JP4272393B2 - Method for producing aqueous flame-retardant polyester resin - Google Patents
Method for producing aqueous flame-retardant polyester resin Download PDFInfo
- Publication number
- JP4272393B2 JP4272393B2 JP2002230506A JP2002230506A JP4272393B2 JP 4272393 B2 JP4272393 B2 JP 4272393B2 JP 2002230506 A JP2002230506 A JP 2002230506A JP 2002230506 A JP2002230506 A JP 2002230506A JP 4272393 B2 JP4272393 B2 JP 4272393B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- polyester resin
- component
- retardant polyester
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 0 *C([C@](C1c2c(*)c(*)c(*)c(*)c22)/C=S/I)=C(*)C(*)=C1OP2(*)=O Chemical compound *C([C@](C1c2c(*)c(*)c(*)c(*)c22)/C=S/I)=C(*)C(*)=C1OP2(*)=O 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/68—Polyesters containing atoms other than carbon, hydrogen and oxygen
- C08G63/692—Polyesters containing atoms other than carbon, hydrogen and oxygen containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/68—Polyesters containing atoms other than carbon, hydrogen and oxygen
- C08G63/692—Polyesters containing atoms other than carbon, hydrogen and oxygen containing phosphorus
- C08G63/6924—Polyesters containing atoms other than carbon, hydrogen and oxygen containing phosphorus derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/6926—Dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/0427—Coating with only one layer of a composition containing a polymer binder
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/05—Forming flame retardant coatings or fire resistant coatings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/056—Forming hydrophilic coatings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D167/00—Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
- C09D167/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/244—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus
- D06M13/282—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus with compounds containing phosphorus
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/507—Polyesters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2467/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2200/00—Functionality of the treatment composition and/or properties imparted to the textile material
- D06M2200/30—Flame or heat resistance, fire retardancy properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31786—Of polyester [e.g., alkyd, etc.]
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Polyesters Or Polycarbonates (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Paints Or Removers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、水系溶媒に分散又は溶解可能であり、且つリンを含有することにより難燃性が付与された水性難燃性ポリエステル樹脂の製造方法に関するものである。
【0002】
【従来の技術】
ポリエステル樹脂は、周知のごとくその優れた機械的性質および化学的特性のため、衣料用、産業用等の繊維のほか磁気テープ、フレキシブルディスク等の磁気記録材料用基材として、或いは写真用、電気絶縁用、ケーブルラッピング用、コンデンサー用、蒸着用、粘着テープ用、プリンターリボン用及び磁気カード用基材として、また、FRP等の離型用、包装用及び農業用等の各種産業用途にも幅広く用いられている。
【0003】
近年、火災防止の観点から合成繊維や各種プラスチック製品の難燃化への要請が強まっているが、従来のポリエステル樹脂は難燃性の面では不充分であった。このため、ポリエステル製造時にハロゲン系有機化合物やアンチモン化合物等に代表される難燃剤を添加する等によって難燃化が図られてきた。
【0004】
しかしながら、これらの難燃化剤は接炎時に有毒なガスを発生するという問題点があり、このため、水酸化アルミニウム、水酸化マグネシウム等の水和金属化合物を添加することが提案されたが、充分な難燃性を得るには多量に添加する必要があり、ポリエステル樹脂本来の優れた特性が失われてしまうものであった。
【0005】
そこで、これらの問題を解決するために、ポリエステル製造時に難燃剤としてリン化合物を添加又は共重合する方法が提案されている。例えば、特開平6−16796号公報、特開2001−139784号公報、特開2001−163962号公報等では特定のリン化合物をポリエステル樹脂に共重合する方法等が開示されている。
【0006】
しかしながら、これらのリン含有ポリエステル樹脂は、トルエン、キシレン等の汎用有機溶剤に難溶なものが多く、これらの汎用有機溶剤をもちいた繊維やPETフィルム等の加工処理用リン含有ポリエステル樹脂の溶液、分散液を得るためには、重合度を極めて低いものとしなければならず、ポリエステル樹脂本来の特性を維持しにくいものであった。このため、このようなリン含有ポリエステル樹脂の重合度を高く保ってポリエステル樹脂の本来の特性を維持しつつ、繊維やPETフィルム等の基材加工処理用樹脂として塗布により施そうとする場合には、ジオキサン、DMF、HFIP、OCP等の溶解性が高い有機溶剤を使用しなければならず、これらの溶剤は溶解性が高いものの、作業環境、環境保全の見地から問題があった。
【0007】
また有機溶剤を用いた場合には加工基材である繊維やPETフィルム等自体を侵すという問題もあったが、リン含有ポリエステル樹脂は水への分散性や溶解性を有さず、溶剤として水系の溶剤を用いることもできなかった。
【0008】
【発明が解決しようとする課題】
本発明は上記の点に鑑みて為されたものであり、非ハロゲン系で難燃性等に優れたリン含有ポリエステルを水性化することで溶剤に溶解可能として塗布性向上し、溶剤に起因する作業環境、環境保全の問題を解消し、更に繊維やPETフィルム等の加工基材に対する加工に用いる場合でもこれらの加工基材を侵すことがない水性難燃性ポリエステル樹脂の製造方法を提供することを目的とするものである。
【課題を解決するための手段】
請求項1に係る水性難燃性ポリエステル樹脂の製造方法は、ジカルボン酸成分と、グリコール成分と、水溶性付与成分と、反応性リン含有化合物とを、水溶性付与成分の割合がジカルボン酸成分と水溶性付与成分の合計中で20〜60モル%となるように縮合反応又は重縮合反応させるものであり、前記水溶性付与成分が、三塩基酸無水物と四塩基酸無水物のうちの少なくとも一方を含むと共に、前記三塩基酸無水物及び四塩基酸無水物の割合がジカルボン酸成分及び水溶性付与成分の合計量中で20〜40モル%の範囲であることを特徴とするものである。
【0009】
また請求項2の発明は、請求項1において、反応性リン含有化合物に由来するリン原子の含有量が300〜100000ppmであることを特徴とするものである。
【0010】
また請求項3の発明は、請求項1又は2において、反応性リン含有化合物が、カルボキシル基及びヒドロキシル基から選ばれる少なくとも1種のエステル形成性官能基を有することを特徴とするものである。
【0011】
また請求項4の発明は、請求項1乃至3のいずれかにおいて、反応性リン含有化合物が、下記一般式(I)、(II)及び(III)で表される化合物の群から選ばれる、少なくとも1種の化合物であることを特徴とするものである。
【0012】
【化4】
【0013】
(式中、R1〜R8はそれぞれ水素原子又は炭素数1〜1000の一価の有機基を示し、それぞれ同一であっても、異なるものであってもよい。また、Aは水素原子又は炭素数1〜1000の一価の有機基を示し、R1〜R8と同一であっても、異なっていてもよい。但し、R1〜R8並びにAのうちの少なくとも一つはエステル形成性官能基を有する。)
【0014】
【化5】
【0015】
(式中、R9及びR10はそれぞれ水素原子又は炭素数1〜1000の一価の有機基を示し、それぞれ同一であっても、異なるものであってもよい。ただし、R9及びR10の少なくとも一方はエステル形成性官能基を有する。)
【0016】
【化6】
【0017】
(式中、R11〜R13はそれぞれ水素原子又は炭素数1〜1000の一価の有機基を示し、それぞれ同一であっても、異なるものであってもよい。ただし、R11〜R13の少なくともいずれかはエステル形成性官能基を有する。)
また請求項5の発明は、請求項1乃至4のいずれかにおいて、水溶性付与成分が、金属スルホネート基を有するジカルボン酸成分を含むものであることを特徴とするものである。
【0020】
また請求項6の発明は、請求項1乃至5のいずれかにおいて、水溶性付与成分が、金属スルホネート基を有するジカルボン酸成分として、5−ソジウムスルホイソフタル酸又はそのエステルを含むものであることを特徴とするものである。
【0021】
また請求項7の発明は、請求項1乃至6のいずれかにおいて、水溶性付与成分が、三塩基酸無水物である無水トリメリット酸及び四塩基酸無水物である無水ピロメリット酸のうちの少なくとも一方を含むものであることを特徴とするものである。
【0026】
【発明の実施の形態】
以下に本発明の実施の形態を詳述する。
【0027】
本発明に係る水性難燃性ポリエステル樹脂は、ジカルボン酸成分、グリコール成分、水溶性付与成分、反応性リン含有化合物を、縮合反応又は重縮合反応させて得られるものである。
【0028】
尚、このように水性難燃性ポリエステル樹脂の原料を、ジカルボン酸成分、グリコール成分、水溶性付与成分、反応性リン含有化合物と分類した場合における、ジカルボン酸成分及びグリコール成分には、水溶性付与成分及び反応性リン含有化合物に該当するものは含まれないものとする。
【0029】
上記のジカルボン酸成分としては、例えば芳香族ジカルボン酸及び脂肪族ジカルボン酸等のジカルボン酸を挙げることができる。芳香族ジカルボン酸としては、例えばテレフタル酸、イソフタル酸、フタル酸、ジフェン酸、ナフタル酸、1,2−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸及び2,6−ナフタレンジカルボン酸等を挙げることができ、脂肪族ジカルボン酸としては例えば直鎖、分岐及び脂環式のシュウ酸、マロン酸、コハク酸、マレイン酸、イタコン酸、グルタール酸、アジピン酸、ピメリン酸、2,2−ジメチルグルタール酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、1,3−シクロペンタンジカルボン酸、1,4−シクロヘキサンジカルボン酸、ジグリコール酸、チオジプロピオン酸等を挙げることができる。
【0030】
また、ジカルボン酸成分には、上記のようなジカルボン酸のほか、その無水物、エステル、酸クロライド、ハロゲン化物等のように、ジカルボン酸の誘導体であって後述するグリコール成分と反応してエステルを形成するもの(ジカルボン酸のエステル形成性誘導体)も含む。
【0031】
これらの中でもテレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸等の芳香族ジカルボン酸類、並びにコハク酸、アジピン酸、セバシン酸、ドデカン二酸等の脂肪族ジカルボン酸類が、反応の容易性、得られる樹脂の耐候性、耐久性等の点から好適である。特に芳香族ジカルボン酸類のみを用いるか、芳香族ジカルボン酸類を主成分とするのが最適である。
【0032】
また、本発明の水性難燃性ポリエステル樹脂の製造に用いられるグリコール成分としては、例えばエチレングリコール及びジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ペンタエチレングリコール、ヘキサエチレングリコール、ヘプタエチレングリコール、オクタエチレングリコール等のポリエチレングリコール、並びにプロピレングリコール及びジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール等のポリプロピレングリコール、並びに1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、2,2−ジメチル−1,3−プロパンジオール、2−エチル−2−ブチル−1,3−プロパンジオール、2−エチル−2−イソブチル−1,3−プロパンジオール、2,2,4−トリメチル−1,6−ヘキサンジオール、1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、2,2,4,4−テトラメチル−1,3−シクロブタンジオール、4,4’−ジヒドロキシビフェノール、4,4’−メチレンジフェノール、4,4’−イソプロピリデンジフェノール、1,5−ジヒドロキシナフタリン、2,5−ジヒドロキシナフタリン、2,2−ビス(4−ヒドロキシフェニル)プロパン(ビスフェノールA)、ビスフェノールS等を挙げることができる。
【0033】
また、グリコール成分には、上記のようなグルコールのほか、これらのグリコールに対応するジアセテート化合物等のように、グリコールの誘導体であって前記ジカルボン酸成分と反応してエステルを形成するもの(グリコールのエステル形成性誘導体)も含む。
【0034】
これらグリコール成分は1種又は2種以上を併せて使用することができる。これらの中でも特にエチレングリコール、ジエチレングリコール、並びに1,4−ブタンジオール等のブタンジオール類、並びに1,6−ヘキサンジオール等のヘキサンジオール類、並びに1,4−シクロヘキサンジメタノール類、ネオペンチルグリコール及びビスフェノールA等が反応の容易性、得られる樹脂の耐久性等の点から好適である。
【0035】
本発明の水性難燃性ポリエステル樹脂の製造に用いられる水溶性付与成分は、上記のジカルボン酸成分とグリコール成分とのうちの少なくとも一方と反応して、水性難燃性ポリエステル樹脂の骨格構造の一部を構成するものであり、またこのとき水性難燃性ポリエステル樹脂の骨格中に水溶性付与成分に起因するイオン性の極性基を導入するなどして、水性難燃性ポリエステル樹脂に親水性を付与し、水性難燃性ポリエステル樹脂を水系溶媒に分散又は溶解可能なものとするものである。このような水溶性付与成分としては、例えば金属スルホネート基を有するジカルボン酸成分、三塩基酸無水物や四塩基酸無水物等の3価以上の多価カルボン酸成分等が挙げられる。
【0036】
水溶性付与成分のうち、金属スルホネート基を有するジカルボン酸成分としては、例えば5−スルホイソフタル酸、2−スルホイソフタル酸、4−スルホイソフタル酸、スルホテレフタル酸、4−スルホナフタレン−2,6−ジカルボン酸等のアルカリ金属塩が挙げられ、またこれらのエステル、酸クロライド、ハロゲン化物等のような、他のグリコール成分と反応してエステルを形成するエステル形成性誘導体も含まれる。ここで、水性難燃性ポリエステル樹脂に良好な水分散性又は水溶性を付与するためには、上記のアルカリ金属がナトリウム又はカリウムであることが好ましい。
【0037】
このような金属スルホネート基を有するジカルボン酸成分を用いると、水性難燃性ポリエステル樹脂中に金属スルホネート基を有効に残存させて、優れた親水性を付与することができる。特に5−ソジウムスルホイソフタル酸又はそのエステル(例えば5−スルホン酸ナトリウムジメチルイソフタル酸)を用いると、水性難燃性ポリエステル樹脂中にスルホン酸ナトリウム基を有効に残存させて、優れた親水性を付与させることができるものである。
