[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4263035B2 - Lightweight embankment structure - Google Patents

Lightweight embankment structure Download PDF

Info

Publication number
JP4263035B2
JP4263035B2 JP2003189291A JP2003189291A JP4263035B2 JP 4263035 B2 JP4263035 B2 JP 4263035B2 JP 2003189291 A JP2003189291 A JP 2003189291A JP 2003189291 A JP2003189291 A JP 2003189291A JP 4263035 B2 JP4263035 B2 JP 4263035B2
Authority
JP
Japan
Prior art keywords
synthetic resin
foamed synthetic
pile
embankment structure
embankment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003189291A
Other languages
Japanese (ja)
Other versions
JP2005023625A (en
Inventor
清孝 七間
匡一 山崎
勝美 内田
吏慶 天辻
佐藤  修
武彦 柳生
英彰 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Achilles Corp
Kaneka Corp
JSP Corp
Sekisui Kasei Co Ltd
Original Assignee
Achilles Corp
Kaneka Corp
JSP Corp
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Achilles Corp, Kaneka Corp, JSP Corp, Sekisui Kasei Co Ltd filed Critical Achilles Corp
Priority to JP2003189291A priority Critical patent/JP4263035B2/en
Publication of JP2005023625A publication Critical patent/JP2005023625A/en
Application granted granted Critical
Publication of JP4263035B2 publication Critical patent/JP4263035B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、発泡合成樹脂ブロックを複数個敷き並べて形成した層を複数層積み重ねることによって構築した盛土を含む軽量盛土構造物に関するもので、更に詳しくは、圧縮剛性が高く、且つ解体作業性の良好な軽量盛土構造物に関するものである。
【0002】
【従来の技術】
従来より、発泡合成樹脂ブロックを用いた盛土は、軟弱地盤上や傾斜地での盛土や、庭園の築山での盛土、更には地下構造物の埋込み、埋戻し等に広く用いられている。
【0003】
このような発泡合成樹脂ブロックを用いた盛土は、一般に圧縮剛性が小さく、また歪みも生じ易いため、例えば鉄道等の構造物には、列車の走行による大きな輪荷重を受けること、また鉄道のレールの許容変形量は極めて小さいこと等から、その使用が躊躇されていた。
【0004】
そこで、特許文献1には、発泡合成樹脂ブロックを用いた盛土の特性である軽量性及び施工性を損なわず、しかも圧縮剛性が高く、且つ変形量が僅かと成る道路、鉄道等の構造物にも使用可能な、軽量盛土構造物の構築方法が提案されている。
【0005】
この発泡合成樹脂ブロックを用いた軽量盛土構造物の構築方法は、具体的には、発泡合成樹脂ブロックの板面に表面から裏面に貫通する孔を形成し、該孔が上下方向に連通するように前記発泡合成樹脂ブロックを積み重ね、該上下方向に連通する孔にコンクリート、モルタル等を打設し、圧縮剛性の高い杭体を発泡合成樹脂ブロックの積層体から成る盛土内部に構築したものである(特許文献1の第4図、第5図参照)。
【0006】
【特許文献1】
特開平3−87417号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上記特許文献1に記載された技術にあっては、該構法により構築された構造物の解体時にあっては、杭体が積層された発泡合成樹脂ブロックの板面を貫通する状態で存在するため、発泡合成樹脂ブロックを破壊しなければ杭体から取り除くことができず、その解体作業性が非常に悪いものであった。
【0008】
また、積層した多くの発泡合成樹脂ブロックを破壊するものであるため、周囲に破砕片が飛散すると共に、厖大な容積量の廃棄処理物が発生することとなり、環境及び資源保全の観点からも問題を有するものであった。
【0009】
そこで、本発明の目的は、圧縮剛性が高く、しかも解体作業性が良好で、且つ解体後の発泡合成樹脂ブロックの再使用も可能な軽量盛土構造物を提供することにある。
【0010】
【課題を解決するための手段】
上記した目的を達成するため、本発明の軽量盛土構造物は、発泡合成樹脂ブロックを複数個敷き並べて形成した層を複数層積み重ねることによって構築した盛土を含む軽量盛土構造物において、前記盛土の少なくとも一部が、前記発泡合成樹脂ブロックの側面及び/又は隅部に形成された表面から裏面に至る凹部に、圧縮剛性の高い杭状部材が非接着状態で配設された複合ブロック体で構成されており、前記発泡合成樹脂ブロックに形成された凹部を互いに向き合うように敷き並べた際に形成される穴の空間形状が逆円錐台形状部を有し、前記杭状部材が前記穴の空間形状に対応する逆円錐台形状部を有するものであることを特徴としている。尚、ここでいう非接着状態とは、上記凹部と上記杭状部材とが非接着状態である場合と、接着してはいるが、前記発泡合成樹脂ブロックを破壊することなく上記杭状部材を上記凹部から剥離可能な程度の弱い接着状態である場合をも包含するものである。
【0011】
この本発明に係る軽量盛土構造物によれば、発泡合成樹脂ブロックを積み重ねることにより構築した盛土の少なくとも一部が、圧縮剛性の高い杭状部材が配設された複合ブロック体で構成されているため、該複合ブロック体で構成された部分の盛土は圧縮剛性が高く、且つ変形量が僅かと成るため、強い圧縮荷重を受ける部分、或いは歪みの生じ易い部分等を該複合ブロック体で構成することにより、道路や鉄道等の構造物にも好適に使用し得る軽量盛土構造物を提供できる。
【0012】
また、本発明に係る軽量盛土構造物によれば、上記圧縮剛性を高めるための杭状部材は、発泡合成樹脂ブロックの側面及び/又は隅部に形成された凹部に非接着状態で配設されているため、解体時においては、発泡合成樹脂ブロックを破壊すること無く容易に杭状部材から取り外すことができ、解体作業性が良好なものと成ると共に、解体後の発泡合成樹脂ブロックの再使用も可能となる。
更に、本発明に係る軽量盛土構造物によれば、上記発泡合成樹脂ブロックを互いの上記凹部が向かい合うように敷き並べた際に形成される穴の空間形状が逆円錐台形状部を有し、上記杭状部材が前記穴の空間形状に対応する逆円錐台形状部を有するものとしたため、杭状部材に掛かる荷重の一部を発泡合成樹脂ブロックに負担させることができ、荷重の杭状部材への集中を防止できると共に、地下水や湧き水などの影響で発泡合成樹脂ブロックに浮力が生じた場合にも、杭状部材が抵抗になって発泡合成樹脂ブロックの浮上を阻止することができ、軽量盛土構造物の安定性を高めることができる。
【0013】
ここで、上記本発明において、上記盛土の少なくとも一部が、上記複合ブロック体を上下方向に複数層積み重ねた多層複合ブロック体で構成され、該多層複合ブロック体は下層の複合ブロック体の杭状部材と上層の複合ブロック体の杭状部材とが上下方向に連なって配設されているものとすることができる。
このような構造の盛土を含む軽量盛土構造物は、上下方向に働く圧縮荷重を上下方向に連なって配設された杭状部材により効率的に受けることができ、より圧縮剛性の高い軽量盛土構造物を提供できる。
【0014】
また、上記盛土を構築する発泡合成樹脂ブロックを、表面と裏面のそれぞれの面が長辺と短辺の寸法比が略2対1の長方形形状である直方体形状とし、該直方体形状の発泡合成樹脂ブロックの4隅に上記表面から裏面に至る凹部を形成すると共に、該発泡合成樹脂ブロックの相対向する長辺側側面の中央にも上記表面から裏面に至る凹部を形成した構造としても良く、また、上記と同様に発泡合成樹脂ブロックを表面と裏面のそれぞれの面が長辺と短辺の寸法比が略2対1の長方形形状である直方体形状とし、該直方体形状の発泡合成樹脂ブロックの相対向する短辺側側面の中央に上記表面から裏面に至る凹部を形成すると共に、該発泡合成樹脂ブロックの相対向する長辺側側面の隅部からそれぞれ長辺寸法の4分の1だけ離れた位置にも上記表面から裏面に至る凹部を形成した構造としても良い。上記したような構造の発泡合成樹脂ブロックとした場合、該発泡合成樹脂ブロックを複数個敷き並べて形成した層を複数層積み重ねて盛土を構築する際、容易に全ての凹部が上下方向に貫通した穴を形成するように該発泡合成樹脂ブロックを積み重ねることができる。
【0015】
また、上記本発明において、上記発泡合成樹脂ブロックを発泡ポリスチレンから成るものとしても良く、この場合には、軽量性、耐水性、耐久性、更には経済性等にも優れた盛土を含む軽量盛土構造物を提供することができる。
【0016】
更に、上記本発明において、上記多層複合ブロック体を上下方向に連なる杭状部材が複数個の短長な杭状部材を上下方向に積み重ねることにより構成されているものとしても良く、この場合には、盛土の構築作業性及び解体作業性を更に良好なものとすることができる。
なお、上記の場合、短長な杭状部材の上下面に、該短長な杭状部材を上下方向に積み重ねた際の位置ズレを防止する係合部を各々形成することは好ましい。
【0017】
また、上記本発明において、上記短長な杭状部材の下側が先細に形成されているものとすると、発泡合成樹脂ブロックの凹部への挿入作業が容易なものとなるために好ましい
【0018】
また、上記本発明において、上記杭状部材をプレキャストコンクリート製杭状部材としても良く、この場合には、圧縮剛性の高い盛土を含む軽量盛土構造物を、安価に且つ極めて容易に構築することができる。
【0019】
【発明の実施の形態】
以下に、上記した本発明に係る軽量盛土構造物の実施の形態を、図面等を示して詳細に説明する。
【0020】
図1或いは図2に示したように、本発明において使用する発泡合成樹脂ブロック1は、例えば、発泡合成樹脂により長辺と短辺の寸法比が略2対1の長方形形状の表面1a、裏面1b、相対向する2つの長辺側側面1c,1c、並びに相対向する2つの短辺側側面1d,1dを備えた直方体形状に成形されている。
なお、「上記長辺と短辺の寸法比が略2対1」で言う「略」とは、盛土を構築するために発泡合成樹脂ブロックを積み重ねた時に上下方向に貫通する穴が形成され、該穴に支障なく杭状部材が配置可能であれば多少の誤差は許容できることを意味するものであるが、「略」を数値として示した場合、上記長辺を上記短辺で除した時の値の小数点以下3桁目を四捨五入した時の値が、1.95〜2.04であることが好ましく、1.96〜2.03であることがより好ましく、1.97〜2.02であることが更に好ましく、1.98〜2.01であることが最も好ましい。
【0021】
上記発泡合成樹脂ブロック1の成形に使用する発泡合成樹脂としては、例えば、発泡ポリスチレン等の発泡ポリスチレン系樹脂、発泡ポリエチレン、発泡ポリプロピレン等の発泡ポリオレフィン系樹脂、発泡ポリ塩化ビニル、発泡フェノール樹脂、発泡ポリアミド、発泡ポリウレタン等の各種のものが使用できるが、中でも、軽量性、耐水性、耐久性等の特性並びにコスト等から、発泡ポリスチレンを使用することが好ましい。
また、発泡ポリスチレンを使用した場合、10〜35kg/mの見掛け密度を持つものが好ましく、15〜25kg/mの見掛け密度を持つものがより好ましい。また、成形方法としては、型内成形、押出成形等の各種の成形方法を採用することができるが、通常は、型内成形法を用いることが好ましい。
【0022】
図1に示した発泡合成樹脂ブロック1は、4隅1e,1e,1e,1eに表面1aから裏面1bに至る4分の1円弧状の凹部2aが各々形成され、また相対向する長辺側側面1c,1cの中央にも表面1aから裏面1b至る2分の1円弧状の凹部2bが各々形成されている。
【0023】
また、図2に示した発泡合成樹脂ブロック1は、相対向する短辺側側面1d,1dの中央に表面1aから裏面1b至る2分の1円弧状の凹部2bが各々形成され、また相対向する長辺側側面1c,1cの隅部1e,1e,1e,1eからそれぞれ長辺寸法Lの4分の1だけ離れた位置にも表面1aから裏面1bに至る2分の1円弧状の凹部2bが各々形成されている。
【0024】
上記直方体形状の発泡合成樹脂ブロック1の長辺寸法は、1000〜3000mm程度、短辺寸法は、500〜1500mm程度、厚み寸法は、100〜1000mm程度が各々適当である。また、該発泡合成樹脂ブロック1に形成する上記4分の1円弧状、或いは2分の1円弧状の凹部2a,2bの直径は、100〜300mm程度が適当である。これらは、発泡合成樹脂ブロック1の積層作業の利便性及び効率、成形加工性等を考慮し、上記発泡合成樹脂ブロック1の大きさが前記範囲内で適宜決定されることが好ましい。また凹部2a,2bの直径も、要求される圧縮剛性、及び使用される杭状部材の種類等に応じて前記範囲内で適宜決定されることが好ましい。
【0025】
なお、好ましい例としては、発泡合成樹脂ブロック1の長辺寸法を2000mm、短辺寸法を1000mm、厚み寸法を500mmとしたサイズのものが適している。また好ましい凹部2a,2bの直径としては、200mmとした例を挙げることができるが、これらの寸法に限定されるものではない。
また、発泡合成樹脂ブロック1に形成する上記凹部2a,2bの形成位置も、発泡合成樹脂ブロック1の側面及び/又は隅部であれば、何ら上記の位置に限定されず、また凹部2a,2bの数、更には形状等も、何ら上記のものに限定されるものではない。
【0026】
上記発泡合成樹脂ブロック1を用いて、鉄道に使用する軽量盛土構造物Aを構築する場合には、例えば図3に示したように、先ず地盤Gを所定の深さまで掘削し、そこに構造物の荷重を地盤Gに均一に伝える目的で底版コンクリート3を施工する。この底版コンクリート3の剛性は、地盤Gの強度と構築する構造物A全体の荷重等を勘案して決定する。
【0027】
続いて、上記底版コンクリート3上に、発泡合成樹脂ブロック1を複数層に積層する。この積層方法の一例を、図1に示した発泡合成樹脂ブロック1を用いて行う場合を例に挙げて以下に説明する。
【0028】
先ず、図4に実線で示したように、複数の発泡合成樹脂ブロック1を、長辺方向を図4の上下方向と一致させ、短辺同士を向かい合わせて密着状態で1列に敷き並べたものを、横方向に複数列密着状態で敷設して第1層とする。この場合、第1層の隣接する2列において、発泡合成樹脂ブロック1が互いに長辺寸法の2分の1だけずれるように敷設する。これにより、発泡合成樹脂ブロック1に形成された上記4分の1円弧状、或いは2分の1円弧状の凹部2a,2bが隣接する他の発泡合成樹脂ブロック1に形成された凹部2a,2bと組み合わされ、図示したように発泡合成樹脂ブロック1,1間に円形状の穴4が形成される。
【0029】
次に、前記第1層上に点線で示したように、第2層の各発泡合成樹脂ブロック1を、長辺方向を第1層の長辺方向と直交させて図4の左右方向とし、また第2層においても、隣接する2列の発泡合成樹脂ブロック1を互いに長辺寸法の2分の1だけずらして密着状態で敷設する。これによって、第2層の隣接する発泡合成樹脂ブロック1,1間に形成される円形状の穴4が、第1層の発泡合成樹脂ブロック1,1間の上記円形状の穴4と連通する状態で2層の発泡合成樹脂ブロック1が積層される。
【0030】
以下、第3層以上の各奇数層は、長辺方向を図4の上下方向として、第1層の各発泡合成樹脂ブロック1と上下にオーバーラップするように敷設すれば良く、また、第4層以上の各偶数層は、長辺方向を図4の左右方向として、第2層の各発泡合成樹脂ブロック1と上下にオーバーラップするように敷設すれば良い。
なお、発泡合成樹脂ブロック1の積層高さが3mを越えない位置、例えば4〜6層発泡合成樹脂ブロック1を積み重ねた上に、図3にも示したように、中間床版コンクリート5を施工することが好ましい。
【0031】
上記のようにして積層された発泡合成樹脂ブロック1による盛土Sは、各層に形成された円形状の穴4が上下に連通し、該盛土Sを上下方向に貫通する穴4を有するものとなると共に、上下に隣接する2層の発泡合成樹脂ブロック1の目地が揃わないものとなり、盛土S全体としての強度が高く、且つ振動等に起因する発泡合成樹脂ブロック1の左右前後の位置ずれが生じ難いものとなる。
【0032】
なお、上記したように長辺と短辺の寸法比が略2対1の長方形形状の表面1aと裏面1bをもつ直方体形状の発泡合成樹脂ブロック1を上記したように積層した場合、発泡合成樹脂ブロック1の上記短辺を一辺とする正方形形状の空間が生じるが、その場合には、直方体形状の上記発泡合成樹脂ブロック1を長手方向に半分のサイズに切断して使用すれば良い。また、盛土のサイズによっては、特に盛土の端部において他の形状の発泡合成樹脂ブロックが必要になる場合があるが、その場合には、上記発泡合成樹脂ブロック1又は別な発泡合成樹脂ブロックを相応の形状に切断加工して使用しても良く、或いは相応の形状の発泡合成樹脂ブロックを成形して準備しておいても良い。
【0033】
上記のようにして発泡合成樹脂ブロック1を底版コンクリート3上に積層するにあたり、該積層された発泡合成樹脂ブロック1,1間に形成される上記円形状の穴4に圧縮剛性の高い杭状部材6を非接着状態で配設し、図3に示したように底版コンクリート3上に発泡合成樹脂ブロック1と杭状部材6とから成る複合ブロック体Mを構築する。
【0034】
上記発泡合成樹脂ブロック1と杭状部材6とから成る複合ブロック体Mの構築方法の一例を、上記杭状部材6として、図5に示した短長なプレキャストコンクリート製杭状部材6を使用した場合を例に挙げて以下に説明する。
【0035】
図5に示したプレキャストコンクリート製杭状部材6は、その直径φが上記発泡合成樹脂ブロック1,1間に形成される円形状の穴4の直径よりも若干(数mm〜数十mm)小さく、且つ高さHが発泡合成樹脂ブロック1の厚み寸法の0.3〜1.7倍、好ましくは0.4〜1.6倍、より好ましくは0.5倍又は/及び1.5倍と、1倍との組合せとされている。そして、このプレキャストコンクリート製杭状部材6の上面には、該杭状部材6を上方へ積み重ねた場合の位置ズレを防止する一方の係合部となる凸部7が形成され、下面には、下方の杭状部材6に形成された上記凸部7が嵌挿する他方の係合部となる凹部8が形成されている。なお、このプレキャストコンクリート製杭状部材6は、中空でも中実でも良い。
【0036】
上記形状寸法のプレキャストコンクリート製杭状部材6を予め複数個用意しておき、上記発泡合成樹脂ブロック1の敷き並べと共に形成される上記穴4に杭状部材6を配設し、順次、発泡合成樹脂ブロック1上に次の発泡合成樹脂ブロック1を積み重ねると共に杭状部材6上に次の杭状部材6を積み重なることを繰り返し、発泡合成樹脂ブロック1と杭状部材6とから成る複合ブロック体(多層複合ブロック体)Mを底版コンクリート3上に構築する。
【0037】
このような複合ブロック体(多層複合ブロック体)Mの構築方法を採用した場合、作業性に優れると共に、発泡合成樹脂ブロック1の敷設時に周囲に存在する杭状部材6が連結具としての作用を果たし、発泡合成樹脂ブロック1がズレ難くなり、従来において使用していた発泡合成樹脂ブロック1同士を固定するためのジベルと呼ばれる金具を減らす又は無くすことができる。
【0038】
上記のような構築方法の場合、特に上記短長なプレキャストコンクリート製杭状部材6は、発泡合成樹脂ブロック1の厚み寸法の0.5倍の高さ寸法の杭状部材6A(及び/又は1.5倍の高さ寸法の杭状部材6C)と、発泡合成樹脂ブロック1の厚み寸法の1倍の高さ寸法の杭状部材6Bとを組合わせて使用することが最も好ましく、その場合の複合ブロック体(多層複合ブロック体)Mの構築方法を、図6に従って説明する。
【0039】
図6に示したように、底版コンクリート3上に第1層の発泡合成樹脂ブロック1を敷設し、敷設した発泡合成樹脂ブロック1,1間に形成される穴4に発泡合成樹脂ブロック1の厚み寸法の0.5倍の高さ寸法の杭状部材6Aを先ず挿入し、その上方に発泡合成樹脂ブロック1の厚み寸法の1倍の高さ寸法の杭状部材6Bを積み重ねる状態で挿入(或いは図示はしていないが、前記杭状部材6A,6Bに変えて、発泡合成樹脂ブロック1の厚み寸法の1.5倍の高さ寸法の杭状部材6Cを挿入)する。
【0040】
続いて、第2層の発泡合成樹脂ブロック1を上記第1層の発泡合成樹脂ブロック1上に積み重ねる。その際、第1層の発泡合成樹脂ブロック1の上面から突出する上記杭状部材6B(或いは杭状部材6C)が位置決め及び連結具としての作用を果たし、その積層作業性は良好なものとなる。
【0041】
第2層の発泡合成樹脂ブロック1を積層した後、穴4に杭状部材6Bを先に挿入した杭状部材6B上に更に積み重ねる状態で挿入し、その後、第3層の発泡合成樹脂ブロック1の積層、及び穴4への杭状部材6Bの挿入を繰り返し、第4層の発泡合成樹脂ブロック1の積層を行う。
【0042】
第4層の発泡合成樹脂ブロック1,1間に形成される穴4には、図示したように発泡合成樹脂ブロック1の厚み寸法の0.5倍の高さ寸法の杭状部材6Aを挿入し、第4層の発泡合成樹脂ブロック1の上面と杭状部材6の上端とを面一とする。
【0043】
続いて、面一とした第4層の発泡合成樹脂ブロック1の上方に中間床版コンクリート5を施工する。この中間床版コンクリート5は、載荷重の分散、不陸整地等の目的で発泡合成樹脂ブロック1の積層高さが3mを越えない範囲の位置において適宜配設することが好ましい。
【0044】
中間床版コンクリート4上には、更に上記底版コンクリート3上への発泡合成樹脂ブロック1の積層、及び形成される穴4への杭状部材6A,6Bの挿入と同様の方法で、複合ブロック体(多層複合ブロック体)Mを構築していく。
