変形することにより、横加速度Gで車両が旋回するときのヨーレートγは下記式25に示すようになる。
γ=G/V−β’ …式25
ただし、β’は上記式17と同様な車両の横滑り角βの時間微分値である。そして、前記式25を用いて、前記式21のヨーレートγを消去して整理すると、下記式26に示すようになる。
(m+2・(lf・Kf−lr・Kr)/V2)・G+2・(Kf+Kr)・β−2・(lf・Kf−lr・Kr)/V・β’=2・Kf・δ …式26
また、前記式26の両辺を2・Kfで除算して整理すると、転舵角δは下記式27に示すようになる。
δ=(m・V2+2・(lf・Kf−lr・Kr))/(2・Kf・V2)・G+(1+Kr/Kf)・β−(lf−lr・Kr/Kf)/V・β’ …式27
ここで、前記式27の右辺第1項は、係数m,V,lf,lr,KfおよびKrを車両の旋回時のある瞬間において定数とすれば、横加速度Gに依存して計算される項である。このため、横加速度Gを見込み横加速度Gdとすれば、前記式27の右辺第1項で計算される値は転舵角変換部53が静的な操舵特性に基づいて計算する目標転舵角δdの値とすることができ、計算される転舵角δを補正目標転舵角δdaとすれば、前記式24が導出される。
ここで、前記式24の右辺第2項および第3項は、上記第1実施形態の前記式20と同様に、車両の運動状態に関連する項すなわち動的な操舵特性に基づいて計算される項であり、目標転舵角δdを補正する補正項である。具体的に説明すると、前記式24の右辺第2項は、係数Kf,Krを車両の旋回時のある瞬間において定数とすれば、横滑り角βに依存して計算される項である。言い換えれば、運転者が見込んだ見込み横加速度Gdを発生させるための旋回方向と実際の車両の旋回方向との角度差が計算される項である。このため、この計算された角度差分を目標転舵角δdに加えて補正することにより、見込み横加速度Gdの発生を見込んだ時期と実際に車両に横加速度が発生する時期との位相的なズレ(遅れ)を補正することができる。
また、前記式24の右辺第3項は、係数lf,lr,Kf,Krおよび車速Vを車両の旋回時のある瞬間において定数とすれば、横滑り角の時間微分値β’すなわちある瞬間における横滑り角βの変化量(傾き)に依存して計算される項である。ここで、横滑り角βは、時間の経過とともに小さくなり、いずれは「0」となる変数であるため、横滑り角βの時間微分値すなわち変化の傾きは負となる。したがって、この計算された第3項を目標転舵角δdに加算(または減算)して補正することにより、過渡応答遅れを低減することができる。
以上のように計算された補正目標転舵角δdaは駆動制御部63に供給され、駆動制御部63は左右前輪FW1,FW2が補正目標転舵角δdaに転舵されるように転舵アクチュエータ21内の電動モータをフィードバック制御する。これにより、車両は、運転者が見込んだ見込み横加速度Gdが発生するように旋回する。
以上の説明からも理解できるように、この変形例によっても、転舵角補正部61は、現在車両に発生している横滑りに伴う横滑り角βを考慮して、車両に実際に発生している実横加速度Gが運転者の見込んだ見込み横加速度Gdに正確に対応するように目標転舵角δdを補正するので、車両には操舵ハンドル11の操舵角θに正確に対応した見込み横加速度Gdが発生する。また、見込み横加速度Gdの発生に際しては、運転者が見込んだ発生時期との位相的なズレ(遅れ)や過渡応答遅れをなくすことができる。その結果、運転者は、人間の知覚特性にさらに正確に合った横加速度(見込み横加速度Gd)を知覚しながら、操舵ハンドル11を操作できるようになるので、車両の運転が簡単になる。また、この場合には、ヨーレートセンサ34を用いなくても、目標転舵角δdを補正目標転舵角δdaに補正することができるため、車両の構成を簡略化することができる。さらに、その他の効果については、上記第1実施形態と同様の効果が期待できる。
b.第2実施形態
次に、上記第1実施形態における運動状態量としての横加速度に代えて、ヨーレートを用いた本発明の第2実施形態について説明する。この第2実施形態においては、図1に破線で示すように、上記第1実施形態におけるヨーレートセンサ34に加えて、運転者が知覚し得る運動状態量である実横加速度Gを検出する横加速度センサ35も備えている。その他の構成については上記第1実施形態と同じ構成であるが、電子制御ユニット36にて実行されるコンピュータプログラムが上記第1実施形態の場合と異なる。
この第2実施形態においては、電子制御ユニット36にて実行されるコンピュータプログラムが図6の機能ブロック図により示されている。この場合、感覚適合制御部50において、変位−トルク変換部51は上記第1実施形態と同様に機能するが、上記第1実施形態のトルク−横加速度変換部52に代えてトルク−ヨーレート変換部54が設けられている。
このトルク−ヨーレート変換部54は、変位−トルク変換部51にて計算された操舵トルクTdを用いて、運転者が操舵ハンドル11の回動操作により見込んでいる見込みヨーレートγdを下記式28に従って計算する。
γd=C・TdK2 (To≦|Td|) …式28
ただし、前記式28中のC,K2は、上記第1実施形態と同じく定数である。また、前記式28中の操舵トルクTdは、前記式3,4を用いて計算された操舵トルクTdの絶対値を表しているものであり、前記計算した操舵トルクTdが正であれば定数Cを正の値とするとともに、前記計算した操舵トルクTdが負であれば定数Cを前記正の定数Cと同じ絶対値を有する負の値とする。また、操舵トルクTdが所定値To未満である場合には、見込みヨーレートγdが「0」に保たれる。これにより、操舵ハンドル11が中立位置(操舵角θが略「0」)に保たれる場合には、見込みヨーレートγdが「0」に保たれ、運転者の知覚特性に合わせることができる。なお、この場合も、前記式28の演算に代えて、操舵トルクTdに対する見込みヨーレートγdを記憶した図7に示すような特性の変換テーブルを用いて、見込みヨーレートγdを計算するようにしてもよい。
また、転舵角変換部55は、見込みヨーレートγdを発生するのに必要な左右前輪FW1,FW2の目標転舵角δdを計算するものであり、図8に示すように車速Vに応じて変化して見込みヨーレートγdに対する目標転舵角δdの変化特性を表すテーブルを有する。このテーブルは、車速Vと変化させながら車両を走行させて、左右前輪FW1,FW2の転舵角δとヨーレートγとを予め実測して収集したデータの集合である。そして、転舵角変換部55は、このテーブルを参照して、前記入力した見込みヨーレートγdと車速センサ33から入力した検出車速Vに対応した目標転舵角δdを計算する。なお、前記テーブルに記憶されているヨーレートγ(見込みヨーレートγd)と目標転舵角δdはいずれも正であるが、トルク−ヨーレート変換部54から供給される見込みヨーレートγdが負であれば、出力される目標転舵角δdも負となる。
この計算された目標転舵角δdは、転舵制御部60の転舵角補正部64に供給される。ここで、この第2実施形態においても、転舵角補正部64に供給される目標転舵角δdは、転舵角変換部55が予め記憶した図7に示す変換テーブルに基づいて計算するものである。したがって、このように計算される目標転舵角δdも、上記第1実施形態の場合と同様に、動的な操舵特性を考慮して計算されたものではなく、車両の検出車速Vに応じて一義的に決定されるものである。このため、この計算された目標転舵角δdで左右前輪FW1,FW2を転舵制御した場合には、車両の走行方向が横滑りによって時々刻々と変化して車両に実際に発生するヨーレートと見込みヨーレートγdとが異なり、運転者が見込んでいる見込みヨーレートγdを正確に発生させることができない場合がある。したがって、転舵角補正部64は、横滑り角演算部65から車両の横滑り角βを入力し、供給された目標転舵角δdを補正して補正目標転舵角δdaを計算する。
横滑り角演算部65は、車速センサ33によって検出した車速V、ヨーレートセンサ34によって検出された実ヨーレートγおよび横加速度センサ35によって検出された実横加速度Gを入力し、現在車両に発生している横滑り角βを計算する。なお、この計算される横滑り角βは、右方向の横滑り角を正の値で表すとともに、左方向の横滑り角を負の値で表す。この第2実施形態における横滑り角βの計算においても、車両の旋回時に発生する横加速度Gとヨーレートγとの関係は前記式17のように表すことができ、このときの車両の横滑り角βの時間微分値は下記式29で表される。
β’=G/V−γ …式29
これにより、横滑り角演算部65は、実ヨーレートγで車両が旋回するときの横滑り角βを、前記式29を時間tで積分する下記式30に従って計算する。
β=∫(G/V−γ)dt …式30
この計算された横滑り角βは転舵角補正部64に供給される。転舵角補正部64は、下記式31に従って目標転舵角δdを補正し、補正目標転舵角δdaを計算する。
δda=δd+(1−lr・Kr/lf・Kf)・β …式31
ただし、前記式31中のKf,Krは車両の前輪および後輪のタイヤのコーナリングパワー(すなわち、車両旋回時におけるタイヤと路面間の摩擦力)であり、lf,lrは車両の前後の車軸から重心点までの距離である。以下、この式31の導出について詳細に説明する。
車両における慣性軸周りの運動は下記式32に従って表される。
I・(dγ/dt)+2・(lf2・Kf+lr2・Kr)/V・γ+2・(lf・Kf−lr・Kr)・β=2・lf・Kf・δ …式32
ただし、前記式32中のIは車両に発生した慣性の慣性能率すなわち車両が旋回するときの回転の大きさであり、γは現在のヨーレートであり、Vは現在の車速であり、βは現在の車両の横滑り角であり、δは現在の転舵角を表すものである。ここで、車両が運転者の操舵ハンドル11の操作で決定される転舵角の通りに車両が旋回する操舵特性(所謂、ニュートラルステア特性)を有している場合には、車両は横滑りすることなくすなわち横滑り角βを有することなく旋回する。このため、前記式32中の左辺第3項は「0」となり、このときの慣性軸周りの車両の運動はヨーレートγにのみ依存して下記式33に示すようになる。
I・(dγ/dt)+2・(lf2・Kf+lr2・Kr)/V・γ=2・lf・Kf・δ …式33
すなわち、車両を前記式33に従って慣性軸周りに運動させるためには、言い換えれば、ニュートラルステア特性を有して車両を旋回させるためには、前記式32の右辺の転舵角δを下記式34により表される転舵角で置き換えればよい。
δ+(1−lr・Kr/lf・Kf)・β …式34
ここで、前記式34において、車両の旋回時のある瞬間においてKf,Kr,lf,lrを定数とすれば(1−lr・Kr/lf・Kf)の定数となる。このため、現在の転舵角δに対して現在車両に発生している横滑り角βを定数値倍した値を加える、言い換えれば、現在の転舵角δを横滑り角βで補正したものを新たな転舵角δとして決定することにより、車両はあたかもニュートラスステア特性を有しているようになる。したがって、現在の転舵角δを転舵角変換部53から供給された目標転舵角δdとし、新たな転舵角δを補正目標転舵角δdaとすれば、前記式31が導出される。
また、前記式31に従って補正目標転舵角δdaが計算されて同補正目標転舵角δdaによって車両が旋回することにより、運転者は、車両に発生する横滑りが低減された(あるいは前輪側のコーナリングパワーが増えた)ように知覚して車両を旋回させることができる。具体的に説明すると、上記第1実施形態において説明したように、車両が旋回する際の横方向の運動状態は前記式21と同様に下記式35に従って表される。
m・V・β’+2・(Kf+Kr)・β+(m・V+2・(lf・Kf−lr・Kr)/V)・γ=2・Kf・δ …式35
そして、前記式35の転舵角δに前記式34に従って計算される新たな転舵角δを代入して整理すると、下記式36に示すようになる。
m・V・β’+2・(Kf+Kr)・β+(m・V+2・(lf・Kf−lr・Kr)/V)・γ=2・Kf・(δ+(1−lr・Kr/lf・Kf)・β) …式36
この前記式36についてさらに整理すると、下記式37が成立する。
m・V・β’+2・((lr/lf)・Kr+Kr)・β+(m・V+2・(lf・Kf−lr・Kr)/V)・γ=2・Kf・δ …式37
ここで、前記式35と前記式37とを比較すると、前記式35の左辺第2項の前輪側のコーナリングパワーKfは、前記式37の左辺第2項に示されるように(lr/lf)・Krと表されている。このことは、前記式31に従って補正目標転舵角δdaを計算し、同補正目標転舵角δdaで左右前輪FW1,FW2を転舵制御することにより、前輪側のコーナリングパワーが見かけ上大きくなっていることを表す。すなわち、車両は、一般的に、後輪側のコーナリングパワーKrに比して前輪側のコーナリングパワーKfが小さくなって、旋回する際には前輪側にて横滑りが発生して運転者の要求する旋回半径よりも大きくなる操舵特性(所謂、アンダステア特性)を有している。このようなアンダステア特性の車両において、前記式35の左辺第2項の前輪側のコーナリングパワーKfが前記式37の左辺第2項に示されるように(lr/lf)・Krと表されれば、前輪側のコーナリングパワーが見かけ上大きくなり、したがって、車両に発生する横滑りの影響を小さくすることができる。
以上のように計算された補正目標転舵角δdaは駆動制御部66に供給され、駆動制御部66は左右前輪FW1,FW2が補正目標転舵角δdaに転舵されるように転舵アクチュエータ21内の電動モータをフィードバック制御する。これにより、車両は、運転者が見込んだ見込みヨーレートγdが発生するように旋回する。
上記作動説明からも理解できるように、上記第2実施形態によれば、、操舵ハンドル11に対する運転者の操作入力値としての操舵角θは変位−トルク変換部51によって操舵トルクTdに変換される。そして、同変換された操舵トルクTdはトルク−ヨーレート変換部54に供給され、見込みヨーレートγdに変換される。変換された見込みヨーレートγdは転舵角変換部55に供給され、同変換部55は目標転舵角δdを計算する。この計算された目標転舵角δdは転舵角補正部64に供給され、転舵角補正部64は横滑り角演算部65から横滑り角βを取得して目標転舵角δdを補正して補正目標転舵角δdaを計算する。そして、駆動制御部66により、左右前輪FW1,FW2は補正目標転舵角δdaに転舵される。
この場合、操舵トルクTdは、反力アクチュエータ13の作用によって運転者が操舵ハンドル11から知覚し得る物理量であるとともに、操舵角θに対して指数関数的に変化するものであるので、運転者はウェーバー・ヘフナーの法則に従った反力を感じながら人間の知覚特性に従って操舵ハンドル11を回動操作できる。また、見込みヨーレートγdは、運転者が入力した操舵角θから計算される操舵トルクTdに対してべき乗関数的(前記式5から前記式6への変形と同様に前記式28を変形することにより操舵角θに対して指数関数的)に変化する。したがって、運転者はウェーバー・ヘフナーの法則に従った横加速度を感じながら人間の知覚特性に従って操舵ハンドル11を回動操作して、車両を旋回させることができる。その結果、運転者は、人間の知覚特性に合わせて操舵ハンドル11を操作できるので、車両の運転が簡単になる。
また、転舵角補正部64は、現在車両に発生している横滑りに伴う横滑り角βを考慮して、車両に実際に発生している実ヨーレートγが運転者の見込んだ見込みヨーレートγdに正確に対応するように目標転舵角δdを補正するので、車両には操舵ハンドル11の操舵角θに正確に対応した見込みヨーレートγdが発生する。また、目標転舵角δdが補正目標転舵角δdaに補正されることにより、運転者は車両に発生する横滑り(詳しくは横滑り角β)が小さくなったように知覚する。その結果、運転者は、人間の知覚特性にさらに正確に合ったヨーレート(見込みヨーレートγd)を知覚しながら、操舵ハンドル11を操作できるようになるので、車両の運転がさらに簡単になる。
上記第2実施形態においては、車両に発生する横滑りの影響が小さくなるように目標転舵角δdを補正して補正目標転舵角δdaを計算し、運転者が見込んだ見込みヨーレートγdを正確に発生させるように実施した。これに対して、さらに、見込みヨーレートγdの発生を見込んだ時期と実際に車両に見込みヨーレートγdに相当するヨーレートが発生する時期との間の位相的なズレ(遅れ)をなくして、より正確に運転者が見込んだ見込みヨーレートγdを発生させることも可能である。以下、この変形例について詳細に説明するが、この変形例においては、転舵角補正部64における補正目標転舵角δdaの計算式(前記式31)が異なる以外、他の構成については上記第2実施形態と同様であるため、その詳細な説明を省略する。