【0038】
また、三価以上の多価カルボン酸成分である三塩基酸無水物、四塩基酸無水物等を用いて本発明の水性難燃性ポリエステル樹脂に水分散性もしくは水溶性を付与する場合、縮合反応又は重縮合反応による水性難燃性ポリエステル樹脂の調製時に、多価カルボン酸に起因するカルボキシル基を骨格中に残存させた状態で反応を終了させた後、この残存カルボキシル基を、例えばアンモニア、アルカノールアミン、アルカリ金属化合物等の塩基性化合物で中和することにより、水性難燃性ポリエステル樹脂を水系溶媒に分散又は溶解可能に調整することができる。
【0039】
三価以上の多価カルボン酸成分としては、例えばヘミメリット酸、トリメリット酸、トリメジン酸、メロファン酸、ピロメリット酸、ベンゼンペンタカルボン酸、メリット酸、シクロプロパン−1,2,3−トリカルボン酸、シクロペンタン−1,2,3,4−テトラカルボン酸、エタンテトラカルボン酸等の多価カルボン酸が挙げられ、またこれらの無水物、エステル、酸クロライド、ハロゲン化物等のように、多価カルボン酸の誘導体であってグリコール成分と反応してエステルを形成するもの(多価カルボン酸のエステル形成性誘導体)も含まれる。水性難燃性ポリエステル樹脂の三次元架橋をできるだけ防止し、重縮合反応後においてもカルボキシル基を有効に残存させるためには、これらの中でも特に無水トリメリット酸、無水ピロメリット酸を用いるのが好ましい。
【0040】
このような三価以上の多価カルボン酸成分、特に三塩基酸無水物、四塩基酸無水物のうちの少なくとも一方を用いると、水性難燃性ポリエステル樹脂中に、カルボキシル基を有効に残存させて、優れた親水性を付与させることができるものである。
【0041】
水溶性付与成分は、上記の三価以上の多価カルボン酸成分、金属スルホネート基を有するジカルボン酸成分等のうちから、1種のみを用い、或いは2種以上を併用することができる。
【0042】
水溶性付与成分として金属スルホネート基を有するジカルボン酸成分を用いる場合、その水性難燃性ポリエステル樹脂調製時の使用量は、水性難燃性ポリエステル樹脂を調製するために用いる各成分のうち、ジカルボン酸成分及び水溶性付与成分の合計量に対して50モル%以下とすることが好ましく、この場合、引張破壊強さ等の特に良好な樹脂強度を有すると共に、皮膜形成性組成物に用いる場合に特に良好な耐水性、耐久性を有することとなる。この金属スルホネート基を有するジカルボン酸成分の使用量の下限は特に制限されず、任意成分であるため0モル%としても良い。
【0043】
また水溶性付与成分としての多価カルボン酸成分の使用量は、ジカルボン酸成分及び水溶性付与成分の合計量中で40モル%以下とする。この場合、製造工程における不必要な架橋反応を排除できる重合条件下において、充分な重合度を得ることができる。
【0044】
また、水溶性付与成分の総使用量については、ジカルボン酸成分及び水溶性付与成分の合計量に対して1〜60モル%とすることが好ましく、このようにすれば、水性難燃性ポリエステル樹脂に十分な水分散性若しくは水溶性を付与することができ、且つ良好な樹脂強度を維持することとなるものである。水溶性付与成分として、金属スルホネート基を有するジカルボン酸成分と、三塩基酸無水物、四塩基酸無水物等の多価カルボン酸成分を併用する場合にも、この二種の成分からなる水溶性付与成分の総使用量が、ジカルボン酸成分及び水溶性付与成分の合計量に対して1〜60モル%であることが好ましい。
【0045】
また、水溶性付与成分として3価以上の多価カルボン酸成分を単独で使用する場合は、水溶性付与成分を、ジカルボン酸成分及び水溶性付与成分の合計量に対して5〜40モル%使用することが好ましく、更に金属スルホネート基を有するジカルボン酸成分と多価カルボン酸成分を併用する場合には水溶性付与成分を、ジカルボン酸成分及び水溶性付与成分の合計量に対して2〜40モル%使用することが好ましい。このようにして水溶性付与成分の配合量を調整すると、水性難燃性ポリエステル樹脂を皮膜形成性組成物に用いる場合に、特に高い難燃性、耐久性等を得ることができる。
【0046】
尚、本明細書における水系溶媒とは、水単独のほか、水と親水性溶媒との混合溶媒を含むものである。
【0047】
ここで、親水性溶媒としては、メタノール、エタノール、2−プロパノール等のアルコール類、プロピレングリコールモノメチルエーテル、エチルセロソルブ及びブチルセロソルブ等のグリコールエーテル等、シクロヘキサノン等を例示できる。
【0048】
上記の水と親水性溶媒との混合溶媒において、水と親水性溶媒の比率は特に限定されるものではないが、ポリエステル樹脂液の安定性及び作業性環境の安全性等を考慮すれば、混合溶媒中に0.1〜50重量%の親水性溶媒を用いるのが好ましい。
【0049】
なお、本発明のポリエステル樹脂において、多価カルボン酸成分を水溶性手段として用いる場合には、既述のように例えばアンモニア、アルカノールアミン等の塩基性化合物で中和することにより水系溶媒に分散又は溶解可能なものとなるが、このような手段を用いる場合であっても、上記と同様である。
【0050】
反応性リン含有化合物は、上記ジカルボン酸成分、グリコール成分、水溶性付与成分のうちの少なくともいずれかと反応して縮合または重縮合可能なものが用いられ、具体的にはその分子中にエステル形成性官能基を有するものを用いることが好ましい。
【0051】
上記のエステル形成性官能基とは、他のカルボキシル基又はヒドロキシル基と反応してエステル結合を形成する官能基を意味するものであり、カルボキシル基及びヒドロキシル基のほか、カルボキシル基を無水物化、エステル化、酸クロライド化、ハロゲン化するなどして誘導されるものであって、他のヒドロキシル基と反応してエステル結合を形成するもの(カルボキシル基のエステル形成性誘導基)や、ヒドロキシル基をアセテート化するなどして誘導されるものであって、他のカルボキシル基と反応してエステル結合を形成するもの(ヒドロキシル基のエステル形成性誘導基)も含まれる。
【0052】
特にエステル形成性官能基が、カルボキシル基又はヒドロキシル基である場合には、製造工程において良好な反応性が得られるため好ましい。
【0053】
また、特に反応性リン含有化合物が、その一分子中にエステル形成性官能基を1又は2個有するものであることが好ましく、このようにすると、水性難燃性ポリエステル樹脂の製造工程において、不必要な架橋反応を排除するように重合条件を調整した場合にも、充分な重合度を有する水性難燃性ポリエステル樹脂を得ることができる。更に、反応性リン含有化合物がエステル形成性官能基を2個有する場合においては、2個のエステル形成性官能基が共にカルボキシル基であるか、ヒドロキシル基である場合により良好な結果が得られる。
【0054】
上記の反応性リン含有化合物としては、反応の容易性、難燃効果等が特に優れている点から、下記一般式(I)乃至(III)で表される化合物を好適なものとして例示できる。なお、得られる水性難燃性ポリエステル樹脂の耐候性や、この水性難燃性ポリエステル樹脂から調製される皮膜形成用樹脂組成物の安定性等が特に優れている点から、これらの中でも特に一般式(I)で表される化合物が最適である。
【0055】
【化7】
(式中、R1〜R8はそれぞれ水素原子又は有機基を示し、それぞれ同一であっても、異なるものであってもよい。また、Aは水素原子又は有機基を示し、R1〜R8と同一であっても、異なっていてもよい。但し、R1〜R8並びにAのうちの少なくとも一つはエステル形成性官能基を有する。)
【0056】
【化8】
(式中、R9及びR10はそれぞれ水素原子又は有機基を示し、それぞれ同一であっても、異なるものであってもよい。ただし、R9及びR10の少なくとも一方はエステル形成性官能基を有する。)
【0057】
【化9】
(式中、R11〜R13はそれぞれ水素原子又は有機基を示し、それぞれ同一であっても、異なるものであってもよい。ただし、R11〜R13の少なくともいずれかはエステル形成性官能基を有する。)
【0058】
上記一般式(I)〜(III)に示す化合物としては、特に一分子中にエステル形成性官能基を1個又は2個有するものが好ましい。
【0059】
ここで上記一般式(I)〜(III)における有機基とは、適宜の置換基が選ばれるものであり、特に限定されるものではないが、炭素数1〜1000の1価の有機基が好ましい。1価の有機基としては例えば、アルキル基、アルケニル基等の脂肪族炭化水素基、シクロヘキシル基等の脂環族炭化水素基、アリール基等の芳香族炭化水素基、アラルキル基等の炭化水素基、並びにカルボキシル基、アルキルオキシ基等が例示される。これらの基は、更にそのなかに官能基を含んでもよい。例えば、エステル形成性官能基(カルボキシル基、ヒドロキシル基並びにこれらから誘導されるエステル形成性誘導基)を含む置換基を有していてもよい。ただし、既述のように、一分子中に存在するエステル形成性官能基の数は1又は2個であることが好ましい。
【0060】
上記一般式(I)で表される化合物はエステル形成性官能基を好ましくは1個又は2個有するものであるが、これらは有機基であるA中に存在することが望ましい。なお、上記一般式(I)で表される化合物のうち特に好適なものは、R1〜R8が水素原子であり、かつAがエステル形成性官能基としてヒドロキシル基、カルボキシル基又はこれらから誘導されるエステル形成性誘導基を1個又は2個有するものであり、この場合には、水性難燃性ポリエステル樹脂の調製時における反応性を良好なものとし、また得られる水性難燃性ポリエステル樹脂の耐候性や、この水性難燃性ポリエステル樹脂から調製される皮膜形成用樹脂組成物の安定性等を特に優れたものとすることができる。
【0061】
一般式(I)で表される反応性リン含有化合物として、最適なものとしては下記化学式(a)〜(e)で表されるものを例示できる。
【0062】
【化10】
(式中、R14は水素原子又は炭素数1〜6の、直鎖状若しくは分岐を有するアルキル基又は脂環基を示す。)
【0063】
【化11】
(式中、R15及びR16は、それぞれ水素原子、又は炭素数1〜6の直鎖状若しくは分岐を有するアルキル基又は脂環基を示し、R15及びR16は同一のものでも異なるものでもよい。)
【0064】
【化12】
【0065】
【化13】
【0066】
【化14】
【0067】
上記一般式(II)で表される化合物のうち、特に好適なものとしては、下記化学式(f)及び(e)で表されるものを例示できる。
【0068】
【化15】
(式中、R17は水素原子、又は炭素数1〜6の直鎖状若しくは分岐を有するアルキル基又は脂環基を示す。)
【0069】
【化16】
(式中、R18は水素原子、又は炭素数1〜6の直鎖状若しくは分岐を有するアルキル基又は脂環基を示す。)
【0070】
上記一般式(III)で表される化合物のうち、特に好適なものとしては、下記化学式(h)で表されるものを例示できる。
【0071】
【化17】
(式中、R19は水素原子、又は炭素数1〜6の直鎖状若しくは分岐を有するアルキル基又は脂環基を示す。)
【0072】
前記、反応性リン含有化合物は、本発明の水性難燃性ポリエステル樹脂を製造する際にメタノール、エタノールなどの1価アルコール、エチレングリコール、プロピレングリコール、ブチレングリコールなどの2価アルコールに溶解もしくは分散させて反応系に添加するのが好ましい。
【0073】
本発明において反応性リン含有化合物の使用量は、得られる水性難燃性ポリエステル樹脂中における反応性リン含有化合物に由来するリン原子の含有量が、水性難燃性ポリエステル樹脂の全量に対する重量比率で300ppm以上となるように調整された量であることが好ましく、更に好ましくは500ppm以上となるようにするものである。このようにすれば、水性難燃性ポリエステル樹脂に対して特に優れた難燃性が付与できる。またこの反応性リン含有化合物の使用量の上限は特に限定されるものではないが、上記のリン原子の含有量が100000ppm以下となる範囲で配合することが好ましく、この場合、重合性不良等の発生を防止して水性難燃性ポリエステル樹脂の樹脂特性が損なわれることを防止することができる。
【0074】
また、本発明の必須成分であるジカルボン酸成分、グルコール成分、水溶性付与成分、並びに反応性リン含有化合物の配合量は、各成分に含まれるカルボキシル基及びそのエステル形成性誘導基の総数と、ヒドロキシル基及びそのエステル形成性誘導基の総数とが、モル比率で1:1〜2.5の範囲となるように配合することが好ましい。
【0075】
また、水性難燃性ポリエステル樹脂を調製する際には、分子量を調整するために、公知の多官能性化合物、例えば、ペンタエリスリトール、トリメチロールプロパン、ジメチロールブタン酸、3官能性カルボン酸などを適宜の量用いることも好ましい。特に反応性リン含有化合物としてその官能基(エステル形成性官能基)が1個のものを用いる場合には末端停止剤として作用することがあるので、上記の多官能性化合物を適宜併用するのが好ましい。
【0076】
また、上記以外の反応成分として、例えばp−ヒドロキシ安息香酸、1価の脂肪族アルコール等を併せて用いることも可能である。
【0077】
本発明の水性難燃性ポリエステル樹脂は、公知のポリエステル製造方法により得ることができる。例えばジカルボン酸とグリコールを用いる直接エステル化反応或いはジカルボン酸のエステル形成性誘導体とグリコールとのエステル交換反応を第1段反応とし、この反応生成物を重縮合させる第2段反応により製造することができる。
【0078】
例えば、ジカルボン酸成分としてテレフタル酸ジメチル(DMT)を、グリコール成分としてエチレングリコール(EG)を用いる場合、DMTとEGとのエステル交換反応(第1段反応)により、ビスヒドロキシエチレンテレフタレート(BHET)が生成し、このBHETが重縮合(第2段反応)することにより、ポリエチレンテレフタレートが生成するものである。
【0079】
なお、上記のジカルボン酸成分及びグリコール成分以外の成分は上記第1段反応の当初から第2段反応終了に至るまでの任意の時期に添加して反応に供することができる。
【0080】
これらの中で最も一般的な方法である、ジカルボン酸ジエステルとグリコールとのエステル交換反応を第1段反応とし、この反応生成物を重縮合させる第2段反応からなる製造方法を用いて、具体的に説明する。第1段のエステル交換反応においては、本発明のリン含有水溶性ポリエステル樹脂の製造に供する全ての反応成分を最初から一括で仕込んでもよく、反応性リン含有化合物等はエステル重縮合反応時に添加してもよい。一括仕込みの場合には、エステル交換反応は、例えばジカルボン酸ジエステルとグリコール化合物と反応性リン含有化合物とを反応容器に加え、窒素ガス等の不活性ガス雰囲気で常圧条件下で、150〜260℃まで徐々に昇温加熱してエステル交換反応を行なう。
【0081】
第2段の重縮合反応は、例えば6.7hPa(5mmHg)以下の減圧下、160〜280℃の温度範囲内で行なう。このようにして、本発明の水性難燃性ポリエステル樹脂が得られる。なお、エステル交換反応及び重縮合反応において、任意の時期に触媒として、従来公知のチタン、アンチモン、鉛、亜鉛、マグネシウム、カルシウム、マンガン、アルカリ金属化合物等を用いてもよい。
【0082】
本発明の水性難燃性ポリエステル樹脂は各種用途に用いることができる。その中でも、上述した如く、難燃性、耐久性等に優れかつ水系溶媒に分散又は溶解可能であるという特徴により、皮膜形成用樹脂組成物に好適に用いられる。なお、皮膜形成用樹脂組成物に用いる場合の本発明の水性難燃性ポリエステル樹脂は、数平均分子量が5000〜50000であることが好ましい。この数平均分子量が5000以上のとき、水性難燃性ポリエステル樹脂の耐久性及び耐水性が特に優れたものとなり、また、耐加水分解性の向上の点で充分な効果を得られる。またこの数平均分子量が50000以下であれば、皮膜形成用樹脂組成物として水系溶媒に分散又は溶解させた場合に、優れた溶液安定性を維持することができる。
【0083】
また皮膜形成用樹脂組成物に用いる場合の本発明の水性難燃性ポリエステル樹脂は、より優れた難燃性、耐久性及び耐水性を得やすくすると共に分散液もしくは溶液の長期保存安定性を良好なものとしやくするために、固有粘度が0.05〜1.0であることが好ましく、固有粘度を0.05以上とすることにより特に優れた強度のフィルムを得ることができるようになると共に、固有粘度を1.0以下とすることにより分散液もしくは溶液の長期保存安定性を特に優れたものとすることができる。特に固有粘度が0.12〜0.9の範囲において特に好適な効果が得られる。また更に上記固有粘度が0.2〜0.9のときに最適な効果が得られる。
【0084】
本発明の皮膜形成用樹脂組成物は上記の様な水性難燃性ポリエステル樹脂を含有することから、水系による塗布が可能であり、基材の加工処理を行う際の労働安全性及び環境保全性に優れている。なお、必要に応じ、例えば浸透剤、難燃剤、静電気防止剤、顔料、染料、酸化防止剤、紫外線吸収剤、消泡剤、分散助剤等の添加剤を加えることもできる。
【0085】
本発明の水性難燃性ポリエステル樹脂を含んでなる皮膜形成用樹脂組成物を繊維製品の処理用としての使用方法について述べれば、例えば本発明の皮膜形成用樹脂組成物を織物、編物、不織布、敷物、ウエブ等に浸漬法、パディング法、コーティング法等により塗布する方法、糸条に経糸糊付け方法と同様のサイジング機を用いて塗布する方法、さらに処理された糸条を製織に供する方法等がある。
【0086】
また、PET等のポリエステルフィルムの表面処理用として使用する方法について述べれば、例えば、PETフィルムを製造し、事後的に本発明の皮膜形成用樹脂組成物を塗布する方法がある。また、例えばPETを常法によりフィルム化する過程のいずれかの段階で、ポリエステルフィルムの表面に本発明の皮膜形成用樹脂組成物を塗布するという方法も採りうる。後者の場合PETのフィルム化は、例えば、PETを乾燥後、溶融押し出しし、未延伸シートとした後、二軸延伸、次いで熱処理することにより行うことができ、皮膜形成用樹脂組成物はこのいずれかの工程で、例えば浸漬法、カーテンコート法、グラビアコート法、ワイヤーバー法、スプレーコート法、リバースコート法またはダイコート法等によりフィルム表面に塗布することができる。
【0087】