【0045】
なお、上記した短長なプレキャストコンクリート製杭状部材6は、圧縮剛性が高く、また経済的に製造できるために好ましいが、鋼管から成る杭状部材、樹脂管から成る杭状部材、或いは樹脂製杭状部材等を使用しても良く、また鋼管から成る杭状部材又は樹脂管から成る杭状部材を使用する場合には、管の内部にコンクリートやモルタル等を充填しても良い。
【0046】
また、図5に示した上下部が同一外径の円柱状の杭状部材6に変えて、図7(a)及び(b)に示したように、下側が先細に形成された杭状部材6Dを使用することもでき、この場合には、発泡合成樹脂ブロック1,1間に形成された穴4への杭状部材6Dの挿入がスムーズに行え、より複合ブロック体(多層複合ブロック体)Mの構築作業を容易なものとすることができる。
【0047】
更に、図8(a)及び(b)に示したように、発泡合成樹脂ブロック1,1間に形成される穴4を、その空間形状が逆円錐台形状部を有する穴4Aとし、上記杭状部材6を、前記穴4Aの空間形状に対応する逆円錐台形状部を有する杭状部材6Eとすると、上記と同様に発泡合成樹脂ブロック1,1間に形成された穴4Aへの杭状部材6Eの挿入作業が容易なものとなると共に、杭状部材6Eに掛かる荷重の一部を発泡合成樹脂ブロック1に負担させることができ、荷重の杭状部材6Eへの集中を防止できる。また、地下水や湧き水などの影響で発泡合成樹脂ブロック1に浮力が生じた場合にも、杭状部材6Eの重量が抵抗になって発泡合成樹脂ブロック1の浮上を阻止することができ、構築された軽量盛土構造物Aの安定性を高めることもできる。
【0048】
上記した種々の形状の短長な杭状部材6を使用した発泡合成樹脂ブロック1と杭状部材6とから成る複合ブロック体(多層複合ブロック体)Mの構築方法の他、例えば、発泡合成樹脂ブロック1を複数層(例えば4層)を先ず積層して発泡合成樹脂ブロック1のみから成る盛土Sを構築した後、該盛土Sを上下方向に貫通する穴4に、杭状部材6として長尺なプレキャストコンクリート製杭状部材、鋼管からなる杭状部材、樹脂管からなる杭状部材、或いは樹脂製杭状部材等を使用し、該長尺な杭状部材6を穴4に上方から嵌挿することにより、発泡合成樹脂ブロック1と杭状部材6とから成る複合ブロック体(多層複合ブロック体)Mを構築しても良い。
また、上記盛土Sを上下方向に貫通する穴4(図8に示した逆円錐台形状部を有する穴4Aを含む。)に袋状の離型シートを配置した後、或いは穴4に離型剤を塗布した後に、コンクリート、モルタル等を穴4内に打設することにより杭状部材6を穴4に非接着状態で配設し、発泡合成樹脂ブロック1と杭状部材6とから成る複合ブロック体(多層複合ブロック体)Mを構築しても良い。
【0049】
続いて、上記のようにして構築した複合ブロック体Mの両側及び最上層に、図3に示したように発泡合成樹脂ブロック1の保護、載荷重の分散、不陸整地等の目的で各々壁版コンクリート9、床版コンクリート10を施工し、前記床版コンクリート10上に、通常の鉄道軌道の構築方法で砂利11、枕木12、レール13を敷設し、高欄14を設けることによって鉄道に使用することのできる軽量盛土構造物Aが完成する。
【0050】
上記したようにして構築された鉄道に使用する軽量盛土構造物Aは、床版コンクリート10を介して列車の走行による大きな輪荷重等の動的な鉛直荷重のほとんどを圧縮剛性の高い杭状部材6に分担させることができ、圧縮剛性が高く、且つ変形量が僅かな構造物と成ると共に、基本的には発泡合成樹脂ブロック1を積層した盛土により構成されているため、軽量性及び施工の容易性を兼ね備えた軽量盛土構造物となる。
【0051】
また、上記したように荷重のほとんどを杭状部材6に分担させるため、発泡合成樹脂ブロック1には差ほどの強度を要求されず、低密度(高発泡)の発泡合成樹脂ブロック1の使用、またリサイクル原料を使用した発泡合成樹脂ブロック1の使用も可能となり、経済的に鉄道に使用することのできる軽量盛土構造物Aを構築することができる。
【0052】
更に、上記したようにして構築された構造物Aは、上記圧縮剛性を高めるための杭状部材6が、発泡合成樹脂ブロック1の側面1c,1d及び/又は隅部1eに形成された凹部2a,2bに非接着状態で配設されているため、該構造物Aの解体時においては、発泡合成樹脂ブロック1を破壊すること無く容易に杭状部材6から取り外すことができ、解体作業性が良好なものと成ると共に、解体した発泡合成樹脂ブロック1の再使用も可能となる。
【0053】
以上、本発明に係る軽量盛土構造物の実施の形態を説明したが、本発明は、何ら既述の実施の形態に限定されず、本発明の技術的思想、即ち、盛土の圧縮剛性を高めるための杭状部材を、解体作業の容易性を確保するために発泡合成樹脂ブロックの側面及び/又は隅部に形成された凹部に非接着状態で配設すると言う技術的思想の範囲内において、種々の変形及び変更が可能である。
【0054】
例えば、上記実施の形態においては、盛土Sの全域を発泡合成樹脂ブロック1と杭状部材6との複合ブロック体(多層複合ブロック体)Mで構成した軽量盛土構造物Aにつき説明したが、図9乃至図18に示したように、盛土の一部を発泡合成樹脂ブロックと杭状部材との複合ブロック体(図において斜線を付した部分)で構成したものとしても良い。
【0055】
なお、図9は、前面壁版コンクリート102と背面傾斜地103との空所に発泡合成樹脂ブロック101を盛土材として用いた傾斜地の拡幅盛土構造物において、空所の最下層を含む少なくとも一層(図9の例では最下層とそのすぐ上の層)に用いる発泡合成樹脂ブロックを杭状部材との複合ブロック体(多層複合ブロック体)101aとしたものを示し、図10は、前面壁版コンクリート102の背面直後に用いる発泡合成樹脂ブロックを杭状部材との複合ブロック体(多層複合ブロック体)101bとしたものを示し、更に図11は、最上層に用いる発泡合成樹脂ブロックを杭状部材との複合ブロック体101cとしたものを示す。また図12は、前記最下層を含む少なくとも一層(図12の例では最下層とそのすぐ上の層)及び前面壁版コンクリート102の背面直後の部分を多層複合ブロック体101a,101bとしたものを示し、図13は、前記最下層を含む少なくとも一層(図13の例では最下層とそのすぐ上の層)及び最上層の部分を多層複合ブロック体101a,複合ブロック体101cとしたものを示し、図14は、前記前面壁版コンクリート102の背面直後及び最上層の部分を多層複合ブロック体101b,複合ブロック体101cとしたものを示し、更に図15は、前記最下層を含む少なくとも一層(図15の例では最下層とそのすぐ上の層),前面壁版コンクリート102の背面直後及び最上層の部分を多層複合ブロック体101a,101b,複合ブロック体101cとしたものを示す。
【0056】
また、図16は、壁版コンクリート104,104間の空所に発泡合成樹脂ブロック101を盛土材として用いた自立壁の盛土構造物において、壁版コンクリート104,104の背面直後に用いる発泡合成樹脂ブロックを杭状部材との複合ブロック体(多層複合ブロック体)101d,101dとしたものを示し、図17は、最上層に用いる発泡合成樹脂ブロックを杭状部材との複合ブロック体101eとしたものを示す。また図18は、前記壁版コンクリート104,104の背面直後及び最上層の部分を複合ブロック体101d,101d,101eとしたものを示す。
なお、図9乃至図18中、105は底版コンクリート、106は中間床版コンクリート、107は床版コンクリート、108は前記床版コンクリート107上に形成された道路舗装体である。
【0057】
【発明の効果】
以上に説明した本発明に係る軽量盛土構造物によれば、発泡合成樹脂ブロックを積み重ねることにより構築した盛土の少なくとも一部が、圧縮剛性の高い杭状部材が配設された複合ブロック体で構成されているため、該複合ブロック体で構成された部分の盛土は圧縮剛性が高く、且つ変形量が僅かと成るため、強い圧縮荷重を受ける部分、或いは歪みの生じ易い部分等を該複合ブロック体で構成することにより、道路や鉄道等の構造物にも好適に使用し得る軽量盛土構造物を提供できる。
【0058】
また、本発明に係る軽量盛土構造物によれば、上記圧縮剛性を高めるための杭状部材は、発泡合成樹脂ブロックの側面及び/又は隅部に形成された凹部に非接着状態で配設されているため、解体時においては、発泡合成樹脂ブロックを破壊すること無く容易に杭状部材から取り外すことができ、解体作業性が良好なものと成る効果があると共に、解体後の発泡合成樹脂ブロックの再使用も可能となる効果がある。
更に、本発明に係る軽量盛土構造物によれば、上記発泡合成樹脂ブロックを互いの上記凹部が向かい合うように敷き並べた際に形成される穴の空間形状が逆円錐台形状部を有し、上記杭状部材が前記穴の空間形状に対応する逆円錐台形状部を有するものとしたため、杭状部材に掛かる荷重の一部を発泡合成樹脂ブロックに負担させることができ、荷重の杭状部材への集中を防止できる効果があると共に、地下水や湧き水などの影響で発泡合成樹脂ブロックに浮力が生じた場合にも、杭状部材が抵抗になって発泡合成樹脂ブロックの浮上を阻止することができ、軽量盛土構造物の安定性を高めることができる効果がある。
【図面の簡単な説明】
【図1】本発明に係る軽量盛土構造物の構築に使用する発泡合成樹脂ブロックの一例を示した斜視図である。
【図2】本発明に係る軽量盛土構造物の構築に使用する発泡合成樹脂ブロックの他の例を示した斜視図である。
【図3】本発明に係る軽量盛土構造物の実施の形態を示した斜視図である。
【図4】図1の発泡合成樹脂ブロックを積層する状態の一例を示した平面図である。
【図5】本発明に係る軽量盛土構造物の構築に使用する杭状部材の一例を示した斜視図である。
【図6】図1の発泡合成樹脂ブロック、及び図5の杭状部材を用いて複合ブロック体を構築する方法の一例を示した縦断面図である。
【図7】先細に形成された杭状部材を用いて複合ブロック体を構築する方法を示した概念的な縦断面図であって、(a)は全体が先細に形成された杭状部材を用いた場合、(b)は下部のみが先細に形成された杭状部材を用いた場合を各々示す。
【図8】発泡合成樹脂ブロック間に形成される穴の空間形状が逆円錐台形状部を有し、杭状部材が前記穴の空間形状に対応する逆円錐台形状部を有するものを用いて複合ブロック体を構築した場合の概念的な縦断面図であって、(a)は全体が逆円錐台形状である場合、(b)は下部のみが逆円錐台形状である場合を各々示す。
【図9】本発明に係る軽量盛土構造物の他の実施の形態を模式的に示した縦断面図である。
【図10】本発明に係る軽量盛土構造物の更に他の実施の形態を模式的に示した縦断面図である。
【図11】本発明に係る軽量盛土構造物の更に他の実施の形態を模式的に示した縦断面図である。
【図12】本発明に係る軽量盛土構造物の更に他の実施の形態を模式的に示した縦断面図である。
【図13】本発明に係る軽量盛土構造物の更に他の実施の形態を模式的に示した縦断面図である。
【図14】本発明に係る軽量盛土構造物の更に他の実施の形態を模式的に示した縦断面図である。
【図15】本発明に係る軽量盛土構造物の更に他の実施の形態を模式的に示した縦断面図である。
【図16】本発明に係る軽量盛土構造物の更に他の実施の形態を模式的に示した縦断面図である。
【図17】本発明に係る軽量盛土構造物の更に他の実施の形態を模式的に示した縦断面図である。
【図18】本発明に係る軽量盛土構造物の更に他の実施の形態を模式的に示した縦断面図である。
【符号の説明】
1 発泡合成樹脂ブロック
1a 表面
1b 裏面
1c 長辺側側面
1d 短辺側側面
2 凹部
2a 4分の1円弧状凹部
2b 2分の1円弧状凹部
3 底版コンクリート
4 穴
4A 逆円錐台形状部を有する穴
5 中間床版コンクリート
6 杭状部材
6A 発泡合成樹脂ブロックの厚み寸法の0.5倍の高さ寸法の杭状部材
6B 発泡合成樹脂ブロックの厚み寸法の1倍の高さ寸法の杭状部材
6C 発泡合成樹脂ブロックの厚み寸法の1.5倍の高さ寸法の杭状部材
6D 先細に形成された杭状部材
6E 逆円錐台形状部を有する杭状部材
7 杭状部材に形成された凸部(係合部)
8 杭状部材に形成された凹部(係合部)
9 壁版コンクリート
10 床版コンクリート
11 砂利
12 枕木
13 レール
14 高欄
S 盛土
M 複合ブロック体(多層複合ブロック体)
A 軽量盛土構造物
101 発泡合成樹脂ブロック
101a,101b,101c,101d,101e 複合ブロック体(多層複合ブロック体)
102 前面壁版コンクリート
103 背面傾斜地
104 壁版コンクリート
105 底版コンクリート
106 中間床版コンクリート
107 床版コンクリート
108 道路舗装体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lightweight embankment structure including a embankment constructed by stacking a plurality of layers formed by laying a plurality of foamed synthetic resin blocks, and more specifically, has high compression rigidity and good dismantling workability. It relates to a lightweight lightweight embankment structure.
[0002]
[Prior art]
Conventionally, embankment using a foamed synthetic resin block has been widely used for embankment on soft ground or sloped land, embankment in mountain building of a garden, and embedding and backfilling of underground structures.
[0003]
The embankment using such a foamed synthetic resin block generally has a low compression rigidity and is likely to be distorted. For example, a structure such as a railway is subjected to a large wheel load due to running of the train, and the rail of the railway. Since the allowable deformation amount is extremely small, its use has been discouraged.
[0004]
Therefore, Patent Document 1 discloses a structure for roads, railways, and the like that does not impair the lightness and workability, which are the characteristics of embankment using a foamed synthetic resin block, and has high compression rigidity and little deformation. The construction method of the lightweight embankment structure which can be used is also proposed.
[0005]
Specifically, the method for constructing a lightweight embankment structure using the foamed synthetic resin block is to form a hole penetrating from the front surface to the back surface of the foamed synthetic resin block so that the hole communicates in the vertical direction. The foamed synthetic resin blocks are stacked, concrete, mortar and the like are placed in the holes communicating in the vertical direction, and a pile body with high compression rigidity is built inside the embankment made of a laminate of foamed synthetic resin blocks. (See FIGS. 4 and 5 of Patent Document 1).
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 3-87417
[0007]
[Problems to be solved by the invention]
However, in the technique described in Patent Document 1, when disassembling the structure constructed by the construction method, it exists in a state of penetrating the plate surface of the foamed synthetic resin block on which the pile bodies are laminated. Therefore, unless the foamed synthetic resin block is destroyed, it cannot be removed from the pile body, and its dismantling workability is very poor.
[0008]
In addition, because many foamed synthetic resin blocks that are laminated are destroyed, crushed pieces are scattered around, and a large volume of waste is generated, which is also a problem from the viewpoint of environmental and resource conservation. It was what had.
[0009]
Therefore, an object of the present invention is to provide a lightweight embankment structure having high compression rigidity, good dismantling workability, and capable of reusing a foamed synthetic resin block after dismantling.
[0010]
[Means for Solving the Problems]
  In order to achieve the above-described object, the lightweight embankment structure of the present invention is a lightweight embankment structure including a embankment constructed by stacking a plurality of layers formed by laying a plurality of foamed synthetic resin blocks, and at least the embankment A part of the foamed synthetic resin block is composed of a composite block body in which a pile-shaped member having high compression rigidity is disposed in a non-adhered state in a recess formed from the front surface to the back surface formed on the side surface and / or corner portion. TheAnd the space shape of the hole formed when the concave portions formed in the foamed synthetic resin block are laid out so as to face each other has an inverted frustoconical shape portion, and the pile-shaped member has the space shape of the hole It has a corresponding inverted truncated cone shape partIt is characterized by that. In addition, the non-adhesion state here is the case where the said recessed part and the said pile-shaped member are non-adhesive states, and although it has adhere | attached, the said pile-shaped member is destroyed without destroying the said foaming synthetic resin block. The case where the adhesive state is weak enough to be peeled from the concave portion is also included.
[0011]
According to this lightweight embankment structure according to the present invention, at least a part of the embankment constructed by stacking foamed synthetic resin blocks is composed of a composite block body in which pile-shaped members having high compression rigidity are arranged. Therefore, since the embankment of the portion composed of the composite block body has high compression rigidity and a small amount of deformation, a portion that receives a strong compressive load or a portion that is likely to be distorted is composed of the composite block body. By this, the lightweight embankment structure which can be used conveniently also for structures, such as a road and a railroad, can be provided.
[0012]
  Further, according to the lightweight embankment structure according to the present invention, the pile-shaped member for increasing the compression rigidity is disposed in a non-adhered state in the concave portions formed in the side surface and / or the corner portion of the foamed synthetic resin block. Therefore, at the time of dismantling, it can be easily removed from the pile-shaped member without destroying the foamed synthetic resin block, so that the dismantling workability is good and the reused foamed synthetic resin block after dismantling Is also possible.
  Furthermore, according to the lightweight embankment structure according to the present invention, the space shape of the hole formed when the foamed synthetic resin blocks are laid out so that the respective concave portions face each other has an inverted truncated cone shape portion, Since the pile-shaped member has an inverted frustoconical shape corresponding to the space shape of the hole, a part of the load applied to the pile-shaped member can be borne by the foamed synthetic resin block, and the pile-shaped member of the load It is possible to prevent the foamed synthetic resin block from rising due to the resistance of the pile-shaped member even when buoyancy occurs in the foamed synthetic resin block due to the influence of groundwater or spring water. The stability of the embankment structure can be increased.
[0013]
Here, in the present invention, at least a part of the embankment is composed of a multilayer composite block body in which a plurality of layers of the composite block body are stacked in the vertical direction, and the multilayer composite block body is a pile shape of a lower composite block body. The member and the pile-shaped member of the upper composite block body may be arranged continuously in the vertical direction.
The lightweight embankment structure including the embankment having such a structure can efficiently receive the compressive load acting in the vertical direction by the pile-shaped members arranged in the vertical direction, and the lightweight embankment structure with higher compression rigidity. Can provide things.
[0014]
The foamed synthetic resin block for constructing the embankment has a rectangular parallelepiped shape in which each of the front surface and the back surface has a rectangular shape with a dimensional ratio of the long side to the short side of approximately 2 to 1, and the foamed synthetic resin having the rectangular parallelepiped shape. A concave portion extending from the front surface to the back surface may be formed at the four corners of the block, and a concave portion extending from the front surface to the back surface may be formed at the center of the opposite long side surfaces of the foamed synthetic resin block. In the same manner as described above, the foamed synthetic resin block is formed in a rectangular parallelepiped shape in which each of the front surface and the back surface is a rectangular shape having a dimensional ratio of the long side to the short side of approximately 2 to 1, and A concave portion extending from the front surface to the back surface is formed at the center of the short side surface facing to each other, and each of the foamed synthetic resin blocks is separated from the corners of the opposing long side surface by a quarter of the long side dimension. Also on position It may have a structure in which a recess extending from the front surface to the back surface. In the case of a foamed synthetic resin block having the structure as described above, when a bank is constructed by stacking a plurality of layers formed by laying a plurality of foamed synthetic resin blocks, a hole in which all the recesses easily penetrate vertically The foamed synthetic resin blocks can be stacked so as to form.
[0015]
Further, in the present invention, the foamed synthetic resin block may be made of foamed polystyrene. In this case, a lightweight bank including a bank having excellent lightness, water resistance, durability, and economy. A structure can be provided.
[0016]
Further, in the present invention, the pile-like member that is connected to the multilayer composite block body in the vertical direction may be configured by stacking a plurality of short pile-shaped members in the vertical direction. Moreover, the construction workability and dismantling workability of the embankment can be further improved.
In the above case, it is preferable to form engaging portions for preventing displacement when the short pile-shaped members are stacked in the vertical direction on the upper and lower surfaces of the short pile-shaped member.
[0017]
  Moreover, in the said invention, when the lower side of the said short and long pile-shaped member shall be formed in a taper, since the insertion operation to the recessed part of a foamed synthetic resin block becomes easy, it is preferable..
[0018]
Moreover, in the said invention, the said pile-shaped member is good also as a pile-shaped member made from a precast concrete, and in this case, the lightweight banking structure containing a bank with high compression rigidity can be constructed | assembled cheaply and very easily. it can.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the lightweight embankment structure according to the present invention will be described in detail with reference to the drawings.
[0020]
As shown in FIG. 1 or FIG. 2, the foamed synthetic resin block 1 used in the present invention is made of, for example, a foamed synthetic resin having a rectangular front surface 1a and back surface having a long-side to short-side dimension ratio of about 2: 1. 1b, it is shape | molded by the rectangular parallelepiped shape provided with two long side surface 1c, 1c which opposes, and two short side surface 1d, 1d which opposes each other.
In addition, the "substantially" said by "the above-mentioned dimension ratio of the long side and the short side is about 2 to 1" means that a hole penetrating in the vertical direction is formed when the foamed synthetic resin blocks are stacked in order to construct the embankment, If the pile-shaped member can be arranged without hindrance in the hole, it means that some error is acceptable, but when “substantially” is shown as a numerical value, the long side is divided by the short side. The value when the third decimal place of the value is rounded off is preferably 1.95 to 2.04, more preferably 1.96 to 2.03, and 1.97 to 2.02. More preferably, it is most preferably 1.98 to 2.01.
[0021]
Examples of the foamed synthetic resin used for molding the foamed synthetic resin block 1 include foamed polystyrene-based resins such as foamed polystyrene, foamed polyolefin-based resins such as foamed polyethylene and foamed polypropylene, foamed polyvinyl chloride, foamed phenolic resin, and foam. Various materials such as polyamide and foamed polyurethane can be used. Among them, it is preferable to use foamed polystyrene from the viewpoints of properties such as lightness, water resistance, durability and cost.
When using polystyrene foam, 10-35kg / m3Preferably having an apparent density of 15 to 25 kg / m3Those having an apparent density of 2 are more preferable. In addition, as the molding method, various molding methods such as in-mold molding and extrusion molding can be adopted, but it is usually preferable to use the in-mold molding method.
[0022]
The foamed synthetic resin block 1 shown in FIG. 1 has quarter-arc-shaped concave portions 2a extending from the front surface 1a to the back surface 1b at the four corners 1e, 1e, 1e, 1e, respectively, A half-arc-shaped recess 2b extending from the front surface 1a to the back surface 1b is also formed at the center of each of the side surfaces 1c and 1c.
[0023]
The foamed synthetic resin block 1 shown in FIG. 2 has a half-arc-shaped recess 2b from the front surface 1a to the back surface 1b at the center of the opposing short side surfaces 1d and 1d. A half-arc-shaped concave portion extending from the front surface 1a to the back surface 1b at a position separated from the corners 1e, 1e, 1e, 1e of the long side surface 1c, 1c by a quarter of the long side dimension L. 2b is formed.
[0024]
The rectangular solid foamed synthetic resin block 1 has a long side dimension of about 1000 to 3000 mm, a short side dimension of about 500 to 1500 mm, and a thickness dimension of about 100 to 1000 mm. The diameter of the concave portions 2a and 2b having the above-mentioned quarter arc shape or half arc shape formed in the foamed synthetic resin block 1 is suitably about 100 to 300 mm. It is preferable that the size of the foamed synthetic resin block 1 is appropriately determined within the above range in consideration of the convenience and efficiency of the lamination work of the foamed synthetic resin block 1 and the molding processability. Moreover, it is preferable that the diameter of the recessed parts 2a and 2b is also suitably determined within the said range according to the compression rigidity requested | required, the kind of pile-shaped member used, etc.
[0025]
As a preferable example, a foamed synthetic resin block 1 having a long side dimension of 2000 mm, a short side dimension of 1000 mm, and a thickness dimension of 500 mm is suitable. Examples of preferable diameters of the recesses 2a and 2b include 200 mm, but are not limited to these dimensions.
Moreover, if the formation position of the said recessed part 2a, 2b formed in the foaming synthetic resin block 1 is also the side surface and / or corner part of the foaming synthetic resin block 1, it will not be limited to said position at all, and recessed part 2a, 2b The number, the shape, and the like are not limited to those described above.
[0026]
In the case of constructing a lightweight embankment structure A used for railways using the foamed synthetic resin block 1, first, as shown in FIG. 3, for example, the ground G is first excavated to a predetermined depth, and the structure is then excavated there. The bottom slab concrete 3 is constructed for the purpose of uniformly transmitting the load to the ground G. The rigidity of the bottom slab concrete 3 is determined in consideration of the strength of the ground G and the load of the entire structure A to be constructed.
[0027]
Subsequently, the foamed synthetic resin block 1 is laminated in a plurality of layers on the bottom slab concrete 3. An example of this laminating method will be described below by taking as an example a case where the foamed synthetic resin block 1 shown in FIG. 1 is used.
[0028]
First, as shown by the solid line in FIG. 4, the plurality of foamed synthetic resin blocks 1 are arranged in one row with their long sides aligned with the vertical direction of FIG. A thing is laid in the horizontal direction in a plurality of rows in a close contact state to form a first layer. In this case, in two adjacent rows of the first layer, the foamed synthetic resin blocks 1 are laid so as to be shifted from each other by a half of the long side dimension. Thereby, the concave portions 2a and 2b formed in the other foamed synthetic resin block 1 adjacent to the concave portions 2a and 2b having the above-mentioned quarter arc shape or half arc shape formed in the foamed synthetic resin block 1. And a circular hole 4 is formed between the foamed synthetic resin blocks 1 and 1 as shown.
[0029]
Next, as indicated by the dotted line on the first layer, each foamed synthetic resin block 1 of the second layer has the long side direction orthogonal to the long side direction of the first layer to the left and right direction of FIG. Also in the second layer, two adjacent rows of the foamed synthetic resin blocks 1 are laid in close contact with each other with a shift of one half of the long side dimension. Thereby, the circular hole 4 formed between the adjacent foamed synthetic resin blocks 1 and 1 of the second layer communicates with the circular hole 4 between the foamed synthetic resin blocks 1 and 1 of the first layer. In the state, two layers of the foamed synthetic resin block 1 are laminated.
[0030]
Hereinafter, each odd layer above the third layer may be laid so as to vertically overlap each foamed synthetic resin block 1 of the first layer with the long side direction as the vertical direction in FIG. 4. Each even number layer or more may be laid so as to overlap vertically with each foamed synthetic resin block 1 of the second layer, with the long side direction as the left-right direction in FIG.
In addition, on the position where the laminated height of the foamed synthetic resin block 1 does not exceed 3 m, for example, 4-6 layers of foamed synthetic resin blocks 1 are stacked, and as shown in FIG. It is preferable to do.
[0031]
The embankment S with the foamed synthetic resin block 1 laminated as described above has a circular hole 4 formed in each layer in the vertical direction, and has a hole 4 penetrating the embankment S in the vertical direction. At the same time, the joints of the two layers of the foamed synthetic resin block 1 adjacent to each other in the upper and lower sides are not aligned, the strength of the embankment S as a whole is high, and the positional deviation of the foamed synthetic resin block 1 in the left and right direction is caused by vibration and the like. It will be difficult.
[0032]
When the rectangular parallelepiped foamed synthetic resin block 1 having the rectangular front surface 1a and back surface 1b having a dimensional ratio of the long side to the short side of approximately 2 to 1 is laminated as described above, the foamed synthetic resin A square-shaped space having the short side of the block 1 as one side is generated. In this case, the foamed synthetic resin block 1 having a rectangular parallelepiped shape may be cut into a half size in the longitudinal direction. Depending on the size of the embankment, a foamed synthetic resin block of another shape may be required particularly at the end of the embankment. In that case, the foamed synthetic resin block 1 or another foamed synthetic resin block is used. It may be cut into a corresponding shape and used, or a foamed synthetic resin block having a corresponding shape may be formed and prepared.
[0033]
When laminating the foamed synthetic resin block 1 on the bottom slab concrete 3 as described above, a pile-shaped member having high compression rigidity is formed in the circular hole 4 formed between the laminated foamed synthetic resin blocks 1 and 1. 6 is arranged in an unbonded state, and a composite block body M composed of the foamed synthetic resin block 1 and the pile-like member 6 is constructed on the bottom slab concrete 3 as shown in FIG.
[0034]
As an example of the method of constructing the composite block body M composed of the foamed synthetic resin block 1 and the pile-shaped member 6, the short precast concrete pile-shaped member 6 shown in FIG. A case will be described below as an example.
[0035]
The pile-shaped member 6 made of precast concrete shown in FIG. 5 has a diameter φ slightly smaller (several mm to several tens mm) than the diameter of the circular hole 4 formed between the foamed synthetic resin blocks 1 and 1. And the height H is 0.3 to 1.7 times the thickness dimension of the foamed synthetic resin block 1, preferably 0.4 to 1.6 times, more preferably 0.5 times or / and 1.5 times. 1 times the combination. And, on the upper surface of this precast concrete pile-shaped member 6, a convex portion 7 is formed as one engaging portion that prevents positional displacement when the pile-shaped member 6 is stacked upward, and on the lower surface, A concave portion 8 is formed as the other engaging portion into which the convex portion 7 formed on the lower pile-shaped member 6 is inserted. The precast concrete pile-shaped member 6 may be hollow or solid.
[0036]
A plurality of precast concrete pile-shaped members 6 having the above-mentioned shape and dimensions are prepared in advance, and the pile-shaped members 6 are disposed in the holes 4 formed together with the foamed synthetic resin blocks 1 and arranged in order. The next foamed synthetic resin block 1 is stacked on the resin block 1 and the next piled member 6 is repeatedly stacked on the piled member 6, and a composite block body made of the foamed synthetic resin block 1 and the piled member 6 ( A multilayer composite block body) M is constructed on the bottom slab concrete 3.
[0037]
When such a construction method of the composite block body (multilayer composite block body) M is adopted, the workability is excellent, and the pile-like member 6 existing around when the foamed synthetic resin block 1 is laid serves as a connector. As a result, the foamed synthetic resin block 1 is difficult to be displaced, and a metal fitting called a gibber for fixing the foamed synthetic resin blocks 1 used in the related art can be reduced or eliminated.
[0038]
In the case of the construction method as described above, the short precast concrete pile-like member 6 in particular is a pile-like member 6A (and / or 1) having a height of 0.5 times the thickness of the foamed synthetic resin block 1. It is most preferable to use a combination of a pile-like member 6C) having a height dimension of 5 times and a pile-like member 6B having a height dimension that is one time the thickness dimension of the foamed synthetic resin block 1. A construction method of the composite block body (multilayer composite block body) M will be described with reference to FIG.
[0039]
As shown in FIG. 6, the first layer of the foamed synthetic resin block 1 is laid on the bottom slab concrete 3, and the thickness of the foamed synthetic resin block 1 is formed in the hole 4 formed between the laid foamed synthetic resin blocks 1 and 1. First, a pile-shaped member 6A having a height of 0.5 times the size is first inserted, and a pile-shaped member 6B having a height that is one time the thickness of the foamed synthetic resin block 1 is stacked thereon (or inserted) (or Although not shown, a pile-like member 6C having a height 1.5 times the thickness of the foamed synthetic resin block 1 is inserted in place of the pile-like members 6A and 6B.
[0040]
Subsequently, the foamed synthetic resin block 1 of the second layer is stacked on the foamed synthetic resin block 1 of the first layer. In that case, the said pile-shaped member 6B (or pile-shaped member 6C) which protrudes from the upper surface of the foamed synthetic resin block 1 of a 1st layer fulfill | performs the effect | action as a positioning and a connection tool, The lamination workability | operativity will become favorable. .
[0041]
After the second layer of the foamed synthetic resin block 1 is laminated, the piled member 6B is inserted into the hole 4 in a state of being further stacked on the piled member 6B, and then the third layer of the foamed synthetic resin block 1 is inserted. And the insertion of the pile-like member 6B into the hole 4 are repeated, and the fourth layer of the foamed synthetic resin block 1 is laminated.
[0042]
In the hole 4 formed between the foamed synthetic resin blocks 1 and 1 of the fourth layer, a pile-shaped member 6A having a height of 0.5 times the thickness of the foamed synthetic resin block 1 is inserted as shown. The upper surface of the fourth layer of the foamed synthetic resin block 1 and the upper end of the pile-shaped member 6 are flush with each other.
[0043]
Subsequently, the intermediate floor slab concrete 5 is constructed above the foamed synthetic resin block 1 of the fourth layer which is flush. It is preferable that the intermediate floor slab concrete 5 is appropriately disposed at a position where the laminated height of the foamed synthetic resin block 1 does not exceed 3 m for the purpose of load distribution, uneven leveling and the like.
[0044]
A composite block body is formed on the intermediate floor slab concrete 4 in the same manner as the lamination of the foamed synthetic resin block 1 on the bottom slab concrete 3 and the insertion of the pile-like members 6A and 6B into the holes 4 to be formed. (Multilayer composite block body) M is constructed.
[0045]
The short precast concrete pile-shaped member 6 described above is preferable because it has high compression rigidity and can be manufactured economically, but is preferably a pile-shaped member made of a steel pipe, a pile-shaped member made of a resin pipe, or a resin-made pile member. A pile-shaped member or the like may be used, and when a pile-shaped member made of a steel pipe or a pile-shaped member made of a resin pipe is used, the inside of the pipe may be filled with concrete, mortar, or the like.
[0046]
Moreover, the upper and lower parts shown in FIG. 5 are changed to the columnar pile-shaped member 6 having the same outer diameter, and as shown in FIGS. 7 (a) and (b), the pile-shaped member whose lower side is tapered is formed. 6D can also be used. In this case, the pile-like member 6D can be smoothly inserted into the hole 4 formed between the foamed synthetic resin blocks 1 and 1, and a more composite block body (multilayer composite block body) The construction work of M can be made easy.
[0047]
Further, as shown in FIGS. 8 (a) and 8 (b), the hole 4 formed between the foamed synthetic resin blocks 1 and 1 is a hole 4A whose space shape has an inverted frustoconical portion, and the above pile When the shaped member 6 is a pile-shaped member 6E having an inverted frustoconical shape corresponding to the space shape of the hole 4A, the shape of the pile to the hole 4A formed between the foamed synthetic resin blocks 1 and 1 is similar to the above. The member 6E can be easily inserted, and a portion of the load applied to the pile-like member 6E can be borne by the foamed synthetic resin block 1, thereby preventing the load from being concentrated on the pile-like member 6E. In addition, even when buoyancy occurs in the foamed synthetic resin block 1 due to the influence of groundwater or spring water, the weight of the pile-like member 6E becomes resistance, and the foamed synthetic resin block 1 can be prevented from rising. Moreover, the stability of the lightweight embankment structure A can also be improved.
[0048]
In addition to the method of constructing the composite block body (multilayer composite block body) M composed of the foamed synthetic resin block 1 and the pile-shaped member 6 using the short pile-like members 6 of various shapes described above, for example, foamed synthetic resin After building a bank S composed of only the foamed synthetic resin block 1 by first laminating a plurality of blocks 1 (for example, four layers), the block 1 is elongated as a pile-shaped member 6 in a hole 4 penetrating the bank S in the vertical direction. A precast concrete pile-shaped member, a pile-shaped member made of steel pipe, a pile-shaped member made of resin pipe, or a resin-made pile-shaped member is used, and the long pile-shaped member 6 is inserted into the hole 4 from above. By doing so, you may construct | assemble the composite block body (multilayer composite block body) M which consists of the foaming synthetic resin block 1 and the pile-shaped member 6. FIG.
Further, after the bag-shaped release sheet is disposed in the hole 4 (including the hole 4A having the inverted truncated cone shape portion shown in FIG. 8) penetrating the embankment S in the vertical direction, the mold is released in the hole 4 After applying the agent, the pile-shaped member 6 is disposed in the hole 4 in a non-adhering state by placing concrete, mortar, or the like in the hole 4, and the composite composed of the foamed synthetic resin block 1 and the pile-shaped member 6. A block body (multilayer composite block body) M may be constructed.
[0049]
Subsequently, on both sides and the uppermost layer of the composite block body M constructed as described above, as shown in FIG. 3, walls are provided for the purpose of protecting the foamed synthetic resin block 1, distributing the load, and leveling the ground. The slab concrete 9 and the floor slab concrete 10 are constructed, and the gravel 11, the sleepers 12 and the rails 13 are laid on the floor slab concrete 10 by a normal railway track construction method, and the rails 14 are provided for use in the railway. The lightweight embankment structure A which can be completed is completed.
[0050]
The lightweight embankment structure A used for the railway constructed as described above is a pile-shaped member having a high compression rigidity for most of dynamic vertical loads such as a large wheel load caused by running of the train via the floor slab concrete 10. 6 can be shared, and the structure has a high compression rigidity and a small amount of deformation, and is basically composed of the embankment in which the foamed synthetic resin blocks 1 are laminated. It becomes a lightweight embankment structure with ease.
[0051]
Moreover, in order to share most of the load to the pile-shaped member 6 as described above, the foamed synthetic resin block 1 is not required to be as strong as the difference, and the use of the low-density (highly foamed) foamed synthetic resin block 1, Moreover, the use of the foamed synthetic resin block 1 using recycled raw materials is also possible, and a lightweight embankment structure A that can be economically used for railways can be constructed.
[0052]
Furthermore, in the structure A constructed as described above, the pile-like member 6 for increasing the compression rigidity is a recess 2a formed on the side surfaces 1c, 1d and / or the corner 1e of the foamed synthetic resin block 1. , 2b in a non-adhered state, the structure A can be easily detached from the pile-like member 6 without breaking the foamed synthetic resin block 1 when dismantling the structure A. In addition to being good, the disassembled foamed synthetic resin block 1 can be reused.
[0053]
Although the embodiment of the lightweight embankment structure according to the present invention has been described above, the present invention is not limited to the embodiment described above, and the technical idea of the present invention, that is, the compression rigidity of the embankment is increased. For the purpose of ensuring the ease of dismantling work, the pile-shaped member is disposed in a non-adhered state in a concave portion formed in the side surface and / or corner of the foamed synthetic resin block. Various modifications and changes are possible.
[0054]
For example, in the said embodiment, although the whole area of the embankment S was demonstrated about the lightweight embankment structure A which comprised the composite block body (multilayer composite block body) M of the foamed synthetic resin block 1 and the pile-shaped member 6, FIG. As shown in FIGS. 9 to 18, a part of the embankment may be composed of a composite block body of foamed synthetic resin blocks and pile-shaped members (the hatched portion in the figure).
[0055]
9 shows at least one layer including the lowest layer of the void in the widened embankment structure of the sloped land using the foamed synthetic resin block 101 as the fill material in the space between the front wall slab concrete 102 and the back sloped land 103 (FIG. 9). In the example of FIG. 9, the foamed synthetic resin block used for the lowermost layer and the layer immediately above it is shown as a composite block body (multilayer composite block body) 101a with a pile-shaped member, and FIG. FIG. 11 shows a foamed synthetic resin block used immediately after the back as a composite block body (multilayer composite block body) 101b with a pile-shaped member, and FIG. 11 shows the foamed synthetic resin block used for the uppermost layer as a pile-shaped member. A composite block body 101c is shown. Further, FIG. 12 shows that at least one layer including the lowermost layer (in the example of FIG. 12, the lowermost layer and the layer immediately above it) and the portion immediately after the back of the front wall slab concrete 102 are multilayer composite block bodies 101a and 101b. FIG. 13 shows a structure in which at least one layer including the lowermost layer (in the example of FIG. 13, the lowermost layer and the layer immediately above it) and the uppermost layer are formed as a multilayer composite block body 101a and a composite block body 101c. FIG. 14 shows the front wall slab concrete 102 immediately after the back and the uppermost layer as a multilayer composite block body 101b and a composite block body 101c, and FIG. 15 shows at least one layer including the lowermost layer (FIG. 15). In the example, the lowermost layer and the layer immediately above it), immediately after the rear surface of the front wall slab concrete 102 and the uppermost layer are the multilayer composite blocks 101a, 101b, It shows what was multiplexer block body 101c.
[0056]
FIG. 16 shows a foamed synthetic resin used immediately after the back of the wall slab concrete 104, 104 in a self-standing wall embankment structure using the foamed synthetic resin block 101 as a banking material in a space between the wall slab concrete 104, 104. The block is a composite block body (multi-layer composite block body) 101d, 101d with a pile-shaped member, and FIG. 17 is a composite block body 101e with a pile-shaped member, which is a foamed synthetic resin block used for the uppermost layer. Indicates. FIG. 18 shows a composite block body 101d, 101d, 101e immediately after the back surface of the wall slab concrete 104, 104 and the uppermost layer.
9 to 18, 105 is bottom slab concrete, 106 is intermediate floor slab concrete, 107 is floor slab concrete, and 108 is a road pavement formed on the floor slab concrete 107.
[0057]
【The invention's effect】
According to the lightweight embankment structure according to the present invention described above, at least a part of the embankment constructed by stacking the foamed synthetic resin blocks is composed of a composite block body in which pile-shaped members having high compression rigidity are arranged. Therefore, since the embankment of the portion composed of the composite block body has high compression rigidity and a small amount of deformation, a portion that receives a strong compressive load or a portion that is likely to be distorted or the like is included in the composite block body. By comprising, the lightweight banking structure which can be used conveniently also for structures, such as a road and a railroad, can be provided.
[0058]
  Further, according to the lightweight embankment structure according to the present invention, the pile-like member for increasing the compression rigidity is disposed in a non-adhered state in the concave portions formed in the side surface and / or the corner portion of the foamed synthetic resin block. Therefore, at the time of dismantling, the foamed synthetic resin block can be easily removed from the pile-shaped member without destroying the foamed synthetic resin block, and the dismantling workability is good. There is an effect that can be reused.
  Furthermore, according to the lightweight embankment structure according to the present invention, the space shape of the hole formed when the foamed synthetic resin blocks are laid out so that the respective concave portions face each other has an inverted truncated cone shape portion, Since the pile-shaped member has an inverted frustoconical shape corresponding to the space shape of the hole, a part of the load applied to the pile-shaped member can be borne by the foamed synthetic resin block, and the pile-shaped member of the load In addition to the effect of preventing the concentration of the foamed synthetic resin block, the pile-shaped member becomes a resistance and prevents the foamed synthetic resin block from rising even when buoyancy occurs in the foamed synthetic resin block due to the influence of groundwater or spring water. It is possible to increase the stability of the lightweight embankment structure.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of a foamed synthetic resin block used for construction of a lightweight embankment structure according to the present invention.
FIG. 2 is a perspective view showing another example of a foamed synthetic resin block used for construction of a lightweight embankment structure according to the present invention.
FIG. 3 is a perspective view showing an embodiment of a lightweight embankment structure according to the present invention.
4 is a plan view showing an example of a state in which the foamed synthetic resin blocks in FIG. 1 are laminated. FIG.
FIG. 5 is a perspective view showing an example of a pile-shaped member used for construction of a lightweight embankment structure according to the present invention.
6 is a longitudinal sectional view showing an example of a method for constructing a composite block body using the foamed synthetic resin block of FIG. 1 and the pile-shaped member of FIG.
FIG. 7 is a conceptual longitudinal sectional view showing a method for constructing a composite block body using a tapered pile-shaped member, wherein (a) shows a pile-shaped member formed entirely tapered; When used, (b) shows the case where a pile-shaped member in which only the lower part is formed to be tapered is used.
FIG. 8 shows a case where the space shape of the hole formed between the foamed synthetic resin blocks has an inverted truncated cone shape portion, and the pile-shaped member has an inverted truncated cone shape portion corresponding to the space shape of the hole. It is a conceptual longitudinal cross-sectional view at the time of constructing | assembling a composite block body, Comprising: (a) shows the case where the whole is an inverted truncated cone shape, (b) shows the case where only the lower part is an inverted truncated cone shape, respectively.
FIG. 9 is a longitudinal sectional view schematically showing another embodiment of a lightweight embankment structure according to the present invention.
FIG. 10 is a longitudinal sectional view schematically showing still another embodiment of the lightweight banking structure according to the present invention.
FIG. 11 is a longitudinal sectional view schematically showing still another embodiment of the lightweight embankment structure according to the present invention.
FIG. 12 is a longitudinal sectional view schematically showing still another embodiment of the lightweight embankment structure according to the present invention.
FIG. 13 is a longitudinal sectional view schematically showing still another embodiment of the lightweight embankment structure according to the present invention.
FIG. 14 is a longitudinal sectional view schematically showing still another embodiment of the lightweight embankment structure according to the present invention.
FIG. 15 is a longitudinal sectional view schematically showing still another embodiment of a lightweight embankment structure according to the present invention.
FIG. 16 is a longitudinal sectional view schematically showing still another embodiment of the lightweight embankment structure according to the present invention.
FIG. 17 is a longitudinal sectional view schematically showing still another embodiment of the lightweight banking structure according to the present invention.
FIG. 18 is a longitudinal sectional view schematically showing still another embodiment of the lightweight embankment structure according to the present invention.
[Explanation of symbols]
1 Foamed synthetic resin block
1a Surface
1b Back side
1c Long side
1d Short side surface
2 recess
2a 1/4 arc-shaped recess
2b 1/2 arc-shaped recess
3 Bottom slab concrete
4 holes
4A Hole with inverted frustoconical shape
5 Intermediate floor slab concrete
6 Pile-shaped members
6A Pile-shaped member with a height of 0.5 times the thickness of the foamed synthetic resin block
6B Pile-shaped member with a height of 1 times the thickness of the foamed synthetic resin block
6C Pile-shaped member with a height 1.5 times the thickness of the foamed synthetic resin block
6D Tapered pile-shaped member
6E Pile-shaped member with inverted frustoconical shape
7 Convex part (engagement part) formed in pile-shaped member
8 Concave part (engagement part) formed in pile-shaped member
9 Wall concrete
10 Floor slab concrete
11 Gravel
12 sleepers
13 rails
14 Handrail
S bank
M composite block (multilayer composite block)
A Lightweight embankment structure
101 Foamed synthetic resin block
101a, 101b, 101c, 101d, 101e Composite block body (Multilayer composite block body)
102 Front wall slab concrete
103 Back slope
104 Wall concrete
105 Bottom slab concrete
106 Intermediate floor slab concrete
107 floor slab concrete
108 Road pavement

Claims (9)

発泡合成樹脂ブロックを複数個敷き並べて形成した層を複数層積み重ねることによって構築した盛土を含む軽量盛土構造物において、前記盛土の少なくとも一部が、前記発泡合成樹脂ブロックの側面及び/又は隅部に形成された表面から裏面に至る凹部に、圧縮剛性の高い杭状部材が非接着状態で配設された複合ブロック体で構成されており、前記発泡合成樹脂ブロックに形成された凹部を互いに向き合うように敷き並べた際に形成される穴の空間形状が逆円錐台形状部を有し、前記杭状部材が前記穴の空間形状に対応する逆円錐台形状部を有するものであることを特徴とする、軽量盛土構造物。In a light-weight embankment structure including embankment constructed by stacking a plurality of layers formed by laying a plurality of foamed synthetic resin blocks, at least a part of the embankment is on the side surface and / or corner of the foamed synthetic resin block. It is composed of a composite block body in which a pile-shaped member having high compression rigidity is disposed in a non-adhered state in a recess extending from the front surface to the back surface so that the recesses formed in the foamed synthetic resin block face each other. The space shape of the holes formed when laying on each other has an inverted frustoconical shape portion, and the pile-like member has an inverted frustoconical shape portion corresponding to the space shape of the holes, A lightweight embankment structure. 上記盛土の少なくとも一部が、上記複合ブロック体を上下方向に複数層積み重ねた多層複合ブロック体で構成され、該多層複合ブロック体は下層の複合ブロック体の杭状部材と上層の複合ブロック体の杭状部材とが上下方向に連なって配設されていることを特徴とする、請求項1に記載の軽量盛土構造物。  At least a part of the embankment is composed of a multilayer composite block body in which a plurality of layers of the composite block body are stacked in the vertical direction. The lightweight embankment structure according to claim 1, wherein the pile-shaped members are arranged continuously in a vertical direction. 上記多層複合ブロック体を上下方向に連なる杭状部材が複数個の短長な杭状部材を上下方向に積み重ねることにより構成されていることを特徴とする、請求項2に記載の軽量盛土構造物。3. The lightweight embankment structure according to claim 2, wherein the pile-like members that are connected to the multilayer composite block body in the vertical direction are formed by stacking a plurality of short pile-shaped members in the vertical direction. . 上記杭状部材がプレキャストコンクリート製杭状部材であることを特徴とする、請求項1乃至3のいずれかに記載の軽量盛土構造物。The lightweight pile structure according to any one of claims 1 to 3, wherein the pile-shaped member is a precast concrete pile-shaped member. 上記軽量盛土構造物が前面壁と背面傾斜地との空所に発泡合成樹脂ブロックを盛土材として用いた傾斜地の拡幅盛土構造物であり、該構造物の最下層を含む少なくとも一層に用いる発泡合成樹脂ブロックを上記複合ブロック体としたことを特徴とする、請求項1乃至4のいずれかに記載の軽量盛土構造物。The lightweight embankment structure is a widened embankment structure of an inclined land using a foamed synthetic resin block as a embankment material in a space between a front wall and a back sloping ground, and the foamed synthetic resin used for at least one layer including the lowermost layer of the structure The lightweight embankment structure according to any one of claims 1 to 4, wherein the block is the composite block body. 上記軽量盛土構造物が前面壁と背面傾斜地との空所に発泡合成樹脂ブロックを盛土材として用いた傾斜地の拡幅盛土構造物であり、該構造物の前面壁の背面直後に用いる発泡合成樹脂ブロックを上記複合ブロック体としたことを特徴とする、請求項1乃至4のいずれかに記載の軽量盛土構造物。The lightweight embankment structure is a widened embankment structure of an inclined land using a foamed synthetic resin block as a embankment material in a space between a front wall and a back sloping ground, and the foamed synthetic resin block used immediately after the back of the front wall of the structure The lightweight embankment structure according to any one of claims 1 to 4, wherein the composite block body is used. 上記軽量盛土構造物が前面壁と背面傾斜地との空所に発泡合成樹脂ブロックを盛土材として用いた傾斜地の拡幅盛土構造物であり、該構造物の最上層を含む少なくとも一層に用いる発泡合成樹脂ブロックを上記複合ブロック体としたことを特徴とする、請求項1乃至4のいずれかに記載の軽量盛土構造物。The lightweight embankment structure is a widened embankment structure of a sloping land using a foamed synthetic resin block as a embankment material in a space between a front wall and a back sloping ground, and the foamed synthetic resin used for at least one layer including the uppermost layer of the structure The lightweight embankment structure according to any one of claims 1 to 4, wherein the block is the composite block body. 上記軽量盛土構造物が壁体間の空所に発泡合成樹脂ブロックを盛土材として用いた自立壁の盛土構造物であり、該構造物の壁体の背面直後に用いる発泡合成樹脂ブロックを上記複合ブロック体としたことを特徴とする、請求項1乃至4のいずれかに記載の軽量盛土構造物。The lightweight embankment structure is a self-standing wall embankment structure using a foamed synthetic resin block as a embankment material in the space between the walls, and the foamed synthetic resin block used immediately after the back of the wall of the structure is combined with the composite The lightweight embankment structure according to any one of claims 1 to 4, wherein the lightweight embankment structure is a block body. 上記軽量盛土構造物が壁体間の空所に発泡合成樹脂ブロックを盛土材として用いた自立壁の盛土構造物であり、該構造物の最上層を含む少なくとも一層に用いる発泡合成樹脂ブロックを上記複合ブロック体としたことを特徴とする、請求項1乃至4のいずれかに記載の軽量盛土構造物。The lightweight embankment structure is a self-standing wall embankment structure using a foamed synthetic resin block as a embedding material in a space between walls, and the foamed synthetic resin block used for at least one layer including the uppermost layer of the structure The lightweight embankment structure according to any one of claims 1 to 4, wherein the lightweight embankment structure is a composite block body.
JP2003189291A 2003-07-01 2003-07-01 Lightweight embankment structure Expired - Fee Related JP4263035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003189291A JP4263035B2 (en) 2003-07-01 2003-07-01 Lightweight embankment structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003189291A JP4263035B2 (en) 2003-07-01 2003-07-01 Lightweight embankment structure

Publications (2)

Publication Number Publication Date
JP2005023625A JP2005023625A (en) 2005-01-27
JP4263035B2 true JP4263035B2 (en) 2009-05-13

Family

ID=34187546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003189291A Expired - Fee Related JP4263035B2 (en) 2003-07-01 2003-07-01 Lightweight embankment structure

Country Status (1)

Country Link
JP (1) JP4263035B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4614928B2 (en) * 2005-12-26 2011-01-19 昇 岩▲崎▼ Lightweight embankment method
JP4747011B2 (en) * 2006-03-20 2011-08-10 戸田建設株式会社 Lightweight embankment structure, resin foam block body therefor, and construction method therefor

Also Published As

Publication number Publication date
JP2005023625A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
JP2020070658A (en) Sheet pile wall embedding structure
JP4263035B2 (en) Lightweight embankment structure
JP2013170404A (en) Retaining wall block, retaining wall and construction method of retaining wall
JP4263036B2 (en) Lightweight embankment structure
JP2008274609A (en) Slope widening structure
JP2007308882A (en) Lightweight embankment structure
JP4614928B2 (en) Lightweight embankment method
KR20170038769A (en) Retaining Wall constructed by Blocks, and Constructing Method thereof
KR101146757B1 (en) Stackable retaining walls and the construction method using the same
JP2018091047A (en) Artificial ground and method for constructing the same
KR101086885B1 (en) Manufacturing method of a lot of concrete blocks
JP7473436B2 (en) Slab foundations and their construction methods
JPH0667545U (en) Retaining wall structure
JP4457396B2 (en) Retaining wall foundation block
JP3749189B2 (en) Foamed resin molded block and laminate using the block
JP6274462B2 (en) Retaining wall block and artificial island
JP2002030674A (en) Polystyrene resin foam plate assembly, method of constructing lightweight ground, method of constructing foundation, and method of constructing lightweight banking
JP3426441B2 (en) Floating platform
JP3111331B2 (en) Retaining wall block and retaining wall construction
JP3771436B2 (en) Lightweight embankment structure
JP4528176B2 (en) Lightweight embankment structure with buoyancy countermeasure structure
JPH11343622A (en) Banking construction method, banking structure, and concrete block to be used therefor
JP3687887B2 (en) Block material for embankment replacement and structure for embankment layer replacement
JP2604380Y2 (en) Construction member for railway station platform and structure using the same
JP3383660B1 (en) Storage / infiltration equipment for block-shaped laminates and rainwater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4263035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees