[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4260794B2 - Manufacturing method of biodegradable resin molded products - Google Patents

Manufacturing method of biodegradable resin molded products Download PDF

Info

Publication number
JP4260794B2
JP4260794B2 JP2005326407A JP2005326407A JP4260794B2 JP 4260794 B2 JP4260794 B2 JP 4260794B2 JP 2005326407 A JP2005326407 A JP 2005326407A JP 2005326407 A JP2005326407 A JP 2005326407A JP 4260794 B2 JP4260794 B2 JP 4260794B2
Authority
JP
Japan
Prior art keywords
biodegradable resin
acid
sheet
resin composition
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005326407A
Other languages
Japanese (ja)
Other versions
JP2007130895A (en
Inventor
晃 武中
昌吾 野本
俊樹 松尾
栄紀 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2005326407A priority Critical patent/JP4260794B2/en
Publication of JP2007130895A publication Critical patent/JP2007130895A/en
Application granted granted Critical
Publication of JP4260794B2 publication Critical patent/JP4260794B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Description

本発明は、生分解性樹脂成形品の製造法に関する。 The present invention relates to a biodegradable resin molded article production method.

生分解性樹脂の中でもポリ乳酸樹脂は、トウモロコシ、芋などからとれる糖分から、発酵法によりL−乳酸が大量に作られ安価になってきたこと、原料が自然農作物なので総酸化炭素排出量が極めて少ない、また得られた樹脂の性能として剛性が強く透明性が良いという特徴があるので、現在その利用が期待されている。しかしポリ乳酸樹脂の場合、脆く、硬く、可撓性に欠ける特性のためにいずれも硬質成形品分野に限られ、シートや容器などに成形した場合は、柔軟性が不足したり、折り曲げたとき白化などの問題があり、軟質又は半硬質分野に使用されていないのが現状である。また、ポリ乳酸樹脂は結晶化速度が遅く、延伸などの機械的工程を行わない限りは成形後は非晶状態である。しかし、ポリ乳酸のガラス転移温度(Tg)は60℃と低く耐熱性に劣るため、温度が55℃以上となる環境下では使用できない問題があった。また、ポリ乳酸樹脂は結晶化速度が遅く、延伸などの機械的工程を行わない限りは成形後は非晶状態である。しかし、ポリ乳酸のガラス転移温度(Tg)は60℃と低く耐熱性に劣るため、温度が55℃以上となる環境下では使用できない問題があった。   Among the biodegradable resins, polylactic acid resins are made from saccharides from corn, straw, etc., and a large amount of L-lactic acid is produced by fermentation. The use of the obtained resin is expected because it has a characteristic that it has little rigidity and has high rigidity and good transparency. However, polylactic acid resin is brittle, hard, and lacks flexibility, all of which are limited to the field of hard molded products. When molded into a sheet or container, the flexibility is insufficient or when it is bent There is a problem such as whitening, and the current situation is that it is not used in the soft or semi-rigid field. In addition, the polylactic acid resin has a slow crystallization rate and is in an amorphous state after molding unless a mechanical process such as stretching is performed. However, since the glass transition temperature (Tg) of polylactic acid is as low as 60 ° C. and poor in heat resistance, there is a problem that it cannot be used in an environment where the temperature is 55 ° C. or higher. In addition, the polylactic acid resin has a slow crystallization rate and is in an amorphous state after molding unless a mechanical process such as stretching is performed. However, since the glass transition temperature (Tg) of polylactic acid is as low as 60 ° C. and poor in heat resistance, there is a problem that it cannot be used in an environment where the temperature is 55 ° C. or higher.

ポリ乳酸樹脂を軟質、半硬質分野に応用する技術として可塑剤を添加する方法や、あるいは耐熱性を向上させるため結晶核剤を添加して結晶化させる方法が種々提案されており、例えば、特許文献1には、融点が40〜300℃の脂肪族カルボン酸アミドなどの透明核剤を含有する脂肪族ポリエステル組成物を成形し、成形時又は成形後に熱処理をすることを特徴とする、透明性及び結晶性を併有する脂肪族ポリエステル成形体の製造方法が開示されている。更に、特許文献2には、特定の構造を有するアミド系化合物、可塑剤、乳酸系ポリマーを含有する乳酸系ポリマー組成物及びその成形体の製造方法が開示されている。   Various methods have been proposed for adding a plasticizer as a technique for applying polylactic acid resin to soft and semi-rigid fields, or for crystallizing by adding a crystal nucleating agent to improve heat resistance. Reference 1 discloses that an aliphatic polyester composition containing a transparent nucleating agent such as an aliphatic carboxylic acid amide having a melting point of 40 to 300 ° C. is molded and heat-treated at the time of molding or after molding. And a method for producing an aliphatic polyester molded body having both crystallinity. Furthermore, Patent Document 2 discloses a lactic acid polymer composition containing an amide compound having a specific structure, a plasticizer, and a lactic acid polymer, and a method for producing a molded body thereof.

特許文献1及び2に記載の樹脂組成物を非晶状態でシート化し、真空成形等の熱成形を行う際に結晶化した成形物を得る場合、結晶化速度が低いために金型温度を100℃以上に上げたり、また長い金型保持時間が必要であり、生産性に劣る問題があった。
一方、特許文献3には熱成形時に延伸配向させることにより、成形体を得る方法が提案されている。この場合は脱型の際、成形体をTg以下に冷却しなくても成形体が得れられるが、シートがそのまま残る平面部や延伸配向が足りない部分は強度、耐衝撃性に劣り、全体としても結晶化せずに耐熱性に劣る問題があった。
特許第3411168号公報 国際公開2003/042302号パンフレット 特許第3563436号公報
In the case where the resin composition described in Patent Documents 1 and 2 is formed into a sheet in an amorphous state and a crystallized product is obtained when thermoforming such as vacuum forming is performed, the mold temperature is set to 100 because the crystallization speed is low. There was a problem in that the productivity was inferior because the temperature was raised to over ℃ or a long mold holding time was required.
On the other hand, Patent Document 3 proposes a method of obtaining a molded body by stretching and orientation during thermoforming. In this case, at the time of demolding, the molded body can be obtained without cooling the molded body to Tg or less, but the flat portion where the sheet remains as it is or the portion where the stretching orientation is insufficient is inferior in strength and impact resistance, and the whole However, there was a problem inferior in heat resistance without crystallizing.
Japanese Patent No. 3411168 International Publication No. 2003/042302 Pamphlet Japanese Patent No. 3563436

本発明の課題は、柔軟性、耐熱性、感温性、耐衝撃性が良好な、生分解性樹脂成形品の熱成形法による生産性が高い製造方法を提供することにある The subject of this invention is providing the manufacturing method with high productivity by the thermoforming method of a biodegradable resin molded product with favorable softness | flexibility, heat resistance, temperature sensitivity, and impact resistance .

本発明は、ポリ乳酸樹脂と、分子中に2個以上のエステル基を有し、エチレンオキサイドの平均付加モル数が2〜9の化合物からなる可塑剤と、分子中にエステル基、水酸基及びアミド基から選ばれる少なくとも1種の基を2つ以上有する脂肪族化合物からなる結晶核剤と、加水分解抑制剤とを含有し、ポリ乳酸樹脂100重量部に対する可塑剤の含有量が5〜70重量部、結晶核剤の含有量が0.1〜5重量部である生分解性樹脂組成物からなるシートまたはフィルムを熱成形する生分解性樹脂成形品の製造法であって、下記工程(1)及び工程(2)によって相対結晶化度80%以上に結晶化させた成形品を得る、生分解性樹脂成形品の製造法を提供する。 The present invention relates to a polylactic acid resin, a plasticizer comprising a compound having 2 or more ester groups in the molecule and having an average addition mole number of ethylene oxide of 2 to 9 , an ester group, a hydroxyl group and an amide in the molecule. A crystal nucleating agent composed of an aliphatic compound having two or more of at least one group selected from a group, and a hydrolysis inhibitor, and a plasticizer content in an amount of 5 to 70 wt. Part, the production method of a biodegradable resin molded product for thermoforming a sheet or film made of a biodegradable resin composition having a content of crystal nucleating agent of 0.1 to 5 parts by weight , comprising the following step (1 ) And step (2), a method for producing a biodegradable resin molded product is obtained which obtains a molded product crystallized to a relative crystallinity of 80% or more.

工程(1):生分解性樹脂組成物からなるシートまたはフィルムを、生分解性樹脂組成物のガラス転移温度(Tg)以上生分解性樹脂組成物の融点(Tm)未満の温度に加熱する工
工程(2):工程(1)で得られたシートまたはフィルムを、金型温度60〜100℃で、熱成形する工程
Step (1): heat the sheet or film made of a biodegradable resin composition, to a temperature below the melting point (Tm) of the glass transition temperature (Tg) of more biodegradable resin composition of the biodegradable resin composition Engineering as step (2): step a sheet or film obtained in (1), at a mold temperature of 60 to 100 [° C., the step of thermoforming

本発明の生分解性樹脂成形品の製造法によって、柔軟性、耐熱性、感温性及び耐衝撃性に優れた生分解性樹脂成形品を、生産性良く製造することができ、さらにポリ乳酸等の透明生分解性樹脂に応用した場合は透明性が良好な成形品を得ることができる。   By the method for producing a biodegradable resin molded article of the present invention, a biodegradable resin molded article having excellent flexibility, heat resistance, temperature sensitivity and impact resistance can be produced with good productivity. When applied to a transparent biodegradable resin such as, a molded product with good transparency can be obtained.

[ポリ乳酸樹脂]
本発明に用いられるポリ乳酸樹脂とは、ポリ乳酸、又は乳酸とヒドロキシカルボン酸とのコポリマーである。ヒドロキシカルボン酸として、グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシペンタン酸、ヒドロキシカプロン酸、ヒドロキシヘプタン酸等が挙げられ、グリコール酸、ヒドロキシカプロン酸が好ましい。好ましいポリ乳酸の分子構造は、L−乳酸又はD−乳酸いずれかの単位20〜100モル%とそれぞれの対掌体の乳酸単位0〜20モル%からなるものである。また、乳酸とヒドロキシカルボン酸とのコポリマーは、L−乳酸又はD−乳酸いずれかの単位85〜100モル%とヒドロキシカルボン酸単位0〜15モル%からなるものである。これらのポリ乳酸樹脂は、L−乳酸、D−乳酸及びヒドロキシカルボン酸の中から必要とする構造のものを選んで原料とし、脱水重縮合することにより得ることができる。好ましくは、乳酸の環状二量体であるラクチド、グリコール酸の環状二量体であるグリコリド及びカプロラクトン等から必要とする構造のものを選んで開環重合することにより得ることができる。ラクチドにはL−乳酸の環状二量体であるL−ラクチド、D−乳酸の環状二量体であるD−ラクチド、D−乳酸とL−乳酸とが環状二量化したメソ−ラクチド及びD−ラクチドとL−ラクチドとのラセミ混合物であるDL−ラクチドがある。本発明ではいずれのラクチドも用いることができる。但し、主原料は、D−ラクチド又はL−ラクチドが好ましい。
[Polylactic acid resin]
The polylactic acid resin used in the present invention is polylactic acid or a copolymer of lactic acid and hydroxycarboxylic acid. Examples of the hydroxycarboxylic acid include glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxypentanoic acid, hydroxycaproic acid, hydroxyheptanoic acid and the like, and glycolic acid and hydroxycaproic acid are preferable. A preferred molecular structure of polylactic acid is composed of 20 to 100 mol% of either L-lactic acid or D-lactic acid and 0 to 20 mol% of each enantiomer. The copolymer of lactic acid and hydroxycarboxylic acid is composed of 85 to 100 mol% of either L-lactic acid or D-lactic acid and 0 to 15 mol% of hydroxycarboxylic acid units. These polylactic acid resins can be obtained by dehydrating polycondensation using L-lactic acid, D-lactic acid and hydroxycarboxylic acid as a raw material by selecting those having the required structure. Preferably, it can be obtained by ring-opening polymerization by selecting a desired structure from lactide, which is a cyclic dimer of lactic acid, glycolide, which is a cyclic dimer of glycolic acid, and caprolactone. Lactide includes L-lactide, which is a cyclic dimer of L-lactic acid, D-lactide, which is a cyclic dimer of D-lactic acid, meso-lactide obtained by cyclic dimerization of D-lactic acid and L-lactic acid, and D- There is DL-lactide, which is a racemic mixture of lactide and L-lactide. Any lactide can be used in the present invention. However, the main raw material is preferably D-lactide or L-lactide.

市販されているポリ乳酸樹脂としては、例えば、三井化学(株)製、商品名レイシア;カーギル・ダウ・ポリマーズ社製、商品名Nature works等が挙げられる。   Examples of the commercially available polylactic acid resin include Mitsui Chemicals, Inc., trade name Racia; Cargill Dow Polymers, trade name Nature works, and the like.

これらのポリ乳酸樹脂の中でも結晶化速度、物性の観点からL−乳酸高純度品である結晶グレードのもの、特に三井化学(株)製、LACEA H−400、LACEA H−100、LACEA H−440が好ましく、L−乳酸純度95%以上のポリ乳酸樹脂、特に三井化学(株)製、LACEA H−400、LACEA H−100がさらに好ましい。   Among these polylactic acid resins, from the viewpoint of crystallization speed and physical properties, L-lactic acid is a high-purity product, particularly a grade of L-lactic acid, particularly LACEA H-400, LACEA H-100, LACEA H-440, manufactured by Mitsui Chemicals. A polylactic acid resin having an L-lactic acid purity of 95% or more, particularly, LACEA H-400, LACEA H-100, manufactured by Mitsui Chemicals, Inc. is more preferable.

[可塑剤]
本発明に用いられる可塑剤は、分子中に2個以上のエステル基を有し、エチレンオキサイドの平均付加モル数が2〜9、特に3〜9の化合物である。このような化合物としては、多価カルボン酸とポリエチレングリコールモノアルキルエーテルとのエステル、多価アルコールのアルキルエーテルエステル等が挙げられる。
[Plasticizer]
Plasticizers used in the present invention, in molecular having two or more ester groups, the average number of moles of added ethylene oxide is 2 to 9, in particular the compounds of 3-9. Examples of such compounds include esters of polyvalent carboxylic acids and polyethylene glycol monoalkyl ethers, alkyl ether esters of polyhydric alcohols, and the like.

本発明に用いられる可塑剤の平均分子量は耐ブリード性及び耐揮発性の観点から、好ましくは250〜700であり、より好ましくは300〜600であり、更に好ましくは350〜550であり、特に好ましくは400〜500である。尚、平均分子量は、JISK0070に記載の方法で鹸化価を求め、次式より計算で求めることができる。   The average molecular weight of the plasticizer used in the present invention is preferably from 250 to 700, more preferably from 300 to 600, still more preferably from 350 to 550, particularly preferably from the viewpoint of bleed resistance and volatile resistance. Is 400-500. The average molecular weight can be obtained by calculating the saponification value by the method described in JISK0070 and calculating from the following formula.

平均分子量=56108×(エステル基の数)/鹸化価     Average molecular weight = 56108 × (number of ester groups) / saponification value

このような可塑剤の中では、生分解性樹脂成形品の成形性、耐衝撃性に優れる観点から、コハク酸とエチレンオキサイドの平均付加モル数が2〜4のポリエチレングリコールモノメチルエーテルとのエステル、アジピン酸とエチレンオキサイドの平均付加モル数が2〜3のポリエチレングリコールモノメチルエーテルとのエステル、1,3,6−ヘキサントリカルボン酸とエチレンオキサイドの平均付加モル数が2〜3のポリエチレングリコールモノメチルエーテルとのエステル等の多価カルボン酸とポリエチレングリコールモノメチルエーテルとのエステル;酢酸とグリセリンのエチレンオキサイド平均3〜9モル付加物とのエステル、酢酸とエチレンオキサイドの平均付加モル数が4〜9のポリエチレングリコールとのエステル等の多価アルコールのアルキルエーテルエステルがより好ましい。生分解性樹脂成形品の成形性、耐衝撃性及び可塑剤の耐ブリード性に優れる観点から、コハク酸とエチレンオキサイドの平均付加モル数が2〜3のポリエチレングリコールモノメチルエーテルとのエステル、アジピン酸とジエチレングリコールモノメチルエーテルとのエステル、1,3,6−ヘキサントリカルボン酸とジエチレングリコールモノメチルエーテルとのエステル、酢酸とグリセリンのエチレンオキサイド平均3〜6モル付加物とのエステル、酢酸とエチレンオキサイドの平均付加モル数が4〜6のポリエチレングリコールとのエステルがさらに好ましい。生分解性樹脂成形品の成形性、耐衝撃性及び可塑剤の耐ブリード性、耐揮発性及び耐刺激臭の観点から、コハク酸とトリエチレングリコールモノメチルエーテルとのエステル、酢酸とグリセリンのエチレンオキサイド平均3〜6モル付加物とのエステルが特に好ましい。これらの可塑剤は単独又は2種以上組み合わせて用いてもよい。   Among such plasticizers, from the viewpoint of excellent moldability and impact resistance of the biodegradable resin molded product, an ester of succinic acid and polyethylene glycol monomethyl ether having an average added mole number of ethylene oxide of 2 to 4, Esters of adipic acid and polyethylene glycol monomethyl ether having an average addition mole number of ethylene oxide of 2 to 3, polyethylene glycol monomethyl ether of 1,3,6-hexanetricarboxylic acid and ethylene oxide having an average addition mole number of 2 to 3 Ester of polyvalent carboxylic acid such as ester of polyethylene glycol monomethyl ether; ester of acetic acid and glycerin in ethylene oxide average 3 to 9 mol adduct, polyethylene glycol having an average addition mole number of acetic acid and ethylene oxide in 4 to 9 Multivalent ester such as Alkyl ether esters of alcohol are more preferred. From the viewpoint of excellent moldability, impact resistance and bleed resistance of plasticizers of biodegradable resin molded products, esters of polyethylene glycol monomethyl ether having an average addition mole number of succinic acid and ethylene oxide of 2 to 3, adipic acid Esters of 1,3,6-hexanetricarboxylic acid and diethylene glycol monomethyl ether, esters of acetic acid and glycerol with an average of 3 to 6 moles of ethylene oxide adducts, average addition moles of acetic acid and ethylene oxide More preferred are esters with polyethylene glycol having a number of 4-6. From the viewpoints of moldability, impact resistance, plasticizer bleed resistance, volatilization resistance and pungent odor resistance of biodegradable resin molded products, esters of succinic acid and triethylene glycol monomethyl ether, ethylene oxide of acetic acid and glycerin Particularly preferred are esters with an average of 3-6 mole adducts. These plasticizers may be used alone or in combination of two or more.

尚、本発明のエステルは、可塑剤としての機能を十分発揮させる観点から、全てエステル化された飽和エステルであることが好ましい。   In addition, it is preferable that the ester of this invention is all the esterified saturated ester from a viewpoint of fully exhibiting the function as a plasticizer.

[結晶核剤]
本発明に用いられる結晶核剤は、結晶化速度と耐熱性、感温性、さらには透明性の観点から、結晶核剤分子中にエステル基、水酸基及びアミド基から選ばれる少なくとも1種の基を2つ以上有する脂肪族化合物であり、水酸基を1つ以上有し、エステル基又はアミド基を1つ以上有する脂肪族化合物が好ましく、水酸基を2つ以上有し、エステル基又はアミド基を1つ以上有する脂肪族化合物が更に好ましく、水酸基を2つ以上有し、エステル基又はアミド基を2つ以上有する脂肪族化合物が特に好ましい。
結晶核剤の融点は、65℃以上が好ましく、70℃〜220℃が好ましく、80〜190℃がより好ましい。
[Crystal nucleating agent]
The crystal nucleating agent used in the present invention is at least one group selected from an ester group, a hydroxyl group and an amide group in the crystal nucleating agent molecule from the viewpoint of crystallization speed, heat resistance, temperature sensitivity, and transparency. an aliphatic compound having two or more hydroxyl groups have one or more, ester or has aliphatic compound having one or more amide groups is good preferred, hydroxyl two or more, ester or amide group Are more preferable, and aliphatic compounds having two or more hydroxyl groups and two or more ester groups or amide groups are particularly preferable.
The melting point of the crystal nucleating agent is preferably 65 ° C or higher, preferably 70 ° C to 220 ° C, and more preferably 80 to 190 ° C.

上記脂肪族化合物によって、本発明の効果がより向上する理由は定かではないが、上記の官能基を2つ以上有すると、ポリ乳酸樹脂との相互作用が良好となり、相溶性が向上する結果、樹脂中で微分散することによるものと考えられ、恐らく、水酸基を1つ以上、好ましくは2つ以上有することによりポリ乳酸樹脂への分散性が良好となり、エステル基又はアミド基を1つ以上、好ましくは2つ以上有することによりポリ乳酸樹脂への相溶性が良好となるものと考えられる。結晶核剤の融点は、熱処理温度より高く、樹脂組成物の混練温度以下であると、混練時に結晶核剤が溶解することによってその分散性が向上し、熱処理温度より高いと結晶核生成の安定化や熱処理温度が上げられるため、結晶化速度向上の観点でも好ましい。また、上記好ましい結晶核剤は、樹脂溶融状態から冷却過程で速やかに微細な結晶を多数析出するものと考えられ、透明性、結晶化速度向上の観点でも好ましい。   The reason why the effect of the present invention is further improved by the aliphatic compound is not clear, but if it has two or more of the above functional groups, the interaction with the polylactic acid resin becomes good and the compatibility is improved. It is thought that this is due to fine dispersion in the resin, probably having one or more hydroxyl groups, preferably two or more, so that the dispersibility in the polylactic acid resin is improved, and one or more ester groups or amide groups are obtained. It is considered that the compatibility with the polylactic acid resin is preferably improved by having two or more. When the melting point of the crystal nucleating agent is higher than the heat treatment temperature and lower than or equal to the kneading temperature of the resin composition, the dispersibility is improved by dissolving the crystal nucleating agent during kneading. Since the temperature of crystallization and heat treatment can be raised, it is also preferable from the viewpoint of improving the crystallization speed. The preferred crystal nucleating agent is considered to precipitate a large number of fine crystals quickly in the cooling process from the resin melt state, and is also preferable from the viewpoint of improving transparency and crystallization speed.

本発明に用いられる結晶核剤としては、脂肪族エステル、脂肪族アミド等が挙げられ、脂肪族エステルとしては、ステアリン酸モノグリセライド、ベヘニン酸モノグリセライド等の脂肪酸エステル、12−ヒドロキシステアリン酸トリグリセライド等のヒドロキシ脂肪酸エステル;脂肪族アミドとしては12−ヒドロキシステアリン酸モノエタノールアミド等のヒドロキシ脂肪酸モノアミド、エチレンビスラウリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスカプリル酸アミド等の脂肪族ビスアミド、メチレンビス12−ヒドロキシステアリン酸アミド、エチレンビス12−ヒドロキシステアリン酸アミド、ヘキサメチレンビス12−ヒドロキシステアリン酸アミド等のヒドロキシ脂肪酸ビスアミドなどが挙げられる。生分解性樹脂成形品の成形性、耐熱性、耐衝撃性及び結晶核剤の耐ブルーム性の観点から、12−ヒドロキシステアリン酸トリグリセライド、ベヘニン酸モノグリセライド、エチレンビス12−ヒドロキシステアリン酸アミド、ヘキサメチレンビス12−ヒドロキシステアリン酸アミド、12−ヒドロキシステアリン酸モノエタノールアミド、エチレンビスカプリル酸アミド、エチレンビスカプリン酸アミドが好ましく、12−ヒドロキシステアリン酸トリグリセライド、エチレビス12−ヒドロキシステアリン酸アミド、ヘキサメチレンビス12−ヒドロキシステアリン酸アミド、12−ヒドロキシステアリン酸モノエタノールアミドがより好ましく、12−ヒドロキシステアリン酸トリグリセライド、エチレンビス12−ヒドロキシステアリン酸アミド、ヘキサメチレンビス12−ヒドロキシステアリン酸アミドがさらに好ましく、エチレンビス12−ヒドロキシステアリン酸アミド、ヘキサメチレンビス12−ヒドロキシステアリン酸アミドが特に好ましい。   Examples of the crystal nucleating agent used in the present invention include aliphatic esters and aliphatic amides. Examples of aliphatic esters include fatty acid esters such as stearic acid monoglyceride and behenic acid monoglyceride, and hydroxy compounds such as 12-hydroxystearic acid triglyceride. Fatty acid esters; aliphatic fatty amides such as hydroxy fatty acid monoamides such as 12-hydroxystearic acid monoethanolamide, aliphatic bisamides such as ethylene bislauric acid amide, ethylene biscapric acid amide, ethylene biscaprylic acid amide, and methylene bis 12-hydroxystearic acid Hydroxy fatty acid bisamides such as acid amide, ethylene bis 12-hydroxy stearic acid amide, hexamethylene bis 12-hydroxy stearic acid amide, and the like. From the viewpoint of moldability, heat resistance, impact resistance, and bloom resistance of the crystal nucleating agent of biodegradable resin molded products, 12-hydroxystearic acid triglyceride, behenic acid monoglyceride, ethylenebis12-hydroxystearic acid amide, hexamethylene Bis 12-hydroxystearic acid amide, 12-hydroxystearic acid monoethanolamide, ethylene biscaprylic acid amide, ethylene biscapric acid amide are preferred, 12-hydroxystearic acid triglyceride, ethyl bis 12-hydroxystearic acid amide, hexamethylene bis 12 -Hydroxystearic acid amide, 12-hydroxystearic acid monoethanolamide are more preferable, 12-hydroxystearic acid triglyceride, ethylene bis 12-hydroxystearic acid Phosphoric acid amide, more preferably hexamethylene bis hydroxystearic acid amide, ethylenebis 12-hydroxystearic acid amide, hexamethylene bis hydroxystearic acid amide are particularly preferred.

本発明の結晶核剤を透明生分解性樹脂に添加する場合、優れた透明性を維持することができる。   When the crystal nucleating agent of the present invention is added to a transparent biodegradable resin, excellent transparency can be maintained.

[生分解性樹脂組成物]
本発明の生分解性樹脂組成物は、ポリ乳酸樹脂、可塑剤、結晶核剤及び加水分解抑制剤を含有するものである。
[Biodegradable resin composition]
The biodegradable resin composition of the present invention contains a polylactic acid resin, a plasticizer, a crystal nucleating agent, and a hydrolysis inhibitor .

本発明の生分解性樹脂組成物中の、ポリ乳酸樹脂の含有量は、本発明の目的を達成する観点から、好ましくは50重量%以上であり、より好ましくは70重量%以上である。
本発明の生分解性樹脂組成物における可塑剤の含有量は、十分な結晶化速度と耐衝撃性を得る観点から、ポリ乳酸樹脂100重量部に対し、5〜70重量部であり、7〜50重量部がより好ましく、10〜40重量部がさらに好ましい。
本発明の生分解性樹脂組成物における結晶核剤の含有量は、ポリ乳酸樹脂100重量部に対し、0.1〜5重量部であり、0.2〜4重量部が更に好ましく、0.3〜3重量部が特に好ましい。
The content of the polylactic acid resin in the biodegradable resin composition of the present invention is preferably 50% by weight or more, more preferably 70% by weight or more from the viewpoint of achieving the object of the present invention.
The content of the plasticizer in the biodegradable resin composition of the present invention is 5 to 70 parts by weight with respect to 100 parts by weight of the polylactic acid resin, from the viewpoint of obtaining a sufficient crystallization speed and impact resistance. 50 parts by weight is more preferable, and 10 to 40 parts by weight is even more preferable.
The content of the crystal nucleating agent in the biodegradable resin composition of the present invention is 0.1 to 5 parts by weight, more preferably 0.2 to 4 parts by weight, with respect to 100 parts by weight of the polylactic acid resin. 3 to 3 parts by weight are particularly preferred.

本発明の樹脂組成物は、上記の成分以外に、タルク、スメクタイト、カオリン、マイカ、モンモリロナイト等のケイ酸塩、シリカ、酸化マグネシウム等の無機化合物を含有することができる。これら無機化合物の平均粒径は、分散性の観点から0.1〜20μmが好ましく、0.1〜10μmがより好ましい。これらの無機化合物の中でも、生分解性樹脂成形品の成形性及び耐熱性の観点からケイ酸塩が好ましく、タルクがより好ましい。
これら無機化合物の含有量は、ポリ乳酸樹脂100重量部に対し、十分な結晶化速度と透明性の観点から0.1〜2重量部が好ましく、0.3〜2重量部が更に好ましく、0.5〜1.5重量部が特に好ましい。また、十分な結晶化速度と耐衝撃性、耐熱性、剛性の観点からは3〜50重量部が好ましく、5〜40重量部が更に好ましく、5〜30重量部が特に好ましい。
In addition to the above components, the resin composition of the present invention can contain silicates such as talc, smectite, kaolin, mica, montmorillonite, and inorganic compounds such as silica and magnesium oxide. The average particle size of these inorganic compounds is preferably 0.1 to 20 μm, more preferably 0.1 to 10 μm from the viewpoint of dispersibility. Among these inorganic compounds, silicate is preferable and talc is more preferable from the viewpoint of moldability and heat resistance of the biodegradable resin molded product.
The content of these inorganic compounds is preferably 0.1 to 2 parts by weight, more preferably 0.3 to 2 parts by weight, based on 100 parts by weight of the polylactic acid resin, from the viewpoint of sufficient crystallization speed and transparency. .5 to 1.5 parts by weight is particularly preferred. Moreover, from a viewpoint of sufficient crystallization speed, impact resistance, heat resistance, and rigidity, 3 to 50 parts by weight is preferable, 5 to 40 parts by weight is further preferable, and 5 to 30 parts by weight is particularly preferable.

本発明の生分解性樹脂組成物に用いる加水分解抑制剤としては、ポリカルボジイミド化合物やモノカルボジイミド化合物等のカルボジイミド化合物が挙げられ、生分解性樹脂成形品の成形性の観点からポリカルボジイミド化合物が好ましい。 Examples of the hydrolysis inhibitor used in the biodegradable resin composition of the present invention include carbodiimide compounds such as polycarbodiimide compounds and monocarbodiimide compounds, and polycarbodiimide compounds are preferred from the viewpoint of moldability of biodegradable resin molded products. .

ポリカルボジイミド化合物としてはポリ(4,4’−ジフェニルメタンカルボジイミド)、ポリ(4,4’−ジシクロヘキシルメタンカルボジイミド)、ポリ(1,3,5−トリイソプロピルベンゼン)ポリカルボジイミド、ポリ(1,3,5−トリイソプロピルベンゼン及び1,5−ジイソプロピルベンゼン)ポリカルボジイミド等が挙げられ、モノカルボジイミド化合物としては、N,N’−ジ−2,6−ジイソプロピルフェニルカルボジイミド等が挙げられる。   Examples of the polycarbodiimide compound include poly (4,4′-diphenylmethanecarbodiimide), poly (4,4′-dicyclohexylmethanecarbodiimide), poly (1,3,5-triisopropylbenzene) polycarbodiimide, and poly (1,3,5). -Triisopropylbenzene and 1,5-diisopropylbenzene) polycarbodiimide and the like, and examples of the monocarbodiimide compound include N, N'-di-2,6-diisopropylphenylcarbodiimide.

上記カルボジイミド化合物は、生分解性樹脂成形品の成形性、耐熱性、耐衝撃性及び結晶核剤の耐ブルーム性を満たすために、単独又は2種以上組み合わせて用いてもよい。また、ポリ(4,4’−ジシクロヘキシルメタンカルボジイミド)はカルボジライトLA−1(日清紡績(株)製)を、ポリ(1,3,5−トリイソプロピルベンゼン)ポリカルボジイミド及びポリ(1,3,5−トリイソプロピルベンゼン及び1,5−ジイソプロピルベンゼン)ポリカルボジイミドはスタバクゾールP及びスタバクゾールP−100(Rhein Chemie社製)を、N,N’−ジ−2,6−ジイソプロピルフェニルカルボジイミドはスタバクゾールI(Rhein Chemie社製)をそれぞれ購入して使用することができる。
本発明の生分解性樹脂組成物における加水分解抑制剤の含有量は、生分解性樹脂成形品の成形性の観点から、ポリ乳酸樹脂100重量部に対し、0.05〜3重量部が好ましく、0.1〜2重量部が更に好ましい。
The carbodiimide compounds may be used alone or in combination of two or more in order to satisfy the moldability, heat resistance, impact resistance, and bloom resistance of the crystal nucleating agent of the biodegradable resin molded product. Poly (4,4′-dicyclohexylmethanecarbodiimide) is obtained from carbodilite LA-1 (manufactured by Nisshinbo Co., Ltd.), poly (1,3,5-triisopropylbenzene) polycarbodiimide and poly (1,3,5). -Triisopropylbenzene and 1,5-diisopropylbenzene) polycarbodiimide are stabuxol P and stabuxol P-100 (Rhein Chemie), N, N'-di-2,6-diisopropylphenylcarbodiimide is stabuxol I (Rhein Chemie) Can be purchased and used.
The content of the hydrolysis inhibitor in the biodegradable resin composition of the present invention is preferably 0.05 to 3 parts by weight with respect to 100 parts by weight of the polylactic acid resin from the viewpoint of moldability of the biodegradable resin molded product. 0.1 to 2 parts by weight is more preferable.

本発明の生分解性樹脂組成物は、上記以外に、更にヒンダードフェノール又はフォスファイト系の酸化防止剤、又は炭化水素系ワックス類やアニオン型界面活性剤である滑剤等の他の成分を含有することができる。酸化防止剤、滑剤のそれぞれの含有量は、ポリ乳酸樹脂100重量部に対し、0.05〜3重量部が好ましく、0.1〜2重量部が更に好ましい。   In addition to the above, the biodegradable resin composition of the present invention further contains other components such as a hindered phenol or phosphite antioxidant, or a hydrocarbon wax or a lubricant that is an anionic surfactant. can do. The content of each of the antioxidant and the lubricant is preferably 0.05 to 3 parts by weight, more preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the polylactic acid resin.

本発明の生分解性樹脂組成物は、上記以外の他の成分として、帯電防止剤、防曇剤、光安定剤、紫外線吸収剤、顔料、無機充填剤、防カビ剤、抗菌剤、発泡剤、難燃剤等を、本発明の目的達成を妨げない範囲で含有することができる。   The biodegradable resin composition of the present invention includes an antistatic agent, an antifogging agent, a light stabilizer, an ultraviolet absorber, a pigment, an inorganic filler, an antifungal agent, an antibacterial agent and a foaming agent as components other than those described above. In addition, flame retardants and the like can be contained as long as the object of the present invention is not hindered.

[生分解性樹脂成形品の製造法]
本発明の生分解性樹脂成形品の製造法は、本発明に係わる生分解性樹脂組成物のシートまたはフィルムから、上記工程(1)及び工程(2)によって相対結晶化度80%以上に結晶化させて成形品を得る方法である。
[Production method of biodegradable resin molded product]
The method for producing a biodegradable resin molded article of the present invention comprises crystallizing from a sheet or film of the biodegradable resin composition according to the present invention to a relative crystallinity of 80% or more by the above steps (1) and (2). This is a method of obtaining a molded product by making it.

本発明において、生分解性樹脂組成物のシートまたはフィルムは、本発明の生分解性樹脂組成物を、2軸押出機やバンバリーミキサー等で混合してペレット等の形状に整え、それを乾燥後に押出成形法、あるいはカレンダー成形機にて成形することにより得ることができる。   In the present invention, the biodegradable resin composition sheet or film is prepared by mixing the biodegradable resin composition of the present invention with a twin-screw extruder, a Banbury mixer or the like to prepare a pellet or the like and drying it. It can be obtained by molding using an extrusion molding method or a calendar molding machine.

本発明において、生分解性樹脂組成物の混合は、通常の方法によって行う事ができ、例えば、押出機等を用いて生分解性樹脂を溶融させながら、結晶核剤及び可塑剤を混合する方法等が挙げられる。混合する際の温度は、結晶核剤、可塑剤の分散性の観点から、ポリ乳酸樹脂の融点(Tm1)以上であり、好ましくはTm1〜Tm1+100℃の範囲であり、より好ましくはTm1〜Tm1+50℃の範囲である。具体的には、好ましくは170〜240℃であり、より好ましくは170〜220℃である。   In the present invention, the biodegradable resin composition can be mixed by an ordinary method, for example, a method of mixing a crystal nucleating agent and a plasticizer while melting the biodegradable resin using an extruder or the like. Etc. The temperature at the time of mixing is not less than the melting point (Tm1) of the polylactic acid resin from the viewpoint of dispersibility of the crystal nucleating agent and plasticizer, preferably in the range of Tm1 to Tm1 + 100 ° C, more preferably Tm1 to Tm1 + 50 ° C. Range. Specifically, it is preferably 170 to 240 ° C, more preferably 170 to 220 ° C.

尚、ポリ乳酸樹脂の融点(Tm1)は、JIS−K7121に基づく示差走査熱量測定(DSC)の昇温法による結晶融解吸熱ピーク温度より求められる値である。   In addition, melting | fusing point (Tm1) of polylactic acid resin is a value calculated | required from the crystal melting endothermic peak temperature by the temperature rising method of differential scanning calorimetry (DSC) based on JIS-K7121.

本発明において、生分解性樹脂組成物のシートまたはフィルム(ただし各々未延伸)を成形する方法はT−ダイ押出成形法、あるいはカレンダー成形法が挙げられる。その際、生分解性樹脂が非晶状態でも結晶状態でもよく、インラインで本発明の熱成形工程を行う場合は特に限定されないが、シートまたはフィルムを巻物として保存してから使用する場合は、耐熱性、耐ブロッキング性の観点から、相対結晶化度30%以上に結晶化させることが好ましい。
相対結晶化度30%以上に結晶化させる方法は、T−ダイ押出成形法、あるいはカレンダー成形法において、加熱したロールに接触させて熱処理を行い成形時に結晶化させるか、または非晶状態の成形されたシートまたはフィルムを、各々重ねない状態で恒温室でアニーリング処理を行い結晶化する方法が挙げられる。
In the present invention, a method for forming a sheet or film of the biodegradable resin composition (each unstretched) includes a T-die extrusion molding method or a calendar molding method. At that time, the biodegradable resin may be in an amorphous state or a crystalline state, and is not particularly limited when performing the thermoforming process of the present invention in-line, but when used after storing the sheet or film as a roll, From the viewpoints of stability and blocking resistance, it is preferable to crystallize to a relative crystallinity of 30% or more.
The method of crystallization to a relative crystallinity of 30% or more is a T-die extrusion molding method or a calendar molding method. The method of crystallizing the sheet | seat or film which annealed in the thermostatic chamber in the state which does not each overlap is mentioned.

本発明のシートまたはフィルムの厚みは使用目的により適宜選択される。明確な規定はないが、シートの厚みは100〜2000μmを差し、フィルムの厚みは100μm以下を指す。厚みは使用目的により適宜選択されるが、通常は50〜1000μmが好ましく、100〜800μmがさらに好ましい。一方、ポリ乳酸の透明性を生かした熱成形品を製造する場合は、結晶化したシートまたはフィルムにおいても厚さ0.5mmのシートまたはフィルムのヘイズ値が50%以下が好ましく、40%以下がさらに好ましく、20%以下が特に好ましく、10%以下が最も好ましい。
本発明における好ましい製造法として、下記方法1が挙げられる。
方法1:工程(1)でのシートまたはフィルムの加熱温度をTg以上Tm未満とし、工程(2)で金型温度を60〜100℃として熱成形する方法
The thickness of the sheet or film of the present invention is appropriately selected depending on the purpose of use. Although there is no clear regulation, the thickness of the sheet is 100 to 2000 μm, and the thickness of the film is 100 μm or less. The thickness is appropriately selected depending on the purpose of use, but is usually preferably 50 to 1000 μm, more preferably 100 to 800 μm. On the other hand, in the case of producing a thermoformed product making use of the transparency of polylactic acid, the haze value of a 0.5 mm thick sheet or film is preferably 50% or less, even 40% or less in a crystallized sheet or film. More preferably, 20% or less is particularly preferable, and 10% or less is most preferable.
The following method 1 is mentioned as a preferable manufacturing method in the present invention.
Method 1: A method in which the heating temperature of the sheet or film in step (1) is Tg or more and less than Tm, and the mold temperature is 60 to 100 ° C. in step (2) .

尚、生分解性樹脂組成物の融点(Tm)は、JIS−K7121に基づく示差走査熱量測定(DSC)の昇温法による結晶融解吸熱ピーク温度より求められる値である。また、生分解性樹脂組成物のガラス転移温度(Tg)は、結晶化度0%のシートまたはフィルムを、動的粘弾性測定における損失弾性率(E’’)のピーク温度より求められる値であり、その値は、実施例に記載された動的粘弾性の測定方法より求めることができる。   In addition, melting | fusing point (Tm) of a biodegradable resin composition is a value calculated | required from the crystal melting endothermic peak temperature by the temperature rising method of differential scanning calorimetry (DSC) based on JIS-K7121. The glass transition temperature (Tg) of the biodegradable resin composition is a value obtained from the peak temperature of the loss elastic modulus (E ″) in the dynamic viscoelasticity measurement of a sheet or film having a crystallinity of 0%. Yes, the value can be obtained from the dynamic viscoelasticity measuring method described in the examples.

本発明の工程(1)における加熱方法はセラミックヒータ等の輻射熱で非接触で加熱する方法や、他に熱風や加熱版による加熱方法が挙げられる。工程(1)における温度とは、加熱によって工程(2)に移行する直前に達するシートまたはフィルムの温度である。工程(1)にかかる時間はヒータの設定や装置によって変わってくるが、生産性の観点から1〜60秒が好ましく、2〜45秒がより好ましく、3〜30秒がさらに好ましく、5〜20秒が特に好ましい。   Examples of the heating method in the step (1) of the present invention include a non-contact heating method using radiant heat such as a ceramic heater, and a heating method using hot air or a heating plate. The temperature in the step (1) is the temperature of the sheet or film that is reached immediately before shifting to the step (2) by heating. The time required for the step (1) varies depending on the setting of the heater and the apparatus, but is preferably 1 to 60 seconds, more preferably 2 to 45 seconds, further preferably 3 to 30 seconds, and more preferably 5 to 20 from the viewpoint of productivity. Seconds are particularly preferred.

本発明の工程(2)における金型内での保持時間は、相対結晶化度80%以上を達成し、かつ生産性の観点から、5〜60秒が好ましく、8〜50秒がより好ましく、10〜45秒がさらに好ましく、10〜40秒が特に好ましい。   The holding time in the mold in the step (2) of the present invention achieves a relative crystallinity of 80% or more, and is preferably 5 to 60 seconds, more preferably 8 to 50 seconds, from the viewpoint of productivity. 10 to 45 seconds are more preferable, and 10 to 40 seconds are particularly preferable.

本発明の製造方法について、方法1の場合、非晶又は結晶化したシートまたはフィルムを、加熱処理によって金型に追従可能な柔軟性が得られるまで軟化させ、シートまたはフィルムと金型の間と密閉系とし、つぎに真空および/又は圧空、あるいはある程度プラグでアシストすることによって余張した後に真空および/又は圧空を利用して金型に追従させ、結晶化に適した温度で金型内に保持し、結晶化(相対結晶化度80%以上)させた成形品を得る。相対結晶化度30%未満のシートまたはフィルムを用いる場合は通常は方法1を用い、金型内で結晶化させる。その場合いずれの成形方法も適応可能である。一方、成形速度(生産性)の向上や、透明性の観点からは予め相対結晶化度30%以上に結晶化させたシートまたはフィルムを使用することが好ましい。成形体の透明性を維持する場合は、予め結晶化させたシートまたはフィルムの透明性が、厚さ0.5mmのシートまたはフィルムのヘイズ値が50%以下が好ましく、40%以下がさらに好ましく、20%以下が特に好ましく、10%以下が最も好ましい。この場合もいずれの成形方法も適応できるが、深絞りや意匠性の高い複雑な形状の転写、勘合部分等を有する成形品を製造する際には、成形圧力が0.1MPa以下の真空成形では満足のいく成形品が得られない場合があり、成形圧力が上げられる圧空成形法が好ましく、プラグアシスト法を組み合わせることがさらに好ましい。   About the manufacturing method of this invention, in the case of the method 1, an amorphous or crystallized sheet | seat or film is softened until the softness | flexibility which can follow a metal mold | die is obtained by heat processing, and between a sheet | seat or film and a metal mold | die. Next, after applying a vacuum and / or compressed air, or after extending the pressure by assisting with a plug to some extent, the vacuum and / or compressed air is used to follow the mold, and it is placed in the mold at a temperature suitable for crystallization. A molded article that is held and crystallized (relative crystallinity of 80% or more) is obtained. When using a sheet or film having a relative crystallinity of less than 30%, the method 1 is usually used for crystallization in a mold. In that case, any molding method can be applied. On the other hand, from the viewpoint of improving the molding speed (productivity) and transparency, it is preferable to use a sheet or film crystallized in advance to a relative crystallinity of 30% or more. When maintaining the transparency of the molded body, the transparency of the sheet or film crystallized in advance is preferably 50% or less, more preferably 40% or less, and the haze value of the 0.5 mm thick sheet or film, 20% or less is particularly preferable, and 10% or less is most preferable. In this case, any molding method can be applied, but when manufacturing a molded product having a deep drawing, a complicated shape transfer with high design, a fitting part, etc., in vacuum molding with a molding pressure of 0.1 MPa or less. In some cases, a satisfactory molded product cannot be obtained, and a pressure forming method that increases the forming pressure is preferable, and a plug assist method is more preferable.

生分解性樹脂がポリ乳酸の場合、本発明の方法1においては、成形性、偏肉の防止、外観向上の観点から、工程(1)の加熱温度は、相対結晶化度が80%に満たないシートまたはフィルムを成形する場合40〜140℃が好ましく、50〜120℃がさらに好ましく、60〜100℃が特に好ましい。また、相対結晶化度80%以上のシートまたはフィルムを成形する場合は80℃以上165℃未満が好ましく、90〜160℃がさらに好ましく、100〜150℃が特に好ましい。一方、工程(2)の金型温度は、透明性、成形性(成形速度)の観点から、60〜100℃が好ましく、65〜95℃がさらに好ましく、70〜90℃が特に好ましく、70〜85℃が最も好ましい。   When the biodegradable resin is polylactic acid, in the method 1 of the present invention, the heating temperature in the step (1) satisfies the relative crystallinity of 80% from the viewpoints of moldability, prevention of uneven thickness, and appearance improvement. When forming a non-sheet or film, 40 to 140 ° C is preferable, 50 to 120 ° C is more preferable, and 60 to 100 ° C is particularly preferable. Moreover, when shape | molding a sheet | seat or film with a relative crystallinity degree of 80% or more, 80 degreeC or more and less than 165 degreeC are preferable, 90-160 degreeC is further more preferable, and 100-150 degreeC is especially preferable. On the other hand, the mold temperature in the step (2) is preferably 60 to 100 ° C, more preferably 65 to 95 ° C, particularly preferably 70 to 90 ° C, from the viewpoint of transparency and moldability (molding speed). Most preferred is 85 ° C.

本発明の工程(2)における熱成形は、真空成形法、圧空成形法、真空圧空成形法、またこれらにプラグアシストを加えた熱成形法、マッチドモールド成形法等が挙げられ、真空成形法、圧空成形法、真空圧空成形法が好ましい。   Examples of the thermoforming in the step (2) of the present invention include a vacuum forming method, a pressure forming method, a vacuum pressure forming method, a thermo forming method with plug assist added thereto, a matched mold forming method, and the like. A pressure forming method and a vacuum pressure forming method are preferred.

本発明の製造法は、上記のような工程(1)及び工程(2)によって、相対結晶化度80%以上、好ましくは90%以上、更に好ましくは95%以上に結晶化させた成形品を得ることができる。   In the production method of the present invention, a molded product crystallized to a relative crystallinity of 80% or more, preferably 90% or more, more preferably 95% or more by the steps (1) and (2) as described above. Obtainable.

尚、本発明において、相対結晶化度とは、以下の式で表される結晶化度を言う。下記式中、70℃×60時間処理とは、成形直後の成形品を70℃で管理した恒温室に60時間放置した後、室温(好ましくは25℃)で放冷する処理を示す。   In the present invention, the relative crystallinity refers to the crystallinity represented by the following formula. In the following formula, the treatment at 70 ° C. × 60 hours indicates a treatment in which a molded product immediately after molding is left in a temperature-controlled room controlled at 70 ° C. for 60 hours and then allowed to cool at room temperature (preferably 25 ° C.).

相対結晶化度(%)=(成形直後の結晶化度(%))/(さらに70℃×60時間処理後の結晶化度(%))×100   Relative crystallinity (%) = (crystallinity immediately after molding (%)) / (crystallinity after 70 ° C. × 60 hours treatment (%)) × 100

以上のように成形後の結晶化度を規定する理由は、本発明の効果が、ベース樹脂が結晶化することによって発揮されるものであり、耐熱性、感温性、耐ブロッキング性、耐溶剤性等の向上も結晶化による効果であるためである。また、可塑剤による柔軟性向上(弾性率の低下と破断点伸度の向上)や耐衝撃性の向上も、結晶化することによって十分に効果を発揮することができる。   The reason for prescribing the crystallinity after molding as described above is that the effect of the present invention is exhibited by crystallization of the base resin, heat resistance, temperature sensitivity, blocking resistance, solvent resistance. This is because the improvement in properties and the like is also an effect of crystallization. In addition, the improvement in flexibility (decrease in elastic modulus and improvement in elongation at break) and the improvement in impact resistance by the plasticizer can be sufficiently effective by crystallization.

実施例1及び2、比較例1〜5
生分解性樹脂組成物として表1に示す本発明品(A〜B)及び比較品(C〜D)を、2軸押出機(ベルストルフ ZE40A)を使用して、シリンダーおよびダイの温度が190〜180℃の条件で溶融混練し、樹脂組成物のペレットを得た。
Examples 1 and 2 and Comparative Examples 1 to 5
The present invention products (A to B) and comparative products (C to D) shown in Table 1 as biodegradable resin compositions were used in a biaxial extruder (Berstorf ZE40A), and the cylinder and die temperatures were 190 to The mixture was melt-kneaded under conditions of 180 ° C. to obtain resin composition pellets.

得られたペレットは、70℃、減圧下で1日乾燥し、水分量を500ppm以下とした。そのペレットを用い、T−ダイ押出機((株)創建製 250mmTダイ)で、表2に示すシートを得た。得られたシートを、表3に示す条件で加熱処理(工程(1))して柔軟化した後、三和興業製真空成形機(金型は図1参照)を使用して、表3に示す条件で真空成形(工程(2))を行い、成形品を得た。   The obtained pellets were dried at 70 ° C. under reduced pressure for 1 day, and the water content was adjusted to 500 ppm or less. Using the pellets, a sheet shown in Table 2 was obtained with a T-die extruder (250 mm T die manufactured by Soken Co., Ltd.). After the obtained sheet was softened by heat treatment (step (1)) under the conditions shown in Table 3, it was changed to Table 3 using a Sanwa Kogyo vacuum forming machine (see FIG. 1 for the mold). Vacuum molding (step (2)) was performed under the conditions shown to obtain a molded product.

各樹脂組成物の成形性と、得られた成形品について下記の方法で測定した結晶化度、透明性の評価結果を表3に示す。尚、表3の成形法の欄において、方法1とは、上記[生分解性樹脂成形品の製造法]の欄で説明した方法1を意味する。
また、実施例1、2及び比較例2、4、5で得られた成形品の耐ブロッキング性、耐熱性、柔軟性・感温性・耐熱性、耐衝撃性及び耐ブリード性を下記の方法で測定した。これらの結果を表4に示す。
Table 3 shows the moldability of each resin composition and the crystallinity and transparency evaluation results of the obtained molded product measured by the following method. Incidentally, in the column of molding of Table 3, the method 1, means a method 1 described in the above section [biodegradable resin molded article production method.
Further, the molded products obtained in Examples 1 and 2 and Comparative Examples 2, 4, and 5 were tested for blocking resistance, heat resistance, flexibility / temperature sensitivity / heat resistance, impact resistance and bleed resistance by the following methods. Measured with These results are shown in Table 4.

<結晶化度>
得られたシート又は成形品の底部平面からサンプルを切り出し、広角X線回折測定装置(理学電機製 RINT2500VPC,光源CuKα,管電圧40kV,管電流120mA)を使用し、2θ=5〜30°の範囲の非晶及び結晶のピーク面積を解析して結晶化度を求めた。
<Crystallinity>
A sample is cut out from the bottom plane of the obtained sheet or molded product, and using a wide-angle X-ray diffraction measurement device (RINT2500VPC, light source CuKα, tube voltage 40 kV, tube current 120 mA manufactured by Rigaku Corporation), 2θ = 5-30 ° The crystallinity was determined by analyzing the amorphous and crystalline peak areas.

<透明性>
得られたシート又は成形品の底部平面からサンプルを切り出し、JIS−K7105規定の積分球式光線透過率測定装置(ヘイズメーター)を用い、ヘイズ値を測定した。数字の小さい方が透明性が良好であることを示す。
<Transparency>
A sample was cut out from the bottom plane of the obtained sheet or molded product, and the haze value was measured using an integrating sphere light transmittance measuring device (haze meter) defined in JIS-K7105. Smaller numbers indicate better transparency.

<耐ブロッキング性>
得られた成形品を10個重ね合わせて80℃に管理したオーブンに入れて4時間処理し、室温で放冷した後に、サンプルの剥離試験を行い、下記の基準で評価した。
○:サンプル同士が粘着することなく、容易に剥離する。
×:サンプル同士が粘着してしまい、剥離できない。
<耐熱性>
得られた成形品に90℃の熱水を容量の8割入れ、変形度合いを目視で観察した。
○:全く変形が見られない。
×:変形を起こす。
××:大きく変形を起こす。
<Blocking resistance>
Ten pieces of the obtained molded articles were placed in an oven controlled at 80 ° C. and treated for 4 hours, allowed to cool at room temperature, a sample peel test was performed, and the following criteria were evaluated.
○: The samples peel easily without sticking to each other.
X: The samples stick to each other and cannot be peeled off.
<Heat resistance>
The obtained molded product was filled with 80% hot water at 80% capacity, and the degree of deformation was visually observed.
○: Deformation is not seen at all.
X: Deformation occurs.
XX: Deforms greatly.

<柔軟性・感温性・耐熱性>
得られた成形品の平面部分からサンプルを切り出し、JIS−K7198に基づいて、動的粘弾性測定装置(アイティー計測制御製 DVA-200)にて、周波数50Hz、昇温速度2℃/minにおいて−20℃から150℃の温度領域における貯蔵弾性率(E’)の温度依存性、ならびに0℃、25℃及び60℃における貯蔵弾性率(E’)を測定した。
<Flexibility, temperature sensitivity, heat resistance>
A sample is cut out from the flat portion of the obtained molded product, and based on JIS-K7198, using a dynamic viscoelasticity measuring device (DVA-200 manufactured by IT Measurement Control) at a frequency of 50 Hz and a temperature rising rate of 2 ° C./min. The temperature dependence of the storage elastic modulus (E ′) in the temperature range of −20 ° C. to 150 ° C. and the storage elastic modulus (E ′) at 0 ° C., 25 ° C. and 60 ° C. were measured.

<耐衝撃性>
成形品底部の角の部分をハンマーで衝撃を加え、耐衝撃性を観察した。
○:全く割れない
×:破損、クラックが入る。
<耐ブリード性>
得られた成形品を70℃の恒温室に1週間放置し、その表面における可塑剤のブリードの有無を肉眼で観察した。
<Impact resistance>
The corner of the bottom of the molded product was impacted with a hammer and the impact resistance was observed.
○: Not cracked at all ×: Breakage or cracks occur.
<Bleed resistance>
The obtained molded article was left in a thermostatic chamber at 70 ° C. for one week, and the presence or absence of a plasticizer bleed on the surface was observed with the naked eye.

Figure 0004260794
Figure 0004260794

*1:ポリ乳酸樹脂(三井化学(株)製、LACEA H−400)
*2:可塑剤 コハク酸とトリエチレングリコールモノメチルエーテルとのジエステル
*3:結晶核剤 エチレンビス12−ヒドロキシステアリン酸アミド(日本化成(株)製、スリパックス H)
*4:加水分解抑制剤 ポリカルボジイミド(日清紡績(株)製、カルボジライトLA−1)
*5:日本タルク(株)製 、Micro Ace P-6
*6:ステアリン酸モノアミド(花王(株)製、脂肪酸アマイドS)
*7:アセチルクエン酸トリブチル(田岡化学工業(株)製 ATBC)
* 1: Polylactic acid resin (manufactured by Mitsui Chemicals, LACEA H-400)
* 2: Plasticizer Diester of succinic acid and triethylene glycol monomethyl ether * 3: Crystal nucleating agent Ethylene bis 12-hydroxystearic acid amide (Nihon Kasei Co., Ltd., SLIPAX H)
* 4: Hydrolysis inhibitor polycarbodiimide (Nisshinbo Co., Ltd., Carbodilite LA-1)
* 5: Nihon Talc Co., Ltd., Micro Ace P-6
* 6: Stearic acid monoamide (manufactured by Kao Corporation, fatty acid amide S)
* 7: Tributyl acetylcitrate (ATBC, manufactured by Taoka Chemical Co., Ltd.)

Figure 0004260794
Figure 0004260794

Figure 0004260794
Figure 0004260794

Figure 0004260794
Figure 0004260794

実施例で用いた金型を示す図であり、(A)が平面図、(B)がa−a’線断面図である。It is a figure which shows the metal mold | die used in the Example, (A) is a top view, (B) is the sectional view on the a-a 'line.

Claims (2)

ポリ乳酸樹脂と、分子中に2個以上のエステル基を有し、エチレンオキサイドの平均付加モル数が2〜9の化合物からなる可塑剤と、分子中にエステル基、水酸基及びアミド基から選ばれる少なくとも1種の基を2つ以上有する脂肪族化合物からなる結晶核剤と、加水分解抑制剤とを含有し、ポリ乳酸樹脂100重量部に対する可塑剤の含有量が5〜70重量部、結晶核剤の含有量が0.1〜5重量部である生分解性樹脂組成物からなるシートまたはフィルムを熱成形する生分解性樹脂成形品の製造法であって、下記工程(1)及び工程(2)によって相対結晶化度80%以上に結晶化させた成形品を得る、生分解性樹脂成形品の製造法。
工程(1):生分解性樹脂組成物からなるシートまたはフィルムを、生分解性樹脂組成物のガラス転移温度(Tg)以上生分解性樹脂組成物の融点(Tm)未満の温度に加熱する工
工程(2):工程(1)で得られたシートまたはフィルムを、金型温度60〜100℃で、熱成形する工程
A polylactic acid resin, a plasticizer comprising a compound having 2 or more ester groups in the molecule and an average added mole number of ethylene oxide of 2 to 9, and an ester group, a hydroxyl group and an amide group in the molecule are selected. A crystal nucleating agent composed of an aliphatic compound having at least two groups of at least one kind and a hydrolysis inhibitor, and a plasticizer content of 5 to 70 parts by weight with respect to 100 parts by weight of a polylactic acid resin. A method for producing a biodegradable resin molded article, in which a sheet or film made of a biodegradable resin composition having an agent content of 0.1 to 5 parts by weight is thermoformed, comprising the following steps (1) and ( A method for producing a biodegradable resin molded product, which obtains a molded product crystallized to a relative crystallinity of 80% or more by 2)
Step (1): heat the sheet or film made of a biodegradable resin composition, to a temperature below the melting point (Tm) of the glass transition temperature (Tg) of more biodegradable resin composition of the biodegradable resin composition Engineering as step (2): step a sheet or film obtained in (1), at a mold temperature of 60 to 100 [° C., the step of thermoforming
工程(2)における熱成形が、真空成形、圧空成形又は真空圧空成形である、請求項1記載の生分解性樹脂成形品の製造法。   The method for producing a biodegradable resin molded article according to claim 1, wherein the thermoforming in the step (2) is vacuum forming, pressure forming or vacuum pressure forming.
JP2005326407A 2005-11-10 2005-11-10 Manufacturing method of biodegradable resin molded products Active JP4260794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005326407A JP4260794B2 (en) 2005-11-10 2005-11-10 Manufacturing method of biodegradable resin molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005326407A JP4260794B2 (en) 2005-11-10 2005-11-10 Manufacturing method of biodegradable resin molded products

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008285027A Division JP4727706B2 (en) 2008-11-06 2008-11-06 Manufacturing method of biodegradable resin molded products.

Publications (2)

Publication Number Publication Date
JP2007130895A JP2007130895A (en) 2007-05-31
JP4260794B2 true JP4260794B2 (en) 2009-04-30

Family

ID=38152947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005326407A Active JP4260794B2 (en) 2005-11-10 2005-11-10 Manufacturing method of biodegradable resin molded products

Country Status (1)

Country Link
JP (1) JP4260794B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075775A1 (en) * 2006-12-19 2008-06-26 Kao Corporation Polylactic acid resin composition and method for producing polylactic acid resin molded body
JP5804672B2 (en) * 2007-06-29 2015-11-04 ユニチカ株式会社 Crystalline polylactic acid resin composition and molded article comprising the same
CN102414273B (en) 2009-03-19 2013-08-07 花王株式会社 Method for promoting crystallization of biodegradable resin composition
CN102428144A (en) * 2009-05-19 2012-04-25 丰田自动车株式会社 Polylactic acid resin compositions and manufacturing method therefor
JP2012126433A (en) * 2010-12-16 2012-07-05 Kao Corp Packaging box, and method of manufacturing the same
US20130287903A1 (en) 2011-02-07 2013-10-31 Kao Corporation Polylactic acid resin composition
JP5882710B2 (en) 2011-12-12 2016-03-09 第一工業製薬株式会社 Polylactic acid resin composition and resin molded body thereof
JP5936953B2 (en) 2011-12-12 2016-06-22 第一工業製薬株式会社 Polylactic acid resin composition and resin molded body thereof
JP5882709B2 (en) 2011-12-12 2016-03-09 第一工業製薬株式会社 Polylactic acid resin composition and resin molded body thereof
US9062199B2 (en) 2012-02-22 2015-06-23 Kao Corporation Molded product composed of polyester resin composition
EP2851388B1 (en) * 2012-05-18 2016-09-21 Kao Corporation Polylactic acid resin sheet for thermal molding use
JP6029966B2 (en) 2012-12-14 2016-11-24 第一工業製薬株式会社 Polylactic acid resin composition and resin molded product thereof
WO2015016197A1 (en) * 2013-07-31 2015-02-05 花王株式会社 Polylactic acid resin composition
JP2016113539A (en) * 2014-12-15 2016-06-23 花王株式会社 Polylactic acid resin composition
JP6494086B2 (en) * 2014-12-26 2019-04-03 花王株式会社 Manufacturing method of thermoforming sheet
JP2016183222A (en) * 2015-03-25 2016-10-20 花王株式会社 Polylactic acid resin composition

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3217240B2 (en) * 1995-07-10 2001-10-09 三菱樹脂株式会社 Polylactic acid based molded body
ES2295384T3 (en) * 2001-08-20 2008-04-16 Cargill Dow Llc METHOD TO PRODUCE SEMICRISTALINE POLI (LACTIC ACID) ITEMS.
JP2004204128A (en) * 2002-12-26 2004-07-22 Mitsubishi Plastics Ind Ltd Polylactic acid polymer composition for thermoforming, polylactic acid polymer sheet, and thermoformed product using the sheet
JP4792690B2 (en) * 2003-06-10 2011-10-12 東レ株式会社 Resin composition and molded article comprising the same
JP4379019B2 (en) * 2003-07-04 2009-12-09 東レ株式会社 Electrical / electronic parts
JP2005060474A (en) * 2003-08-08 2005-03-10 Toyota Central Res & Dev Lab Inc Aliphatic polyester composition and its molded article
JP4437684B2 (en) * 2004-03-23 2010-03-24 花王株式会社 Additive for polyester resin
JP2004216378A (en) * 2004-04-05 2004-08-05 Mitsubishi Plastics Ind Ltd Shredder dust for recycling, lactic acid resin molding using the same, and method for its recycling
JP2005280361A (en) * 2005-04-15 2005-10-13 Mitsubishi Plastics Ind Ltd Production method of molded product

Also Published As

Publication number Publication date
JP2007130895A (en) 2007-05-31

Similar Documents

Publication Publication Date Title
JP4260794B2 (en) Manufacturing method of biodegradable resin molded products
JP4611214B2 (en) Biodegradable resin composition
JP4112568B2 (en) Biodegradable resin composition
JP4699180B2 (en) Manufacturing method of biodegradable resin molded products.
JP4246196B2 (en) Manufacturing method of biodegradable resin molded products.
US11299622B2 (en) Polylactic acid resin composition and polylactic acid resin molded article
TW201343776A (en) Molded product composed of polyester resin composition
JP5143374B2 (en) Biodegradable resin composition
JP2008173966A (en) Manufacturing method for polylactic acid resin molded body
JP4727706B2 (en) Manufacturing method of biodegradable resin molded products.
JP4252570B2 (en) Pellet manufacturing method
JP6430803B2 (en) Thermoforming sheet
JP2008031375A (en) Lactate-based resin composition, method for molding thermally molded article and thermally molded article
JP4800348B2 (en) Manufacturing method of biodegradable resin molded products.
JP4870037B2 (en) Biodegradable resin composition
JP5225550B2 (en) Polylactic acid resin composition
JP2010150385A (en) Polylactic acid resin composition
JP5999686B2 (en) Heat-resistant polylactic acid-based molded body and method for producing the same
JP2009079188A (en) Polylactic acid resin composition
JP6494086B2 (en) Manufacturing method of thermoforming sheet
JP2008031376A (en) Lactate-based resin composition, molded article, thermally molded article and method for producing thermally molded article
JP6777889B2 (en) Polyester resin composition containing aminotriazine derivative and fatty acid
JPWO2008114871A1 (en) Polylactic acid-based transparent heat-resistant molded article and method for producing the same
JP2011046005A (en) Poly(lactic acid)-based heat-resistant container and method for manufacturing the same
JP2010150384A (en) Polylactic acid resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071001

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080409

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4260794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250