さらに、本発明の水性難燃性ポリエステル樹脂を含んでなる皮膜形成用樹脂組成物は、上記に例示される用途のみならず、金属、ガラス、紙、木材等のコーティング剤、並びに電子基板等のオーバーコート剤、並びにアンカーコート剤、インクバインダー等の接着剤関係、並びにポリ塩化ビニル、ポリカーボネート等のプラスチックフィルムの表面処理剤等としても使用することができる。
【0088】
【実施例】
以下に本発明を実施例に基づいて説明するが、本発明はこれらに限定されるものではない。なお、以下に使用される「部」及び「%」は、特に示さない限り、全て重量基準である。また、下記実施例1乃至7、比較例1乃至5のポリエステル樹脂の物性は以下の試験方法により測定したものである。
【0089】
(1)固有粘度の測定
o−クロロフェノールを溶媒とし、オストワルド粘度計にて20℃の条件下で測定した。
【0090】
(2)数平均分子量の測定
各試料を固形分について10mg/ミリリットルとなる様にTHF溶液を調製し、各々インジェクション量100マイクロリットルにて、下記測定条件により測定した。
・GPC測定装置:昭和電工(株)製SHODEX SYSTEM 11
・カラム:SHODEX KF−800P、KF−805、KF−803及びKF−801(いずれも昭和電工(株)製)の4本直列移動層
・THF流量:1ml/分
・カラム温度:45℃
・検出器:RI
・換算:ポリスチレン
(3)鉛筆硬度の測定
実施例及び比較例の各樹脂液を、各々フィルム形成用容器に流し込み60℃で48時間乾燥し、形成されたフィルムを取り出した後、裏表各々105℃で12時間絶乾して厚さ0.4mmの絶乾されたフィルムを得た。これらのフィルムを25℃で、55%RHで10時間状態調節したものを試料とし、鉛筆ひっかき試験法(JIS K 5400)に準拠して測定した。
【0091】
(4)引張破壊強さ及び引張破壊伸びの測定
引張試験実施例及び比較例の各樹脂液を、各々フィルム形成用容器に流し込み60℃で48時間乾燥し、形成されたフィルムを取り出した後、裏表各々105℃で12時間絶乾して厚さ0.4mmの絶乾されたフィルムを得た。これらのフィルムを用いて200mm×15mmの1号型試験片を作成し、25℃で、55%RHで100時間状態調節して試験に供した。引張試験は抗張力試験機((株)オリエンテック製RTC−1225)を用い、プラスチックフィルム及びシートの引張力試験法(JIS K 7127)に準拠して行い引張破壊強さ、引張破壊伸びを求めた。
【0092】
(5)試験布の作成方法
ポリエステルトロピカル布に各樹脂液をパディング法にて加工し、105℃で5分間乾燥させ、180℃で2分間キュア処理したものを試験布とした。
【0093】
(6)洗濯試験・燃焼性試験
家庭用電気洗濯機で合成洗剤2g/lを用いて、40℃で5分間、浴比1:50にて洗濯した後、すすぎを3分間および脱水をおこなう。この1サイクルを1回洗濯としこれを10サイクルおこなった。(HL=10)
そして、上記洗濯試験の試験前の試験布(HL=0)及び10サイクル試験後の試験布(HL=10)のそれぞれについて、接炎法(JIS L 1091 D法)に準拠して燃焼性を測定した。
【0094】
(7)接着性試験
各樹脂液をPETフィルム(東レ製、「テトロンルミラー タイプT」、厚み100μm)上に、乾燥後の皮膜の厚みが5μmとなるようにバーコーターを用いて塗布し、150℃で5分間乾燥した後、60℃で2時間エーイジングし、更に25℃、55%RHで10時間状態調節して試料を得た。得られた各試料について、そのコート層に1インチ平方に碁盤目が100になるようにクロスカットを行い、同一箇所について3回テープ剥離テストを実施し、剥離した碁盤目の個数により評価した。
判定基準は以下の通りである。
○:剥離碁盤目数0以上10以下
△:剥離碁盤目数11以上20以下
×:剥離碁盤目数21以上
〔参考例1〕
反応器に、ジメチルテレフタル酸242.7部、ジメチルイソフタル酸31.1部、5−スルホン酸ナトリウムジメチルイソフタル酸59.3部、エチレングリコール198.6部、下記化学式(e)で表される反応性リン含有化合物18.9部及び触媒としてシュウ酸チタンカリウム0.1部を加え、常圧、窒素雰囲気中で攪拌混合しながら200℃に昇温した。次に、4時間かけて反応温度を260℃にまで徐々に昇温しエステル交換反応を終了させた。その後、250℃で徐々に減圧し250℃、0.67hPa(0.5mmHg)の条件下で2時間重縮合反応を行い、固有粘度0.40、数平均分子量8200の水性難燃性ポリエステル樹脂を得た。この水性難燃性ポリエステル樹脂25部及び水75部を溶解槽に加え攪拌下、温度80〜95℃で2時間かけて溶解させ、水性難燃性ポリエステル樹脂の25%水溶液を得た。この溶液を用いて上述のような鉛筆硬度の測定、引張試験及び接着性試験を行ない、また、上述のように加工布を作成し洗濯試験および燃焼性試験を行ない、その結果を表1に示した。
【0095】
【化18】
【0096】
〔参考例2〕
ジメチルテレフタル酸の配合量を260.2部、5−スルホン酸ナトリウムジメチルイソフタル酸29.7部とした以外は参考例1と同様にして、固有粘度0.39、数平均分子量7900の水性難燃性ポリエステル樹脂を得た。この水性難燃性ポリエステル樹脂25部、水65部、エチレングリコールモノt−ブチルエーテル10部を溶解槽に加え攪拌下、温度80〜95℃で2時間かけて溶解させ、水性難燃性ポリエステル樹脂の25%水溶液を得た。この溶液を用いて上述のような鉛筆硬度の測定、引張試験及び接着性試験を行ない、また、上述のように加工布を作成し洗濯試験および燃焼性試験を行ない、その結果を表1に示した。
【0097】
〔参考例3〕
反応器に、ジメチルテレフタル酸299.0部、ジメチルイソフタル酸31.1部、セバシン酸161.8部、5−スルホン酸ナトリウムジメチルイソフタル酸29.7部、エチレングリコール136.6部、1,4−ブタンジオール90.1部、上記化学式(e)で表される反応性リン含有化合物18.9部及び触媒としてシュウ酸チタンカリウム0.1部を加え、参考例1と同様にして固有粘度0.37、数平均分子量8000の水性難燃性ポリエステル樹脂を得た。この水性難燃性ポリエステル樹脂25部、水65部、エチレングリコールモノt−ブチルエーテル10部を溶解槽に加え攪拌下、温度80〜95℃で2時間かけて溶解させ、水性難燃性ポリエステル樹脂の25%水溶液を得た。この溶液を用いて上述のような鉛筆硬度の測定、引張試験及び接着性試験を行ない、また、上述のように加工布を作成し洗濯試験および燃焼性試験を行ない、その結果を表1に示した。
【0098】
〔実施例4〕
反応器に、ジメチルテレフタル酸217.5部、ジメチルイソフタル酸31.1部、エチレングリコール136.6部、1,4−ブタンジオール90.1部、反応性リン含有化合物(上記化学式(e)で示される反応性リン含有化合物)18.9部及び触媒としてシュウ酸チタンカリウム0.1部を加え、常圧、窒素雰囲気中で攪拌混合しながら200℃に昇温した。次に、4時間かけて反応温度を260℃にまで徐々に昇温しエステル交換反応を終了させた後、無水トリメリット酸61.5部を添加し、250℃で徐々に減圧し250℃、0.67hPa(0.5mmHg)の条件下で30分間重縮合反応を行い、酸価50.2、固有粘度0.37、数平均分子量7700の水性難燃性ポリエステル樹脂を得た。この水性難燃性ポリエステル樹脂25部、水68.7部、エチレングリコールモノt−ブチルエーテル5部、25%アンモニア水1.3部を溶解槽に加え攪拌下、温度80〜95℃で2時間かけて溶解させ、水性難燃性ポリエステル樹脂の25%水溶液を得た。この溶液を用いて上述のような鉛筆硬度の測定、引張試験及び接着性試験を行ない、また、上述のように加工布を作成し洗濯試験および燃焼性試験を行ない、その結果を表1に示した。
【0099】
〔実施例5〕
ジメチルテレフタル酸の配合量を211.7部とし、5−スルホン酸ナトリウムジメチルイソフタル酸8.9部を加えた以外は実施例4と同様にして、酸価47.1、固有粘度0.38、数平均分子量7600の水性難燃性ポリエステル樹脂を得た。この水性難燃性ポリエステル樹脂25部、水68.8部、25%アンモニア水1.2部を溶解槽に加え攪拌下、温度80〜95℃で2時間かけて溶解させ、水性難燃性ポリエステル樹脂の25%水溶液を得た。この溶液を用いて上述のような鉛筆硬度の測定、引張試験及び接着性試験を行ない、また、上述のように加工布を作成し洗濯試験および燃焼性試験を行ない、その結果を表1に示した。
【0100】
〔参考例6〕
反応器に、ジメチルテレフタル酸242.7部、ジメチルイソフタル酸31.1部、5−スルホン酸ナトリウムジメチルイソフタル酸59.3部、エチレングリコール162.6部、1,4−ブタンジオール43.3部、トリメチロールプロパン13.4部、反応性リン含有化合物(下記化学式(i)で示される反応性リン含有化合物)4.2部及び触媒としてシュウ酸チタンカリウム0.1部を加え、参考例1と同様にして、固有粘度0.39、数平均分子量8100の水性難燃性ポリエステル樹脂を得た。この水性難燃性ポリエステル樹脂25部及び水75部を溶解槽に加え攪拌下、温度80〜95℃で2時間かけて溶解させ、水性難燃性ポリエステル樹脂の25%水溶液を得た。この溶液を用いて上述のような鉛筆硬度の測定、引張試験及び接着性試験を行ない、また、上述のように加工布を作成し洗濯試験および燃焼性試験を行ない、その結果を表1に示した。
【0101】
【化19】
【0102】
〔参考例7〕
化学式(e)で表される反応性リン含有化合物18.9部を下記一般式(j)で表される反応性リン含有化合物9.7部に変更した他は実施例1と同様にして、固有粘度0.40、数平均分子量8600のリン含有ポリエステル樹脂を得た。このリン含有ポリエステル樹脂25部及び水75部を溶解槽に加え攪拌下、温度80〜95℃で2時間かけて溶解させ、リン含有ポリエステル樹脂の25%水溶液を得た。この溶液を用いて上述のような鉛筆硬度の測定、引張試験及び接着性試験を行ない、また、上述のように加工布を作成し洗濯試験及び燃焼性試験を行ない、その結果を表1に示した。
【0103】
【化20】
【0104】
〔比較例1〕
反応性リン含有化合物を除外したこと以外は、参考例1と同様にして、固有粘度0.40、数平均分子量8000の水溶性ポリエステル樹脂を得た。この水溶性ポリエステル樹脂25部及び水75部を溶解槽に加え攪拌下、温度80〜95℃で2時間かけて溶解させ、水溶性ポリエステル樹脂の25%水溶液を得た。この溶液を用いて上述のような鉛筆硬度の測定、引張試験及び接着性試験を行ない、また、上述のように加工布を作成し洗濯試験および燃焼性試験を行ない、その結果を表1に示した。
【0105】
〔比較例2〕
反応性リン含有化合物を除外したこと以外は、実施例4と同様にして、酸価49.6、固有粘度0.38、数平均分子量7800の水溶性ポリエステル樹脂を得た。この水溶性ポリエステル樹脂25部、水68.9部、エチレングリコールモノt−ブチルエーテル5部、25%アンモニア水1.1部を溶解槽に加え攪拌下、温度80〜95℃で2時間かけて溶解させ、水溶性ポリエステル樹脂の25%水溶液を得た。この溶液を用いて上述のような鉛筆硬度の測定、引張試験及び接着性試験を行ない、また、上述のように加工布を作成し洗濯試験および燃焼性試験を行ない、その結果を表1に示した。
【0106】
〔比較例3〕
ジメチルテレフタル酸を281.6部とし、5−スルホン酸ナトリウムジメチルイソフタル酸を除外した他は、参考例1と同様にして、固有粘度0.41、数平均分子量8300のリン含有ポリエステル樹脂を得た。このリン含有ポリエステル樹脂は水や水と親水性溶媒の混媒に不溶であった。また、汎用溶媒としてトルエン、キシレンを用いて溶解を試みたが、安定な溶液を得ることができなかった。そこで、このリン含有ポリエステル樹脂20部、酢酸エチル20部及びo−クロロフェノール60部を溶解槽に加え75℃で2時間撹拌、溶解してリン含有ポリエステル樹脂の20%溶液を得た。この溶液を用いて上述のような鉛筆硬度の測定、引張試験及び接着性試験を行ない、また、上述のように加工布を作成し洗濯試験及び燃焼性試験を行ない、その結果を表1に示した。なお、加工布作成の際、上記ポリエステル樹脂溶液中の溶剤の影響により、基布が変色し、また得られた加工布は平面性が不充分であり、寸法安定性に欠けたものであった。
【0107】
〔比較例4〕
250℃、0.67hPa(0.5mmHg)の条件下で、30分間重縮合反応を行った他は、比較例3と同様にして、固有粘度0.09、数平均分子量3800のリン含有ポリエステル樹脂を得た。このリン含有ポリエステル樹脂は水や水と親水性溶媒の混媒に不溶であった。このリン含有ポリエステル樹脂25部、トルエン60部及びメチルエチルケトン15部を溶解槽に加え75℃で2時間撹拌、溶解してリン含有ポリエステル樹脂の25%溶液を得た。この溶液を用いて上述のような鉛筆硬度の測定、引張試験及び接着性試験を行ない、また、上述のように加工布を作成し洗濯試験及び燃焼性試験を行ない、その結果を表1に示した。
【0108】
〔比較例5〕
比較例1で得られた水溶性ポリエステル樹脂水溶液60部、ノンネンR−49(丸菱油化工業社製 水溶性リン系防炎剤)25部及び水15部を添加して不揮発成分25%の水溶液を得た。この溶液を用いて上述のような鉛筆硬度の測定、引張試験及び接着性試験を行ない、また、上述のように加工布を作成し洗濯試験および燃焼性試験を行ない、その結果を表1に示した。
【0109】
【表1】
【0110】
上記の結果から明らかなように、実施例4,5では、良好な皮膜性能を有し、且つ難燃性に優れた皮膜が得られた。
【0111】
これに対して、比較例1では、参考例1において反応性リン含有化合物を除外していることから、参考例1と同等の皮膜性能は有するものの、難燃性が低いものであった。
【0112】
また比較例2では、実施例4において反応性リン含有化合物を除外していることから、実施例4と同等の皮膜性能は有するものの、難燃性が低いものであった。
【0113】
また比較例3では、参考例1において水溶性付与成分を除外していることから、得られるポリエステル樹脂は水系溶媒に分散又は溶解させることができず、また汎用溶媒を用いても安定した溶液を得ることはできなかった。また酢酸エチルとo−クロロフェノールを用いて皮膜形成用組成物を調製した場合でも、皮膜には十分な接着性が得られなかった。
【0114】
また比較例4では、比較例3において、縮重合反応時の反応条件を変更したものであるが、得られるポリエステル樹脂は水系溶媒に分散又は溶解させることができなかった。また汎用溶媒を用いた場合には、溶液を得ることはできたが、形成される皮膜は引張破壊強さが著しく低下すると共に難燃性も若干低下し、また接着性も悪いものであった。
【0115】
また比較例5では、参考例1において反応性リン含有化合物を除外すると共にその代わりに添加型の水溶性リン系防炎剤を配合したものであるが、形成される皮膜は引張破壊強さが著しく低下すると共に難燃性も低下し、また接着性も悪いものであった。
【0116】
【発明の効果】
上記のように請求項1に係る水性難燃性ポリエステル樹脂の製造方法は、ジカルボン酸成分と、グリコール成分と、水溶性付与成分と、反応性リン含有化合物とを、水溶性付与成分の割合がジカルボン酸成分と水溶性付与成分の合計中で20〜60モル%となるように縮合反応又は重縮合反応させるため、水性難燃性ポリエステル樹脂は難燃性に優れかつポリエステル樹脂本来の有する優れた性質を保持するとともに、水系溶媒に分散又は溶解可能であるという性質を有するものであり、このことから、水性系により加工処理を行うことが可能となり、労働安全性、環境保全性及び基材の加工の容易性等の観点から優れているものである。
また、水溶性付与成分が、三塩基酸無水物と四塩基酸無水物のうちの少なくとも一方を含むと共に、前記三塩基酸無水物及び四塩基酸無水物の割合がジカルボン酸成分及び水溶性付与成分の合計量中で20〜40モル%の範囲であるため、水性難燃性ポリエステル樹脂中に、カルボキシル基を有効に残存させて、優れた親水性を付与させることができるものである。
【0117】
また請求項2の発明は、請求項1において、反応性リン含有化合物に由来するリン原子の含有量が300〜100000ppmであるため、水性難燃性ポリエステル樹脂に対して特に優れた難燃性が付与できると共に、重合性不良等の発生を防止して水性難燃性ポリエステル樹脂の樹脂特性が損なわれることを防止することができるものである。
【0118】
また請求項3の発明は、請求項1又は2において、反応性リン含有化合物が、カルボキシル基及びヒドロキシル基から選ばれる少なくとも1種のエステル形成性官能基を有するため、水性難燃性ポリエステル樹脂の製造工程において良好な反応性が得られ、水性難燃性ポリエステル樹脂を効率よく得ることができるものである。
【0119】
また請求項4の発明は、請求項1乃至3のいずれかにおいて、反応性リン含有化合物が、上記一般式(I)、(II)及び(III)で表される化合物の群から選ばれる、少なくとも1種の化合物であるため、水性難燃性ポリエステル樹脂の調製時の反応性が良好で水性難燃性ポリエステル樹脂の製造効率が向上し、また特に優れた難燃効果が得られるものである。
【0120】
また請求項5の発明は、請求項1乃至4のいずれかにおいて、水溶性付与成分が、金属スルホネート基を有するジカルボン酸成分を含むものであるため、水性難燃性ポリエステル樹脂中に金属スルホネート基を有効に残存させて、優れた親水性を付与することができるものである。
【0123】
また請求項6の発明は、請求項1乃至5のいずれかにおいて、水溶性付与成分が、金属スルホネート基を有するジカルボン酸成分として、5−ソジウムスルホイソフタル酸又はそのエステルを含むものであるため、水性難燃性ポリエステル樹脂中にスルホン酸ナトリウム基を有効に残存させて、優れた親水性を付与させることができるものである。
【0124】
また請求項7の発明は、請求項1乃至6のいずれかにおいて、水溶性付与成分が、三塩基酸無水物である無水トリメリット酸及び四塩基酸無水物である無水ピロメリット酸のうちの少なくとも一方を含むものであるため、水性難燃性ポリエステル樹脂中にカルボキシル基を有効に残存させ、優れた親水性を付与させることができるものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an aqueous flame-retardant polyester resin that can be dispersed or dissolved in an aqueous solvent and that is provided with flame retardancy by containing phosphorus.To the lawIt is related.
[0002]
[Prior art]
As is well known, polyester resin is known for its excellent mechanical and chemical properties, so it can be used as a base material for magnetic recording materials such as magnetic tape and flexible disks, as well as for textiles for clothing and industrial use, or for photography, electrical use. Widely used as a base material for insulation, cable wrapping, condenser, vapor deposition, adhesive tape, printer ribbon and magnetic card, and for various industrial applications such as mold release for FRP, packaging and agriculture. It is used.
[0003]
In recent years, there has been an increasing demand for flame resistance of synthetic fibers and various plastic products from the viewpoint of fire prevention, but conventional polyester resins have been insufficient in terms of flame retardancy. For this reason, flame retarding has been attempted by adding a flame retardant typified by a halogenated organic compound or an antimony compound at the time of polyester production.
[0004]
However, these flame retardants have the problem of generating toxic gases when they come into contact with flames. For this reason, it has been proposed to add hydrated metal compounds such as aluminum hydroxide and magnesium hydroxide. In order to obtain sufficient flame retardancy, it is necessary to add a large amount, and the original excellent properties of the polyester resin are lost.
[0005]
In order to solve these problems, a method of adding or copolymerizing a phosphorus compound as a flame retardant during the production of polyester has been proposed. For example, JP-A-6-16796, JP-A-2001-139784, JP-A-2001-163962, etc. disclose a method of copolymerizing a specific phosphorus compound with a polyester resin.
[0006]
However, many of these phosphorus-containing polyester resins are hardly soluble in general-purpose organic solvents such as toluene and xylene, and solutions of phosphorus-containing polyester resins for processing such as fibers and PET films using these general-purpose organic solvents, In order to obtain a dispersion, the degree of polymerization had to be extremely low, and it was difficult to maintain the original characteristics of the polyester resin. For this reason, when maintaining the original properties of the polyester resin while maintaining a high degree of polymerization of such a phosphorus-containing polyester resin, when applying by coating as a substrate processing resin such as fibers and PET film Organic solvents having high solubility such as dioxane, DMF, HFIP, OCP and the like must be used. Although these solvents have high solubility, there are problems from the viewpoint of working environment and environmental conservation.
[0007]
In addition, when an organic solvent is used, there is a problem that the processed substrate, such as fiber and PET film itself, is eroded. However, the phosphorus-containing polyester resin does not have dispersibility or solubility in water, and the aqueous solvent is used as a solvent. This solvent could not be used.
[0008]
[Problems to be solved by the invention]
The present invention has been made in view of the above points, and by applying a phosphorus-containing polyester that is non-halogen and excellent in flame retardancy and the like, the coating property is improved as being soluble in a solvent, resulting from the solvent. A method for producing water-based flame retardant polyester resins that eliminates work environment and environmental conservation problems and that does not attack these processed substrates even when used for processed substrates such as fibers and PET filmsThe lawIt is intended to provide.
[Means for Solving the Problems]
The method for producing an aqueous flame-retardant polyester resin according to claim 1 comprises a dicarboxylic acid component, a glycol component, a water-solubility-imparting component, and a reactive phosphorus-containing compound, wherein the proportion of the water-solubility-imparting component is dicarboxylic acid component. Among the total water-soluble ingredients20 ~60 mole%WhenThe water-solubilizing component contains at least one of a tribasic acid anhydride and a tetrabasic acid anhydride, and the tribasic acid anhydride and tetrabase. The proportion of acid anhydride in the total amount of dicarboxylic acid component and water-soluble component20 ~40 mole%ofIt is characterized by being a range.
[0009]
And claims2The invention of claim1In this regard, the phosphorus atom content derived from the reactive phosphorus-containing compound is 300 to 100,000 ppm.
[0010]
And claims3The invention of claim 1Or 2The reactive phosphorus-containing compound has at least one ester-forming functional group selected from a carboxyl group and a hydroxyl group.
[0011]
And claims4The invention of claim 1 to claim 13Wherein the reactive phosphorus-containing compound is at least one compound selected from the group of compounds represented by the following general formulas (I), (II) and (III): It is.
[0012]
[Formula 4]
[0013]
(Wherein R1~ R8Are hydrogen atoms orC1-C1000 monovalentAn organic group may be the same or different. A is a hydrogen atom orC1-C1000 monovalentIndicates an organic group, R1~ R8May be the same or different. However, R1~ R8And at least one of A has an ester-forming functional group. )
[0014]
[Chemical formula 5]
[0015]
(Wherein R9And R10Are hydrogen atoms orC1-C1000 monovalentAn organic group may be the same or different. However, R9And R10At least one of them has an ester-forming functional group. )
[0016]
[Chemical 6]
[0017]
(Wherein R11~ R13Each represents a hydrogen atom or a monovalent organic group having 1 to 1000 carbon atoms, which may be the same or different. However, R11~ R13At least one of them has an ester-forming functional group. )
And claims5The invention of claim 1 to claim 14In any of the above, the water-solubility-imparting component contains a dicarboxylic acid component having a metal sulfonate group.
[0020]
And claims6The invention of claim 1 to claim 15In any of the above, the water-solubilizing component includes 5-sodium sulfoisophthalic acid or an ester thereof as a dicarboxylic acid component having a metal sulfonate group.
[0021]
And claims7The invention of claim 1 to claim 16In any of the above, the water-solubilizing component contains at least one of trimellitic anhydride, which is a tribasic acid anhydride, and pyromellitic anhydride, which is a tetrabasic acid anhydride. .
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0027]
The aqueous flame-retardant polyester resin according to the present invention is obtained by subjecting a dicarboxylic acid component, a glycol component, a water-solubilizing component, and a reactive phosphorus-containing compound to a condensation reaction or a polycondensation reaction.
[0028]
In addition, when the raw material of the water-based flame retardant polyester resin is classified as a dicarboxylic acid component, a glycol component, a water-soluble imparting component, or a reactive phosphorus-containing compound, the dicarboxylic acid component and the glycol component are imparted with water solubility. Those that fall under the components and reactive phosphorus-containing compounds shall not be included.
[0029]
As said dicarboxylic acid component, dicarboxylic acids, such as aromatic dicarboxylic acid and aliphatic dicarboxylic acid, can be mentioned, for example. Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, phthalic acid, diphenic acid, naphthalic acid, 1,2-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, and 2,6. -Naphthalenedicarboxylic acid and the like, and examples of the aliphatic dicarboxylic acid include linear, branched and alicyclic oxalic acid, malonic acid, succinic acid, maleic acid, itaconic acid, glutaric acid, adipic acid, pimelic acid 2,2-dimethylglutaric acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, diglycolic acid, thiodipropionic acid, etc. Can be mentioned.
[0030]
In addition to dicarboxylic acids as described above, dicarboxylic acid components are derivatives of dicarboxylic acids such as anhydrides, esters, acid chlorides, halides, etc. It also includes those that form (ester-forming derivatives of dicarboxylic acids).
[0031]
Among these, aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid, and aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid, and dodecanedioic acid are easy to react. From the viewpoint of weather resistance, durability and the like of the resin to be obtained. In particular, it is optimal to use only aromatic dicarboxylic acids or to have aromatic dicarboxylic acids as a main component.
[0032]
Examples of the glycol component used in the production of the aqueous flame-retardant polyester resin of the present invention include ethylene glycol and diethylene glycol, triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, heptaethylene glycol, and octaethylene glycol. Polyethylene glycol such as propylene glycol and dipropylene glycol, polypropylene glycol such as tripropylene glycol and tetrapropylene glycol, and 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5 -Pentanediol, 1,6-hexanediol, 2,2-dimethyl-1,3-propanediol, 2-ethyl-2-butyl-1,3-propanedi 2-ethyl-2-isobutyl-1,3-propanediol, 2,2,4-trimethyl-1,6-hexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, , 4-cyclohexanedimethanol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol, 4,4'-dihydroxybiphenol, 4,4'-methylenediphenol, 4,4'-isopropylidene Phenol, 1,5-dihydroxynaphthalene, 2,5-dihydroxynaphthalene, 2,2-bis (4-hydroxyphenyl) propane (bisphenol A), bisphenol S and the like can be mentioned.
[0033]
In addition to the glycols as described above, the glycol component is a derivative of glycol, such as a diacetate compound corresponding to these glycols, which reacts with the dicarboxylic acid component to form an ester (glycol Ester-forming derivatives).
[0034]
These glycol components can be used alone or in combination of two or more. Among these, ethylene glycol, diethylene glycol, butanediols such as 1,4-butanediol, hexanediols such as 1,6-hexanediol, 1,4-cyclohexanedimethanols, neopentyl glycol and bisphenol A and the like are preferable from the viewpoints of easy reaction, durability of the obtained resin, and the like.
[0035]
The water-solubility-imparting component used in the production of the water-based flame-retardant polyester resin of the present invention reacts with at least one of the dicarboxylic acid component and the glycol component to form a skeleton structure of the water-based flame-retardant polyester resin. The aqueous flame retardant polyester resin is made hydrophilic by introducing an ionic polar group due to the water-solubilizing component into the skeleton of the water flame retardant polyester resin. The water-based flame retardant polyester resin can be dispersed or dissolved in an aqueous solvent. Examples of such a water-solubilizing component include a dicarboxylic acid component having a metal sulfonate group, a trivalent or higher polyvalent carboxylic acid component such as a tribasic acid anhydride and a tetrabasic acid anhydride.
[0036]
Among the water-solubility-imparting components, examples of the dicarboxylic acid component having a metal sulfonate group include 5-sulfoisophthalic acid, 2-sulfoisophthalic acid, 4-sulfoisophthalic acid, sulfoterephthalic acid, 4-sulfonaphthalene-2,6- Examples include alkali metal salts such as dicarboxylic acids, and ester-forming derivatives that react with other glycol components to form esters such as esters, acid chlorides, halides, and the like. Here, in order to impart good water dispersibility or water solubility to the aqueous flame-retardant polyester resin, the alkali metal is preferably sodium or potassium.
[0037]
When such a dicarboxylic acid component having a metal sulfonate group is used, it is possible to effectively leave the metal sulfonate group in the aqueous flame retardant polyester resin and to impart excellent hydrophilicity. In particular, when 5-sodium sulfoisophthalic acid or an ester thereof (for example, sodium 5-sulfonate sodium dimethylisophthalic acid) is used, the sodium sulfonate group is effectively left in the aqueous flame-retardant polyester resin, and excellent hydrophilicity is obtained. It can be given.
[0038]
In addition, in the case of imparting water dispersibility or water solubility to the aqueous flame-retardant polyester resin of the present invention using a tribasic acid anhydride, a tribasic acid anhydride, or a tetrabasic acid anhydride, which is a trivalent or higher polyvalent carboxylic acid component, condensation is performed. After preparing the aqueous flame retardant polyester resin by reaction or polycondensation reaction, after terminating the reaction in a state in which the carboxyl group resulting from the polyvalent carboxylic acid remains in the skeleton, the remaining carboxyl group is converted into, for example, ammonia, By neutralizing with a basic compound such as an alkanolamine or an alkali metal compound, the aqueous flame-retardant polyester resin can be adjusted to be dispersible or soluble in an aqueous solvent.
[0039]
Examples of the trivalent or higher polyvalent carboxylic acid component include hemimellitic acid, trimellitic acid, trimedic acid, merophanic acid, pyromellitic acid, benzenepentacarboxylic acid, meritic acid, and cyclopropane-1,2,3-tricarboxylic acid. And polyvalent carboxylic acids such as cyclopentane-1,2,3,4-tetracarboxylic acid and ethanetetracarboxylic acid, and polyvalent carboxylic acids such as anhydrides, esters, acid chlorides and halides thereof. Also included are derivatives of carboxylic acids that react with glycol components to form esters (ester-forming derivatives of polyvalent carboxylic acids). Among these, it is particularly preferable to use trimellitic anhydride or pyromellitic anhydride in order to prevent three-dimensional crosslinking of the aqueous flame-retardant polyester resin as much as possible and to effectively leave the carboxyl group after the polycondensation reaction. .
[0040]
When such a trivalent or higher polyvalent carboxylic acid component, particularly at least one of tribasic acid anhydride and tetrabasic acid anhydride, is used, the carboxyl group is effectively left in the aqueous flame retardant polyester resin. Thus, excellent hydrophilicity can be imparted.
[0041]
As the water-solubility-imparting component, only one of the trivalent or higher polyvalent carboxylic acid components and the dicarboxylic acid component having a metal sulfonate group may be used, or two or more may be used in combination.
[0042]
When a dicarboxylic acid component having a metal sulfonate group is used as the water-solubilizing component, the amount used when preparing the aqueous flame-retardant polyester resin is dicarboxylic acid among the components used for preparing the aqueous flame-retardant polyester resin. It is preferable to be 50 mol% or less with respect to the total amount of the component and the water-solubilizing component, and in this case, it has a particularly good resin strength such as tensile fracture strength, and particularly when used for a film-forming composition. It will have good water resistance and durability. The lower limit of the amount of the dicarboxylic acid component having a metal sulfonate group is not particularly limited, and may be 0 mol% because it is an optional component..
[0043]
As a water-soluble componentofPolycarboxylic acid synthesisMinThe amount used is 40 mol% or less in the total amount of the dicarboxylic acid component and the water-solubilizing component.TheIn this case, a sufficient degree of polymerization can be obtained under polymerization conditions that can eliminate unnecessary crosslinking reactions in the production process.The
[0044]
Further, the total amount of the water-solubilizing component used is preferably 1 to 60 mol% with respect to the total amount of the dicarboxylic acid component and the water-solubilizing component. In addition, sufficient water dispersibility or water solubility can be imparted, and good resin strength can be maintained. Even when a dicarboxylic acid component having a metal sulfonate group and a polyvalent carboxylic acid component such as a tribasic acid anhydride or a tetrabasic acid anhydride are used in combination as a water-solubilizing component, the water-solubility comprising these two components The total amount of the imparting component is preferably 1 to 60 mol% with respect to the total amount of the dicarboxylic acid component and the water-solubility imparting component.
[0045]
In addition, as a water-soluble imparting component3When a polyvalent carboxylic acid component having a valency or higher is used alone, the water-solubilizing component is preferably used in an amount of 5 to 40 mol% based on the total amount of the dicarboxylic acid component and the water-solubilizing component. When using together the dicarboxylic acid component which has group, and a polyvalent carboxylic acid component, it is preferable to use 2-40 mol% of water solubility provision components with respect to the total amount of a dicarboxylic acid component and a water solubility provision component. When the blending amount of the water-solubilizing component is adjusted as described above, particularly high flame retardancy and durability can be obtained when the water-based flame-retardant polyester resin is used for the film-forming composition.
[0046]
The aqueous solvent in the present specification includes not only water but also a mixed solvent of water and a hydrophilic solvent.
[0047]
Here, examples of the hydrophilic solvent include alcohols such as methanol, ethanol and 2-propanol, glycol ethers such as propylene glycol monomethyl ether, ethyl cellosolve and butyl cellosolv, and cyclohexanone.
[0048]
In the above mixed solvent of water and hydrophilic solvent, the ratio of water and hydrophilic solvent is not particularly limited, but considering the stability of the polyester resin liquid and the safety of workability environment, etc. It is preferable to use 0.1 to 50% by weight of a hydrophilic solvent in the solvent.
[0049]
In the polyester resin of the present invention, when the polyvalent carboxylic acid component is used as a water-soluble means, it is dispersed in an aqueous solvent by neutralizing with a basic compound such as ammonia or alkanolamine as described above. Even if such a means is used, it is the same as described above.
[0050]
As the reactive phosphorus-containing compound, a compound that can be condensed or polycondensed by reacting with at least one of the above-mentioned dicarboxylic acid component, glycol component, and water-solubility-imparting component is used. It is preferable to use one having a functional group.
[0051]
The above ester-forming functional group means a functional group that reacts with another carboxyl group or hydroxyl group to form an ester bond. In addition to the carboxyl group and the hydroxyl group, the carboxyl group is made anhydride, ester Derived from acidification, acid chlorideation, halogenation, etc., which reacts with other hydroxyl groups to form ester bonds (carboxyl ester-forming derivatives), and hydroxyl groups to acetate And those that are derived by reacting with other carboxyl groups to form ester bonds (ester-forming derivatives of hydroxyl groups).
[0052]
In particular, when the ester-forming functional group is a carboxyl group or a hydroxyl group, it is preferable because good reactivity can be obtained in the production process.
[0053]
In particular, it is preferable that the reactive phosphorus-containing compound has one or two ester-forming functional groups in one molecule. In such a case, in the production process of the water-based flame-retardant polyester resin, Even when the polymerization conditions are adjusted so as to eliminate the necessary crosslinking reaction, an aqueous flame-retardant polyester resin having a sufficient degree of polymerization can be obtained. Furthermore, when the reactive phosphorus-containing compound has two ester-forming functional groups, better results can be obtained when both of the two ester-forming functional groups are carboxyl groups or hydroxyl groups.
[0054]
Preferred examples of the reactive phosphorus-containing compound include compounds represented by the following general formulas (I) to (III) from the viewpoint that reaction easiness, flame retardancy and the like are particularly excellent. The weather resistance of the obtained water-based flame-retardant polyester resin and the stability of the film-forming resin composition prepared from the water-based flame-retardant polyester resin are particularly excellent, and among these, the general formula is particularly preferred. The compound represented by (I) is optimal.
[0055]
[Chemical 7]
(Wherein R1~ R8Each represents a hydrogen atom or an organic group, and may be the same or different. A represents a hydrogen atom or an organic group, and R1~ R8May be the same or different. However, R1~ R8And at least one of A has an ester-forming functional group. )
[0056]
[Chemical 8]
(Wherein R9And R10Each represents a hydrogen atom or an organic group, and may be the same or different. However, R9And R10At least one of them has an ester-forming functional group. )
[0057]
[Chemical 9]
(Wherein R11~ R13Each represents a hydrogen atom or an organic group, and may be the same or different. However, R11~ R13At least one of them has an ester-forming functional group. )
[0058]
As the compounds represented by the general formulas (I) to (III), those having one or two ester-forming functional groups in one molecule are particularly preferable.
[0059]
Here, the organic group in the general formulas (I) to (III) is an appropriate substituent, and is not particularly limited, but is a monovalent organic group having 1 to 1000 carbon atoms. preferable. Examples of monovalent organic groups include aliphatic hydrocarbon groups such as alkyl groups and alkenyl groups, alicyclic hydrocarbon groups such as cyclohexyl groups, aromatic hydrocarbon groups such as aryl groups, and hydrocarbon groups such as aralkyl groups. And a carboxyl group, an alkyloxy group, and the like. These groups may further contain a functional group. For example, it may have a substituent containing an ester-forming functional group (carboxyl group, hydroxyl group, and ester-forming derivative group derived therefrom). However, as described above, the number of ester-forming functional groups present in one molecule is preferably 1 or 2.
[0060]
The compound represented by the above general formula (I) preferably has one or two ester-forming functional groups, and these are desirably present in A which is an organic group. Among the compounds represented by the above general formula (I), particularly preferred are R1~ R8Is a hydrogen atom, and A has one or two ester-forming functional groups, such as a hydroxyl group, a carboxyl group, or an ester-forming derivative group derived therefrom. The reactivity at the time of preparation of the water-soluble polyester resin is good, the weather resistance of the obtained water-based flame-retardant polyester resin, the stability of the resin composition for film formation prepared from this water-based flame-retardant polyester resin, etc. Can be made particularly excellent.
[0061]
Examples of the reactive phosphorus-containing compound represented by the general formula (I) include those represented by the following chemical formulas (a) to (e).
[0062]
[Chemical Formula 10]
(Wherein R14Represents a hydrogen atom or a linear or branched alkyl group or alicyclic group having 1 to 6 carbon atoms. )
[0063]
Embedded image
(Wherein R15And R16Each represents a hydrogen atom, or a linear or branched alkyl group or alicyclic group having 1 to 6 carbon atoms, and R15And R16May be the same or different. )
[0064]
Embedded image
[0065]
Embedded image
[0066]
Embedded image
[0067]
Of the compounds represented by the above general formula (II), particularly preferred are those represented by the following chemical formulas (f) and (e).
[0068]
Embedded image
(Wherein R17Represents a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, or an alicyclic group. )
[0069]
Embedded image
(Wherein R18Represents a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, or an alicyclic group. )
[0070]
Among the compounds represented by the above general formula (III), particularly preferred are those represented by the following chemical formula (h).
[0071]
Embedded image
(Wherein R19Represents a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, or an alicyclic group. )
[0072]
The reactive phosphorus-containing compound is dissolved or dispersed in a monohydric alcohol such as methanol or ethanol, or a dihydric alcohol such as ethylene glycol, propylene glycol or butylene glycol when the aqueous flame-retardant polyester resin of the present invention is produced. Is preferably added to the reaction system.
[0073]
In the present invention, the amount of the reactive phosphorus-containing compound used is the weight ratio of the phosphorus atom derived from the reactive phosphorus-containing compound in the resulting aqueous flame-retardant polyester resin to the total amount of the aqueous flame-retardant polyester resin. The amount is preferably adjusted to be 300 ppm or more, more preferably 500 ppm or more. If it does in this way, the especially outstanding flame retardance can be provided with respect to water-based flame-retardant polyester resin. Further, the upper limit of the amount of the reactive phosphorus-containing compound used is not particularly limited, but it is preferably blended within a range where the content of the phosphorus atom is 100000 ppm or less. Generation | occurrence | production can be prevented and it can prevent that the resin characteristic of water-based flame-retardant polyester resin is impaired.
[0074]
In addition, the compounding amount of the dicarboxylic acid component, the glycol component, the water solubility-imparting component, and the reactive phosphorus-containing compound, which are essential components of the present invention, is the total number of carboxyl groups and ester-forming derivative groups contained in each component, It is preferable that the hydroxyl group and the total number of ester-forming derivative groups thereof are blended so that the molar ratio is in the range of 1: 1 to 2.5.
[0075]
In preparing an aqueous flame retardant polyester resin, a known polyfunctional compound such as pentaerythritol, trimethylolpropane, dimethylolbutanoic acid, trifunctional carboxylic acid, etc. is used to adjust the molecular weight. It is also preferable to use an appropriate amount. In particular, when a compound having a single functional group (ester-forming functional group) is used as a reactive phosphorus-containing compound, it may act as a terminal terminator. preferable.
[0076]
Moreover, as reaction components other than those described above, for example, p-hydroxybenzoic acid, monovalent aliphatic alcohol, and the like can be used together.
[0077]
The aqueous flame-retardant polyester resin of the present invention can be obtained by a known polyester production method. For example, a direct esterification reaction using a dicarboxylic acid and a glycol or an ester exchange reaction between an ester-forming derivative of a dicarboxylic acid and a glycol is used as a first-stage reaction, and the second-stage reaction in which this reaction product is polycondensed can be produced. it can.
[0078]
For example, when dimethyl terephthalate (DMT) is used as the dicarboxylic acid component and ethylene glycol (EG) is used as the glycol component, bishydroxyethylene terephthalate (BHET) is converted by transesterification (first stage reaction) between DMT and EG. When this BHET is polycondensed (second stage reaction), polyethylene terephthalate is produced.
[0079]
Components other than the dicarboxylic acid component and the glycol component can be added to the reaction at any time from the beginning of the first stage reaction to the end of the second stage reaction.
[0080]
Of these, the most common method is a transesterification reaction between a dicarboxylic acid diester and a glycol, which is used as a first-stage reaction, and a production method comprising a second-stage reaction in which this reaction product is polycondensed. I will explain it. In the first stage transesterification reaction, all reaction components used for the production of the phosphorus-containing water-soluble polyester resin of the present invention may be charged all at once from the beginning, and reactive phosphorus-containing compounds are added during the ester polycondensation reaction. May be. In the case of batch preparation, the transesterification reaction is performed by adding, for example, a dicarboxylic acid diester, a glycol compound, and a reactive phosphorus-containing compound to a reaction vessel, under an atmospheric pressure condition in an inert gas atmosphere such as nitrogen gas, at 150 to 260. Transesterification is carried out by gradually heating up to 0 ° C.
[0081]
The second stage polycondensation reaction is performed within a temperature range of 160 to 280 ° C. under a reduced pressure of, for example, 6.7 hPa (5 mmHg) or less. In this way, the aqueous flame retardant polyester resin of the present invention is obtained. In the transesterification reaction and polycondensation reaction, conventionally known titanium, antimony, lead, zinc, magnesium, calcium, manganese, alkali metal compounds, and the like may be used as a catalyst at any time.
[0082]
The aqueous flame retardant polyester resin of the present invention can be used for various applications. Among them, as described above, it is suitably used for a film-forming resin composition because of its characteristics such as excellent flame retardancy and durability, and dispersibility or dissolution in an aqueous solvent. In addition, it is preferable that the number average molecular weight of the water-based flame-retardant polyester resin of the present invention when used for the film-forming resin composition is 5,000 to 50,000. When the number average molecular weight is 5,000 or more, the durability and water resistance of the water-based flame-retardant polyester resin are particularly excellent, and a sufficient effect can be obtained in terms of improvement of hydrolysis resistance. If the number average molecular weight is 50000 or less, excellent solution stability can be maintained when the film-forming resin composition is dispersed or dissolved in an aqueous solvent.
[0083]
In addition, the water-based flame-retardant polyester resin of the present invention when used in a film-forming resin composition makes it easier to obtain better flame retardancy, durability and water resistance and good long-term storage stability of the dispersion or solution. In order to make it easy, it is preferable that the intrinsic viscosity is 0.05 to 1.0, and a film having particularly excellent strength can be obtained by setting the intrinsic viscosity to 0.05 or more. When the intrinsic viscosity is 1.0 or less, the long-term storage stability of the dispersion or solution can be made particularly excellent. A particularly suitable effect is obtained particularly when the intrinsic viscosity is in the range of 0.12 to 0.9. Further, an optimum effect is obtained when the intrinsic viscosity is 0.2 to 0.9.
[0084]
Since the film-forming resin composition of the present invention contains the water-based flame-retardant polyester resin as described above, it can be applied in an aqueous system, and is occupational safety and environmental conservation when processing a substrate. Is excellent. If necessary, additives such as a penetrating agent, a flame retardant, an antistatic agent, a pigment, a dye, an antioxidant, an ultraviolet absorber, an antifoaming agent, and a dispersion aid can be added.
[0085]
The use of the film-forming resin composition comprising the water-based flame-retardant polyester resin of the present invention for the treatment of textile products will be described. For example, the film-forming resin composition of the present invention may be a woven fabric, a knitted fabric, a non-woven fabric, A method of applying to rugs, webs, etc. by a dipping method, padding method, coating method, a method of applying to yarn using a sizing machine similar to the warp gluing method, a method of using the processed yarn for weaving, etc. is there.
[0086]
Moreover, if the method used for the surface treatment of polyester films, such as PET, is described, there exists a method of manufacturing a PET film and apply | coating the resin composition for film formation of this invention after the fact, for example. Further, for example, a method of applying the film-forming resin composition of the present invention to the surface of the polyester film at any stage of the process of forming PET into a film by a conventional method may be employed. In the latter case, for example, PET can be formed into a film by drying, extruding, extruding and forming an unstretched sheet, then biaxially stretching and then heat-treating. In this process, the film surface can be applied by, for example, a dipping method, curtain coating method, gravure coating method, wire bar method, spray coating method, reverse coating method or die coating method.
[0087]
Furthermore, the film-forming resin composition comprising the aqueous flame-retardant polyester resin of the present invention is not limited to the applications exemplified above, but also coating agents such as metals, glass, paper, and wood, and electronic substrates. It can also be used as an overcoat agent, an adhesive agent such as an anchor coat agent and an ink binder, and a surface treatment agent for plastic films such as polyvinyl chloride and polycarbonate.
[0088]
【Example】
Hereinafter, the present invention will be described based on examples, but the present invention is not limited thereto. Note that “parts” and “%” used below are all based on weight unless otherwise specified. Further, the physical properties of the polyester resins of Examples 1 to 7 and Comparative Examples 1 to 5 below were measured by the following test methods.
[0089]
(1) Measurement of intrinsic viscosity
The measurement was performed using an Ostwald viscometer at 20 ° C. using o-chlorophenol as a solvent.
[0090]
(2) Measurement of number average molecular weight
A THF solution was prepared so that each sample had a solid content of 10 mg / milliliter, and each sample was measured with an injection amount of 100 microliters under the following measurement conditions.
GPC measuring device: SHODEX SYSTEM 11 manufactured by Showa Denko KK
Column: 4 series moving layers of SHODEX KF-800P, KF-805, KF-803 and KF-801 (all manufactured by Showa Denko KK)
・ THF flow rate: 1 ml / min
-Column temperature: 45 ° C
・ Detector: RI
・ Conversion: Polystyrene
(3) Measurement of pencil hardness
The resin solutions of Examples and Comparative Examples were each poured into a film-forming container and dried at 60 ° C. for 48 hours. After the formed film was taken out, the back and front surfaces were each dried at 105 ° C. for 12 hours and then dried to a thickness of 0. A 4 mm completely dried film was obtained. These films were conditioned for 10 hours at 25 ° C. and 55% RH as samples, and measured according to the Pencil Scratch Test Method (JIS K 5400).
[0091]
(4) Measurement of tensile strength and tensile elongation
Each resin solution of the tensile test example and the comparative example was poured into a film-forming container and dried at 60 ° C. for 48 hours. After the formed film was taken out, the front and back surfaces were each dried at 105 ° C. for 12 hours to obtain a thickness. A 0.4 mm completely dried film was obtained. Using these films, a No. 1 type test piece of 200 mm × 15 mm was prepared and subjected to the test after conditioning for 100 hours at 25 ° C. and 55% RH. The tensile test was performed using a tensile tester (RTC-1225 manufactured by Orientec Co., Ltd.) in accordance with the tensile test method (JIS K 7127) for plastic films and sheets, and the tensile fracture strength and tensile fracture elongation were determined. .
[0092]
(5) Preparation method of test cloth
Each resin solution was processed on a polyester tropical cloth by a padding method, dried at 105 ° C. for 5 minutes, and cured at 180 ° C. for 2 minutes to obtain a test cloth.
[0093]
(6) Washing test / flammability test
After washing in a household electric washing machine with 2 g / l of synthetic detergent at 40 ° C. for 5 minutes at a bath ratio of 1:50, rinsing is performed for 3 minutes and dehydration. This one cycle was washed once and this was repeated 10 times. (HL = 10)
And each of the test cloth before the washing test (HL = 0) and the test cloth after the 10-cycle test (HL = 10) has combustibility in accordance with the flame contact method (JIS L 1091 D method). It was measured.
[0094]
(7) Adhesion test
Each resin liquid was applied on a PET film (Toray, “Tetronl mirror type T”, thickness 100 μm) using a bar coater so that the film thickness after drying was 5 μm, and dried at 150 ° C. for 5 minutes. Thereafter, the sample was aged at 60 ° C. for 2 hours and further conditioned at 25 ° C. and 55% RH for 10 hours to obtain a sample. For each of the obtained samples, the coat layer was cross-cut so that the grid was 100 in 1 inch square, and the tape peeling test was performed three times at the same location, and the number of the grids peeled off was evaluated.
Judgment criteria are as follows.
○: Number of peeling grids 0 to 10
Δ: No. 11 to 20 peeling grids
×: Peeling grid number 21 or more
[referenceExample 1)
In a reactor, 242.7 parts of dimethyl terephthalic acid, 31.1 parts of dimethyl isophthalic acid, 59.3 parts of sodium dimethylisophthalic acid, 198.6 parts of ethylene glycol, a reaction represented by the following chemical formula (e) 18.9 parts of a phosphorus-containing compound and 0.1 part of potassium potassium oxalate as a catalyst were added, and the mixture was heated to 200 ° C. while stirring and mixing in a normal pressure and nitrogen atmosphere. Next, the reaction temperature was gradually raised to 260 ° C. over 4 hours to complete the transesterification reaction. Thereafter, the pressure is gradually reduced at 250 ° C., and a polycondensation reaction is performed for 2 hours under the conditions of 250 ° C. and 0.67 hPa (0.5 mmHg), and an aqueous flame-retardant polyester resin having an intrinsic viscosity of 0.40 and a number average molecular weight of 8200 is obtained. Obtained. 25 parts of this aqueous flame retardant polyester resin and 75 parts of water were added to a dissolution tank and dissolved with stirring at a temperature of 80 to 95 ° C. over 2 hours to obtain a 25% aqueous solution of the aqueous flame retardant polyester resin. Using this solution, the pencil hardness measurement, the tensile test and the adhesion test are performed as described above, and the processed cloth is prepared as described above, and the washing test and the flammability test are performed. The results are shown in Table 1. It was.
[0095]
Embedded image
[0096]
[referenceExample 2)
Except that the amount of dimethyl terephthalic acid was 260.2 parts and sodium sulfonate 2-dimethylisophthalic acid was 29.7 partsreferenceIn the same manner as in Example 1, an aqueous flame retardant polyester resin having an intrinsic viscosity of 0.39 and a number average molecular weight of 7900 was obtained. 25 parts of this aqueous flame retardant polyester resin, 65 parts of water and 10 parts of ethylene glycol mono-t-butyl ether were added to the dissolution vessel and dissolved with stirring at a temperature of 80 to 95 ° C. over 2 hours. A 25% aqueous solution was obtained. Using this solution, the pencil hardness measurement, the tensile test and the adhesion test are performed as described above, and the processed cloth is prepared as described above, and the washing test and the flammability test are performed. The results are shown in Table 1. It was.
[0097]
[referenceExample 3)
In a reactor, 299.0 parts of dimethyl terephthalic acid, 31.1 parts of dimethyl isophthalic acid, 161.8 parts of sebacic acid, 29.7 parts of sodium dimethylisophthalic acid 5-sulfonate, 136.6 parts of ethylene glycol, 1, 4 -Add 90.1 parts of butanediol, 18.9 parts of a reactive phosphorus-containing compound represented by the above chemical formula (e) and 0.1 part of potassium titanium oxalate as a catalyst,referenceIn the same manner as in Example 1, an aqueous flame retardant polyester resin having an intrinsic viscosity of 0.37 and a number average molecular weight of 8,000 was obtained. 25 parts of this aqueous flame retardant polyester resin, 65 parts of water and 10 parts of ethylene glycol mono-t-butyl ether were added to the dissolution vessel and dissolved with stirring at a temperature of 80 to 95 ° C. over 2 hours. A 25% aqueous solution was obtained. Using this solution, the pencil hardness measurement, the tensile test and the adhesion test are performed as described above, and the processed cloth is prepared as described above, and the washing test and the flammability test are performed. The results are shown in Table 1. It was.
[0098]
Example 4
In a reactor, 217.5 parts of dimethyl terephthalic acid, 31.1 parts of dimethyl isophthalic acid, 136.6 parts of ethylene glycol, 90.1 parts of 1,4-butanediol, a reactive phosphorus-containing compound (in the above chemical formula (e) 18.9 parts of the reactive phosphorus-containing compound shown) and 0.1 part of potassium titanium oxalate as a catalyst were added, and the mixture was heated to 200 ° C. with stirring and mixing in a normal pressure and nitrogen atmosphere. Next, after gradually raising the reaction temperature to 260 ° C. over 4 hours to complete the transesterification reaction, 61.5 parts of trimellitic anhydride was added, and the pressure was gradually reduced at 250 ° C. A polycondensation reaction was performed for 30 minutes under the condition of 0.67 hPa (0.5 mmHg) to obtain an aqueous flame retardant polyester resin having an acid value of 50.2, an intrinsic viscosity of 0.37, and a number average molecular weight of 7700. 25 parts of this aqueous flame retardant polyester resin, 68.7 parts of water, 5 parts of ethylene glycol mono-t-butyl ether and 1.3 parts of 25% aqueous ammonia are added to the dissolution tank and stirred at a temperature of 80 to 95 ° C. for 2 hours. To obtain a 25% aqueous solution of an aqueous flame-retardant polyester resin. Using this solution, the pencil hardness measurement, the tensile test and the adhesion test are performed as described above, and the processed cloth is prepared as described above, and the washing test and the flammability test are performed. The results are shown in Table 1. It was.
[0099]
Example 5
In the same manner as in Example 4 except that the blending amount of dimethyl terephthalic acid was 211.7 parts and 8.9 parts of sodium dimethylisophthalic acid was added, an acid value of 47.1, an intrinsic viscosity of 0.38, An aqueous flame retardant polyester resin having a number average molecular weight of 7,600 was obtained. 25 parts of this water-resistant flame retardant polyester resin, 68.8 parts of water and 1.2 parts of 25% aqueous ammonia are added to a dissolution tank and dissolved with stirring at a temperature of 80 to 95 ° C. for 2 hours. A 25% aqueous solution of the resin was obtained. Using this solution, the pencil hardness measurement, the tensile test and the adhesion test are performed as described above, and the processed cloth is prepared as described above, and the washing test and the flammability test are performed. The results are shown in Table 1. It was.
[0100]
[referenceExample 6)
In a reactor, 242.7 parts of dimethyl terephthalic acid, 31.1 parts of dimethyl isophthalic acid, 59.3 parts of sodium 5-sulfonate dimethyl isophthalic acid, 162.6 parts of ethylene glycol, 43.3 parts of 1,4-butanediol , 13.4 parts of trimethylolpropane, 4.2 parts of a reactive phosphorus-containing compound (reactive phosphorus-containing compound represented by the following chemical formula (i)) and 0.1 part of potassium titanium oxalate as a catalyst,referenceIn the same manner as in Example 1, an aqueous flame retardant polyester resin having an intrinsic viscosity of 0.39 and a number average molecular weight of 8100 was obtained. 25 parts of this aqueous flame retardant polyester resin and 75 parts of water were added to a dissolution tank and dissolved with stirring at a temperature of 80 to 95 ° C. over 2 hours to obtain a 25% aqueous solution of the aqueous flame retardant polyester resin. Using this solution, the pencil hardness measurement, the tensile test and the adhesion test are performed as described above, and the processed cloth is prepared as described above, and the washing test and the flammability test are performed. The results are shown in Table 1. It was.
[0101]
Embedded image
[0102]
[referenceExample 7)
In the same manner as in Example 1, except that 18.9 parts of the reactive phosphorus-containing compound represented by the chemical formula (e) was changed to 9.7 parts of the reactive phosphorus-containing compound represented by the following general formula (j), A phosphorus-containing polyester resin having an intrinsic viscosity of 0.40 and a number average molecular weight of 8600 was obtained. 25 parts of this phosphorus-containing polyester resin and 75 parts of water were added to a dissolution tank and dissolved with stirring at a temperature of 80 to 95 ° C. over 2 hours to obtain a 25% aqueous solution of phosphorus-containing polyester resin. Using this solution, the pencil hardness measurement, the tensile test and the adhesion test are performed as described above, and the processed cloth is prepared as described above, and the washing test and the flammability test are performed. The results are shown in Table 1. The.
[0103]
Embedded image
[0104]
[Comparative Example 1]
Other than excluding reactive phosphorus-containing compounds,referenceIn the same manner as in Example 1, a water-soluble polyester resin having an intrinsic viscosity of 0.40 and a number average molecular weight of 8,000 was obtained. 25 parts of this water-soluble polyester resin and 75 parts of water were added to the dissolution vessel and dissolved with stirring at a temperature of 80 to 95 ° C. over 2 hours to obtain a 25% aqueous solution of the water-soluble polyester resin. Using this solution, the pencil hardness measurement, the tensile test and the adhesion test are performed as described above, and the processed cloth is prepared as described above, and the washing test and the flammability test are performed. The results are shown in Table 1. It was.
[0105]
[Comparative Example 2]
A water-soluble polyester resin having an acid value of 49.6, an intrinsic viscosity of 0.38, and a number average molecular weight of 7800 was obtained in the same manner as in Example 4 except that the reactive phosphorus-containing compound was excluded. 25 parts of this water-soluble polyester resin, 68.9 parts of water, 5 parts of ethylene glycol mono-t-butyl ether and 1.1 parts of 25% aqueous ammonia are added to the dissolution tank and dissolved at a temperature of 80 to 95 ° C. for 2 hours with stirring. Thus, a 25% aqueous solution of a water-soluble polyester resin was obtained. Using this solution, the pencil hardness measurement, the tensile test and the adhesion test are performed as described above, and the processed cloth is prepared as described above, and the washing test and the flammability test are performed. The results are shown in Table 1. It was.
[0106]
[Comparative Example 3]
Except for 281.6 parts of dimethylterephthalic acid and excluding sodium dimethylisophthalic acid 5-sulfonate,referenceIn the same manner as in Example 1, a phosphorus-containing polyester resin having an intrinsic viscosity of 0.41 and a number average molecular weight of 8300 was obtained. This phosphorus-containing polyester resin was insoluble in water or a mixture of water and a hydrophilic solvent. Further, dissolution was attempted using toluene and xylene as general-purpose solvents, but a stable solution could not be obtained. Accordingly, 20 parts of this phosphorus-containing polyester resin, 20 parts of ethyl acetate and 60 parts of o-chlorophenol were added to the dissolution tank and stirred and dissolved at 75 ° C. for 2 hours to obtain a 20% solution of phosphorus-containing polyester resin. Using this solution, the pencil hardness measurement, the tensile test and the adhesion test are performed as described above, and the processed cloth is prepared as described above, and the washing test and the flammability test are performed. The results are shown in Table 1. It was. During the creation of the processed cloth, the base cloth was discolored due to the influence of the solvent in the polyester resin solution, and the obtained processed cloth had insufficient flatness and lacked dimensional stability. .
[0107]
[Comparative Example 4]
A phosphorus-containing polyester resin having an intrinsic viscosity of 0.09 and a number average molecular weight of 3800, as in Comparative Example 3, except that a polycondensation reaction was performed for 30 minutes under the conditions of 250 ° C. and 0.67 hPa (0.5 mmHg). Got. This phosphorus-containing polyester resin was insoluble in water or a mixture of water and a hydrophilic solvent. 25 parts of this phosphorus-containing polyester resin, 60 parts of toluene, and 15 parts of methyl ethyl ketone were added to a dissolution tank and stirred and dissolved at 75 ° C. for 2 hours to obtain a 25% solution of phosphorus-containing polyester resin. Using this solution, the pencil hardness measurement, the tensile test and the adhesion test are performed as described above, and the processed cloth is prepared as described above, and the washing test and the flammability test are performed. The results are shown in Table 1. It was.
[0108]
[Comparative Example 5]
60 parts of a water-soluble polyester resin aqueous solution obtained in Comparative Example 1, 25 parts of Nonen R-49 (manufactured by Maruhishi Oil Chemical Co., Ltd.) and 15 parts of water were added to add 25% of non-volatile components. An aqueous solution was obtained. Using this solution, the pencil hardness measurement, the tensile test and the adhesion test are performed as described above, and the processed cloth is prepared as described above, and the washing test and the flammability test are performed. The results are shown in Table 1. It was.
[0109]
[Table 1]
[0110]
As is clear from the above results, the examples4,5In this case, a film with good film performance and excellent flame retardancy can be obtained.It was.
[0111]
In contrast, in Comparative Example 1,referenceSince the reactive phosphorus-containing compound is excluded in Example 1,referenceAlthough it has the same film performance as that of Example 1, it has low flame retardancy.
[0112]
In Comparative Example 2, since the reactive phosphorus-containing compound was excluded in Example 4, the film performance was the same as that in Example 4, but the flame retardancy was low.
[0113]
In Comparative Example 3,referenceSince the water-soluble imparting component was excluded in Example 1, the obtained polyester resin could not be dispersed or dissolved in an aqueous solvent, and a stable solution could not be obtained even when a general-purpose solvent was used. Even when a film-forming composition was prepared using ethyl acetate and o-chlorophenol, sufficient adhesion was not obtained for the film.
[0114]
In Comparative Example 4, although the reaction conditions during the condensation polymerization reaction were changed in Comparative Example 3, the resulting polyester resin could not be dispersed or dissolved in an aqueous solvent. In addition, when a general-purpose solvent was used, a solution could be obtained, but the film formed had a significantly reduced tensile fracture strength, a slight decrease in flame retardancy, and poor adhesion. .
[0115]
In Comparative Example 5,referenceIn Example 1, the reactive phosphorus-containing compound is excluded and, instead, an additive type water-soluble phosphorus flame retardant is blended, but the formed film has significantly reduced tensile fracture strength and flame retardancy. Also, the adhesiveness was poor.
[0116]
【The invention's effect】
As described above, the method for producing a water-based flame-retardant polyester resin according to claim 1 includes a dicarboxylic acid component, a glycol component, a water-solubility-imparting component, and a reactive phosphorus-containing compound, wherein the ratio of the water-solubility-imparting component is In total of dicarboxylic acid component and water-solubilizing component20 ~60 mole%WhenIn order to conduct the condensation reaction or polycondensation reaction, the aqueous flame-retardant polyester resin has excellent flame retardancy and retains the excellent properties inherent in the polyester resin, and can be dispersed or dissolved in an aqueous solvent. Therefore, it is possible to perform processing by an aqueous system, which is excellent from the viewpoints of occupational safety, environmental conservation, ease of processing of the substrate, and the like.
In addition, the water-soluble imparting component contains at least one of a tribasic acid anhydride and a tetrabasic acid anhydride, and the proportion of the tribasic acid anhydride and the tetrabasic acid anhydride is dicarboxylic acid component and water-soluble imparted In the total amount of ingredients20 ~40 mole%ofSince it is within the range, the carboxyl group can be effectively left in the water-based flame-retardant polyester resin to impart excellent hydrophilicity.
[0117]
And claims2The invention of claim1In this case, since the content of phosphorus atoms derived from the reactive phosphorus-containing compound is 300 to 100,000 ppm, particularly excellent flame retardancy can be imparted to the aqueous flame-retardant polyester resin, and the occurrence of poor polymerization or the like It can prevent that the resin characteristic of water-based flame-retardant polyester resin is impaired.
[0118]
And claims3The invention of claim 1Or 2In the present invention, the reactive phosphorus-containing compound has at least one ester-forming functional group selected from a carboxyl group and a hydroxyl group, so that good reactivity is obtained in the production process of the water-based flame-retardant polyester resin. A flammable polyester resin can be obtained efficiently.
[0119]
And claims4The invention of claim 1 to claim 13In any one of the above, since the reactive phosphorus-containing compound is at least one compound selected from the group of compounds represented by the above general formulas (I), (II) and (III), The reactivity at the time of preparation of the polyester resin is good, the production efficiency of the water-based flame retardant polyester resin is improved, and a particularly excellent flame retardant effect is obtained.
[0120]
And claims5The invention of claim 1 to claim 14In any of the above, since the water-soluble imparting component contains a dicarboxylic acid component having a metal sulfonate group, the metal sulfonate group is effectively left in the aqueous flame-retardant polyester resin to impart excellent hydrophilicity. It is something that can be done.
[0123]
And claims6The invention of claim 1 to claim 15In any of the above, since the water-solubility-imparting component contains 5-sodium sulfoisophthalic acid or an ester thereof as a dicarboxylic acid component having a metal sulfonate group, a sodium sulfonate group is effective in the aqueous flame-retardant polyester resin. It can be made to remain and impart excellent hydrophilicity.
[0124]
And claims7The invention of claim 1 to claim 16In any of the above, since the water-soluble imparting component contains at least one of trimellitic anhydride which is a tribasic acid anhydride and pyromellitic anhydride which is a tetrabasic acid anhydride, an aqueous flame-retardant polyester resin A carboxyl group can be effectively left inside to impart excellent hydrophilicity.
Claims (7)
前記水溶性付与成分が、三塩基酸無水物と四塩基酸無水物のうちの少なくとも一方を含むと共に、前記三塩基酸無水物及び四塩基酸無水物の割合がジカルボン酸成分及び水溶性付与成分の合計量中で20〜40モル%の範囲であることを特徴とする水性難燃性ポリエステル樹脂の製造方法。The dicarboxylic acid component, the glycol component, the water-solubility-imparting component, and the reactive phosphorus-containing compound are such that the ratio of the water-solubility-imparting component is 20 to 60 mol % in the total of the dicarboxylic acid component and the water-solubility-imparting component. Are subjected to condensation reaction or polycondensation reaction,
The water solubility-imparting component contains at least one of a tribasic acid anhydride and a tetrabasic acid anhydride, and the ratio of the tribasic acid anhydride and the tetrabasic acid anhydride is a dicarboxylic acid component and a water solubility imparting component. A method for producing a water-based flame-retardant polyester resin, wherein the content is in the range of 20 to 40 mol % in the total amount.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002230506A JP4272393B2 (en) | 2002-08-07 | 2002-08-07 | Method for producing aqueous flame-retardant polyester resin |
US10/523,526 US7358323B2 (en) | 2002-08-07 | 2003-02-10 | Water-soluble flame-retardant polyester resin, resin composition containing the resin, and fiber product treated with the resin composition |
TW92102628A TWI271421B (en) | 2002-08-07 | 2003-02-10 | Aqueous flame retardant polyester resin, resin composition containing thereof, and fiber product treated the resin composition |
EP20030703321 EP1541611B1 (en) | 2002-08-07 | 2003-02-10 | Water-soluble flame-retardant polyester resin, resin composition containing the resin, and fabric product treated with the resin composition |
AT03703321T ATE440884T1 (en) | 2002-08-07 | 2003-02-10 | WATER-SOLUBLE FLAME-RESISTANT POLYESTER RESIN, THE RESIN CONTAINING RESIN COMPOSITION AND TEXTILE PRODUCT TREATED WITH THE RESIN COMPOSITION |
PCT/JP2003/001403 WO2004014983A1 (en) | 2002-08-07 | 2003-02-10 | Water-soluble flame-retardant polyester resin, resin composition containing the resin, and fabric product treated with the resin composition |
CNB038236893A CN100436507C (en) | 2002-08-07 | 2003-02-10 | Water-soluble flame-retardant polyester resin, resin composition containing the resin, and fabric product treated with the resin composition |
DE60329003T DE60329003D1 (en) | 2002-08-07 | 2003-02-10 | WATER-SOLUBLE FLAME-RESISTANT POLYESTER RESIN, THE RESIN COMPOSITION RESIN TO RESIN, AND TEXTILE PRODUCT TREATED WITH THE RESIN COMPOSITION |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002230506A JP4272393B2 (en) | 2002-08-07 | 2002-08-07 | Method for producing aqueous flame-retardant polyester resin |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004067910A JP2004067910A (en) | 2004-03-04 |
JP4272393B2 true JP4272393B2 (en) | 2009-06-03 |
Family
ID=31711687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002230506A Expired - Fee Related JP4272393B2 (en) | 2002-08-07 | 2002-08-07 | Method for producing aqueous flame-retardant polyester resin |
Country Status (8)
Country | Link |
---|---|
US (1) | US7358323B2 (en) |
EP (1) | EP1541611B1 (en) |
JP (1) | JP4272393B2 (en) |
CN (1) | CN100436507C (en) |
AT (1) | ATE440884T1 (en) |
DE (1) | DE60329003D1 (en) |
TW (1) | TWI271421B (en) |
WO (1) | WO2004014983A1 (en) |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8513147B2 (en) | 2003-06-19 | 2013-08-20 | Eastman Chemical Company | Nonwovens produced from multicomponent fibers |
US20040260034A1 (en) | 2003-06-19 | 2004-12-23 | Haile William Alston | Water-dispersible fibers and fibrous articles |
US7892993B2 (en) | 2003-06-19 | 2011-02-22 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
KR100561083B1 (en) * | 2004-05-10 | 2006-03-15 | 주식회사 효성 | Cationic dye-flammable flame retardant polyester polymers and preparation methods thereof, and copolyester fibers prepared therefrom |
KR101130527B1 (en) * | 2004-11-24 | 2012-03-28 | 도요 보세키 가부시키가이샤 | Flame-retardant polyester and process for producing the same |
JP2008024890A (en) * | 2006-07-25 | 2008-02-07 | Nippon Kayaku Co Ltd | Dispersion liquid of nonhalogen flameproofing agent and antiflaming method using the same |
JP4358894B2 (en) * | 2006-09-28 | 2009-11-04 | 博 宮本 | Textile material for post dyeing |
CN101020744B (en) * | 2007-03-19 | 2010-04-14 | 四川大学 | Polyester nanocomposite material and its double in-situ preparation method |
CN101376698B (en) * | 2007-08-30 | 2011-04-13 | 中国石化上海石油化工股份有限公司 | Preparation of flame-retardant polyester for preparing fibre |
DE102008012806A1 (en) * | 2008-03-06 | 2009-09-10 | Schill + Seilacher Ag | Halogen-free flame retardants |
JP5270944B2 (en) * | 2008-03-28 | 2013-08-21 | 互応化学工業株式会社 | Polyester resin, polyester water dispersion and coated polyester film |
JP5297086B2 (en) * | 2008-05-16 | 2013-09-25 | 互応化学工業株式会社 | Water-based polyester resin hybridized with layered silicate, resin composition for film formation, polyester film and fiber |
JP5297085B2 (en) * | 2008-05-16 | 2013-09-25 | 互応化学工業株式会社 | Water-based polyester resin hybridized with layered silicate, resin composition for film formation, polyester film and fiber |
ES2414807T3 (en) | 2008-05-27 | 2013-07-22 | Awds Technologies Srl | Wire guiding system |
DK2174741T3 (en) | 2008-10-07 | 2012-10-01 | Sidergas Spa | Lid for welding wire container |
US8512519B2 (en) | 2009-04-24 | 2013-08-20 | Eastman Chemical Company | Sulfopolyesters for paper strength and process |
WO2011009468A1 (en) | 2009-07-20 | 2011-01-27 | Awds Technologies Srl | A wire guiding liner, an particular a welding wire liner, with biasing means between articulated guiding bodies |
JP5658678B2 (en) * | 2009-11-02 | 2015-01-28 | 互応化学工業株式会社 | Hybrid type polyester resin, film-forming resin composition, polyester film, fiber, and method for producing hybrid type polyester resin |
US8389901B1 (en) | 2010-05-27 | 2013-03-05 | Awds Technologies Srl | Welding wire guiding liner |
US8604105B2 (en) | 2010-09-03 | 2013-12-10 | Eastman Chemical Company | Flame retardant copolyester compositions |
US20120183861A1 (en) | 2010-10-21 | 2012-07-19 | Eastman Chemical Company | Sulfopolyester binders |
JP5700780B2 (en) * | 2010-11-30 | 2015-04-15 | アンビック株式会社 | Chemical bond nonwoven fabric and method for producing the same |
JP5584147B2 (en) * | 2011-01-25 | 2014-09-03 | 帝人株式会社 | Flame retardant copolyester |
US8882018B2 (en) | 2011-12-19 | 2014-11-11 | Sidergas Spa | Retainer for welding wire container and welding wire container with retainer |
US8906200B2 (en) | 2012-01-31 | 2014-12-09 | Eastman Chemical Company | Processes to produce short cut microfibers |
JP6113969B2 (en) * | 2012-07-04 | 2017-04-12 | 帝人フィルムソリューション株式会社 | Flame retardant polyester film |
US9732306B2 (en) | 2012-12-21 | 2017-08-15 | Colgate-Palmolive Company | Fabric conditioner containing a branched amine functional silicone |
DE102013204550A1 (en) * | 2013-03-15 | 2014-09-18 | Evonik Industries Ag | Use of polyesters with inherent flame retardancy in adhesives and sealants |
US9617685B2 (en) | 2013-04-19 | 2017-04-11 | Eastman Chemical Company | Process for making paper and nonwoven articles comprising synthetic microfiber binders |
US10294065B2 (en) | 2013-06-06 | 2019-05-21 | Sidergas Spa | Retainer for a welding wire container and welding wire container |
US9605126B2 (en) | 2013-12-17 | 2017-03-28 | Eastman Chemical Company | Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion |
US9598802B2 (en) | 2013-12-17 | 2017-03-21 | Eastman Chemical Company | Ultrafiltration process for producing a sulfopolyester concentrate |
US10343231B2 (en) | 2014-05-28 | 2019-07-09 | Awds Technologies Srl | Wire feeding system |
US10010962B1 (en) | 2014-09-09 | 2018-07-03 | Awds Technologies Srl | Module and system for controlling and recording welding data, and welding wire feeder |
KR101976550B1 (en) * | 2014-09-16 | 2019-05-09 | 고오 가가쿠고교 가부시키가이샤 | Primer composition and stacked material |
US10350696B2 (en) | 2015-04-06 | 2019-07-16 | Awds Technologies Srl | Wire feed system and method of controlling feed of welding wire |
US9950857B1 (en) | 2016-10-17 | 2018-04-24 | Sidergas Spa | Welding wire container |
US11174121B2 (en) | 2020-01-20 | 2021-11-16 | Awds Technologies Srl | Device for imparting a torsional force onto a wire |
US11278981B2 (en) | 2020-01-20 | 2022-03-22 | Awds Technologies Srl | Device for imparting a torsional force onto a wire |
JP7096625B2 (en) * | 2020-03-09 | 2022-07-06 | 互応化学工業株式会社 | Protective composition |
JP7561438B2 (en) * | 2022-01-13 | 2024-10-04 | 互応化学工業株式会社 | Method for producing water-based polyester resin, water-based polyester resin, method for producing water-based coating composition, and water-based coating composition |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5827741B2 (en) | 1973-08-13 | 1983-06-11 | 三菱電機株式会社 | Control device for indoor wiring connection equipment |
US4179420A (en) * | 1975-10-21 | 1979-12-18 | Schenectady Chemicals, Inc. | Water soluble insulating varnish |
US4098741A (en) * | 1976-09-30 | 1978-07-04 | Basf Wyandotte Corporation | Phosphorus-containing polyester and size compositions |
JPS543848A (en) * | 1977-06-13 | 1979-01-12 | Toray Ind Inc | Water-soluble polyester adhesive |
JPS555938A (en) * | 1978-06-27 | 1980-01-17 | Toray Ind Inc | Water-soluble polyester adhesive |
JPS5560086A (en) * | 1978-10-28 | 1980-05-06 | Nippon Kayaku Kk | Nonstatic ammonium nitrate fuel oil explosives |
DE2900686A1 (en) * | 1979-01-10 | 1980-07-24 | Cassella Ag | POLYESTER SOLUBLE OR DISPERSIBLE IN WATER, METHOD FOR THE PRODUCTION THEREOF AND THE USE THEREOF AS A LEVELING AGENT, LEVELING AGENT AND METHOD FOR EVENLY COLORING |
JPS56150813A (en) * | 1980-04-22 | 1981-11-21 | Mitsubishi Electric Corp | Manufacture of insulated coil |
JPS5827741A (en) | 1981-08-11 | 1983-02-18 | Toyobo Co Ltd | Water-based flame-retardant polyester resin |
US4476189A (en) * | 1983-05-16 | 1984-10-09 | American Hoechst Corporation | Copolyester primed polyester film |
US4515863A (en) * | 1984-03-16 | 1985-05-07 | American Hoechst Corporation | Polyester film primed with phosphorus-containing polyester |
JPS6137815A (en) * | 1984-07-30 | 1986-02-22 | Goou Kagaku Kogyo Kk | Water-soluble polyester resin |
JPH02175751A (en) | 1988-07-29 | 1990-07-09 | Toyobo Co Ltd | Aqueous polyester resin composition |
US5352521A (en) * | 1990-11-20 | 1994-10-04 | Toyo Boseki Kabushiki Kaisha | Resin particles, method for production thereof and their uses |
JP3071568B2 (en) | 1992-07-03 | 2000-07-31 | 帝人株式会社 | Manufacturing method of flame retardant polyester |
JP3168107B2 (en) * | 1993-10-05 | 2001-05-21 | カネボウ株式会社 | Cationic dyeable flame retardant polyester fiber |
DE4338118A1 (en) | 1993-11-08 | 1995-05-11 | Bayer Ag | Polymer resins and their use |
DE4404365A1 (en) * | 1994-02-11 | 1995-08-17 | Cassella Ag | Polycondensates containing phosphine and phosphonic acid groups |
US5614573A (en) * | 1995-03-27 | 1997-03-25 | Nicca Chemical Co., Ltd. | Flame retardants and flame retardant finishing method for polyester-based synthetic fiber materials |
JP2969259B2 (en) * | 1996-07-25 | 1999-11-02 | 三洋化成工業株式会社 | Fiber treatment agent |
KR100280243B1 (en) * | 1996-07-31 | 2001-02-01 | 야스이 쇼사꾸 | Laminated film |
JP2000129204A (en) | 1998-10-27 | 2000-05-09 | Toyobo Co Ltd | Coating composition and hydrophilic aluminum steel sheet |
EP1054031B1 (en) * | 1999-05-21 | 2005-08-24 | Ciba SC Holding AG | Increasing the molecular weight and modification of condensation polymers |
JP2001139784A (en) | 1999-11-16 | 2001-05-22 | Nippon Ester Co Ltd | Flame-retardant polyester resin composition |
JP2001163962A (en) | 1999-12-13 | 2001-06-19 | Toyobo Co Ltd | Fire retarding polyester resin composition and its manufacturing method |
-
2002
- 2002-08-07 JP JP2002230506A patent/JP4272393B2/en not_active Expired - Fee Related
-
2003
- 2003-02-10 EP EP20030703321 patent/EP1541611B1/en not_active Expired - Lifetime
- 2003-02-10 AT AT03703321T patent/ATE440884T1/en not_active IP Right Cessation
- 2003-02-10 DE DE60329003T patent/DE60329003D1/en not_active Expired - Lifetime
- 2003-02-10 US US10/523,526 patent/US7358323B2/en not_active Expired - Lifetime
- 2003-02-10 TW TW92102628A patent/TWI271421B/en not_active IP Right Cessation
- 2003-02-10 WO PCT/JP2003/001403 patent/WO2004014983A1/en active Application Filing
- 2003-02-10 CN CNB038236893A patent/CN100436507C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
ATE440884T1 (en) | 2009-09-15 |
DE60329003D1 (en) | 2009-10-08 |
JP2004067910A (en) | 2004-03-04 |
TW200402449A (en) | 2004-02-16 |
US20050261461A1 (en) | 2005-11-24 |
WO2004014983A1 (en) | 2004-02-19 |
EP1541611A1 (en) | 2005-06-15 |
CN1688628A (en) | 2005-10-26 |
CN100436507C (en) | 2008-11-26 |
EP1541611A4 (en) | 2006-05-31 |
EP1541611B1 (en) | 2009-08-26 |
TWI271421B (en) | 2007-01-21 |
US7358323B2 (en) | 2008-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4272393B2 (en) | Method for producing aqueous flame-retardant polyester resin | |
US4111816A (en) | Phosphorus-containing polyester and size compositions | |
JP5297085B2 (en) | Water-based polyester resin hybridized with layered silicate, resin composition for film formation, polyester film and fiber | |
JP5297086B2 (en) | Water-based polyester resin hybridized with layered silicate, resin composition for film formation, polyester film and fiber | |
WO1999037852A1 (en) | Treatment for fibers, flame retardant, method of imparting flame retardancy, and treated synthetic polyester fibers | |
KR101399535B1 (en) | Hybrid-type polyester resin, resin composition for formation of film, and polyester film and textile | |
JP5572000B2 (en) | Polyester resin composition | |
JP3638178B2 (en) | Film-forming resin composition and polyester film using silicon-containing polyester resin dispersible or soluble in water | |
BR0015692B1 (en) | method of manufacturing sulfonated polyester compounds. | |
JP2001172823A (en) | Flame-retardant polyester fiber and method for producing the same | |
JPS633913B2 (en) | ||
JP3329410B2 (en) | Flame retardant polyester fiber | |
JPH01192823A (en) | Production of formed article of modified polyester | |
JP3909178B2 (en) | Surface coating liquid and method for producing the same | |
JP2002327054A (en) | Method for producing modified polyester | |
JPH0116954B2 (en) | ||
JPH06263855A (en) | Modified polyester and fiber | |
KR19980068294A (en) | Manufacturing method of flame retardant polyester | |
JPS60221423A (en) | Production of flame-resistant polyester | |
JPH0455606B2 (en) | ||
JPS58141208A (en) | Water-dispersible copolyester | |
JPS6319536B2 (en) | ||
JPH0351832B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050711 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080729 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080929 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081125 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090126 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090217 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090227 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120306 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4272393 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120306 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150306 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |