[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4243326B2 - ロボットアームの制御装置及び制御方法、ロボット、及びプログラム - Google Patents

ロボットアームの制御装置及び制御方法、ロボット、及びプログラム Download PDF

Info

Publication number
JP4243326B2
JP4243326B2 JP2008536873A JP2008536873A JP4243326B2 JP 4243326 B2 JP4243326 B2 JP 4243326B2 JP 2008536873 A JP2008536873 A JP 2008536873A JP 2008536873 A JP2008536873 A JP 2008536873A JP 4243326 B2 JP4243326 B2 JP 4243326B2
Authority
JP
Japan
Prior art keywords
robot arm
person
information
work posture
risk level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008536873A
Other languages
English (en)
Other versions
JPWO2009001550A1 (ja
Inventor
優子 津坂
安直 岡▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Application granted granted Critical
Publication of JP4243326B2 publication Critical patent/JP4243326B2/ja
Publication of JPWO2009001550A1 publication Critical patent/JPWO2009001550A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0003Home robots, i.e. small robots for domestic use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • B25J9/1676Avoiding collision or forbidden zones
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36429Power assisted positioning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39478Control force and posture of hand

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Description

本発明は、人とロボットが協働して作業(例えば、物体運搬作業)を行う際のロボットアームの制御装置及び制御方法、ロボットアームの制御装置を有するロボット、ロボットアームの制御プログラム、集積電子回路に関する。
近年、介護ロボット又は家事支援ロボットなどの家庭用ロボットが盛んに開発されるようになってきた。家庭ロボットは産業用ロボットとは異なり人の近くで作業するため、人との物理的な接触が不可欠であり、安全性の面からロボットが機構的に柔らかく、動きについても柔軟である必要がある。
ロボット装置の一例として、ロボットアームに加わった人間との接触力を検知し、アームに大きな力が加わった時には復元力を小さくして安全性を高め、アームに微小な力が加わっている時には復元力を大きくして、動作精度を確保する制御装置動作精度を確保する技術が提案されている(特許文献1を参照)。
また、肢体に装着した装置の動作によって肢体を動かす目的で、装置に取り付けられた力センサー又は位置・角度センサーのセンシング情報をもとに、力制御又は位置制御によって装置の動作を制御する肢体制御装置の制御装置において、駆動装置の動作中に、装置に装着した肢体への負荷を常に監視し、肢体への負荷が、設定した肢体への過負荷値Flimitに対しその値より小さく設定された値Fstartに到達した時点で、駆動装置の動作が持つ全自由度のうち、ある自由度方向のインピーダンス定数を、前記過負荷値Flimitへ肢体負荷値が近づくに応じて変化させ、その自由度方向の動作を仮想的にフリーにしていく技術が提案されている(特許文献2を参照)。
さらに、入力された肢体のパラメータにより、代表的な運動パターンを生成し、肢体駆動装置の目標軌道を算出し、肢体のパラメータの情報のみを用いて肢体駆動装置に他動運動と自動運動、抵抗運動のいずれかの動作を切替える技術が提案されている(特許文献3を参照)。
特開平10−329071号公報 特開平9−154900号公報 特開平10−192350号公報
しかしながら、特許文献1のような従来の技術においては、ロボットアームに大きな力が加わった時には復元力を小さくするものであり、特許文献2では、肢体への負荷が大きくなろうとする時、無理な負荷をかけないようにするものであり、特許文献3では、肢体の動きに応じて他動運動、自動運動、抵抗運動を切り替えるものであるため、操作する人の姿勢が悪いために、又は、操作する人の力が入りきらず手が震えることで誤操作し、ロボットアームが把持した運搬物が傾き運搬物の中身を落下させたり、運搬物が硬い物体又は角の尖った物体だと、運搬物が動くことで人に負担をかける与える可能性があるという課題があった。
本発明の目的は、このような課題に鑑みてなされたものであり、ロボットアームと協働して物体運搬作業する人の姿勢又は体調が悪くても、ロボットアームが傾いて運搬物体を落下させたりすることのない、安全なロボット制御を実現できる、ロボットアームの制御装置及び制御方法、ロボット、ロボットアームの制御プログラム、集積電子回路を提供することにある。
前記目的を達成するために、本発明は以下のように構成する。
本発明の第1態様によれば、ロボットアームの制御装置であって、
人と前記ロボットアームとが協働して物体を運搬するときの前記ロボットアームと協働する前記人の作業姿勢に関する作業姿勢情報を取得する作業姿勢情報取得手段と、
前記作業姿勢情報取得手段で取得された前記作業姿勢情報に基づき、前記人の物体運搬時の危険度合いを算出する危険度合い算出手段と、
前記危険度合い算出手段により算出された前記危険度合いが大きい程、前記ロボットアームの剛性を高めるように制御する剛性制御手段とを有するロボットアームの制御装置を提供する。
本発明の第18態様によれば、ロボットアームの制御装置であって、
前記ロボットアームの位置情報と前記ロボットアームと協働する人の位置情報を取得する位置情報取得手段と、
前記ロボットアームの位置情報と前記ロボットアームと協働する前記人の前記位置情報との相対位置を算出し、算出した相対位置に応じて危険度合いを算出する危険度合い算出部と、
前記危険度合い算出部で算出された前記危険度合いが大きい程、前記ロボットアームの剛性を高めるように制御する剛性制御手段とを有するロボットアームの制御装置を提供する。
本発明の第24態様によれば、ロボットアームの制御方法であって、
作業姿勢情報としての、人と前記ロボットアームとが協働して物体を運搬するときの前記ロボットアームと協働する前記人の作業姿勢に関する作業姿勢情報に基づき、前記人の前記物体運搬時の危険度合いを危険度合い算出手段で算出し、
前記危険度合い算出手段で算出された前記危険度合いが大きい程、前記ロボットアームを高剛性に剛性制御手段で制御するロボットアームの制御方法を提供する。
本発明の第26態様によれば、コンピュータに実行させるためのロボットアームの制御プログラムであって、
人と前記ロボットアームとが協働して物体を運搬するときの前記ロボットアームと協働する前記人の作業姿勢に関する作業姿勢情報に基づき、前記人の前記物体運搬時の危険度合いを算出する危険度合い算出ステップと、
前記危険度合い算出ステップで算出された前記危険度合いが大きい程、前記ロボットアームを高剛性に制御する剛性制御手段を有するロボットアームの制御プログラムを提供する。
本発明の第27態様によれば、ロボットアームを制御する集積電子回路であって、
人と前記ロボットアームとが協働して物体を運搬するときの前記ロボットアームと協働する前記人の作業姿勢に関する作業姿勢情報を取得する作業姿勢情報取得手段と、
前記作業姿勢情報に基づき、前記人の前記物体運搬時の危険度合いを算出する危険度合い算出手段と、
前記危険度合い算出手段で算出された前記危険度合いが大きい程、前記ロボットアームを高剛性に制御する剛性制御手段とを有する集積電子回路を提供する。
本発明の第28態様によれば、ロボットアームの制御方法であって、
協働運搬情報としての、前記ロボットアームの位置情報と前記ロボットアームと協働する人の位置情報との相対位置を危険度合い算出部で算出し、算出した相対位置に応じて危険度合いを前記危険度合い算出部で算出し、
算出された前記危険度合いが大きい程、前記ロボットアームを高剛性に剛性制御手段で制御するロボットアームの制御方法を提供する。
本発明の第30態様によれば、コンピュータに実行させるためのロボットアームの制御プログラムであって、
前記ロボットアームの位置情報と人と前記ロボットアームとが協働して物体を運搬するときの前記ロボットアームと協働する前記人の位置に関する情報を取得する位置情報取得ステップと、前記ロボットアームの位置情報と前記ロボットアームと協働する前記人の前記位置情報との相対位置を算出し、算出した相対位置に応じて危険度合いを算出する危険度合い算出する危険度合い算出ステップと、
前記危険度合い算出部で算出された前記危険度合いが大きい程、前記ロボットアームを高剛性に制御するステップとを有するロボットアームの制御プログラムを提供する。
本発明の第31態様によれば、ロボットアームの制御する集積電子回路であって、
前記ロボットアームの位置情報と前記ロボットアームと協働する人の位置情報を取得する位置情報取得手段と、
前記ロボットアームの位置情報と前記ロボットアームと協働する前記人の前記位置情報との相対位置を算出し、算出した相対位置に応じて危険度合いを算出する危険度合い算出する危険度合い算出手段と、
前記危険度合い算出手段で算出された前記危険度合いが大きい程、前記ロボットアームを高剛性に制御する剛性制御手段とを有する集積電子回路を提供する。
以上述べたように、本発明のロボットアームの制御装置及びロボットによれば、危険度合い算出手段と剛性制御手段とを少なくとも有することにより(さらには、例えば、インピーダンス設定手段、インピーダンス制御手段を有することにより)、ロボットアームと協働する人の作業姿勢情報(さらには、体調情報又はロボットアームと人との相対位置などの協働運搬情報)に応じて、ロボットアームの剛性を高めるように制御する(例えば、ロボットアームの機械インピーダンス設定値が適切に設定される)ので、操作する人の姿勢が悪いために、又は、操作する人の力が入りきらず手が震えることで誤操作し、ロボットアームが運搬している運搬物体が傾き運搬物体の中身を落下させたり、運搬物体が硬い物体又は角の尖った物体だと、運搬物体が動くことで人に負担をかけることのない、安全なロボット制御が可能となる。
また、本発明のロボットアームの制御方法及び制御プログラムによれば、前記ロボットアームと協働する人の作業姿勢に関する作業姿勢情報に基づき前記ロボットアームを高剛性に制御する(例えば、ロボットアームの機械インピーダンス設定値を設定し、前記設定された前記機械インピーダンス設定値に、前記ロボットアームの機械インピーダンスの値を制御する)ことにより、前記ロボットアームと協働する前記人の作業姿勢に関する作業姿勢情報(例えば、前記人の状態などの協働運搬情報)に応じて、ロボットアームの剛性を高めるように適切に制御される(例えば、ロボットアームの機械インピーダンス設定値が適切に設定されて制御される)ので、前記人の姿勢が悪いために、又は、前記人の力が入りきらず手が震えることで誤操作し、ロボットアームが運搬している運搬物体が傾き運搬物体の中身を落下させたり、運搬物体が硬い物体又は角の尖った物体だと、運搬物体が動くことで人に負担をかけることのない、安全なロボット制御が可能となる。
以下に、本発明にかかる実施の形態を図面に基づいて詳細に説明する。
以下、図面を参照して本発明における実施形態を詳細に説明する前に、本発明の種々の態様について説明する。
本発明の第1態様によれば、ロボットアームの制御装置であって、
人と前記ロボットアームとが協働して物体を運搬するときの前記ロボットアームと協働する前記人の作業姿勢に関する作業姿勢情報を取得する作業姿勢情報取得手段と、
前記作業姿勢情報取得手段で取得された前記作業姿勢情報に基づき、前記人の物体運搬時の危険度合いを算出する危険度合い算出手段と、
前記危険度合い算出手段により算出された前記危険度合いが大きい程、前記ロボットアームの剛性を高めるように制御する剛性制御手段とを有するロボットアームの制御装置を提供する。
本発明の第2態様によれば、前記危険度合い算出手段により算出された前記危険度合いが大きい程、前記ロボットアームの機械インピーダンス設定値を大きくするように設定するインピーダンス設定手段をさらに備え、
前記剛性制御手段は、前記インピーダンス設定手段の設定した前記機械インピーダンス設定値に、前記ロボットアームの機械インピーダンスの値を制御する第1態様に記載のロボットアームの制御装置を提供する。
このような構成により、協働運搬情報の一例としての物体運搬時の人の作業姿勢に関する作業姿勢情報により機械インピーダンス設定値を設定し、制御することができる。
ここで、本発明の第3態様によれば、前記インピーダンス設定手段は、前記物体運搬時の前記危険度合いに基づき、前記ロボットアームの手先の並進方向及び回転方向の6次元の方向の機械インピーダンス設定値を個別に設定する第2の態様に記載のロボットアームの制御装置を提供する。
このような構成により、物体運搬時の人の作業姿勢により6次元の方向別に機械インピーダンス設定値を設定し、制御することができる。
さらに、本発明の第4態様によれば、前記インピーダンス設定手段は、前記物体運搬時の前記危険度合いに基づき、前記手先の前記並進方向の剛性よりも前記回転方向の剛性を高くすることで、前記ロボットアームが運搬している前記物体を水平に保つように前記機械インピーダンス設定値をそれぞれ設定する第3の態様に記載のロボットアームの制御装置を提供する。
このような構成により、物体運搬時の人の作業姿勢により前記ロボットアームが運搬している物体を水平に保つよう設定し、制御することができる。
さらに、本発明の第5態様によれば、前記作業姿勢情報は、前記ロボットアームと協働する前記人の協働している側の肘関節角度の情報を有し、前記危険度合い算出手段は、前記物体運搬時の前記肘関節角度が大きいほど前記危険度合いを大きく算出し、前記肘関節角度が小さいほど前記危険度合いを小さく算出する第1の態様に記載のロボットアームの制御装置を提供する。
このような構成により、人の作業時の肘関節角度に応じて機械インピーダンス設定値を設定し、人の作業時の肘関節角度が大きいほど前記危険度合いを大きく算出することができる。
さらに、本発明の第6態様によれば、前記作業姿勢情報は、前記ロボットアームと協働する前記人の協働している側の手先位置の情報と前記人の胸骨から床面までの高さである胸骨上縁高の情報を有し、
前記危険度合い算出手段は、前記手先位置の高さが前記胸骨上縁高の高さより大きいほど前記危険度合いを大きく算出し、前記手先位置の高さが前記胸骨上縁高の高さより小さいほど前記危険度合いを小さく算出する第1の態様に記載のロボットアームの制御装置を提供する。
このような構成により、前記ロボットアームを操作する人の前記手先位置の高さが前記胸骨上縁高の高さより大きいほど前記危険度合いを大きく算出することができる。
さらに、本発明の第7態様によれば、前記作業姿勢情報は、前記ロボットアームと協働する前記人の重心座標の情報と前記人の床面での支持面である支持基底面の情報を有し、前記危険度合い算出手段は、前記人の重心座標が前記人の支持基底面の範囲内にあるかどうかを判定し、範囲外にある場合は前記人の重心座標が前記支持基底面からの距離が大きいほど前記危険度合いを大きく算出する第1の態様に記載のロボットアームの制御装置を提供する。
このような構成により、前記人の重心座標が前記人の支持基底面の範囲内にあるかどうかを判定し、範囲外にある場合は前記支持基底面からの距離が大きいほど前記危険度合いを大きく算出することを特徴とする。
本発明の第8態様によれば、前記作業姿勢情報は前記ロボットアームと協働する前記人の利き手の情報を有し、前記危険度合い算出手段は、前記人の利き手で前記ロボットアームを操作しているかどうかを判定し、前記人が前記利き手で操作している場合の前記危険度合いを、前記人が前記利き手で操作していない場合の前記危険度合いよりも小さく算出する第1の態様に記載のロボットアームの制御装置を提供する。
このような構成により、前記人の利き手で前記ロボットアームを操作しているかどうかを判定し、利き手でない場合は前記危険度合いを前記危険度合い算出手段で大きく算出することができる。
本発明の第9態様によれば、前記人と前記ロボットアームとが協働して物体を運搬するときの前記ロボットアームと協働する前記人の体調に関する情報である体調情報を取得する体調情報取得手段をさらに備え、
前記危険度合い算出手段は、前記作業姿勢情報と前記体調情報に基づき、前記人の物体運搬時の危険度合いを算出する第1の態様に記載のロボットアームの制御装置を提供する。
このような構成により、物体運搬時の人の前記体調情報に基づき危険度合いを算出することができる。
さらに、本発明の第10態様によれば、前記危険度合い算出手段は、前記体調情報が正常な体調情報範囲内であるかどうかを判定し、正常な体調情報範囲外にある場合は、前記体調情報と前記正常な体調情報範囲との差異が大きいほど前記危険度合いを大きく算出する第9の態様に記載のロボットアームの制御装置を提供する。
このような構成により、前記体調情報が正常な体調情報範囲内であるかどうかを判定し、範囲外にある場合は前記正常な体調情報範囲からの差異が大きいほど前記危険度合いを大きく算出することができる。
さらに、本発明の第11態様によれば、前記体調情報は、前記ロボットアームと協働する前記人の前記ロボットアームと協働する側の腕の手の振動度の情報と、前記ロボットアームと協働する前記人の心拍数の情報と、前記ロボットアームと協働する前記人の血圧の情報と、前記ロボットアームと協働する前記人の体温の情報とのうちの少なくとも1つの情報を有する第9の態様に記載のロボットアームの制御装置を提供する。
このような構成によれば、前記振動度の情報、前記心拍数の情報、血圧の情報、前記体温の情報に基づき危険度合いを算出することができる。
さらに、本発明の第12態様によれば、さらに、前記作業姿勢情報取得手段は、前記ロボットアームが運搬している前記物体の物体特性に関する物体特性情報を取得し、
前記インピーダンス設定手段は、前記物体運搬時の前記危険度合いと前記前記物体特性情報に基づき前記ロボットアームの機械インピーダンス設定値を設定する第1又は9の態様に記載のロボットアームの制御装置を提供する。
このような構成により、作業姿勢情報取得手段で取得された作業姿勢情報と前記ロボットアームが運搬している物体の物体特性に関する情報に基づき、ロボットアームの剛性を制御することができる(例えば、機械インピーダンス設定値を設定し、制御することができる)。
さらに、本発明の第13態様によれば、前記インピーダンス設定手段は、前記危険度合いと前記物体特性情報に基づき、前記ロボットアームの手先の並進方向及び回転方向の6次元の方向の機械インピーダンス設定値を個別に設定する第12の態様に記載のロボットアームの制御装置を提供する。
このような構成により、前記危険度合いと前記物体特性情報に基づき、機械インピーダンス設定値を設定し、制御することができる。
さらに、本発明の第14態様によれば、前記インピーダンス設定手段は、前記危険度合いと前記物体特性情報に基づき、前記ロボットアームの前記手先の前記並進方向の剛性よりも前記回転方向の剛性を高くすることで、前記ロボットアームが運搬している前記物体を水平に保つように前記機械インピーダンス設定値をそれぞれ設定する第12の態様に記載のロボットアームの制御装置を提供する。
このような構成により、前記ロボットアームが運搬している物体を水平に保つよう設定することができる。
さらに、本発明の第15態様によれば、前記危険度合い算出手段は、前記物体特性情報が閾値より大きい場合は、危険度合いを大きく算出し、前記物体特性情報が閾値より小さい場合は、危険度合いを小さく算出する第12の態様に記載のロボットアームの制御装置を提供する。
このような構成により、前記危険度合い算出手段は、前記物体特性情報が閾値より大きい場合は、危険度合いを大きくし、前記物体特性情報が閾値より小さい場合は、危険度合いを小さくすることができる。
さらに、本発明の第16態様によれば、前記物体特性情報は、前記ロボットアームが運搬している前記物体の物理特性情報若しくは前記物体の属性情報の少なくとも1つの情報を有し、前記インピーダンス設定手段は、前記危険度合い算出手段で算出した前記危険度合いと、前記物理特性情報若しくは属性情報の少なくとも1つの情報に基づいて前記ロボットアームの機械インピーダンス設定値を設定する第12の態様に記載のロボットアームの制御装置を提供する。
このような構成により、前記インピーダンス設定手段は、前記危険度合い算出手段で算出した前記危険度合いと、前記物理特性情報若しくは前記物体の属性情報の少なくとも1つの情報に基づいて算出することができる。
さらに、本発明の第17態様によれば、前記ロボットアームが運搬している前記物体の物理特性情報として、前記ロボットアームが運搬している前記物体の重量情報と、前記物体の寸法情報と、前記物体の硬度情報と、前記物体の位置及び姿勢の拘束条件情報とのうちの少なくとも1つの情報を有し、前記物体の属性情報として、前記ロボットアームが運搬している前記物体の鋭利度情報と、前記ロボットアームが運搬している前記物体の重要度情報とのうちの少なくとも1つの情報を有する第12の態様に記載のロボットアームの制御装置を提供する。
このような構成により、前記インピーダンス設定手段は、前記危険度合い算出手段で算出した前記危険度合いと、前記重量情報、若しくは、前記寸法情報、若しくは、前記物体の硬度情報、若しくは、前記物体の位置及び姿勢の拘束条件情報、若しくは、鋭利度情報、若しくは、重要度情報に基づいて算出することができる。
本発明の第18態様によれば、ロボットアームの制御装置であって、
前記ロボットアームの位置情報と前記ロボットアームと協働する人の位置情報を取得する位置情報取得手段と、
前記ロボットアームの位置情報と前記ロボットアームと協働する前記人の前記位置情報との相対位置を算出し、算出した相対位置に応じて危険度合いを算出する危険度合い算出部と、
前記危険度合い算出部で算出された前記危険度合いが大きい程、前記ロボットアームの剛性を高めるように制御する剛性制御手段とを有するロボットアームの制御装置を提供する。
このような構成により、前記相対位置に基づきロボットアームの剛性を高めるように(例えば、ロボットアームの機械インピーダンス設定値を設定し、)制御することができる。
さらに、本発明の第19態様によれば、前記危険度合い算出部で算出された前記危険度合いに基づき前記ロボットアームの機械インピーダンス設定値を設定するインピーダンス設定手段をさらに備え、
前記剛性制御手段は、前記インピーダンス設定手段の設定した前記機械インピーダンス設定値に、前記ロボットアームの機械インピーダンスの値を制御することを有する第18の態様に記載のロボットアームの制御装置を提供する。
この構成によれば、ロボットアームの機械インピーダンス設定値を設定し、前記相対位置に基づきロボットアームの剛性を高めるように制御することができる。すなわち、前記ロボットアームの位置情報と前記ロボットアームと協働する前記人の前記位置情報との相対位置の変化に応じてロボットアームを制御することができる。よって、前記相対位置の変化に応じてロボットアームの機械インピーダンス設定値を適切に設定し直すことができて、操作する人の姿勢が悪くなったために、又は、操作する人の力が入りきらず手が震えだしたことで誤操作しやすくなったり、ロボットアームが運搬している運搬物体が傾き始めて運搬物体の中身を落下させそうになったりしたときでも、より一層安全に、ロボットを制御することが可能となる。
また、本発明の第20態様によれば、前記危険度合い算出部は、前記算出した相対位置が近い程、危険度合いを大きく算出し、前記算出した相対位置が遠い程、危険度合いを小さく算出し、
前記インピーダンス設定手段は、前記危険度合い算出部で算出された前記危険度合いが大きい程、前記ロボットアームの機械インピーダンス設定値を大きくするように設定し、前記危険度合いが小さい程、前記ロボットアームの機械インピーダンス設定値を小さく設定する第19の態様に記載のロボットアームの制御装置を提供する。
本発明の第21態様によれば、前記インピーダンス設定手段は、前記危険度合い算出部で算出された前記危険度合いに基づき、前記ロボットアームの手先の並進方向及び回転方向の6次元の方向の機械インピーダンス設定値を個別に設定する第19の態様に記載のロボットアームの制御装置を提供する。
このような構成により、前記インピーダンス設定手段は、前記相対位置に基づき、前記ロボットアームの手先の並進方向及び回転方向の6次元の方向の機械インピーダンス設定値を個別に設定することができる。
さらに、本発明の第22態様によれば、前記インピーダンス設定手段は、前記相対位置が小さく前記危険度合い算出部で算出された前記危険度合いが高い場合は、前記インピーダンス設定手段の設定した前記手先の前記並進方向及び前記回転方向の前記機械インピーダンス設定値よりも低い値に、前記相対位置が大きく前記危険度合い算出部で算出された前記危険度合いが低い場合は、前記インピーダンス設定手段の設定した前記機械インピーダンス設定値に、前記ロボットアームの機械インピーダンスの値をインピーダンス制御手段でそれぞれ制御する第19の態様に記載のロボットアームの制御装置を提供する。
このような構成により、前記相対位置が小さく危険度合いが高い場合は、前記手先の前記並進方向及び前記回転方向を低剛性とし、前記相対位置が大きく危険度合いが低い場合は、前記手先の前記並進方向及び前記回転方向を高剛性とすることができる。
さらに、本発明の第23態様によれば、前記ロボットアームと協働する前記人に前記危険度合いを通知する通知手段をさらに備える第1又は18の態様に記載のロボットアームの制御装置を提供する。
このような構成により、操作者に前記危険度合いを通知することができる。
本発明の第24態様によれば、ロボットアームの制御方法であって、
作業姿勢情報としての、人と前記ロボットアームとが協働して物体を運搬するときの前記ロボットアームと協働する前記人の作業姿勢に関する作業姿勢情報に基づき、前記人の前記物体運搬時の危険度合いを危険度合い算出手段で算出し、
前記危険度合い算出手段で算出された前記危険度合いが大きい程、前記ロボットアームを高剛性に剛性制御手段で制御するロボットアームの制御方法を提供する。
本発明の第25態様によれば、前記ロボットアームと、前記ロボットアームを制御する第1〜17のいずれか1つの態様に記載のロボットアームの制御装置を有するロボットを提供する。
本発明の第26態様によれば、コンピュータに実行させるためのロボットアームの制御プログラムであって、
人と前記ロボットアームとが協働して物体を運搬するときの前記ロボットアームと協働する前記人の作業姿勢に関する作業姿勢情報に基づき、前記人の前記物体運搬時の危険度合いを算出する危険度合い算出ステップと、
前記危険度合い算出ステップで算出された前記危険度合いが大きい程、前記ロボットアームを高剛性に制御する剛性制御手段を有するロボットアームの制御プログラムを提供する。
本発明の第27態様によれば、ロボットアームを制御する集積電子回路であって、
人と前記ロボットアームとが協働して物体を運搬するときの前記ロボットアームと協働する前記人の作業姿勢に関する作業姿勢情報を取得する作業姿勢情報取得手段と、
前記作業姿勢情報に基づき、前記人の前記物体運搬時の危険度合いを算出する危険度合い算出手段と、
前記危険度合い算出手段で算出された前記危険度合いが大きい程、前記ロボットアームを高剛性に制御する剛性制御手段とを有する集積電子回路を提供する。
本発明の第28態様によれば、ロボットアームの制御方法であって、
協働運搬情報としての、前記ロボットアームの位置情報と前記ロボットアームと協働する人の位置情報との相対位置を危険度合い算出部で算出し、算出した相対位置に応じて危険度合いを前記危険度合い算出部で算出し、
算出された前記危険度合いが大きい程、前記ロボットアームを高剛性に剛性制御手段で制御するロボットアームの制御方法を提供する。
本発明の第29態様によれば、前記ロボットアームと、前記ロボットアームを制御する第18〜22のいずれか1つの態様に記載のロボットアームの制御装置を有するロボットを提供する。
本発明の第30態様によれば、コンピュータに実行させるためのロボットアームの制御プログラムであって、
前記ロボットアームの位置情報と人と前記ロボットアームとが協働して物体を運搬するときの前記ロボットアームと協働する前記人の位置に関する情報を取得する位置情報取得ステップと、前記ロボットアームの位置情報と前記ロボットアームと協働する前記人の前記位置情報との相対位置を算出し、算出した相対位置に応じて危険度合いを算出する危険度合い算出する危険度合い算出ステップと、
前記危険度合い算出部で算出された前記危険度合いが大きい程、前記ロボットアームを高剛性に制御するステップとを有するロボットアームの制御プログラムを提供する。
本発明の第31態様によれば、ロボットアームの制御する集積電子回路であって、
前記ロボットアームの位置情報と前記ロボットアームと協働する人の位置情報を取得する位置情報取得手段と、
前記ロボットアームの位置情報と前記ロボットアームと協働する前記人の前記位置情報との相対位置を算出し、算出した相対位置に応じて危険度合いを算出する危険度合い算出する危険度合い算出手段と、
前記危険度合い算出手段で算出された前記危険度合いが大きい程、前記ロボットアームを高剛性に制御する剛性制御手段とを有する集積電子回路を提供する。
以下、本発明の実施の形態について図面を用いて詳細に説明する。
(第1実施形態)
まず、本発明の第1実施形態にかかるロボットアームの制御装置を備えるロボットシステム1の構成について説明する。図1は、本発明の第1実施形態におけるロボットシステム1の構成の概要を示す図である。
図1に示したように、本発明の第1実施形態におけるロボットアーム5及びその制御装置2を備えるロボットシステム1のロボットアーム5は、キッチン又はテーブルなどの作業台7の壁面9に設置され、ロボットアーム5の基端が壁面9に固定されたレール8に移動可能に支持され、レール8上をロボットアーム5がレール8沿いに横方向例えば水平方向に移動可能とする。さらにロボットシステム1のロボットアーム5の先端のハンド30は運搬対象の物体3の一端を保持例えば把持可能とし、物体3の他端を、ロボットアーム5と協働する人4が把持可能とする。ロボットアーム5の先端が物体3の一端(例えば、鍋の一方の取っ手)を把持しかつ人4が物体3の他端(例えば、鍋の他方の取っ手)を把持している状態で、人4が物体3を運びたい方向に力をかけることで、ロボットシステム1が作動し、ロボットアーム5がレール8に沿って移動し、物体3をロボットアーム5と人4とが協働して運搬することができる。
本発明の第1実施形態における物体3は、水又は具材の入った鍋又は食器、家具などの重量物をも含む概念であり、ロボットアーム5と人4とが協働して運搬することができる対象物体である。
また、本発明の第1実施形態において、レール8は作業台7の壁面9に配置したが、壁面のないアイランドキッチンの場合は、天井面又はアイランドキッチンの作業側面など作業をするのに適した場所に設置される。
図2は、ロボットシステム1を構成する制御装置2と制御対象であるロボットアーム5の詳細構成を示す図である。
制御装置2及び周辺装置10は、一例として、それぞれ一般的なパーソナルコンピュータにより構成される。
制御装置2は、危険度合い算出手段(危険度合い算出部)の一例としての危険度合い算出部22と、インピーダンス設定手段(インピーダンス設定部)の一例としてのインピーダンス設定部23と、剛性制御手段(剛性制御部)又はインピーダンス制御手段(インピーダンス制御部)の一例としてのインピーダンス制御部24(図2では、「剛性制御部24」として図示。)とを備えるように構成される。この制御装置2では、危険度合い算出手段22により算出された前記危険度合いが大きい程、前記ロボットアームの剛性を高める剛性制御を行なうものであり、その具体的な一例として、インピーダンス制御を行なうようにしている。周辺装置10は、協働運搬情報データベース(又は、作業姿勢情報データベース)及び物体特性データベースの一例としての運搬状態データベース21と、物体特性収集手段(物体特性収集部)又は協働運搬情報収集部の一例としての運搬状態情報収集部25、入出力IF(インターフェース)26と、モータドライバ27と、RFタグ受信部45と、危険度情報出力部60とを備えるように構成される。
入出力IF26は、パーソナルコンピュータのPCIバスなどの拡張スロットに接続された、例えばD/Aボード、A/Dボード、カウンタボードなどを備えるように構成される。
ロボットアーム5の動作を制御する制御装置2及び周辺装置10が実行されることにより、ロボットアーム5の各関節部の後述するエンコーダ44より出力される各関節角度情報が、入出力IF26のカウンタボードを通じて制御装置2に取り込まれ、取り込まれた各関節角度情報に基づき制御装置2によって各関節部の回転動作での制御指令値が算出される。算出された各制御指令値は、入出力IF26のD/Aボードを通じて、ロボットアーム5の各関節部を駆動制御するためのモータドライバ27に与えられ、モータドライバ27から送られた各制御指令値に従って、ロボットアーム5の各関節部のモータ43が駆動される。また、モータドライバ27により駆動制御されるハンド駆動装置の一例としてハンド駆動用のモータ62と、ハンド駆動用のモータ62の回転軸の回転位相角を検出するエンコーダ61とをさらにハンド30に備えて、エンコーダ61で検出された回転角度を基に、制御装置2のインピーダンス制御部24のハンド制御部54からの制御信号によりモータドライバ27を介してモータ62の回転を駆動制御して、ハンド駆動用のモータ62の回転軸を正逆回転させることによりハンド30を開閉させる。
ロボットアーム5は、一例として、多関節ロボットアームであって、6自由度の多リンクマニピュレータであり、前記ハンド30と、ハンド30が取り付けられている手首部31を先端に有する前腕リンク32と、前腕リンク32の基端に回転可能に先端が連結される上腕リンク33と、上腕リンク33の基端が回転可能に連結支持される台部34とを備える。台部34は移動可能なレール8に連結されているが、一定位置に固定されていても良い。手首部31は第4関節部38、第5関節部39、第6関節部40の3つの回転軸を有しており、前腕リンク32に対するハンド30の相対的な姿勢(向き)を変化させることができる。すなわち、図2において、第4関節部38は、手首部31に対するハンド30の横軸周りの相対的な姿勢を変化させることができる。第5関節部39は手首部31に対するハンド30の、第4関節部38の横軸とは直交する縦軸周りの相対的な姿勢を変化させることができる。第6関節部40は、手首部31に対するハンド30の、第4関節部38の横軸及び第5関節部39の縦軸とそれぞれ直交する横軸周りの相対的な姿勢を変化させることができる。前腕リンク32の他端は、上腕リンク33の先端に対して第3関節部37周りに、すなわち、第4関節部38の横軸と平行な横軸周りに回転可能とする。上腕リンク33の他端は、台部34に対して第2関節部36周りに、すなわち、第4関節部38の横軸と平行な横軸周りに回転可能とし、台部34の上側可動部は、台部34の下側固定部に対して第1関節部35周りに、すなわち、第5関節部39の縦軸と平行な縦軸周りに回転可能とする。この結果、ロボットアーム5は、合計6個の軸周りに回転可能として前記6自由度の多リンクマニピュレータを構成する。
各軸の回転部分を構成する各関節部には、各関節部を構成する一対の部材(例えば、回動側部材と、該回動側部材を支持する支持側部材)のうちの一方の部材に備えられる。後述するモータドライバ27により駆動制御される回転駆動装置の一例としてのモータ43(実際には、ロボットアーム5の各関節部の内部に配設されている)と、モータ43の回転軸の回転位相角(すなわち関節角)を検出するエンコーダ44(実際には、ロボットアーム5の各関節部の内部に配設されている)とを備えて、各関節部の一方の部材に備えられたモータ43の回転軸が、各関節部の他方の部材に連結されて前記回転軸を正逆回転させることにより、他方の部材を一方の部材に対して各軸周りに回転可能とする。
41は台部34の下側固定部に対して相対的な位置関係が固定された絶対座標系であり、42はハンド30に対して相対的な位置関係が固定された手先座標系である。絶対座標系41から見た手先座標系42の原点位置O(x、y、z)をロボットアーム5の手先位置、絶対座標系41から見た手先座標系42の姿勢をロール角とピッチ角とヨー角で表現した(φ、θ、ψ)をロボットアーム5の手先姿勢とし、手先位置及び姿勢ベクトルをベクトルr=[x、y、z、φ、θ、ψ]と定義する。よって、一例として、絶対座標系41のz軸に対して第1関節部35の縦軸が平行であり、x軸に対して第2関節部36の横軸が平行に位置可能とするのが好ましい。また、手先座標系42のx軸に対して第6関節部40の横軸が平行に位置可能であり、y軸に対して第4関節部38の横軸が平行に位置可能であり、z軸に対して第5関節部39の縦軸が平行に位置可能とするのが好ましい。なお、手先座標系42のx軸に対しての回転角をヨー角ψとし、y軸に対しての回転角をピッチ角θとし、z軸に対しての回転角をロール角φとする。ロボットアーム5の手先位置及び姿勢を制御する場合には、手先位置及び姿勢ベクトルrを後述する目標軌道生成部55で生成された手先位置及び姿勢目標ベクトルrに追従させることになる。
運搬状態情報収集部25は、作業姿勢情報取得手段(作業姿勢情報取得部)の一例として機能し、ロボットアーム5と協働働している人(例えば、ロボットアーム5との協働作業のためにロボットアーム5を操作している人)4の状態、言い換えれば、協働作業状態(例えば、作業姿勢、体調の情報、ロボットアーム5と人4との相対位置など)の情報(一例としては、作業姿勢情報)又は把持物体3の特性データ(例えば、運搬状態に関連する特性データ)(物体特性情報)を収集し、運搬状態データベース21に入力し更新して記憶する。具体的には、運搬状態情報収集部25は、後述するように、カメラなどの画像撮像装置28からの画像データ、RFタグ読み取り部47とRFタグ受信部45により読み取られた把持物体3のRFタグ46の情報、後述する人4の体調を計測する体調計測部70の体調情報、後述する人4の重心を計測する重心計測部69の重心情報、インターネット29を通じて外部のウェブサーバにある情報データベース63からの物体情報などの人4とロボットアーム5とが協働作業して物体3を運搬するときに考慮すべき情報言い換えれば協働運搬情報がそれぞれ入力されて収集され、入力されて収集された情報を、適宜、運搬状態データベース21に入力し更新して記憶する。さらに、運搬状態情報収集部25は、入出力IF26のカウンタボードに接続されたロボットアーム5の各関節部のエンコーダ44より出力される関節角度情報、又は、インピーダンス制御部24からの物体重量に関する情報なども入力される。
図3のように、人4が物体3をロボットアーム5と協調(協働)して運搬している際の運搬状態情報収集部25の詳細を図7に示す。運搬状態情報収集部25は、物体重量推定部65とデータ入力IF(インターフェース)66と運搬状態検出部67と画像認識部68と重心計測部69と体調計測部70とを備えるように構成する。
68は画像認識部であり、カメラなどの画像撮像装置28で得られた画像データとあらかじめ記録された把持物体3の画像との間でモデルマッチング処理を行い、把持物体3の寸法を抽出し、運搬状態データベース21に出力する。さらに、画像認識部68は、人4の身長、人4の把持物体3を把持している側の腕の肘位置12、又は、人4の把持物体3を把持している側の腕の手先位置13、人4の把持物体3を把持している側の肩位置18、さらに人4の胸骨から床面98までの高さである胸骨上縁高15、人4の両足の幅である足幅長14、人4が左右のどちらの手で把持物体3を把持しているかについての情報である持ち手情報を抽出し、運搬状態データベース21に出力するとともに、運搬状態検出部67に肘位置12と手先位置13と肩位置18の情報(位置座標情報)を出力する。具体的には、人が起立している際の顔を画像のモデルマッチングにより抽出し、顔の床面98からの距離から身長を算出する。続いて、あらかじめ記録された人4の標準身体特性モデル(例えば、性別ごとの身長に対する肩又は腕長、肘位置などを記録)から、人4の肘位置12又は人4の手先位置13、人4の肩位置18さらに人4の胸骨から床面98までの高さである胸骨上縁高15、人4の両足の幅である足幅長14を抽出する。さらに、顔モデル(例えば、目又は口などの位置を記録した情報)から、人4の顔を検出し、前記の手法で検出した把持物体3を把持している手先位置13が、前記検出された顔の位置より左側に位置する場合は、持ち手情報に「2」を記録するとともに、一例として、前記検出された顔の位置より右側に位置する場合は、持ち手情報に「1」を記録して、運搬状態データベース21にそれぞれ出力する。なお、身長又は持ち手情報をモデルマッチングにより抽出したが、RFタグを人4の頭部又は持ち手などに装備し、RFタグの位置から身長又は持ち手情報を求めても良い。
65は物体重量推定部であり、把持物体3の重量の推定を行う。例えば、ロボットアーム5の手首部31に力センサーを配設した場合には、ロボットアーム5が物体3を把持し静止状態にある時の力センサーによる計測値からハンド30の重量を差し引いた値を物体重量とする。また、後述する力推定部53を利用する場合は、物体重量推定部65は、ロボットアーム5が物体3を把持し静止状態にある時の各関節部に発生するトルクτextを力推定部53から得、ロボットアーム5がその位置及び姿勢を保持するのに必要なトルクをロボットアーム5の運動方程式より求め、差し引いた後のトルク値を手先に働く力に換算し、物体重量とする。
66はデータ入力IF(インターフェース)であり、人間がキーボード又はマウス又はマイクなどの入力装置を使用して、後述するような把持物体3の鋭利度合いなどの情報である物体の属性データ(属性情報)を入力したり、ボタン66などの入力装置を使用して、人4からの物体運搬開始及び終了の指令を受けるためのインターフェースである。ボタン66としては、例えばトグルスイッチとして1つのボタンで物体運搬開始及び物体運搬終了をそれぞれ入力可能としてもよいし、物体運搬開始ボタンと物体運搬終了ボタンと別々に設けてもよい。
69は重心計測部であり、ロボットアーム5を操作している人4の重心座標19{重心座標rg(X,Y)}を計測して、運搬状態データベース21に出力する。例えば、参考図書(基礎人間工学 小川 鉱一著 新日本印刷株式会社発行)に記載されているように、図16のように、重心計測部69は床面98に荷重センサーを複数個(例えばS、S、Sの3個)配置して、荷重センサーSの座標を(x,y)、荷重センサーSの座標を(x,y)、荷重センサーSの座標を(x,y)とする。また、荷重センサーS、S、Sで求まる力をそれぞれW、W、Wとし、人4の体重をWとし、荷重センサーSの座標(x,y)を床面98上でのxy座標の原点(0,0)とした場合には、床面98上でのxy座標における人4の重心位置19(その座標は(X,Y))は以下の式(1)(2)により算出される。
Figure 0004243326
Figure 0004243326
70は体調計測部であり、ロボットアーム5を操作している人4の心拍数、血圧、体温を計測し、測定日時と共に、運搬状態データベース21に出力する。具体的には、ロボットアーム5の手先に心拍計、体温計、血圧計を配置し、運搬開始時の心拍数、血圧、体温を計測し、測定日時と共に、運搬状態データベース21に出力する。体調計測部70は、さらに人4の手が震えているかどうかの度合いである振動度を推定し、運搬状態データベース21に出力する。振動度は、例えば、ロボットアーム5の手首部31に力センサーを配設した場合には、ある一定時間(具体的には約10秒程度)の力センサーによる計測値についてフーリエ変換を行い、ある周波数以上(具体的には数Hz)の周波数成分がある閾値以上を超えた値が、ある一定期間に、図17に示す年齢に応じた閾値以上存在している場合は、図18に示すように、周波数である数Hzの値から閾値を減算した値(図18に参照符号18aで示す欄の値)により、1〜5段階をそれぞれ予め設定し、測定日時と共に、運搬状態データベース21に出力する。
67は運搬状態検出部であり、画像認識部68の画像認識結果より得られる人4の肘位置12と手先位置13と肩位置18から肘関節角度11を推定し(例えば、肘位置12と手先位置13とを結ぶ線分と肘位置12と肩位置18とを結ぶ線分とのなす角度を肘関節角度11として推定し)、運搬状態データベース21に出力する。さらに複数の把持物体を同時に把持する場合に、画像認識部68の画像認識結果より得られる複数の把持物体の相対的位置関係の情報、又は、RFタグ受信部45より得られる把持物体のID番号などのID情報(IDデータ)の組み合わせの情報から把持状態を推論し、検出して、運搬状態データベース21に出力する。
このように運搬状態情報収集部25は、画像認識部68と、物体重量推定部65と、データ入力IF(インターフェース)66と、運搬状態検出部67と、重心計測部69と、体調計測部70とを備えて、それぞれの手段(部)又は部材でそれぞれの機能を奏するとともに、RFタグ受信部45により読み取られた物体3のRFタグ46の情報を運搬状態データベース21に入力するとともに、インターネット29を通じて外部のウェブサーバにある物品情報にアクセスして物体特性データを運搬状態データベース21に入力する機能をも有する。
次に、運搬状態データベース21の詳細について説明する。運搬状態データベース21は、図8に示したロボットアーム5が設置された作業環境に存在する種々の物体3に関する物体情報と、図9に示したロボットを操作している人4の作業状態に関する情報などの人4とロボットアーム5とが協働作業して物体3を運搬するときに考慮すべき情報言い換えれば協働運搬情報を備えるように構成されており、作業姿勢情報データベース、体調情報データベース、相対位置情報データベースとしても機能可能なものである。
物体情報(物体特性情報)は、図8に示すように、物体3のID情報と、物理特性情報と、属性情報と、名称とを備えるように構成される。ID情報の例としては物体3を識別するID番号がある。それぞれのID番号に対応する物理特性情報の一例としては、物体3の重量情報、寸法情報、及び硬度情報がある。それぞれのID番号に対応する属性情報の一例としては、鋭利度情報と重要度がある。図8に示す参照符号8a、8bはそれぞれ物体情報の一例を示し、同じID番号(0002)の場合には、鍋に何も入っていない場合(参照符号8aの場合)と鍋に水などが入った場合(参照符号8bの場合)など時々刻々と状態が変化していることを示す。これらの、重量情報、寸法情報、硬度情報、鋭利度情報、重要度情報のデータは、予め測定し、評価し、データベースとして運搬状態データベース21に格納される。
重量情報に関しては、物体3の重量を物体重量推定部65により推定し、運搬状態データベース21に蓄積することができる。また、例えば、ロボットアーム5で把持された物体3の一例としての鍋に対して水が注入されるとき、注入された水による物体3の重量の増加を物体重量推定部65により推定することもできるので、重量の増減による重量情報の更新にも対応可能である。一例として、図8のID番号0002の物体3の一例である鍋は、参照符号8aでは、重量が0.8であるのに対して、参照符号8bでは、重量が1.5となっており、参照符号8bの鍋は水などが注入された後であると推定することができる。
寸法情報に関しては、画像撮像装置28及び画像認識部68を設ければ、その画像撮像装置28で得られた画像データを基に画像認識部68による画像認識を行うことにより、物体3の寸法を割り出し、寸法情報を運搬状態データベース21に新たに蓄積あるいは更新することも可能である。
硬度情報に関しては、物体3の硬度に応じてレベル1〜5の5段階評価がなされる。評価値は、物体3の材質をもとに、例えば、金属で形成された物体は最も硬度の高い「レベル5」、プラスチック等の樹脂で形成された物体は中度の「レベル3」、紙又はタオルなどの柔らかい物体で形成された物体は最も硬度の低い「レベル1」といったように評価され、硬度情報として記録される。例えば、図8では、「包丁」及び「鍋」は最も硬度の高い「レベル5」であり、「ガラスコップ」は「レベル4」であり、「タオル」は「レベル1」となっている。また、硬度は壊れやすさという観点での評価も可能である。ガラスコップ又は陶磁器のように、他の物体にぶつけたりすると割れる危険が高いものを「レベル5」、プラスチック等の樹脂で形成された物体は衝突などにより形状が変化する可能性があるため、中度の「レベル3」、フライパンなど鉄などできた壊れにくい物体は低度の「レベル1」とすることも考えられる。これらの硬度情報は、予め人間が判断するか、物体のRFタグ46に記録されているID情報から自動的に判断し、レベルの評価、設定を行い、データ入力IF66を通じて運搬状態データベース21への入力を行う。
鋭利度情報に関しては、例えば、レベル1〜5の5段階の評価値で記録される。評価値の具体例としては、刃物のように危険性が高く、ロボットアーム5での取り扱いに最も注意を有すると思われる物体3を最も鋭利度の高い「レベル5」とし、書類又はタオルなど軽く、柔らかくて人に衝突しても危害を与える恐れが全くないと考えられる物体3を最も鋭利度の低い「レベル1」とする。これらの鋭利度情報は、予め、人間が判断し、レベルの評価、設定を行い、データ入力IF66を通じて運搬状態データベース21への入力を行う。
重要度情報に関しては、例えば、レベル1〜5の5段階の評価値で記録される。重要度の値の具体例としては、高価な食器又は貴重な陶器、思い出の食器など、高価ではないが、所有者にとって価値のある物のように重要度が高く、ロボットアーム5での取り扱いに最も注意を有すると思われる物体3を最も重要度の高い「レベル5」とし、鍋又はタオルなど万が一破損しても代替品が比較的簡単に手に入る物体又は家庭内に予備の代替品が通常存在しえる物体又はゴミなどそれほど貴重ではないと考えられる物体を最も重要度の低い「レベル1」とする。これらの重要度情報は、予め、人間が判断し、レベルの評価、設定を行い、データ入力IF66を通じて運搬状態データベース21への入力を行う。なお、所有者にとって価値のある物については、RFタグをつけて、あらかじめ所有者が判断、評価しておいても良い。
人4の作業状態に関する情報は、図9に示すように、ID情報と測定日時情報と身体特性情報と姿勢情報と体調情報を備えるように構成される。ID情報の一例としては、人4を識別するID番号と、ID番号に対応する人4の年齢又は性別、氏名に関する情報である。ID番号に対応する身体特性情報の一例として、人4の身長又は体重の情報がある。姿勢情報の一例としては、人4の手先位置13、人4の肘位置12、人4の肩位置18、人4の両足の幅である足幅長14と、人4の肘関節角度11、人4の胸骨から床面98までの高さである胸骨上縁高15、人4の重心座標19の情報である。加えて、体調情報の一例としては、人4の手が震えているかどうかの度合いである振動度、心拍数、体温、血圧の情報で構成される。これらの、身体特性情報、姿勢情報、体調情報のデータはそれぞれ、体調計測部70で予め測定し、評価し、データベースとして、運搬状態データベース21を介して運搬状態データベース21に接続された作業情報データベース73に格納される。さらに、図9に示す参照符号9a、9bは身体特性情報、姿勢情報、体調情報のデータの一例を示し、同じID番号の場合には、人4の作業状態が時々刻々と変化していることを示す。
身体特性情報に関しては、一例として、図9に示すように、ロボットアーム5を操作している人4の身長又は体重、利き手の情報を備えるように構成される。身長の情報は、画像撮像装置28及び画像認識部68を設ければ、その画像撮像装置28で得られた画像データを基に画像認識部68による画像認識を行うことにより、身長を割り出し、運搬状態データベース21に新たに蓄積あるいは更新することも可能である。また、体重の情報は、人4がデータ入力IF66を通じて運搬状態データベース21へ入力してもよいが、荷重センサーで検出した人4の重量を重心計測部69を通じて運搬状態データベース21へ体重として入力してもよい。なお、身長についても、人4がデータ入力IF66を通じて運搬状態データベース21へ入力しても良い。利き手の情報は、人4がデータ入力IF66を通じて運搬状態データベース21へ入力する。その際に、一例として、右利きの場合には「1」と、左利きの場合には「2」として入力される。
姿勢情報に関しては、一例として、図9に示すように、ロボットアーム5を操作している人4の手先位置13、人4の肘位置12、人4の肩位置18、人4の両足の幅である足幅長14、人4の胸骨から床面までの高さである胸骨上縁高15、人4の肘関節角度11、人4の重心座標19の情報、人4が左右のどちらの手で把持物体3を把持しているかについての情報である持ち手の情報を備えるように構成される。手先位置13、肘位置12、肩位置18、胸骨上縁高15、足幅長14の情報は、画像撮像装置28及び画像認識部68を設ければ、その画像撮像装置28で得られた画像データを基に画像認識部68による画像認識を行うことによりそれぞれ割り出し、これらの情報を運搬状態データベース21に新たに蓄積あるいは更新することも可能である。また、これらの情報はデータ入力IF66を通じて運搬状態データベース21へ人4が入力しても良い。
重心座標19の情報は、重心計測部69で計測され、その結果を運搬状態データベース21に新たに蓄積あるいは更新することも可能である。
肘関節角度11の情報は、運搬状態検出部67で計測され、その結果を運搬状態データベース21に新たに蓄積あるいは更新することも可能である。
体調情報に関しては、一例として、図9に示すように、ロボットアーム5を操作している人4の手が震えているかどうかの度合いである振動度、心拍数、体温、血圧の情報を備えるように構成される。これらの体調情報は体調計測部70で計測され、運搬状態データベース21に新たに蓄積あるいは更新することも可能である。また、人4がデータ入力IF66を通じて運搬状態データベース21へ入力しても良い。また、コンピュータに内蔵されている(例えば、体調計測部に備えられた)時計から得られる測定日時と共に、記録することで履歴を管理することも可能である。
22は危険度合い算出部であり、運搬状態データベース21に接続された作業情報データベース73に記録されている人4の作業状態に関する情報と、危険度を判断するための情報が記憶された判断データベース64を基に危険度合いを算出する。判断データベース64の具体例を図19A及び図19Bに示し、危険度合いは、操作している人4の肘関節角度11又は人4の手先の位置13、後述する重心の安定度合い、把持物体3を把持している持ち手、手先の震え度合い又は心拍数などの体調の安定度合いなどの情報から危険度合い算出部22で算出し、判断データベース64として、レベル1〜5の5段階の評価値で記録される。例えば、図10に示すように、人4の肘関節角度11が160度以上の場合(図19Aの参照符号A2で示す場合)は、腕が伸びきっている状態と判断し、ロボットアーム5と協調(協働)して物体3を運搬するには、手先に力が入らず危険な姿勢と危険度合い算出部22で判断し、「レベル5」と危険度合い算出部22で判断する。逆に、人4の肘関節角度11が0〜100度の範囲内のとき(図19Aの参照符号A1で示す場合)は、腕が適度に曲がって、安定して運搬できるため、「レベル1」と危険度合い算出部22で判断する。
なお、一例として、図19A又は図19Bの「レベル1」を危険度合いが小さいとき、すなわち、標準状態とすれば、危険度合い算出手段22により算出された危険度合いが大きい程、ロボットアームの剛性を高めるように制御するときには、図19A又は図19Bの「レベル2」〜「レベル5」のいずれかにするように制御すればよい。
また、図11に示すように、人4の手先位置13の高さが胸骨上縁高15より上方(例えば0.1メートル以上)にある場合(図19Aの参照符号A4で示す場合)は、ロボットアーム5と協調(協働)して運搬するには力が入らず危険な姿勢と判断し、「レベル5」と危険度合い算出部22で判断する。逆に、人4の人4の手先位置13の高さが胸骨上縁高15より下方(−0.2メートル以下)にある場合(図19Aの参照符号A3で示す場合)は、手先位置13が胸骨上縁高15より下方にあり、安定して運搬できるため、「レベル1」と危険度合い算出部22で判断する。
さらに、図12は、人4の両足を上方から見た図である。斜線領域を示す参照符号20は支持基底面であり、足幅長14より危険度合い算出部22で求める。重心の安定度合いは、重心位置19が支持基底面20内にある時(図19Aの参照符号A5で示す場合)は、姿勢が安定しているため、「レベル1」と危険度合い算出部22で判断し、支持基底面20の外にある場合(図19Aの参照符号A5で示す場合以外の場合)は、重心位置19の支持基点面20からの距離に応じて、レベルを危険度合い算出部22で設定する。例えば、支持基底面20から1m離れている場合(図19Aの参照符号A6で示す場合)は、「レベル5」と危険度合い算出部22で判断する。
また、運搬状態データベース21の利き手に関する情報が運搬状態データベース21の持ち手に関する情報と異なる場合(例えば、右利きの人が左手で把持している場合)は、ロボットアーム5と協調(協働)して運搬するときには、人が手に力が入らず危険な姿勢と判断し、「レベル5」と危険度合い算出部22で判断する。逆に、利き手が把持物体3を把持している手と同じ場合(例えば、右利きの人が右手で把持している場合)は、ロボットアーム5と協調(協働)して安全に運搬することができる姿勢と判断し、「レベル1」と危険度合い算出部22で判断する。
体調の安定度合いは、例えば人4の手先の震えを示す振動度が高い場合、例えば振動度が5の場合は図19BのA7の欄に示すように、「レベル5」とし、振動度が低い場合、例えば振動度が1の場合は図19BのA7の欄に示すように、「レベル1」とする。さらに、心拍数は、図19BのA8の欄に示すように、心拍数が120以上と高い場合は「レベル5」とし、70以下の場合は「レベル1」とする。体温は、図19BのA9に示すように、40℃以上と高熱の場合には、「レベル5」とし、37.5℃以下と平熱の場合は、「レベル1」とする。血圧は、図19BのA10に示すように、上が180mmHg以上、下が110mmHg以上の場合は、「レベル5」とし、上が140mmHg以下、下が90mmHg以下の場合は、「レベル1」とする。なお、血圧は、A10に示すように、年齢又は操作する人の病状に応じて、レベルに対する基準値を変えても良い。また、体調情報については、過去に記録した数値からのずれに応じて決定しても良い。
また、これらの判断データベース64は、インターネット29を通じて、外部の専門家が定めるガイドライン情報などの情報データベース63にアクセスして、入力しても良い。
さらに、前記危険度合い算出部22で算出した危険度は、物体3の重量、寸法、硬度、鋭利度、重要度の全てがある閾値以下の場合には、例えば危険度「レベル5」から「レベル4」というように危険度を下げる。これにより、例えばタオルのように軽い物体を運搬している場合は、姿勢が悪い状態で誤操作しても危険性が低いことから危険度を下げることにより、より柔軟にロボットアーム5を操作することが可能になる。なお、重量、寸法、硬度、鋭利度、重要度のどれを優先するかは、後述するインピーダンス設定部23の式(3)〜式(5)のゲイン値により決定する。
なお、例えば、同じ重量でも、鍋の中に例えば熱湯が入っていた場合と水が入っていた場合とを区別する場合には、物理特性に物体の温度の情報(図8参照)を含めて、温度が高いほど重要度(言い換えれば危険度)を高く設定するようにしてもよい。また、重量が大きい物体ほど、重要度(言い換えれば危険度)を高く設定するようにしてもよい。
また、運搬状態データベース21のすべての情報は、運搬状態情報収集部25により、インターネット29を通じて、外部のウェブサーバなどにある情報データベース63にアクセスすることで運搬状態に関する情報を入手し、運搬状態データベース21内の各情報を更新する事も可能である。
60は危険度情報出力部であり、例えばロボットアーム5に設置されたディスプレイ装置などの表示部であり、危険度合い算出部22で算出した危険度を数値又はグラフ、色などで危険度合い別に表示する。また、アラーム音で警告を鳴らしたり、ロボットアーム5の状態を変更する前に、事前に危険度情報出力部の一例でありかつ通知手段(通知部)の一例としての音声出力装置を使って、例えば「アームが水平になります」と危険度を通知しても良い。これにより、急にロボットアーム5の姿勢が変わって、操作している人4に負荷がかかることを軽減することができる。
次に、インピーダンス設定部23の詳細について説明する。インピーダンス設定部23は、危険度合い算出部22で算出した危険度合いと物体3の特性データに基づいて、ロボットアーム5の機械インピーダンス設定値の設定を行う。機械インピーダンス設定値の設定パラメータとしては、慣性M、粘性D、剛性Kがある。機械インピーダンス設定値の各パラメータの設定は以下の評価式に基づいて行う。
Figure 0004243326
Figure 0004243326
Figure 0004243326
前記式(3)〜式(5)中のKMa、KMm、KMl、KMk、KMd、KMp、KDa、KDm、KDl、KDk、KDd、KDp、KKa、KKm、KKl、KKk、KKd、KKpはゲインであり、それぞれある定数値である。
インピーダンス設定部23は、前記式(3)〜式(5)に基づき計算した機械インピーダンスパラメータの慣性M、粘性D、剛性Kをインピーダンス制御部24へ出力する。
前記式(3)〜式(5)により、例えば、人4の作業姿勢が悪いため危険度合いが高い場合には、慣性Mが大きく設定されることになり、ロボットアーム5は危険度合いの値に比例した重量感を持つことになる結果、ロボットアーム5を動かすには大きな力が必要になり、少しぐらい手でロボットアーム5を押しても動かなくなる。逆に、安定した姿勢で人4がロボットアーム5を操作した場合には、危険度合いが小さくなり、その結果、慣性Mが小さく設定されるため、ロボットアーム5は弱い力で容易に動かすことができる。さらに、悪い姿勢の状態で重い物体3又は寸法の大きな物体3を把持する場合には、式(3)より剛性Mが大きく設定されるため、ロボットアーム5は危険度合いの値と物体3の重量、寸法に比例した重量感を持つことになる結果、ロボットアーム5を動かすにはより大きな力が必要になり、少しぐらい手でロボットアーム5を押しても動かなくなる。逆に、悪い姿勢の状態で軽い重量又は寸法の小さな物体に対しては、危険度合い算出部22で危険度を低くするため、式(3)により、慣性Mが小さく設定されることにより、ロボットアーム5は物体3の重量に比例した重量感を持つことになる結果、姿勢が悪くても弱い力で容易にロボットアーム5が動くようになる。また、悪い姿勢の状態で、刃物のような鋭利な物体又は金属でできた硬い物体、重要度の高い物体を運搬する場合は、粘性D及び剛性Kが大きくなるように設定されることになり、ロボットアーム5の動きに抵抗感又は硬さが生じ、動きにくくなる。逆に、悪い姿勢の状態でタオルなどのように鋭利度が低く、硬度を低く、重要度を低く設定された物体3を運搬する場合には、危険度合い算出部22で危険度を低くするため、粘性D及び剛性Kが小さくなるように設定されることになり、悪い姿勢であってもロボットアーム5は動きやすくなる。
ロボットアーム5と協働して複数の人で同時に物体3を把持している場合には、各人の危険度合いを平均した値を使用して、機械インピーダンス設定値の計算を行う。なお、子供と大人などで危険度に重みをつけることで、子供が安定した姿勢で、大人が不安定な姿勢で操作していた場合には、大人の危険度を子供の危険度よりは優先して設定することで、大人の操作を優先することができる。
以上の運搬状態情報収集部25と運搬状態データベース21と危険度合い算出部22、インピーダンス設定部23の動作ステップについて、図13のフローチャートに基づいて説明する。
動作ステップの前処理として、ボタンなどのデータ入力IF66を通じて、人4からの物体運搬開始の指令を受けて、画像撮像装置28によりロボットアーム5を操作している人4又は物体3を撮影し、得られた画像データを基に画像認識部68により画像認識を行う(ステップS20)。画像認識部68により把持物体3の寸法、人4の身長、人4の肘位置12、人4の手先位置13、人4の肩位置18、人4の胸骨上縁高15、人4の足幅長14を抽出し、運搬状態データベース21に出力し、記録するとともに、運搬状態検出部67に肘位置12と手先位置13と肩位置18を出力する(ステップS20からステップS26へ)。
次いで、運搬状態検出部67により、画像認識部68の画像認識結果より得られる肘位置12と手先位置13と肩位置18から肘関節角度11、持ち手を推定し、運搬状態データベース21に出力する(ステップS21、ステップS26)。
次いで、重心計測部69によりロボットアーム5を操作している人4の重心座標19を計測して、運搬状態データベース21に出力する(ステップS22、ステップS26)。
次いで、体調計測部70によりロボットアーム5を操作している人4の心拍数、血圧、体温を計測し、測定日時と共に、運搬状態データベース21に出力する。さらに、人4の手が震えているかどうかの度合いである振動度を推定し、運搬状態データベース21に出力する。(ステップS23、ステップS26)。
次いで、物体重量推定部65により物体3の重量の推定し、運搬状態データベース21に出力する。(ステップS24、ステップS26)。
次いで、データ入力IF66により、人4がキーボード又はマウス又はマイクなどの入力装置などのデータ入力IF66を使用して属性データ(属性情報)を入力し、運搬状態データベース21に出力する。(ステップS25、ステップS26)。
次いで、前記動作ステップの後処理として、危険度合い算出部22により、運搬状態データベース21に記録されている人4の姿勢又は体調などの作業状態に関する情報を基に危険度合いを算出する(ステップS27)。
次いで、インピーダンス設定部23では、人4の危険度合い、物体3の重量、物体3の寸法、物体3の硬度、物体3の鋭利度、物体3の重要度の少なくとも1つ以上の情報より、前記式(3)〜式(5)にてインピーダンスパラメータを算出してインピーダンス制御部24へ出力する(ステップS27)。
なお、ステップS20、ステップS22、ステップS23、ステップS24の各ステップは順不動である。さらに、物体運搬開始時又は物体運搬終了時は、人4の姿勢の変化が激しく危険であることが多いため、ステップS20、ステップS22、ステップS23、ステップS24による処理の頻度(数秒に一度の割合)を高くし、水平に平行移動しているときは、処理の頻度を低くしても良い。この事により、運搬開始時と運搬終了時の姿勢の変化を精度良く検出することができるようになる。一例として、運搬開始時と運搬終了時を検出して、処理の頻度を高くするように制御するためには、例えば、運搬開始又は運搬終了の入力がデータ入力IF66で受け付けられると、処理の頻度を高くするように、画像認識部68と、運搬状態検出部67と、重心計測部69と、体調計測部70と、物体重量推定部65とにそれぞれ指令を出すようにすればよい。
図5はインピーダンス制御部24のブロック図を示す。インピーダンス制御部24は、インピーダンス設定部23で設定した慣性M、粘性D、剛性Kの設定値に基づき設定されたロボットアーム5の機械インピーダンス設定値に、ロボットアーム5の機械インピーダンスの値を制御する。
次に、インピーダンス制御部24の詳細について、図5により説明する。ロボットアーム5からは、それぞれの関節軸のエンコーダ44により計測された関節角の現在値(関節角度ベクトル)ベクトルq=[q,q,q,q,q,qが出力され、入出力IF26のカウンタボードによりインピーダンス制御部24に取り込まれる。ただし、q,q,q,q,q,qは、それぞれ、第1関節部35、第2関節部36、第3関節部37、第4関節部38、第5関節部39、第6関節部40の関節角度である。
55は目標軌道生成部であり、目標とするロボットアーム5の動作を実現するための手先位置及び姿勢目標ベクトルrとハンド30の開閉情報hが出力される。目標とするロボットアーム5の動作は、目的とする作業に応じて事前にそれぞれの時間(t=0、t=t、t=t、・・・)でのポイントごとの位置(rd0、rd1、rd2、・・・)及びハンド30の開閉情報(h、h、h2、・・・)が与えられており、目標軌道生成部55は、多項式補間を使用し、各ポイント間の軌道を補完し、手先位置及び姿勢目標ベクトルrを生成する。ハンド30の開閉情報hは「1」または「0」の数値で、ハンド30が開いている状態を「1」、ハンド30が閉じている状態を「0」で示し、以下に述べるハンド制御部54に送られる。
54はハンド制御部であり、目標軌道生成部55からのハンド30の開閉情報を受けて、モータドライバ27を介してモータ62の回転を駆動制御して、ハンド駆動用のモータ62の回転軸を正逆回転させることによりハンド30を開閉させる。
53は力推定部であり、人間等とロボットアーム5の接触によってロボットアーム5に加わる外力を推定する。力推定部53には、モータドライバ27の電流センサーで計測された、ロボットアーム5の各関節部を駆動するモータ43を流れる電流値i=[i,i,i,i,i,iが入出力IF26のA/Dボードを介して取り込まれ、また、関節角の現在値qが入出力IF26のカウンタボードを介して力推定部53に取り込まれるとともに、後述する近似逆運動学計算部57からの関節角度誤差補償出力uqeが力推定部53に取り込まれる。力推定部53は、オブザーバーとして機能し、以上の電流値i、関節角の現在値q、関節角度誤差補償出力uqeより、ロボットアーム5に加わる外力により各関節部に発生するトルクτext=[τ1ext、τ2ext、τ3ext、τ4ext、τ5ext、τ6extを算出する。そして、Fext=J(q)−Tτext−[0,0,mg]によりロボットアーム5の手先における等価手先外力Fextに換算し出力する。ここで、J(q)は、
Figure 0004243326

を満たすヤコビ行列である。ただし、ただし、v=[v、v、v、ω、ω、ωであり、(v、v、v)は手先座標系42でのロボットアーム5の手先の並進速度、(ω、ω、ω)は手先座標系42でのロボットアーム5の手先の角速度である。また、mは把持している物体3の重さであり、gは把持している物体3の重力加速度である。把持物体3の重さmの値は、把持する前に人4がデータ入力IF66を使用して入力したり、運搬状態データベース21からインピーダンス設定部23を介して入手したりすることができる。また、ロボットアーム5により実際に把持物体3の把持を行い、そのときの力推定部53の等価手先外力Fextの推定結果より把持物体3の重さmの値を算出する事も可能である。
インピーダンス計算部51は、ロボットアーム5に機械インピーダンス設定値への前記ロボットアームの機械インピーダンスの値の制御を実現する機能を果たす部分であり、インピーダンス設定部23で設定されたインピーダンスパラメータである慣性M、粘性D、剛性Kと、関節角の現在値qと、力推定部53が推定した外力Fextより、ロボットアーム5に機械インピーダンス設定値への前記ロボットアーム5の機械インピーダンスの値の制御を実現するための手先位置及び姿勢目標補正出力rdΔを以下の式(6)により計算し、出力する。手先位置及び姿勢目標補正出力rdΔは、目標軌道生成部55の出力する手先位置及び姿勢目標ベクトルrに加算され、手先位置及び姿勢補正目標ベクトルrdmが生成される。
Figure 0004243326

ただし、
Figure 0004243326
Figure 0004243326
Figure 0004243326

であり、sはラプラス演算子である。
58はロボットアーム5からのそれぞれの関節軸のエンコーダ44により計測された関節角の現在値qである関節角度ベクトルqが入出力IF26のカウンタボードを介して入力される順運動学計算部であり、ロボットアーム5の関節角度ベクトルqから手先位置及び姿勢ベクトルrへの変換の幾何科学的計算を行う。
56は位置誤差補償部であり、ロボットアーム5において計測される関節角度ベクトルqより順運動学計算部58により計算される手先位置及び姿勢ベクトルrと、手先位置及び姿勢補正目標ベクトルrdmとの誤差rが入力され、位置誤差補償出力ureが近似逆運動学計算部57に向けて出力される。
近似逆運動学計算部57では、近似式uout=J(q)−1inにより、逆運動学の近似計算を行う。ただし、J(q)は、
Figure 0004243326

の関係を満たすヤコビ行列、uinは近似逆運動学計算部57への入力、uoutは近似逆運動学計算部57からの出力であり、入力uinを関節角度誤差qとすれば、q=J(q)−1のように手先位置及び姿勢誤差rから関節角度誤差qへの変換式となる。したがって、位置誤差補償出力ureが近似逆運動学計算部57に入力されると、その出力として、関節角度誤差qを補償するための関節角度誤差補償出力uqeが近似逆運動学計算部57から出力される。
関節角度誤差補償出力uqeは、入出力IF26のD/Aボードを介してモータドライバ27に電圧指令値として与えられ、各モータ43により各関節軸が正逆回転駆動されロボットアーム5が動作する。
以上のように構成されるインピーダンス制御部24に関して、ロボットアーム5のインピーダンス制御動作の原理について説明する。
インピーダンス制御動作の基本は、位置誤差補償部56による手先位置及び姿勢誤差rのフィードバック制御(位置制御)であり、図5の点線で囲まれた部分が位置制御系59になる。位置誤差補償部56として、例えば、PID補償器を使用すれば、手先位置及び姿勢誤差rが0に収束するように制御が働き、目標とするロボットアーム5のインピーダンス制御動作を実現することができる。
以上の原理に基づく制御プログラムの実際の動作ステップについて、図6のフローチャートに基づいて説明する。この制御プログラムはコンピュータに実行させることが可能なものである。
まず、関節部それぞれのエンコーダ44により計測された関節角度データ(関節変数ベクトル又は関節角度ベクトルq)が制御装置2に取り込まれる(ステップS1)。
次いで、近似逆運動学計算部57にて、ロボットアーム5の運動学計算に必要なヤコビ行列J等の計算を行う (ステップS2)。
次いで、順運動学計算部58にて、ロボットアーム5からの関節角度データ(関節角度ベクトルq)から、ロボットアーム5の現在の手先位置及び姿勢ベクトルrを計算する(ステップS3)。
次いで、制御装置2のメモリ(図示せず)に予め記憶されていたロボットアーム5の動作プログラムに基づき、目標軌道計算部55により、ロボットアーム5の手先位置及び姿勢目標ベクトルrを計算する(ステップS4)。
次いで、力推定部53は、モータ43の駆動電流値iと、関節角度データ(関節角度ベクトルq)と、関節角度誤差補償出力uqeから、ロボットアーム5の手先における等価手先外力Fextを計算する(ステップS5)。
インピーダンス計算部51では、インピーダンス設定部23において設定された機械インピーダンスパラメータの慣性M、粘性D、剛性Kと、関節角度データ(関節角度ベクトルq)と、力推定部53により計算されたロボットアーム5に加わる等価手先外力Fextから、手先位置及び姿勢目標補正出力rdΔが、計算される(ステップS6)。その後、ステップS7に進む。
次いで、位置誤差補償部56では、手先位置及び姿勢目標ベクトルrと手先位置及び姿勢目標補正出力rdΔの和である手先位置及び姿勢補正目標ベクトルrdmと、現在の手先位置及び姿勢ベクトルrとの差である手先位置及び姿勢の誤差rが計算される(ステップS7)。位置誤差補償部56の具体例としてはPID補償器が考えられる。定数の対角行列である比例、微分、積分の3つのゲインを適切に調整することにより、位置誤差が0に収束するように制御が働く。
次いで、近似逆運動学計算部57では、ステップS2で計算したヤコビ行列Jの逆行列を近似逆運動学計算部57で乗算することにより、位置誤差補償出力ureを、手先位置及び姿勢の誤差に関する値から関節角度の誤差に関する値である関節角度誤差補償出力uqeに、近似逆運動学計算部57により変換する(ステップS8)。
次いで、関節角度誤差補償出力uqeが、近似逆運動学計算部57から入出力IF26のD/Aボードを通じ、モータドライバ27に与えられ、それぞれのモータ43を流れる電流量を変化させることによりロボットアーム5のそれぞれの関節軸の回転運動が発生する(ステップS9)。
以上のステップS1〜ステップ9が制御の計算ループとして繰り返し実行されることにより、ロボットアーム5の動作の制御、すなわち、ロボットアーム5の機械インピーダンスの値を前記適切に設定された設定値に制御する動作を実現することができる。
次に、本発明の第1実施形態における制御装置2の全体的な動作について、ボタンなどのデータ入力IF66を通じて、人4からの物体運搬開始の指令を制御装置2が受けた後、人4がロボットアーム5を操作して物体4を把持しながら運搬する作業を、1つの具体的な例として、図14のフローチャートに基づいて説明する。
まず、ステップ30では、ロボットアーム5のハンド30で物体3を把持するための目標軌道を目標軌道生成部55が生成し、図6に示すステップS8を通る制御フローによりロボットアーム5の手先位置及び姿勢の制御が実行されるとともに、制御装置2によるハンド駆動用モータ43が駆動制御されることにより、ハンド30を開いた状態で物体3に近づけて、物体3を把持可能な位置にハンド30を位置させ、ハンド30を閉じて物体3を把持することにより、物体3の把持動作を実現することができる。なお、前記目標軌道を生成するときに必要な、把持する物体3の位置情報は、図示しない環境マップデータベースに予め蓄積されているか、又は、画像撮像装置28と画像認識部68とを利用して取得することができる。これにより、ロボットアーム5が固定の場合には、ロボットアーム5の固定された位置の情報と、前記把持する物体3の位置情報とから、物体3を把持するための目標軌道を目標軌道生成部55で生成することができる。また、ロボットアーム5が、例えば、台部34が固定されたレール8の可動部が固定部に対して移動したり、又は、台部34に設けられた車輪で固定レールに沿って走行したりする構造を有する移動装置5Aなどにより移動する場合には、基準位置に対するロボットアーム5の現在位置情報を、例えば、画像撮像装置28と画像認識部68とを利用して適宜取得しておき、取得された現在位置情報と、前記把持する物体3の位置情報とから、物体3を把持するための目標軌道を目標軌道生成部55で生成することができる。なお、物体3の位置情報は、物体にRFタグなどを装備して抽出することも可能である。移動装置5Aによりロボットアーム5が移動するときの移動制御に関して、ロボットアーム5の手先座標rは、前記したように、絶対座標系41から見た手先座標系42のベクトルとして表す。移動装置5Aとして、例えば、ロボットアーム5が固定されたレール8が移動することで、レール8が移動する度に絶対座標系41の座標が平行移動することになる。ただし、手先位置は、絶対座標系41からの相対位置であるため、レール8が移動しても変化はしない。
なお、前記環境マップデータベースは、ロボットアーム5の周辺の環境に依存する壁又は家具等の配置情報の地図を記憶したものであり、ロボットアーム5による物体運搬時の障害物の有無などを予め取得して、その障害物を避けてロボットアーム5を移動させるなどの回避動作を行なわせるときに使用することができる。
次いで、ステップS31では、物体3に配設されたRFタグ46の情報を、ハンド30に配設されたRFタグ受信部45で読み取り、RFタグ受信部45で物体3のID番号などのID情報が特定される。
次いで、RFタグ受信部45で読み取ったID番号などのID情報は運搬状態情報収集部25を介して運搬状態データベース21に入力され、入力されたID情報より、運搬状態データベース21において、物体3の重量、寸法等の特性データが読み出され、読み出された特性データが運搬状態データベース21からインピーダンス設定部23へと転送される。
次いで、ステップS32では、ロボットアーム5を操作している人4の身体特性情報と姿勢情報と体調情報を運搬状態情報収集部25で検出し、計測し、人4を識別するID番号とともに運搬状態データベース21へ出力する。さらにステップS27の危険度算出フローにより危険度合いを危険度合い算出部22で算出して運搬状態データベース21に記憶するとともに、インピーダンス設定部23へと転送される。人4の識別は、人4にRFタグを装備して、識別番号をRFタグ受信部45で抽出しても良いし、人4が作業前にID番号をデータ入力IF66で入力しても良い。
次いで、ステップS33では、インピーダンス設定部23において、運搬状態データベース21より転送された物体情報及び危険度合いを基に、機械インピーダンス設定値が前記式(3)〜式(5)により計算される。
ステップS34では、インピーダンス制御部23により、前記ロボットアーム5の機械インピーダンスの値が、インピーダンス設定部23において計算された機械インピーダンス設定値となるように前記ロボットアーム5の機械インピーダンスの値を制御するインピーダンス制御動作が行われ(インピーダンス制御部24での動作)、人4がロボットアーム5を操作している間はインピーダンス制御動作が継続される。
ステップS35では、物体3の運搬が完了してボタンなどで構成されるデータ入力IF66が運搬完了信号を受け取ると、制御装置2の制御によりロボットアーム5のハンド30が開き、物体3が把持状態から開放される。
次いで、ステップS36では、ボタンなどで構成されるデータ入力IF66が動作完了告知信号を受け取ると、そのボタンからの入力が、運搬状態データベース21と危険度合い算出部22とインピーダンス設定部23とを通じてインピーダンス制御部24に入力され、インピーダンス制御部24の目標軌道生成部55より動作完了告知信号がインピーダンス計算部51へと出力され、設定されていた機械インピーダンス設定値がインピーダンス計算部51によりクリアされる。
以上の動作ステップS30〜ステップS36により、人4の作業姿勢又は体調、物体3の特性により、インピーダンスパラメータをインピーダンス設定部23で設定し、インピーダンス制御部24での制御により、そのパラメータに応じて、ロボットアーム5による物体3の運搬作業が実現する。
以上のように、運搬状態情報収集部25、運搬状態データベース21、インピーダンス設定部23、危険度合い算出部22、インピーダンス制御部24を備えることにより、ロボットアーム5を人4が操作する場合に、運搬状態情報収集部25により収集した人4の姿勢又は体調、物体3の特性の情報に応じて、剛性の高いインピーダンス制御の状態から、速やかに剛性の低いインピーダンス制御の状態にロボットアーム5が移行し、安全性を確保できる。言い換えれば、十分に柔軟性を発揮できる状態にロボットアーム5が移行し、危険な状態では、ロボットアーム5が柔軟に動くことにより安全性が発揮できるようになる。具体的には、図10又は図11のように人4の姿勢が悪い状態又は通常より血圧又は心拍数が高い状態、又は、人4の手が震えている状態で物体3を運搬している場合には、人4の転倒又は誤操作の危険性がある。さらに、人4の姿勢が良い状態、通常の血圧又は心拍数の状態、又は、人4の手が震えていない状態で物体3を運搬していても、そのような場合から、図10又は図11のように人4の姿勢が悪い状態又は通常より血圧又は心拍数が高い状態、又は、人4の手が震えている状態で物体3を運搬している場合に変わったときにも、同様に、人4の転倒又は誤操作の危険性がある。そのような場合又はそのようなときには、当該状態の情報を運搬状態情報収集部25で収集し、収集した情報及び運搬状態データベース21に記憶された情報に基づき危険度合い算出部22で危険度合いを「レベル5」と設定し、ロボットアーム5の機械インピーダンス設定値を危険度合い「レベル5」に比例するように剛性Kをインピーダンス設定部23により高く設定することで、ロボットアーム5の手先の姿勢は維持されるように制御されるので、人4が転倒又は誤操作しても把持物体3を安全に搬送することができる。また、前記状態から、人4の姿勢が良い状態になったり、通常の血圧又は心拍数の状態になったり、又は、人4の手がさほど震えていない状態になって、物体3を運搬するようになった場合には、当該状態の情報を運搬状態情報収集部25で収集し、収集した情報及び運搬状態データベース21に記憶された情報に基づき危険度合い算出部22で危険度合いを「レベル5」から「レベル4」又はそれ以下のレベルに設定し、ロボットアーム5の機械インピーダンス設定値を危険度合い「レベル4」又はそれ以下のレベルに比例するように剛性Kをインピーダンス設定部23により低く設定して、より柔軟にロボットアーム5を操作することが可能になる。
また、運搬状態情報収集部25で収集した情報又は運搬状態データベース21に記憶された情報に基づき、人4の姿勢、体調情報に加えて、物体3の物体情報を考慮することで、把持物体3の物体特性に応じたインピーダンス制御が可能である。例えば、物体3の重量が軽い場合には、悪い姿勢でもそれほど危険ではないため、危険度合い算出部22で危険度を低く算出して、インピーダンス設定部23で式(5)を使用して、低い危険度に対応するようにロボットアーム5の機械インピーダンス設定値を低く設定して、ロボットアーム5のばね性が弱くなり抵抗が小さくなり、人4の姿勢が悪い姿勢状態でも、ロボットアーム5を柔軟に操作することができる。逆に、重い物体3を運搬している場合には、危険度合い算出部22で危険度を高く算出して、インピーダンス設定部23で式(5)並びに図21A及び図21Bを使用して、高い危険度に対応するようにロボットアーム5の機械インピーダンス設定値を高く設定して、ロボットアーム5のばね性が強くなり抵抗が大きくなり、必要以上にロボットアーム5が動くことを防ぐことができるため、物体3の落下による危険性を低減することができる。なお、図21Aは、物体3の重量が軽い場合に危険度を低く算出するために使用する例を表形式で示す図であり、図21Bは、物体3の重量が重い場合に危険度を高く算出するために使用する例を表形式で示す図である。
以上のように、本発明の第1実施形態にかかる制御装置2によれば、人4の姿勢又は体調が悪い場合又は物体3の特性に応じて、ロボットアーム5が適切に制御することで、物体3を落下させたり他の人間又は他の物体に接触し人に負担をかけることのない、安全なロボット制御を実現できる制御装置が提供される。
(第2実施形態)
本発明の第2実施形態における、ロボットアームの制御装置2Aの基本的な構成は、第1実施形態の場合と同様であるので、共通部分の説明は省略し、主として、異なる部分について、以下、詳細に説明する。
図15は運搬状態データベース21の把持規則表を説明する図である。運搬状態データベース21は、図8の物体3の物体情報、又は、図9の人4の姿勢、体調などを示す情報に加え、図15に示す、物体3の位置及び姿勢の拘束条件情報が記された把持規則表71を有するようにしてもよい。把持規則表71には、位置維持、姿勢維持、高さ維持の項目があり、それぞれの項目に対し、1又は0の数値が予め記録される。例えば、図15の第1行目の把持規則は、位置維持は0、姿勢維持は1、高さ維持は0である。図15の第2行目の把持規則は、位置維持は1、姿勢維持は1、高さ維持は0である。図15の第3行目の把持規則は、位置維持は0、姿勢維持は1、高さ維持は1である。
図20は、第2実施形態にかかるロボットアームの制御装置2Aを備えたロボットシステム1を構成する制御装置2Aと制御対象であるロボットアーム5の詳細構成を示す図である。
切り替え部74は、運搬状態データベース21とインピーダンス設定部23との間に配置され、把持規則表71に基づいて規則を切り替える。具体的には把持規則表71は、姿勢維持の項目が1の場合、物体3の姿勢を動かさずに固定するという姿勢の拘束条件の情報があることを示しており、切り替え部74は、ロボットアーム5のハンド30の手先での回転(φ、θ、ψ)方向の機械インピーダンス設定値がインピーダンス設定部23により大きく設定し、手先すなわちハンド30の姿勢が変動しにくいように制御されるようにインピーダンス設定部23に指令を出す。
例えば、図10に示すように、人4の姿勢が悪い状態でロボットアーム5を操作している場合、人4の転倒などにより誤操作の危険性があるため、手先であるハンド30の姿勢を維持し、物体3を水平を保つために、把持規則表71の姿勢維持の項目が1に設定される。
把持規則表71の項目の設定は、運搬状態検出部67の検出結果又は危険度合い算出部22に基づいて切り替え部74で行われる。例えば、人4の姿勢が悪い状態で物体3を運搬している場合には、物体3が傾いて、物体3の中身が落下することを防ぐために、危険度合いが「レベル5」と危険度合い算出部22で算出された場合には、危険度合い算出部22からの情報に基づき切り替え部74の把持規則表71の姿勢維持の項目が1に切り替え部74で設定される。
また、位置維持の項目が1の場合(図15の第2行目の把持規則の場合)、切り替え部74は、ロボットアーム5の手先であるハンド30での並進(x、y、z)方向の機械インピーダンス設定値がインピーダンス設定部23により大きく設定され、手先であるハンド30の位置が変動しにくいように制御されるようにインピーダンス設定部23に指令を出す。例えば、人4の体調が通常より悪い状態で、ロボットアーム5の誤操作の危険性が高いため危険度合い算出部22で危険度合いが高く設定される場合には、危険度合い算出部22からの情報に基づき切り替え部74の把持規則表71の位置維持の項目を1に切り替え部74で設定する。
また、高さ維持の項目が1の場合(図15の第3行目の把持規則の場合)、ロボットアーム5の手先であるハンド30でのz方向の機械インピーダンス設定値がインピーダンス設定部23により大きく設定され、手先であるハンド30の位置する高さが維持される。
例えば、図11に示すように、運搬状態情報収集部25で収集した情報に基づき、人4が足元の障害物72を避けるために、胸骨上縁高と手先位置の差から算出された情報を基に自分の胸より高い位置でロボットアーム5を操作していると切り替え部74で判断される場合には、人4が誤って人4の手先を下げて操作して足元の障害物72との接触を避けるために、切り替え部74により高さ維持の項目を1と設定しておく。すなわち、運搬状態情報収集部25により胸骨上縁高と手先位置の情報を収集し、運搬状態データベース21に記憶しておく一方、切り替え部74が、運搬状態データベース21の胸骨上縁高と手先位置の情報を入力して、人4の胸より高い位置で操作していると判断した場合には、高さ維持の項目を1と設定する。この場合、切り替え部74は、ロボットアーム5の手先であるハンド30での−z方向、すなわち、鉛直方向下向きの機械インピーダンス設定値がインピーダンス設定部23により大きく設定され、手先であるハンド30の位置が下がりにくいように制御されるようにインピーダンス設定部23に指令を出す。
次に、姿勢維持の場合(図15の第3行目の把持規則の場合)を例に取り、機械インピーダンス設定値に、前記ロボットアーム5の機械インピーダンスの値を制御する実現方法について説明する。
手先位置及び姿勢目標補正出力rdΔは、インピーダンス制御部24のインピーダンス計算部51において、以下の式(10)により計算される。
Figure 0004243326

ただし、
Figure 0004243326

であり、(α、α、α、αφ、αθ、αψ)はインピーダンス制御係数である。
人4がロボットアーム5を操作している場合には、インピーダンス制御係数の一部の成分がインピーダンス計算部51により変更される。
例えば、人4の姿勢が悪い状態で物体3を運搬している場合(例えば、図19A又は図19Bにより危険度を算出して、例えば、危険度が4以上の場合には、切り替え部74で姿勢が悪い状態で物体3を運搬していると判断する場合)には、切り替え部74の把持規則表71を参照して把持規則表71の姿勢維持の項目が1である場合、インピーダンス設定部23により、位置に対応する成分(α、α、α)は1に切り換えられ、姿勢に対応する成分(αφ、αθ、αψ)は0が維持される。これにより、手先の位置(x、y、z)に関しては剛性Kとなるようにインピーダンス制御部24により制御され、手先の姿勢(φ、θ、ψ)は位置制御がインピーダンス制御部24により維持される。したがって、例えば、慣性M=0、D=0となるようにし、剛性Kとして十分な柔軟性を発揮できる設定値に機械インピーダンスをインピーダンス設定部23により設定しておけば、人4の姿勢が悪い場合には、手先であるハンド30の位置が柔軟に動くことにより安全性が発揮され、一方、手先であるハンド30の姿勢は維持されるので、例えば、水が入った鍋を運搬している場合には、人4が誤って鍋を傾けようとした場合でも鍋は水平に維持され、鍋の中の水を落下させることはない。
このように、インピーダンス制御係数により、前記ロボットアーム5の機械インピーダンスの値を、手先であるハンド30の方向別に機械インピーダンス設定値に制御できるようにすることで、人4に対する安全性を確保しつつ、物体3に対する安全性を同時に満たすことができる制御が可能となる。
なお、本第2実施形態では、把持規則表71を図15のとおりとしたが、これに限られるわけではなく、位置維持成分、姿勢維持成分、さらに、±の方向ごとに機械インピーダンス設定値の切り換えの動作の仕方を指定する形式でも同様の効果が発揮できるとともに、さらに細かく、機械インピーダンス設定値の切り換えの動作を指定することができる。
(第3実施形態)
本発明の第3実施形態における、ロボットアームの制御装置の基本的な構成は、第1実施形態及び第2実施形態の場合と同様であるので、共通部分の説明は省略し、主として異なる部分について、以下、詳細に説明する。
図4はロボットアーム5と人4との相対位置関係を示す図である。
図7において、68は画像認識部であり、カメラなどの画像撮像装置28の画像データより画像認識を行い、ロボットアーム5の台部34の位置及び人4の位置及びロボットアーム5の手先位置をそれぞれ抽出し、運搬状態データベース21に出力する。危険度合い算出部22は、運搬状態データベース21の人4の位置情報とロボットアーム5の台部34の位置との相対位置17及び人4の位置情報とロボットアーム5の手先位置との相対位置16を算出し、相対位置関係に応じて危険度合いを算出する。具体的には、例えば、ロボットアーム5の台部34の位置若しくはロボットアーム5の手先位置から人4の位置がロボットアーム5に接近している場合には「レベル5」とし、ロボットアーム5から人4の位置が離れている場合には「レベル1」とする。第1実施形態と同様に前記式(3)〜式(5)に基づき、インピーダンスパラメータを計算し、インピーダンス制御部24へ出力する。すなわち、危険度合いに反比例するように剛性Kをインピーダンス設定部23により設定すれば、人4がロボットアーム5に接近している時は、剛性が低くなるため、ロボットアーム5は柔らかく動作して、人4との衝突による危険性を低減することができる。
以上のように、人4がロボットアーム5に接近度合いに応じて、機械インピーダンスを設定することで、人4がロボットアーム5に衝突した際の危険性を低減し、安全なロボット制御を実現する制御装置が提供できる。
なお、前記第1実施形態では、ロボットアームの制御装置では、位置誤差補償部56のゲインを調整することにより、手先の方向別に擬似的に機械インピーダンス設定値に前記ロボットアーム5の機械インピーダンスの値を制御することを実現しても良い。
なお、前記第1実施形態では、物理特性情報を把持物体の重量情報、寸法情報、硬度情報としたが、これらに限られるわけではなく、温度など、その他の物理特性でもよい。
一例として、熱湯が入った鍋を把持しながら運搬する場合には危険度を高くする一方、水が入った鍋を把持しながら運搬する場合には危険度を低くすることができるようにしてもよい。具体的には、例えば、ロボットアーム5のハンド付近に赤外線センサー(図示せず)を配設し、ハンド30で把持する物体、例えば、鍋自体又は鍋の中の液体の温度を前記赤外線センサーで検知して、検知した温度を運搬状態情報収集部25から運搬状態データベース21に記憶する。危険度合い算出部22では、運搬状態データベース21の物体(例えば鍋自体又は鍋の中の液体)の温度を基に、運搬状態データベース21に記憶した又は危険度合い算出部22に有する、温度と危険度との関係情報(図22参照)に従って、危険度のレベルを危険度合い算出部22で算出する。すなわち、熱湯が入った鍋を把持しながら運搬する場合には危険度のレベルを高くする一方、水が入った鍋を把持しながら運搬する場合には危険度のレベルを低くするように危険度合い算出部22で算出する。その後、インピーダンス設定部23において、前述の式(3)〜(5)の代わりに、以下の式(3a)〜(5a)を使用して、機械インピーダンス設定値の各パラメータを設定すればよい。
Figure 0004243326
Figure 0004243326
Figure 0004243326

なお、KMt、KDt、KKtはゲインであり、それぞれある定数値である。
なお、前記第1実施形態では、姿勢情報を肘関節角度11と人4の手先位置としたが、これらに限られるわけではなく、膝関節角度などなど、その他の姿勢情報でもよい。例えば、通常の場合は、手先を使って物体を運搬するので、姿勢情報の1つとして肘の関節角度を使用しているが、例えば、手先ではなく足で物体を運搬した場合には、足の膝関節角度などを姿勢情報として使用することができる。また、肩に乗せて物体を運搬した場合には、首と肩の角度などを姿勢情報として使用することができる。
なお、前記種々の実施形態において、危険度合い算出部22により、前記協働運搬情報データベース21の前記協働運搬情報に基づき、前記人4の物体運搬時の危険度合いを算出するとき、前記協働運搬情報(作業姿勢情報、体調情報、物体特性情報、
ロボットアーム5と人4との相対位置などの情報)が数値で表現される場合、予め決められた危険度判定用閾値に対して協働運搬作業における危険な範囲又は異常な範囲側に前記協働運搬情報が属するときには危険度合いを高く算出する一方、前記閾値に対して協働運搬作業における危険ではない範囲又は正常な範囲側に前記協働運搬情報が属するときには危険度合いを低く算出するようにすればよい。
また、前記種々の実施形態において、インピーダンス設定部23は、前記危険度合い算出部22で算出した前記危険度合いと、前記運搬状態データベース21の前記物理特性情報若しくは属性情報の少なくとも1つの情報に基づいて前記ロボットアーム5の機械インピーダンス設定値を設定するとき、当該1つの情報が数値で表現される場合、予め決められた危険度判定用閾値に対して協働運搬作業における危険な範囲又は異常な範囲側に前記協働運搬情報が属するときには危険度合いを高く算出する一方、前記閾値に対して協働運搬作業における危険ではない範囲又は正常な範囲側に前記協働運搬情報が属するときには危険度合いを低く算出するようにすればよい。
なお、前記種々の実施形態ではロボットアームを例に説明したが、本発明は、アームに限らず、車輪により動く移動ロボット、又は、2足歩行ロボット、又は、多足歩行ロボットなどにも適用することができ、移動ロボットなどと人間との接触に関して同様の効果を発揮する。
なお、前記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
本発明は、家庭用ロボットなど人と接する可能性があるロボットのロボットアームの動作の制御を行なうロボットアームの制御装置及び制御方法、ロボットアームの制御装置を有するロボット、及びロボットアームの制御プログラム、集積電子回路として有用である。また、家庭用ロボットに限らず、産業用ロボット、又は、生産設備等における可動機構のロボットアームの制御装置及び制御方法、ロボットアームの制御装置を有するロボット、及びロボットアームの制御プログラム、集積電子回路としても適用が可能である。
本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形又は修正は明白である。そのような変形又は修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
本発明のこれらと他の目的と特徴は、添付された図面についての好ましい実施形態に関連した次の記述から明らかになる。
図1は、本発明の第1実施形態におけるロボット制御装置の構成の概要を示す図である。 図2は、本発明の第1実施形態におけるロボットシステムを構成する制御装置と制御対象であるロボットアームの詳細構成を示す図である。 図3は、本発明の第1実施形態におけるロボット制御装置の操作状態を示す図である。 図4は、本発明の第1実施形態におけるロボット制御装置の操作状態を示す図である。 図5は、本発明の第1実施形態における制御装置のインピーダンス制御部の構成を示すブロック図である。 図6は、本発明の第1実施形態における制御装置のインピーダンス制御部の動作ステップを表すフローチャートである。 図7は、本発明の第1実施形態における制御装置の運搬状態情報収集部の構成を示すブロック図である。 図8は、本発明の第1実施形態における運搬状態データベースの物体特性の一覧表を説明する図である。 図9は、本発明の第1実施形態における運搬状態データベースの作業状態の一覧表を説明する図である。 図10は、本発明の第1実施形態におけるロボット制御装置の操作状態を示す図である。 図11は、本発明の第1実施形態におけるロボット制御装置の操作状態を示す図である。 図12は、本発明の第1実施形態における人の重心座標と支持基点面との関係を示す図である。 図13は、本発明の第1実施形態における制御装置の運搬状態情報収集部と運搬状態データベースと危険度合い算出部、インピーダンス設定部の動作ステップを表すフローチャートである。 図14は、本発明の第1実施形態における制御装置の全体的な動作ステップを表すフローチャートである。 図15は、本発明の第2実施形態における制御装置の運搬状態データベースの把持規則表を説明する図である。 図16は、本発明の第1実施形態における重心計測部を説明するための床面に配置された荷重センサーのxy座標を使用した説明図である。 図17は、本発明の第1実施形態における体調計測部の周波数の閾値を示す図である。 図18は、本発明の第1実施形態における体調計測部の周波数の段階を示す図である。 図19Aは、本発明の第1実施形態における判断データベースの具体例を示す図である。 図19Bは、本発明の第1実施形態における判断データベースの具体例を示す図である。 図20は、本発明の第2実施形態におけるロボットシステムを構成する制御装置と制御対象であるロボットアームの詳細構成を示す図である。 図21Aは、本発明の第1実施形態において、物体の重量が軽い場合に危険度を低く算出するために使用する例を表形式で示す図である。 図21Bは、本発明の第1実施形態において、物体の重量が重い場合に危険度を高く算出するために使用する例を表形式で示す図である。 図22は、本発明の変形例において、温度と危険度との関係を示す図である。

Claims (7)

  1. ロボットアームの制御装置であって、
    人と前記ロボットアームとが協働して物体を運搬するときの前記ロボットアームと協働する前記人の作業姿勢に関する作業姿勢情報を取得する作業姿勢情報取得手段と、
    前記作業姿勢情報取得手段で取得された前記作業姿勢情報に基づき、前記人の物体運搬時の危険度合いを算出する危険度合い算出手段と、
    前記危険度合い算出手段により算出された前記危険度合いが大きい程、前記ロボットアームの剛性を高めるように制御する剛性制御手段と、
    前記危険度合い算出手段により算出された前記危険度合いが大きい程、前記ロボットアームの機械インピーダンス設定値を大きくするように設定するインピーダンス設定手段とを有し、
    前記剛性制御手段は、前記インピーダンス設定手段の設定した前記機械インピーダンス設定値に、前記ロボットアームの機械インピーダンスの値を制御するとともに、
    前記インピーダンス設定手段は、前記物体運搬時の前記危険度合いに基づき、前記ロボットアームの手先の並進方向及び回転方向の6次元の方向の機械インピーダンス設定値を個別に設定するとともに、前記物体運搬時の前記危険度合いに基づき、前記手先の前記並進方向の剛性よりも前記回転方向の剛性を高くすることで、前記ロボットアームが運搬している前記物体を水平に保つように前記機械インピーダンス設定値をそれぞれ設定するロボットアームの制御装置。
  2. ロボットアームの制御装置であって、
    人と前記ロボットアームとが協働して物体を運搬するときの前記ロボットアームと協働する前記人の作業姿勢に関する作業姿勢情報を取得する作業姿勢情報取得手段と、
    前記作業姿勢情報取得手段で取得された前記作業姿勢情報に基づき、前記人の物体運搬時の危険度合いを算出する危険度合い算出手段と、
    前記危険度合い算出手段により算出された前記危険度合いが大きい程、前記ロボットアームの剛性を高めるように制御する剛性制御手段とを有するとともに、
    前記作業姿勢情報は、前記ロボットアームと協働する前記人の協働している側の肘関節角度の情報を有し、前記危険度合い算出手段は、前記物体運搬時の前記肘関節角度が大きいほど前記危険度合いを大きく算出し、前記肘関節角度が小さいほど前記危険度合いを小さく算出するロボットアームの制御装置。
  3. ロボットアームの制御装置であって、
    人と前記ロボットアームとが協働して物体を運搬するときの前記ロボットアームと協働する前記人の作業姿勢に関する作業姿勢情報を取得する作業姿勢情報取得手段と、
    前記作業姿勢情報取得手段で取得された前記作業姿勢情報に基づき、前記人の物体運搬時の危険度合いを算出する危険度合い算出手段と、
    前記危険度合い算出手段により算出された前記危険度合いが大きい程、前記ロボットアームの剛性を高めるように制御する剛性制御手段とを有するとともに、
    前記作業姿勢情報は、前記ロボットアームと協働する前記人の協働している側の手先位置の情報と前記人の胸骨から床面までの高さである胸骨上縁高の情報を有し、
    前記危険度合い算出手段は、前記手先位置の高さが前記胸骨上縁高の高さより大きいほど前記危険度合いを大きく算出し、前記手先位置の高さが前記胸骨上縁高の高さより小さいほど前記危険度合いを小さく算出するロボットアームの制御装置。
  4. ロボットアームの制御装置であって、
    人と前記ロボットアームとが協働して物体を運搬するときの前記ロボットアームと協働する前記人の作業姿勢に関する作業姿勢情報を取得する作業姿勢情報取得手段と、
    前記作業姿勢情報取得手段で取得された前記作業姿勢情報に基づき、前記人の物体運搬時の危険度合いを算出する危険度合い算出手段と、
    前記危険度合い算出手段により算出された前記危険度合いが大きい程、前記ロボットアームの剛性を高めるように制御する剛性制御手段とを有するとともに、
    前記作業姿勢情報は、前記ロボットアームと協働する前記人の重心座標の情報と前記人の床面での支持面である支持基底面の情報を有し、前記危険度合い算出手段は、前記人の重心座標が前記人の支持基底面の範囲内にあるかどうかを判定し、範囲外にある場合は前記人の重心座標が前記支持基底面からの距離が大きいほど前記危険度合いを大きく算出するロボットアームの制御装置。
  5. ロボットアームの制御装置であって、
    人と前記ロボットアームとが協働して物体を運搬するときの前記ロボットアームと協働する前記人の作業姿勢に関する作業姿勢情報を取得する作業姿勢情報取得手段と、
    前記作業姿勢情報取得手段で取得された前記作業姿勢情報に基づき、前記人の物体運搬時の危険度合いを算出する危険度合い算出手段と、
    前記危険度合い算出手段により算出された前記危険度合いが大きい程、前記ロボットアームの剛性を高めるように制御する剛性制御手段とを有するとともに、
    前記作業姿勢情報は前記ロボットアームと協働する前記人の利き手の情報を有し、前記危険度合い算出手段は、前記人の利き手で前記ロボットアームを操作しているかどうかを判定し、前記人が前記利き手で操作している場合の前記危険度合いを、前記人が前記利き手で操作していない場合の前記危険度合いよりも小さく算出するロボットアームの制御装置。
  6. ロボットアームの制御装置であって、
    人と前記ロボットアームとが協働して物体を運搬するときの前記ロボットアームと協働する前記人の作業姿勢に関する作業姿勢情報を取得する作業姿勢情報取得手段と、
    前記作業姿勢情報取得手段で取得された前記作業姿勢情報に基づき、前記人の物体運搬時の危険度合いを算出する危険度合い算出手段と、
    前記危険度合い算出手段により算出された前記危険度合いが大きい程、前記ロボットアームの剛性を高めるように制御する剛性制御手段とを備えるとともに、
    前記人と前記ロボットアームとが協働して物体を運搬するときの前記ロボットアームと協働する前記人の体調に関する情報である体調情報を取得する体調情報取得手段をさらに備え、
    前記危険度合い算出手段は、前記作業姿勢情報と前記体調情報に基づき、前記人の物体運搬時の危険度合いを算出するとともに、
    前記作業姿勢情報取得手段は、前記ロボットアームが運搬している前記物体の物体特性に関する物体特性情報を取得し、
    前記インピーダンス設定手段は、前記物体運搬時の前記危険度合いと前記物体特性情報に基づき前記ロボットアームの機械インピーダンス設定値を設定するとともに、前記危険度合いと前記物体特性情報に基づき、前記ロボットアームの前記手先の前記並進方向の剛性よりも前記回転方向の剛性を高くすることで、前記ロボットアームが運搬している前記物体を水平に保つように前記機械インピーダンス設定値をそれぞれ設定するロボットアームの制御装置。
  7. ロボットアームの制御装置であって、
    人と前記ロボットアームとが協働して物体を運搬するときの前記ロボットアームと協働する前記人の作業姿勢に関する作業姿勢情報を取得する作業姿勢情報取得手段と、
    前記作業姿勢情報取得手段で取得された前記作業姿勢情報に基づき、前記人の物体運搬時の危険度合いを算出する危険度合い算出手段と、
    前記危険度合い算出手段により算出された前記危険度合いが大きい程、前記ロボットアームの剛性を高めるように制御する剛性制御手段とを備えるとともに、
    前記人と前記ロボットアームとが協働して物体を運搬するときの前記ロボットアームと協働する前記人の体調に関する情報である体調情報を取得する体調情報取得手段をさらに備え、
    前記危険度合い算出手段は、前記作業姿勢情報と前記体調情報に基づき、前記人の物体運搬時の危険度合いを算出するとともに、
    前記作業姿勢情報取得手段は、前記ロボットアームが運搬している前記物体の物体特性に関する物体特性情報を取得し、
    前記インピーダンス設定手段は、前記物体運搬時の前記危険度合いと前記物体特性情報に基づき前記ロボットアームの機械インピーダンス設定値を設定するとともに、
    前記物体特性情報は、前記ロボットアームが運搬している前記物体の物理特性情報若しくは前記物体の属性情報の少なくとも1つの情報を有するとともに、前記ロボットアームが運搬している前記物体の物理特性情報として、前記ロボットアームが運搬している前記物体の重量情報と、前記物体の寸法情報と、前記物体の硬度情報と、前記物体の位置及び姿勢の拘束条件情報とのうちの少なくとも1つの情報を有し、前記物体の属性情報として、前記ロボットアームが運搬している前記物体の鋭利度情報と、前記ロボットアームが運搬している前記物体の重要度情報とのうちの少なくとも1つの情報を有するロボットアームの制御装置。
JP2008536873A 2007-06-27 2008-06-24 ロボットアームの制御装置及び制御方法、ロボット、及びプログラム Active JP4243326B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007169115 2007-06-27
JP2007169115 2007-06-27
PCT/JP2008/001632 WO2009001550A1 (ja) 2007-06-27 2008-06-24 ロボットアームの制御装置及び制御方法、ロボット、及びプログラム

Publications (2)

Publication Number Publication Date
JP4243326B2 true JP4243326B2 (ja) 2009-03-25
JPWO2009001550A1 JPWO2009001550A1 (ja) 2010-08-26

Family

ID=40185375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008536873A Active JP4243326B2 (ja) 2007-06-27 2008-06-24 ロボットアームの制御装置及び制御方法、ロボット、及びプログラム

Country Status (4)

Country Link
US (1) US7747351B2 (ja)
JP (1) JP4243326B2 (ja)
CN (4) CN101646534B (ja)
WO (1) WO2009001550A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103170973A (zh) * 2013-03-28 2013-06-26 上海理工大学 基于Kinect摄像机的人机协作装置及方法
USD926507S1 (en) 2018-10-16 2021-08-03 Sony Corporation Kitchen with robot manipulator

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4445038B2 (ja) * 2008-02-06 2010-04-07 パナソニック株式会社 ロボット、ロボットの制御装置及び制御方法、並びに、ロボットの制御装置の制御プログラム
CN101737603B (zh) * 2008-11-10 2011-11-30 鸿富锦精密工业(深圳)有限公司 万向关节
CN101859096A (zh) * 2009-04-10 2010-10-13 鸿富锦精密工业(深圳)有限公司 采用pid控制器的控制方法及控制装置与机器人
US8364314B2 (en) * 2009-04-30 2013-01-29 GM Global Technology Operations LLC Method and apparatus for automatic control of a humanoid robot
WO2011080856A1 (ja) * 2010-01-04 2011-07-07 パナソニック株式会社 ロボット、ロボットの制御装置、及び制御方法
WO2011089885A1 (ja) * 2010-01-25 2011-07-28 パナソニック株式会社 危険提示装置、危険提示システム、危険提示方法およびプログラム
CN101870110B (zh) * 2010-07-01 2012-01-04 三一重工股份有限公司 一种机械铰接臂的控制方法及控制装置
US9665767B2 (en) * 2011-02-28 2017-05-30 Aic Innovations Group, Inc. Method and apparatus for pattern tracking
WO2012124342A1 (ja) * 2011-03-17 2012-09-20 パナソニック株式会社 ロボット、ロボットの制御装置、制御方法、及び制御プログラム
US9965850B2 (en) * 2012-07-05 2018-05-08 Bernard Fryshman Object image recognition and instant active response with enhanced application and utility
JP2013111737A (ja) * 2011-12-01 2013-06-10 Sony Corp ロボット装置及びその制御方法、並びにコンピューター・プログラム
FR2983762B1 (fr) * 2011-12-09 2014-01-10 Commissariat Energie Atomique Procede de pilotage d'un robot et systeme de pilotage mettant en oeuvre un tel procede
KR101305819B1 (ko) * 2012-01-04 2013-09-06 현대자동차주식회사 착용식 로봇의 사용자 조작 의도 토크 추출방법
WO2013175777A1 (ja) * 2012-05-23 2013-11-28 パナソニック株式会社 ロボット、ロボットの制御装置、制御方法、及び制御プログラム
US10521896B2 (en) * 2012-07-05 2019-12-31 Bernard Fryshman Object image recognition and instant active response with enhanced application and utility
EP2895305B1 (en) 2012-09-17 2017-12-20 Rethink Robotics Inc. Constraining robotic manipulators with redundant degrees of freedom
CN103894807A (zh) * 2012-12-28 2014-07-02 Abb技术有限公司 降低操作员潜在伤害的方法和装置
WO2014129110A1 (ja) * 2013-02-25 2014-08-28 パナソニック株式会社 ロボット、ロボットの制御装置及び制御方法、並びに、ロボット用制御プログラム
JP6007873B2 (ja) * 2013-08-30 2016-10-12 トヨタ自動車株式会社 ロボット及びその制御方法
CN103600354B (zh) * 2013-11-08 2016-10-05 北京卫星环境工程研究所 航天器机械臂柔性随动控制重力补偿方法
US10255492B2 (en) * 2014-03-05 2019-04-09 Konica Minolta, Inc. Image processing method providing information for identifying a function of an object, the function being identified based on a pose of a person with respect to the object
JP6380828B2 (ja) * 2014-03-07 2018-08-29 セイコーエプソン株式会社 ロボット、ロボットシステム、制御装置、及び制御方法
DE102014005355A1 (de) * 2014-04-11 2015-10-15 Herbert Kannegiesser Gmbh Verfahren zum Erfassen eines Wäschestücks
JP5820013B1 (ja) * 2014-04-30 2015-11-24 ファナック株式会社 ワークを把持して搬送するロボットの安全監視装置
DE102014210362A1 (de) * 2014-06-02 2015-12-03 Kuka Systems Gmbh MRK-Arbeitsplatz mit einer Aufspannvorrichtung
US9804593B1 (en) * 2014-12-12 2017-10-31 X Development Llc Methods and systems for teaching positions to components of devices
JP5927284B1 (ja) * 2014-12-22 2016-06-01 ファナック株式会社 人との接触力を検出してロボットを停止させるロボット制御装置
JP6582483B2 (ja) * 2015-03-26 2019-10-02 セイコーエプソン株式会社 ロボット制御装置およびロボットシステム
JP6426547B2 (ja) * 2015-07-21 2018-11-21 ファナック株式会社 人間協調型ロボットシステムのロボットシミュレーション装置
JP6591818B2 (ja) * 2015-07-30 2019-10-16 ファナック株式会社 産業用ロボットシステムおよびその制御方法
DE102016009030B4 (de) 2015-07-31 2019-05-09 Fanuc Corporation Vorrichtung für maschinelles Lernen, Robotersystem und maschinelles Lernsystem zum Lernen eines Werkstückaufnahmevorgangs
JP6240689B2 (ja) * 2015-07-31 2017-11-29 ファナック株式会社 人の行動パターンを学習する機械学習装置、ロボット制御装置、ロボットシステム、および機械学習方法
JP2017196705A (ja) * 2016-04-28 2017-11-02 セイコーエプソン株式会社 ロボット、及びロボットシステム
WO2017203937A1 (ja) * 2016-05-26 2017-11-30 三菱電機株式会社 ロボット制御装置
DE102016007519A1 (de) * 2016-06-20 2017-12-21 Kuka Roboter Gmbh Überwachung einer Anlage mit wenigstens einem Roboter
US10427305B2 (en) * 2016-07-21 2019-10-01 Autodesk, Inc. Robotic camera control via motion capture
JP6517762B2 (ja) * 2016-08-23 2019-05-22 ファナック株式会社 人とロボットが協働して作業を行うロボットの動作を学習するロボットシステム
JP6226049B1 (ja) 2016-09-07 2017-11-08 オムロン株式会社 制御装置、システム、制御方法およびプログラム
KR102286006B1 (ko) * 2016-11-23 2021-08-04 한화디펜스 주식회사 추종 장치 및 추종 시스템
CN106737747B (zh) * 2017-01-10 2020-04-28 广东工业大学 一种机器人双臂自平衡方法及机器人
JP6496335B2 (ja) * 2017-03-03 2019-04-03 ファナック株式会社 ロボットシステム
JP6476358B1 (ja) * 2017-05-17 2019-02-27 Telexistence株式会社 制御装置、ロボット制御方法及びロボット制御システム
US11694254B2 (en) * 2017-06-15 2023-07-04 Microsoft Technology Licensing, Llc Interactive physical product browsing experience
CN108038410B (zh) * 2017-10-31 2020-04-17 珠海格力电器股份有限公司 洗衣机震动处理方法及装置
CN108175397B (zh) * 2017-11-30 2023-12-15 深圳市富惠阳电子科技有限公司 一种人体测压用自动手爪装置
CN108175639B (zh) * 2017-12-29 2019-08-30 国家康复辅具研究中心 一种可穿戴式单源仿生动力膝关节系统及其控制方法
US10589423B2 (en) * 2018-06-18 2020-03-17 Shambhu Nath Roy Robot vision super visor for hybrid homing, positioning and workspace UFO detection enabling industrial robot use for consumer applications
JP7392650B2 (ja) * 2018-10-09 2023-12-06 ソニーグループ株式会社 情報処理装置、情報処理方法及びプログラム
WO2020100223A1 (ja) 2018-11-14 2020-05-22 三菱電機株式会社 リスク値算出システム、リスク要素パラメータ補正システム、情報処理装置、リスク値算出方法、リスク要素パラメータ補正方法、及びプログラム
JP7094210B2 (ja) * 2018-11-29 2022-07-01 株式会社安川電機 特性推定システム、特性推定方法、及びプログラム
CN113316501B (zh) * 2019-05-31 2022-02-18 乐恩吉室株式会社 以危险度判断为基础的机器人移动控制方法及利用其的移动机器人装置
CN114206561A (zh) * 2019-08-14 2022-03-18 索尼集团公司 机器人控制装置、方法和程序
JP2021030359A (ja) * 2019-08-22 2021-03-01 オムロン株式会社 制御装置、制御方法、及び制御プログラム
JP7086906B2 (ja) * 2019-09-13 2022-06-20 株式会社東芝 作業支援装置、作業支援方法、および作業支援プログラム
KR102356660B1 (ko) * 2019-11-01 2022-02-07 주식회사 뉴로메카 다자유도 협동 로봇의 마찰 보상 방법
US20210209352A1 (en) * 2019-12-26 2021-07-08 Bernard Fryshman Insect and other small object image recognition and instant active response with enhanced application and utility
US11691285B2 (en) * 2020-05-07 2023-07-04 Mujin, Inc. Method and computing system for estimating parameter for robot operation
CN113821006B (zh) * 2020-05-07 2022-10-14 牧今科技 用于确定指示机器人校准质量的误差参数的值的方法和计算系统
CN113771039B (zh) * 2020-05-07 2022-08-02 牧今科技 用于估计机器人操作参数的方法和计算系统
CN112809686B (zh) * 2021-02-02 2022-08-16 杭州柳叶刀机器人有限公司 一种机器人体态随动控制方法及装置
US20220379477A1 (en) * 2021-05-28 2022-12-01 Illinois Tool Works Inc. Systems and methods to configure a robotic welding system
CN113282110B (zh) * 2021-07-23 2021-10-22 季华实验室 飞行机器人与人的协同作业方法及其装置、飞行机器人
CN113778020B (zh) * 2021-08-24 2023-05-26 哈尔滨岛田大鹏工业股份有限公司 一种基于向量法的毛刷补偿方法
US20220105635A1 (en) * 2021-12-17 2022-04-07 Intel Corporation Repetitive task and contextual risk analytics for human-robot collaboration
EP4252970A1 (en) * 2022-03-31 2023-10-04 Honda Research Institute Europe GmbH Controlling a robot based on an optimized cooperation with other agents
DE102022114494A1 (de) 2022-06-09 2023-12-14 Schaeffler Technologies AG & Co. KG Kollaborative Robotervorrichtung mit Sensorik zur Berücksichtigung des menschlichen Wohlbefindens in einer geteilten Arbeitsumgebung

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100439466B1 (ko) * 1995-09-11 2004-09-18 가부시키가이샤 야스가와덴끼 로봇제어장치
JP3638048B2 (ja) 1995-12-11 2005-04-13 株式会社安川電機 肢体駆動装置の制御装置
JP4075020B2 (ja) 1997-01-10 2008-04-16 株式会社安川電機 肢体駆動装置の制御装置および肢体駆動システム
JP3865158B2 (ja) 1997-05-30 2007-01-10 株式会社安川電機 ロボットアームのインピーダンス制御装置
JP3504507B2 (ja) 1998-09-17 2004-03-08 トヨタ自動車株式会社 適切反力付与型作業補助装置
JP2000202790A (ja) 1999-01-14 2000-07-25 Sharp Corp ロボット装置
WO2004103651A1 (ja) * 1999-06-01 2004-12-02 Hirohiko Arai 物体協調運搬ロボットの制御方法及びその装置
US6204619B1 (en) * 1999-10-04 2001-03-20 Daimlerchrysler Corporation Dynamic control algorithm and program for power-assisted lift device
JP3188953B2 (ja) 1999-10-13 2001-07-16 経済産業省産業技術総合研究所長 パワーアシスト装置およびその制御方法
JP3577028B2 (ja) * 2001-11-07 2004-10-13 川崎重工業株式会社 ロボットの協調制御システム
ATE539558T1 (de) * 2002-04-25 2012-01-15 Panasonic Corp Objektdetektionseinrichtung, objektdetektionsserver und objektdetektionsverfahren
JP3833567B2 (ja) * 2002-05-01 2006-10-11 本田技研工業株式会社 移動ロボットの姿勢制御装置
JP3996015B2 (ja) * 2002-08-09 2007-10-24 本田技研工業株式会社 姿勢認識装置及び自律ロボット
US7443115B2 (en) * 2002-10-29 2008-10-28 Matsushita Electric Industrial Co., Ltd. Apparatus and method for robot handling control
JP2004148466A (ja) * 2002-10-31 2004-05-27 Yaskawa Electric Corp ロボット制御装置
CN1239296C (zh) * 2003-09-09 2006-02-01 北京航空航天大学 一种面向人机交互的带有力反馈的外骨架式可佩戴数据臂
JP4305323B2 (ja) * 2004-08-11 2009-07-29 ソニー株式会社 ロボット装置の動作制御装置及び動作制御方法
WO2006043396A1 (ja) * 2004-10-19 2006-04-27 Matsushita Electric Industrial Co., Ltd. ロボット装置
JP4578365B2 (ja) * 2005-09-16 2010-11-10 学校法人同志社 インピーダンス制御によって制御されるロボット
JP4456560B2 (ja) * 2005-12-12 2010-04-28 本田技研工業株式会社 脚式移動ロボット制御装置および脚式移動ロボット、並びに、脚式移動ロボット制御方法
JP4056080B2 (ja) * 2006-01-13 2008-03-05 松下電器産業株式会社 ロボットアームの制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103170973A (zh) * 2013-03-28 2013-06-26 上海理工大学 基于Kinect摄像机的人机协作装置及方法
CN103170973B (zh) * 2013-03-28 2015-03-11 上海理工大学 人机协作装置及实现人机协作的方法
USD926507S1 (en) 2018-10-16 2021-08-03 Sony Corporation Kitchen with robot manipulator

Also Published As

Publication number Publication date
CN102248537A (zh) 2011-11-23
WO2009001550A1 (ja) 2008-12-31
JPWO2009001550A1 (ja) 2010-08-26
US7747351B2 (en) 2010-06-29
CN101646534B (zh) 2012-03-21
US20100087955A1 (en) 2010-04-08
CN102229148A (zh) 2011-11-02
CN101646534A (zh) 2010-02-10
CN102248537B (zh) 2013-12-04
CN102229147B (zh) 2014-01-29
CN102229147A (zh) 2011-11-02
CN102229148B (zh) 2013-10-16

Similar Documents

Publication Publication Date Title
JP4243326B2 (ja) ロボットアームの制御装置及び制御方法、ロボット、及びプログラム
CN101213052B (zh) 机械手臂的控制装置
JP4568795B2 (ja) ロボットアームの制御装置及び制御方法、ロボット、ロボットアームの制御プログラム、並びに、集積電子回路
JP5325843B2 (ja) ロボットアームの制御装置及び制御方法、ロボット、ロボットアームの制御プログラム、並びに、集積電子回路
JP4759660B2 (ja) ロボットアーム制御用の装置、方法、プログラム及び集積電子回路、並びに、組立ロボット
JP4361132B2 (ja) ロボットアームの制御装置及び制御方法、ロボット、及び制御プログラム
US11850014B2 (en) Control system, control method, and surgical arm system
WO2020075423A1 (ja) ロボット制御装置、ロボット制御方法及びロボット制御プログラム
Dotterweich Control improvement of an above elbow prosthetic limb utilizing torque compensation and reaching test analysis

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4243326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4