この変形例の場合には、図6に示す転舵角補正部64は、転舵角変換部55から供給された目標転舵角δdを下記式38に従って補正して補正目標転舵角δdaを計算する。
δda=δd+(1−lr・Kr/lf・Kf)・β+I・V/(2・(lf2・Kf+lr2・Kr))・δd’ …式38
ただし、前記式38中のKf,Krは車両の前輪および後輪のタイヤのコーナリングパワー(すなわち、車両旋回時におけるタイヤと路面間の摩擦力)であり、lf,lrは車両の前後の車軸から重心点までの距離であり、Iは車両に発生した慣性の慣性能率すなわち車両が旋回するときの回転の大きさである。また、前記式38の右辺第2項は見込みヨーレートγdの発生時期と実ヨーレートの発生時期との位相的なズレ(遅れ)を補正する補正項である。
ここで、前記式38について詳細に説明しておく。上記第2実施形態にて説明したように、車両の慣性軸周りの運動は前記式32に従って示される。このとき、車両があたかもニュートラルステア特性を有して旋回するためには、前記式32の転舵角δに前記式31に従って計算した補正目標転舵角δdaを代入することにより、慣性軸周りにおける車両の運動は前記式33に従って示される。これにより、運転者が見込んだ見込みヨーレートγdを正確に発生させることができる。一方、前記式31に従って計算された補正目標転舵角δdaとなるように左右前輪FW1,FW2を転舵制御することにより、運転者が見込んだ見込みヨーレートγdを正確に発生させることができるものの、左右前輪FW1,FW2が補正目標転舵角δdaに転舵されてから見込みヨーレートγdが発生するまでには位相的なズレ(遅れ)が生じる。
このため、前記式31に従って計算される補正目標転舵角δdaに対して、転舵角変換部55から供給された目標転舵角δd(転舵角δ)の時間変化特性すなわち目標転舵角δd(転舵角δ)の時間微分項を付加することにより、前記生じた位相的なズレを解決することができる。このことを詳細に説明するために、今、前記式32の右辺の転舵角δに下記式39により表される転舵角を代入する。
δ+(1−lr・Kr/lf・Kf)・β+I・V/(2・(lf2・Kf+lr2・Kr))・δ’ …式39
この転舵角を代入した前記式32を整理すると下記式40に示すようになる。
I・(dγ/dt)+2・(lf2・Kf+lr2・Kr)/V・γ=2・lf・Kf・(δ+I・V/(2・(lf2・Kf+lr2・Kr)))・δ’ …式40
前記式40の微分方程式を時間tについて解くと、下記式41に示すようになる。
γ(t)=lf・Kf・V/(lf2・Kf+lr2・Kr)・δ(t)+(γo−lf・Kf・V/(lf2・Kf+lr2・Kr)・δo)・exp((2・(lf2・Kf+lr2・Kr)/I・V)・t) …式41
ただし、前記式41中のγoおよびδoは所定の係数である。そして、前記式41から明らかなように、ヨーレートγの時間関数γ(t)と転舵角δの時間関数δ(t)との位相は完全に同期している。したがって、前記式39において、現在の転舵角δを転舵角変換部55から供給された目標転舵角δdとし、新たな転舵角δを補正目標転舵角δdaとすれば、前記式38が導出される。以上の説明からも理解できるように、この変形例によれば、位相的なズレ(遅れ)をなくして、運転者が見込んだ見込みヨーレートγdを正確に発生させることができる。その他の効果については、上記第2実施形態と同様の効果が期待できる。
上記第1実施形態、第2実施形態およびこれらの各変形例においては、操舵ハンドル11の操作入力値として操舵角θを利用して実施した。これに対して、操舵ハンドル11の操作入力値として操舵トルクTを利用するようにした変形例について説明する。この変形例においては、図1に破線で示すように、操舵入力軸12に組み付けられて操舵ハンドル11に付与された操舵トルクTを検出する操舵トルクセンサ39を備えている。他の構成については上記第1実施形態、第2実施形態および各変形例と同じであるが、電子制御ユニット36にて実行されるコンピュータプログラムは上記第1実施形態、第2実施形態および各変形例の場合とは若干異なる。
この変形例の場合には、前記コンピュータプログラムを表す図2および図6の機能ブロック図において、変位−トルク変換部51は設けられておらず、トルク−横加速度変換部52またはトルク−ヨーレート変換部54が、上記第1、第2実施形態および各変形例における変位−トルク変換部51にて計算される操舵トルクTdに代えて、操舵トルクセンサ39によって検出された操舵トルクTを用いた式5の演算の実行により見込み横加速度Gdまたは式28の演算により見込みヨーレートγdを計算する。なお、この場合も、式5の演算の実行に代えて図4に示す特性を表すテーブルを用いて見込み横加速度Gdを計算し、または、式28の演算に代えて図7に示す特性を表すテーブルを用いて見込みヨーレートγdを計算するようにしてもよい。なお、電子制御ユニット36にて実行される他のプログラム処理については上記第1、第2実施形態および各変形例の場合と同じである。
この変形例によれば、操舵ハンドル11に対する運転者の操作入力値としての操舵トルクTがトルク−横加速度変換部52またはトルク−ヨーレート変換部54によって、見込み横加速度Gdまたは見込みヨーレートγdに変換される。変換された見込み横加速度Gdまたは見込みヨーレートγdは、転舵角変換部53または転舵角変換部55により目標転舵角δdとして決定され、転舵角補正部61または転舵角補正部64により目標転舵角δdが補正目標転舵角δdaに補正される。そして、駆動制御部63または駆動制御部66により、左右前輪FW1,FW2が補正目標転舵角δdaに転舵される。この場合も、操舵トルクTは運転者が操舵ハンドル11から知覚し得る物理量であるとともに、操舵トルクTに対して見込み横加速度Gdまたは見込みヨーレートγdはべき乗関数的(例えば、前記式5を前記式6に変形することにより操舵角θに対して指数関数的)に変化するものであるので、運転者はウェーバー・ヘフナーの法則に従った反力を感じながら人間の知覚特性に従って操舵ハンドル11を回動操作できる。したがって、この変形例においても、上記第1、第2実施形態および各変形例の場合と同様に、運転者はウェーバー・ヘフナーの法則に従った横加速度を感じながら人間の知覚特性に従って操舵ハンドル11を回動操作して、車両を旋回させることができるので、上記第1、第2実施形態および各変形例の場合と同様な効果が期待されるとともに、その他の効果についても同様に期待される。
さらに、上記第1、第2実施形態および各変形例による車両の操舵制御と、前記変形例による車両の操舵制御とを切り換え可能にしてもよい。すなわち、操舵角センサ31と操舵トルクセンサ39の両方を備え、上記第1、第2実施形態および各変形例のように変位−トルク変換部51にて計算される目標操舵トルクTdを用いて見込み横加速度Gdまたは見込みヨーレートγdを計算する場合と、操舵トルクセンサ39によって検出された操舵トルクTを用いて見込み横加速度Gdまたは見込みヨーレートγdを計算する場合とを切り換えて利用可能とすることもできる。この場合、前記切り換えを、運転者の意思により、または車両の運動状態に応じて自動的に切り換えるようにするとよい。
d.その他の変形例
さらに、本発明の実施にあたっては、上記第1、第2実施形態および各変形例に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。
例えば、上記第1実施形態およびその変形例においては、転舵角補正部61,64が目標転舵角δdを位相的なズレ(遅れ)と過渡応答遅れをともに補正して補正目標転舵角δdaを計算するように実施した。しかしながら、これら位相的なズレ(遅れ)の補正と過渡応答遅れのうちのいずれか一方を補正して補正目標転舵角δdaを計算するように実施することも可能である。この場合においても、少なくとも運転者が見込んだ見込み横加速度Gdを正確に発生させることができて、車両の運転が簡単になる。
また、上記第1、第2実施形態および各変形例においては、車両を操舵するために回動操作される操舵ハンドル11を用いるようにした。しかし、これに代えて、例えば、直線的に変位するジョイスティックタイプの操舵ハンドルを用いてもよいし、その他、運転者によって操作されるとともに車両に対する操舵を指示できるものであれば、いかなるものを用いてもよい。
また、上記第1、第2実施形態および各変形例においては、転舵アクチュエータ21を用いて転舵出力軸22を回転させることにより、左右前輪FW1,FW2を転舵するようにした。しかし、これに代えて、転舵アクチュエータ13を用いてラックバー23をリニアに変位させることにより、左右前輪FW1,FW2を転舵するようにしてもよい。
さらに、上記第1、第2実施形態および各変形例においては、人間が知覚し得る車両の運動状態量として、横加速度またはヨーレートをそれぞれ単独で用いるようにした。しかし、これらの車両の運動状態量を、運転者による選択操作により切替え、または車両の走行状態に応じて自動的に切替えて、車両の操舵制御を行うようにしてもよい。車両の走行状態に応じて自動的に切り替える場合、例えば、車両の低速走行時および高速走行時には前記運動状態量として横加速度を用い、車両の中速走行時には前記運動状態量としてヨーレートを用いるようにする。これによれば、車両の車速に応じて適切な車両の操舵制御がなされ、車両の運転がより易しくなる。
本発明の第1および第2実施形態に共通の車両の操舵装置の概略図である。 本発明の第1実施形態に係り、図1の電子制御ユニットにて実行されるコンピュータプログラム処理を機能的に表す機能ブロック図である。 操舵角と操舵トルクの関係を示すグラフである。 操舵トルクと見込み横加速度の関係を示すグラフである。 見込み横加速度と目標転舵角の関係を示すグラフである。 本発明の第2実施形態に係り、図1の電子制御ユニットにて実行されるコンピュータプログラム処理を機能的に表す機能ブロック図である。 操舵トルクと見込みヨーレートの関係を示すグラフである。 見込みヨーレートと目標転舵角の関係を示すグラフである。
符号の説明
FW1,FW2…前輪、11…操舵ハンドル、12…操舵入力軸、13…反力アクチュエータ、21…転舵アクチュエータ、22…転舵出力軸、31…操舵角センサ、32…転舵角センサ、33…車速センサ、34…横加速度センサ、35…ヨーレートセンサ、36…電子制御ユニット、39…操舵トルクセンサ、40…反力制御部、50…感覚適合制御部、51…変位−トルク変換部、52…トルク−横加速度変換部、53,55…転舵角変換部、54…トルク−ヨーレート変換部、60…転舵制御部、61,64…転舵角補正部、62,65…横滑り角演算部、63,66…駆動制御部

Claims (7)

  1. 車両を操舵するために運転者によって操作される操舵ハンドルと、転舵輪を転舵するための転舵アクチュエータと、前記操舵ハンドルの操作に応じて前記転舵アクチュエータを駆動制御して転舵輪を転舵する転舵制御装置とを備えたステアリングバイワイヤ方式の車両の操舵装置において、前記転舵制御装置を、
    前記操舵ハンドルに対する運転者の操作入力値を検出する操作入力値検出手段と、
    車両の旋回に関係して運転者が知覚し得る車両の運動状態を表していて前記操舵ハンドルに対する操作入力値と予め定めた指数関係またはべき乗関係にある車両の見込み運動状態量を、前記検出された操作入力値を用いて計算する運動状態量計算手段と、
    前記計算された見込み運動状態量で車両が運動するために必要な前記転舵輪の転舵角を、前記計算された見込み運動状態量を用いて計算する転舵角計算手段と、
    車両の実際の運動状態を表す実運動状態量を検出する運動状態量検出手段と、
    前記検出された実運動状態量に基づいて、実際の車両の旋回状態に関係する操舵特性量を計算する操舵特性量計算手段と、
    前記計算された見込み運動状態量発生時期と同見込み運動状態量に相当する前記実運動状態量が発生する時期との間の位相差を小さくするために、前記計算された操舵特性量を用いて前記計算された転舵角を補正する転舵角補正手段と、
    前記補正された転舵角に応じて前記転舵アクチュエータを制御して前記転舵輪を同計算された転舵角に転舵する転舵制御手段とで構成したことを特徴とするステアリングバイワイヤ方式の車両の操舵装置。
  2. 請求項に記載したステアリングバイワイヤ方式の車両の操舵装置において、
    前記転舵角補正手段は、さらに、前記転舵制御手段が前記転舵アクチュエータの制御を開始して転舵輪を転舵角に転舵するまでの応答遅れを小さくするために、前記計算された操舵特性量を用いて前記計算された転舵角を補正することを特徴とするステアリングバイワイヤ方式の車両の操舵装置。
  3. 車両を操舵するために運転者によって操作される操舵ハンドルと、転舵輪を転舵するための転舵アクチュエータと、前記操舵ハンドルの操作に応じて前記転舵アクチュエータを駆動制御して転舵輪を転舵する転舵制御装置とを備えたステアリングバイワイヤ方式の車両の操舵装置において、前記転舵制御装置を、
    前記操舵ハンドルに対する運転者の操作入力値を検出する操作入力値検出手段と、
    車両の旋回に関係して運転者が知覚し得る車両の運動状態を表していて前記操舵ハンドルに対する操作入力値と予め定めた指数関係またはべき乗関係にある車両の見込み運動状態量を、前記検出された操作入力値を用いて計算する運動状態量計算手段と、
    前記計算された見込み運動状態量で車両が運動するために必要な前記転舵輪の転舵角を、前記計算された見込み運動状態量を用いて計算する転舵角計算手段と、
    車両の実際の運動状態を表す実運動状態量を検出する運動状態量検出手段と、
    前記検出された実運動状態量に基づいて、実際の車両の旋回状態に関係する操舵特性量として車両が旋回することにより発生する横滑りを表す横滑り角を計算する操舵特性量計算手段と、
    前記計算された見込み運動状態量を発生させるために、前記計算された横滑り角を用いて前記計算された転舵角を補正する転舵角補正手段と、
    前記補正された転舵角に応じて前記転舵アクチュエータを制御して前記転舵輪を同計算された転舵角に転舵する転舵制御手段とで構成したことを特徴とするステアリングバイワイヤ方式の車両の操舵装置。
  4. 前記見込み運動状態量は、車両に発生する横加速度またはヨーレートの少なくとも一方である請求項1または請求項3に記載したステアリングバイワイヤ方式の車両の操舵装置。
  5. 請求項1ないし請求項のうちのいずれか一つに記載したステアリングバイワイヤ方式の車両の操舵装置において、
    前記操作入力値検出手段を、前記操舵ハンドルの変位量を検出する変位量センサで構成するとともに、
    前記運動状態量計算手段を、前記検出された変位量を前記操舵ハンドルに付与される操作力に変換する操作力変換手段と、前記変換された操作力を前記見込み運動状態量に変換する運動状態量変換手段とで構成したステアリングバイワイヤ方式の車両の操舵装置。
  6. 請求項1ないし請求項のうちのいずれか一つに記載したステアリングバイワイヤ方式の車両の操舵装置において、
    前記操作入力値検出手段を、前記操舵ハンドルに付与される操作力を検出する操作力センサで構成するとともに、
    前記運動状態量計算手段を、前記検出された操作力を前記見込み運動状態量に変換する運動状態量変換手段で構成したステアリングバイワイヤ方式の車両の操舵装置。
  7. 請求項1ないし請求項のうちのいずれ一つに記載したステアリングバイワイヤ方式の車両の操舵装置において、さらに、
    前記操舵ハンドルの操作に対して反力を付与する反力装置を設けたことを特徴とするステアリングバイワイヤ方式の車両の操舵装置。
JP2004184448A 2004-06-23 2004-06-23 車両の操舵装置 Expired - Fee Related JP4280682B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004184448A JP4280682B2 (ja) 2004-06-23 2004-06-23 車両の操舵装置
EP05013385A EP1609696B1 (en) 2004-06-23 2005-06-21 Vehicle steering apparatus
DE602005004204T DE602005004204T2 (de) 2004-06-23 2005-06-21 Fahrzeuglenkapparat
US11/157,801 US7295908B2 (en) 2004-06-23 2005-06-22 Vehicle steering apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004184448A JP4280682B2 (ja) 2004-06-23 2004-06-23 車両の操舵装置

Publications (2)

Publication Number Publication Date
JP2006007843A JP2006007843A (ja) 2006-01-12
JP4280682B2 true JP4280682B2 (ja) 2009-06-17

Family

ID=34979037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004184448A Expired - Fee Related JP4280682B2 (ja) 2004-06-23 2004-06-23 車両の操舵装置

Country Status (4)

Country Link
US (1) US7295908B2 (ja)
EP (1) EP1609696B1 (ja)
JP (1) JP4280682B2 (ja)
DE (1) DE602005004204T2 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4167959B2 (ja) * 2003-09-25 2008-10-22 日本精工株式会社 車両用操舵角推定装置
JP4280678B2 (ja) * 2004-05-26 2009-06-17 トヨタ自動車株式会社 車両の操舵装置
JP4513659B2 (ja) * 2005-06-14 2010-07-28 トヨタ自動車株式会社 車両の操舵装置
DE102005047766A1 (de) * 2005-10-05 2007-04-12 Jungheinrich Ag Lenkbetätigungseinrichtung für ein Fahrzeug, insbesondere für ein Flurförderzeug
US7756620B2 (en) * 2006-11-06 2010-07-13 Gm Global Technology Operations, Inc. Methods, systems, and computer program products for tire slip angle limiting in a steering control system
JP4835539B2 (ja) 2007-08-10 2011-12-14 トヨタ自動車株式会社 駆動力制御装置
US8392063B2 (en) * 2007-12-06 2013-03-05 Steering Solutions Ip Holding Corporation Systems and methods for determining an absolute rotational position of a vehicle handwheel
JP5224419B2 (ja) * 2011-02-09 2013-07-03 本田技研工業株式会社 電動パワーステアリング装置
JP5843008B2 (ja) * 2012-06-07 2016-01-13 トヨタ自動車株式会社 制動力検出手段の異常検出装置
US20160016581A1 (en) * 2013-03-04 2016-01-21 Toyota Jidosha Kabushiki Kaisha Travel motion control device for vehicle
DE102014204461B4 (de) * 2013-05-14 2018-10-31 Ford Global Technologies, Llc Verfahren zur Verbesserung des Geradeauslaufs eines Fahrzeugs
JP6481660B2 (ja) * 2016-06-09 2019-03-13 トヨタ自動車株式会社 車両用挙動制御装置
DE102017223004A1 (de) * 2017-12-18 2019-06-19 Robert Bosch Gmbh Verfahren zum Betreiben eines Lenksystems eines Kraftfahrzeugs sowie Lenksystem
WO2020125249A1 (zh) * 2018-12-18 2020-06-25 南京航空航天大学 基于线控转向双电机的主动容错和故障缓解系统及其控制方法
US11511790B2 (en) 2019-02-14 2022-11-29 Steering Solutions Ip Holding Corporation Road friction coefficient estimation using steering system signals
US11498613B2 (en) 2019-02-14 2022-11-15 Steering Solutions Ip Holding Corporation Road friction coefficient estimation using steering system signals
DE102020104265B4 (de) 2019-02-19 2024-03-21 Steering Solutions Ip Holding Corporation Schätzung eines Straßenreibungskoeffizienten unter Verwendung von Signalen eines Lenksystems
DE102019204857A1 (de) * 2019-04-04 2020-10-08 Thyssenkrupp Ag Verfahren zur Steuerung eines Steer-by-Wire-Lenksystems und Steer-by-Wire-Lenksystem für ein Kraftfahrzeug
JP7303153B2 (ja) * 2020-05-18 2023-07-04 トヨタ自動車株式会社 車両用運転支援装置
DE102021202345A1 (de) 2021-03-10 2022-09-15 Thyssenkrupp Ag Steer-by-Wire-Lenksystem und Verfahren zum Betreiben eines Steer-by-Wire-Lenksystems bei Kurvenfahrten
DE102021202343A1 (de) 2021-03-10 2022-09-15 Thyssenkrupp Ag Straßenverlaufsberücksichtigung beim Betreiben eines Steer-by-Wire-Lenksystems
KR102665181B1 (ko) * 2022-02-07 2024-05-13 현대모비스 주식회사 독립조향 제어 장치 및 방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19645646C1 (de) * 1996-11-06 1998-02-12 Daimler Benz Ag Vorrichtung zur Steuerung des Lenkwinkels für ein Fahrzeug
JP3877395B2 (ja) 1997-10-23 2007-02-07 本田技研工業株式会社 ステアリング装置
JP3817923B2 (ja) 1998-09-11 2006-09-06 トヨタ自動車株式会社 操舵制御装置
US6655490B2 (en) * 2000-08-11 2003-12-02 Visteon Global Technologies, Inc. Steer-by-wire system with steering feedback
JP4120427B2 (ja) * 2003-03-06 2008-07-16 トヨタ自動車株式会社 車輌用操舵制御装置
JP4069886B2 (ja) * 2004-03-15 2008-04-02 トヨタ自動車株式会社 車輌の挙動制御装置
JP4379261B2 (ja) * 2004-08-30 2009-12-09 日産自動車株式会社 車両用操舵装置
JP4441909B2 (ja) * 2004-10-25 2010-03-31 株式会社デンソー 車両制御装置
US7664584B2 (en) * 2005-03-01 2010-02-16 Nissan Motor Co., Ltd. Steering control system

Also Published As

Publication number Publication date
US7295908B2 (en) 2007-11-13
US20060009894A1 (en) 2006-01-12
EP1609696B1 (en) 2008-01-09
EP1609696A2 (en) 2005-12-28
DE602005004204D1 (de) 2008-02-21
EP1609696A3 (en) 2006-04-19
DE602005004204T2 (de) 2008-12-24
JP2006007843A (ja) 2006-01-12

Similar Documents

Publication Publication Date Title
JP4280682B2 (ja) 車両の操舵装置
JP4231416B2 (ja) 車両の操舵装置
JPWO2010109676A1 (ja) 車両の操舵装置
JP4231422B2 (ja) 車両の操舵装置
JP4280678B2 (ja) 車両の操舵装置
JP2008001117A (ja) 車両の操舵装置
JP4276609B2 (ja) 車両の操舵装置
JP4372577B2 (ja) 車両の操舵装置
JP2007326497A (ja) 車両の操舵装置
JP4456018B2 (ja) 車両の操舵装置
JP4799272B2 (ja) 車両の操舵装置
JP4280669B2 (ja) 車両の操舵装置
JP4446871B2 (ja) 車両の操舵装置
JP4604685B2 (ja) 車輌旋回走行アシストヨーモーメントを求める装置
JP4280695B2 (ja) 車両の操舵装置
JP4176042B2 (ja) 車両の操舵装置
JP4231430B2 (ja) 車両の操舵装置
JP4176057B2 (ja) 車両の操舵装置
JP4410630B2 (ja) 車両の操舵装置
JP4231437B2 (ja) 車両の操舵装置
JP2005219686A (ja) 車両の操舵装置
JP2007313962A (ja) 車両の操舵装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4280682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees