JP4139924B2 - Deoxygenating film and method for producing the same - Google Patents
Deoxygenating film and method for producing the same Download PDFInfo
- Publication number
- JP4139924B2 JP4139924B2 JP21084898A JP21084898A JP4139924B2 JP 4139924 B2 JP4139924 B2 JP 4139924B2 JP 21084898 A JP21084898 A JP 21084898A JP 21084898 A JP21084898 A JP 21084898A JP 4139924 B2 JP4139924 B2 JP 4139924B2
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- film
- oxygen scavenger
- thermoplastic resin
- multilayer body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Packages (AREA)
- Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
- Laminated Bodies (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は脱酸素性多層体、その製造方法及びそれよりなる包装容器に関する。詳しくは、脱酸素剤(C-1)を熱可塑性樹脂フィルム(A)と脱酸素剤(C-2)を熱可塑性樹脂中に分散してなる酸素吸収性樹脂フィルム(B)に挟み込んでなるものであり、層間に散布された脱酸素剤(C-1)分布が密になることで優れた酸素吸収速度を発揮でき、さらに脱酸素剤(C-2)を含有する酸素吸収性樹脂層が積層されることで、多層体単位面積当たりの脱酸素剤含有量を多く、高い酸素吸収容量を有する脱酸素性多層体、その製造方法及びそれよりなる包装容器に関する。
【0002】
【従来の技術】
近年、脱酸素包装技術の一つとして、熱可塑性樹脂に脱酸素剤組成物を配合した酸素吸収性樹脂組成物からなる酸素吸収性樹脂層を配した多層材料で容器を構成し、容器のガスバリア性の向上を図ると共に容器自体に脱酸素機能を付与した包装容器の開発が行われている。脱酸素機能を備えた多層体は、通常、脱酸素剤組成物を配合した酸素吸収性樹脂層を中間層とし、外面側にガスバリア性を有する外層と、内面側に酸素透過性の内層とを備えた脱酸素性多層体で構成され、袋、蓋等の容器用フィルムとして、又は、カップ、トレイ、ボトル等の容器に成形加工の容易な多層シートとして開発されている。
【0003】
脱酸素性多層体としては、例えば、特開平2−72851号公報、特開平4−90848号公報のように鉄系脱酸素剤組成物を樹脂中に分散させた脱酸素性多層体及び酸素吸収フィルムが知られている。また、特開平8−72941号公報には脱酸素性多層体の脱酸素性能の向上を図る技術が提案されている。さらに、脱酸素剤配合樹脂層とガスバリア層の間にポリオレフィン層を介在させる構成の脱酸素性多層体及び多層フィルムとして、特開平8−132573号公報、特開平9−40024号公報がある。
【0004】
脱酸素剤を含有する酸素吸収性樹脂層を積層する工程としては、一般に鉄系主剤とこれを活性化させる助剤からなる脱酸素剤組成物がポリオレフィン等の熱可塑性樹脂に練り混まれたコンパウンドを予め製作し、これを押し出し機等で再溶融して、各種ラミネート、共押し出し等の積層方法により積層する方法が公知である。
【0005】
【発明が解決しようとする課題】
脱酸素性多層体及びそれよりなる包装容器の酸素吸収性能は、脱酸素性多層体における単位面積当たりでの酸素を吸収する速度、いわゆる酸素吸収速度と、脱酸素性多層体における単位面積当たりでの吸収可能な酸素の量、いわゆる酸素吸収容量により評価される。
酸素吸収速度は主に酸素吸収性樹脂層中の脱酸素剤含有量及び容器表面から酸素吸収性樹脂層中の脱酸素剤迄の酸素移動速度に依存し、酸素吸収容量は主に脱酸素性多層体中の脱酸素剤含有量に依存する。
【0006】
優れた酸素吸収性能すなわち酸素吸収速度及び酸素吸収容量の大きな脱酸素性多層体を得るためには、予め脱酸素剤含有量の高いコンパウンドを作製、これを使用して脱酸素剤含有量の高い酸素吸収性樹脂層を積層する必要がある。しかしながら、コンパウンド中の脱酸素剤含有量が高くなると、コンパウンドの流動性が大きく低下するため、コンパウンド自体を作製することや、Tダイを備えた押し出し機からコンパウンドを押し出して均一な厚みのフィルムを形成することは困難になるので、コンパウンド中に多量の脱酸素剤を添加するには限界がある。
【0007】
また、酸素吸収性樹脂層中の脱酸素剤含有量を抑えても酸素吸収性樹脂層の膜厚を厚く設定することで、酸素吸収容量の改善は可能ではあるが、単に酸素吸収性樹脂層の膜厚を厚くするだけでは酸素吸収速度の向上は十分でなく、実質的な酸素吸収性能の向上を果たすのは困難である。また、酸素吸収性樹脂層の膜厚が厚い脱酸素性多層体は、多層体の総厚みが必要以上に厚くなって包装材料としての物性に問題が生じたり、熱成形、製袋等の二次加工性が悪化したり、さらに原料コストが高くなる欠点があった。
【0008】
本発明の解決課題は、優れた酸素吸収性能すなわち酸素吸収速度及び酸素吸収容量の大きな脱酸素性多層体及びそれよりなる包装容器を得ることである。本発明のもう一つの解決課題は、従来製造が困難であった、脱酸素剤を多量に含有する脱酸素性フィルム及びその製造方法を提供することである。
【0009】
【課題を解決するための手段】
本発明者らは、上記の従来技術の問題点に鑑み、脱酸素性多層体中に多量の脱酸素剤を添加し、優れた酸素吸収性能を発揮する脱酸素性多層体、その製造方法に関して鋭意研究を重ねた結果、脱酸素剤を、熱可塑性樹脂フィルム(A)と脱酸素剤を熱可塑性樹脂中に分散してなる酸素吸収性樹脂フィルム(B)との間に挟み込んで接合することにより、酸素吸収性樹脂層の膜厚を必要以上に厚くしなくても脱酸素性多層体中に多量の脱酸素剤を含有させることができることを見い出し、本発明に至った。
【0010】
すなわち本発明は、脱酸素剤(C-1)を熱可塑性樹脂フィルム(A)と脱酸素剤(C-2)を熱可塑性樹脂中に分散してなる酸素吸収性樹脂フィルム(B)の間に挟み込んでなる脱酸素性多層体に関する。
また本発明は、挟み込まれた脱酸素剤(C-1)が、熱可塑性樹脂フィルム(A)と酸素吸収性樹脂フィルム(B)のいずれか一方又は両方のフィルム表面に埋め込まれていることを特徴とする脱酸素性フィルムに関する。
また本発明は、脱酸素剤(C)の平均粒径が1〜100μmの鉄粉を主剤とする脱酸素剤組成物であることを特徴上記脱酸素性多層体に関する。
また本発明は、挟み込まれた脱酸素剤(C-1)の重量が、多層体1m2当たり10〜100gであることを特徴とする上記脱酸素性多層体に関する。
また本発明は、酸素吸収性樹脂フィルム(B)中の脱酸素剤(C-2)含有量が10〜60重量%であることを特徴とする上記脱酸素性多層体に関する。
また本発明は、上記脱酸素性多層体に少なくともガスバリア層が積層されてなる脱酸素性多層体に関する。
また本発明は、熱可塑性樹脂フィルム(A)表面に脱酸素剤(C-1)を均一に散布し、該散布面に酸素吸収性樹脂フィルム(B)を熱圧着することを特徴とする脱酸素性多層体の製造方法に関する。
また本発明は、包装容器の少なくとも一部に上記の脱酸素性多層体を使用してなる包装容器に関する。
【0011】
【発明の実施の形態】
本発明に用いられる脱酸素剤(C)、すなわち(C-1)及び(C-2)としては、酸素吸収反応を生起することができるものであれば制限することなく使用できる。熱可塑性樹脂フィルム(A)と酸素吸収性樹脂フィルム(B)の間に挟み込む脱酸素剤(C-1)と、熱可塑性樹脂中に分散させる脱酸素剤(C-2)とは、同種であっても異なっていても良い。脱酸素剤(C-1)及び(C-2)として、好ましくは、被酸化性の主剤と助剤の組み合わせからなる脱酸素剤組成物が用いられる。主剤には、金属粉、亜硫酸塩、亜二チオン酸塩、アスコルビン酸又はその塩、アスコルビン酸エステル等が使用されるが、中でも金属粉が好ましく、鉄粉が特に好ましく用いられる。また、助剤には、主剤の酸素吸収反応を促進する化学物質が用いられる。
【0012】
鉄粉を主剤とする場合、酸素吸収反応を起こしうるものであれば純度等に特に制限することなく使用でき、例えば、表面の一部が既に酸化していても良く、他の金属を含有するものであっても良い。また、鉄粉は粒状のものが好ましく、例えば、還元鉄粉、噴霧鉄粉、電解鉄粉等の鉄粉、鋳鉄、鋼材等の各種鉄の粉砕物や研削品等が用いられる。鉄粉は、酸素吸収性樹脂フィルム(B)の膜厚を薄くして強度を得るために細かい方が良く、平均粒径1〜200μmが好ましく、1〜100μmが特に好ましい。
【0013】
鉄粉を主剤とした脱酸素剤組成物の場合、助剤にはハロゲン化金属が使用される。ハロゲン化金属は主剤の酸素吸収反応に触媒的に作用するものである。ハロゲン化金属としては、例えば、アルカリ金属又はアルカリ土類金属の塩化物、臭化物、ヨウ化物が用いられ、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、又はバリウムの塩化物、ヨウ化物が好ましく用いられる。ハロゲン化金属の配合量は、鉄粉100重量部当たり好ましくは0.1〜20重量部、より好ましくは0.1〜5重量部である。
【0014】
ハロゲン化金属を、鉄粉を主剤とした脱酸素剤の助剤として使用する場合、予め混合して添加することが好ましい。例えば、ボールミル、スピードミル等を用いてハロゲン化金属と鉄粉を混合する方法、鉄粉表面の凹凸部にハロゲン化金属を埋め込む方法、バインダーを用いてハロゲン化金属を鉄粉表面に付着させる方法、ハロゲン化金属水溶液と鉄粉を混合した後乾燥して鉄粉表面にハロゲン化金属を付着させる方法等をとることができる。これにより、鉄粉に付着して容易に分離しないようにできる。好ましい脱酸素剤組成物は、鉄粉とハロゲン化金属を含む鉄粉系組成物であり、特に好ましくは、鉄粉にハロゲン化金属を付着させたハロゲン化金属被覆鉄粉組成物である。
【0015】
本発明で用いられる脱酸素剤組成物には、必要に応じて、アルカリ土類金属酸化物、シラン系やチタネート系の分散剤、クレー、マイカ、シリカ、炭酸カルシウム等の充填剤、活性炭、ゼオライト等の吸着剤を添加することができる。
【0016】
本発明における熱可塑性樹脂フィルム(A)は、溶着性と酸素透過性に優れたポリオレフィン類が好ましく用いられる。ポリオレフィン類としては、例えば、低密度ポリエチレン、中密度ポリエチレン、直鎖状低密度ポリエチレン及び高密度ポリエチレンに例示される各種ポリエチレン、ポリプロピレンホモポリマー、プロピレン−エチレンブロック共重合体及びプロピレン−エチレンランダム共重合体に例示される各種ポリプロピレン、メタロセンポリエチレンやメタロセンポリプロピレン等のメタロセン触媒によるポリオレフィン、ポリメチルペンテン、エチレン−酢酸ビニル共重合体、エチレン−αオレフィン共重合体等、並びに、これらの混合物が挙げられる。
【0017】
この中では、プロピレン−エチレンランダム共重合体、プロピレン−エチレンブロック共重合体、低密度ポリエチレン、直鎖状低密度ポリエチレン及びメタロセンポリエチレンが特に好ましい。
また、この熱可塑性樹脂には必要に応じて、エラストマー等の熱可塑性樹脂、酸化防止剤、酸化チタンなどの顔料、シリカなどの無機フィラー、カーボンブラックなどの着色剤、活性炭などの吸着剤、充填剤等を添加しても良い。
特に、酸化チタンなどの無機物を添加すると、熱可塑性樹脂フィルム(A)をそのまま包装容器の隔離層とした際に、脱酸素剤(C)が隠蔽され、外観上、隔離層の表面に露出することがないので、好ましい。
【0018】
熱可塑性樹脂フィルム(A)の厚みは、10〜200μmの範囲であることが好ましく、30〜150μmの範囲であればより好ましい。10μmより薄いと、加工性に問題が生じたり、脱酸素剤(C-1)が表面に露出する可能性がある。また、200μmより厚いとコスト的に問題がある。
【0019】
本発明における酸素吸収性樹脂フィルム(B)は、脱酸素剤(C-2)と熱可塑性樹脂を溶融混練して予め作製したコンパウンドから形成される。脱酸素剤(C-2)としては、前述の脱酸素剤(C)を使用することができる。
熱可塑性樹脂には、溶着性と酸素透過性に優れたポリオレフィン類が好ましく用いられる。ポリオレフィン類としては、例えば、低密度ポリエチレン、中密度ポリエチレン、直鎖状低密度ポリエチレン及び高密度ポリエチレンに例示される各種ポリエチレン、ポリプロピレンホモポリマー、プロピレン−エチレンブロック共重合体及びプロピレン−エチレンランダム共重合体に例示される各種ポリプロピレン、メタロセンポリエチレンやメタロセンポリプロピレン等のメタロセン触媒によるポリオレフィン、ポリメチルペンテン、エチレン−酢酸ビニル共重合体、エチレン−αオレフィン共重合体等、並びに、これらの混合物が挙げられる。
この中では、プロピレン−エチレンランダム共重合体、プロピレン−エチレンブロック共重合体、低密度ポリエチレン、直鎖状低密度ポリエチレン又はメタロセンポリエチレンが特に好ましい。
【0020】
また、この熱可塑性樹脂には必要に応じて、エラストマー等の熱可塑性樹脂、酸化防止剤、酸化チタンなどの顔料、シリカなどの無機フィラー、カーボンブラックなどの着色剤、活性炭などの吸着剤、充填剤等を添加しても良い。
酸素吸収性樹脂フィルム(B)に使用する熱可塑性樹脂としては前述の熱可塑性樹脂フィルム(A)と同種のポリオレフィン類を使用することが、両フィルムを溶着した場合の強度が高くなるので、好ましい。酸素吸収性樹脂フィルム(B)を形成するコンパウンドは、従来公知の方法、例えば、押し出し機による溶融混練後、ストランドダイから押し出し、冷却工程を経てペレット化する等の方法を用いて作製することができる。
【0021】
本発明における酸素吸収性樹脂フィルム(B)中の脱酸素剤組成物の含有量は、好ましくは10〜60重量%であり、より好ましくは20〜60重量%である。これより低いと、本発明が目的とする大きな酸素吸収容量が得られない場合がある。また、これより高いと酸素吸収性樹脂フィルム(B)の製膜性が悪化し、製造工程上問題となる。
【0022】
酸素吸収性樹脂フィルム(B)の厚みは、10〜250μmの範囲にすることが好ましく、20〜200μmの範囲にすることがより好ましい。10μmより薄いと加工性に問題が生じる場合が多く、また250μmより厚いと、脱酸素性多層体の総厚みが大きくなって容器への加工性が低下したり、コストが大きくなる。
【0023】
本発明の酸素吸収性樹脂フィルム(B)には、必要に応じて、酸化チタンやカーボンブラックなどの着色剤、アルカリ土類金属酸化物、シラン系やチタネート系の分散剤、クレー、マイカ、シリカ、炭酸カルシウム等の充填剤、酸化防止剤、活性炭、ゼオライト等の吸着剤を添加することができる。
【0024】
本発明では、熱可塑性樹脂フィルム(A)と、脱酸素剤(C-2)を熱可塑性樹脂中に分散してなる酸素吸収性樹脂フィルム(B)との間に、脱酸素剤(C-1)を挟み込み、フィルム(A)とフィルム(B)を接合することにより、脱酸素性フィルムを製造する。脱酸素剤(C-1)としては、前述の脱酸素剤(C)を使用することができる。
【0025】
フィルム(A)とフィルム(B)の接合は、種々の方法で可能である。たとえば、フィルム(A)又はフィルム(B)の表面に接着剤を塗布又はコーティングし、脱酸素剤組成物を均一に散布し、次いでフィルム(B)又はフィルム(A)を接着する。また、フィルム(A)又はフィルム(B)の表面に脱酸素剤組成物を均一に散布し、次いで接着剤を塗布又はコーティングした、フィルム(B)又はフィルム(A)を接着してもよい。
【0026】
特に、熱圧着による方法が、コストが低いので好ましい。即ち、熱可塑性樹脂フィルム(A)表面に脱酸素剤(C-1)を均一に散布し、該散布面に、脱酸素剤(C-2)を熱可塑性樹脂中に分散してなる酸素吸収性樹脂フィルム(B)を熱圧着することにより、工業的的に製造できる。また、脱酸素剤(C-2)を熱可塑性樹脂中に分散してなる酸素吸収性樹脂フィルム(B)表面に脱酸素剤(C-1)を均一に散布し、該散布面に、熱可塑性樹脂フィルム(A)を熱圧着することもまた、好ましい。熱圧着するには、押出し積層法が好ましい。
【0027】
フィルム(A)とフィルム(B)を接合する際、脱酸素剤(C-1)を挟み混んだ部分においては空隙無く熱可塑性樹脂フィルム(A)と酸素吸収性樹脂フィルム(B)が接着されなければならない。空隙が生じ、脱酸素剤(C-1)が固定されない状態となった場合、脱酸素剤(C-1)が脱落して周囲を汚染する可能性がある。そのためには、脱酸素剤(C-1)が両方のフィルム、又は何れか一方のフィルム表面に埋め込まれた状態が好ましい。
【0028】
好ましくは、散布された脱酸素剤(C-1)は酸素吸収性樹脂フィルム(B)側に埋め込まれる割合が高くなるようにする。即ち、熱可塑性樹脂フィルム(A)表面に脱酸素剤(C-1)を均一に散布し、該散布面に、脱酸素剤(C-2)を熱可塑性樹脂中に分散してなる酸素吸収性樹脂フィルム(B)を圧着することが好ましい。圧着方法は押出し積層が好ましい。このようにして得た脱酸素性フィルムは、熱可塑性樹脂フィルム(A)を隔離層とすることで、隔離層を透過してきた酸素は脱酸素剤密度が高くなっているフィルム(B)表面において効率良く脱酸素剤と反応し、結果として高い酸素吸収速度が得られる。
【0029】
熱可塑性樹脂フィルム(A)と酸素吸収性樹脂フィルム(B)に挟み込まれる脱酸素剤(C-1)の重量は、脱酸素性フィルム1m2当たり150g以下、好ましくは10〜100gであり、より好ましくは20〜100gである。脱酸素剤(C-1)の重量が、この範囲より低いと本発明が目的とする優れた酸素吸収性能が得られず、またこの範囲より高いと熱可塑性樹脂フィルム(A)と酸素吸収性樹脂フィルム(B)の接着強度が不十分になり多層体の機械的強度や、成形性、また包装容器としたときの性能に悪影響を及ぼす場合がある。
【0030】
本発明の脱酸素性フィルムは、熱可塑性樹脂フィルム(A)、脱酸素剤(C-2)が分散した熱可塑性樹脂からなる酸素吸収性樹脂フィルム(B)及び脱酸素剤(C-1)からなり、フィルム(A)とフィルム(B)が脱酸素剤(C-1)を挟み込み、接合されてなる。
より詳しくは、本発明の脱酸素性フィルムは、熱可塑性樹脂フィルム(A)、脱酸素剤(C-2)が分散した熱可塑性樹脂からなる酸素吸収性樹脂フィルム(B)及び脱酸素剤(C-1)からなり、脱酸素剤(C-1)が、接合された熱可塑性樹脂フィルム(A)及び酸素吸収性樹脂フィルム(B)の少なくとも一方のフィルムの接合面に埋め込まれてなる。
【0031】
脱酸素性フィルムの単位面積当たり脱酸素剤含有量すなわち脱酸素剤(C-1)と脱酸素剤(C-2)の量比及び合計含有量は、使用用途及び目的に応じて任意に決めることができるが、通常10〜450g/m2、好ましくは、50〜450g/m2である。特に、脱酸素剤含有量が高い脱酸素性フィルムを製造することは、脱酸素剤(C-2)を熱可塑性樹脂中に分散してなる酸素吸収性樹脂フィルム(B)のみでは、脱酸素性フィルムを厚くしない限り工業的な実施が困難であるが、本発明では、酸素吸収性樹脂フィルム(B)に分散される脱酸素剤(C-2)含有量を酸素吸収性樹脂の成形加工性の良い範囲に抑えることができるので、工業的な実施が容易である。
【0032】
散布については、脱酸素剤(C-1)がフィルムにむら無く散布される方法であれば、粉体を散布するための公知の装置が利用できる。脱酸素剤の添加の制御は、散布量の制御により容易かつ安定的に行なうことができる。
また熱圧着については、押出し積層などの樹脂フィルム積層用の公知の装置が利用できる。押出し積層方法によれば、シンプルな装置で大量製造ができるため、優位な製造コストの達成が可能である。
【0033】
本発明の脱酸素性フィルムの製造方法の具体例を図1に示して説明する。
熱可塑性樹脂フィルム(A)面上に粒状の脱酸素剤組成物を散布し、これにTダイから溶融状態で供給される酸素吸収性樹脂層を積層し、ロールで熱圧着後冷却して、脱酸素剤組成物が挟み込まれた状態で脱酸素性多層体が形成される。また、脱酸素剤(C)を散布した後にフィルム表面から脱落しないよう、表面に接着剤をコーティングした熱可塑性樹脂フィルム(A)の接着剤面上に脱酸素剤組成物を散布し、これにTダイから溶融状態で供給される酸素吸収性樹脂層を積層し、ロールで熱圧着後冷却して一体化しても良い。
【0034】
熱圧着することにより、粒状の脱酸素剤組成物が挟み込まれた熱可塑性樹脂層と酸素吸収性樹脂層との密着性が高まり、両層間及び粒状の脱酸素剤組成物周辺の空隙を無くすことができる。また、熱圧着することにより、脱酸素剤組成物がフィルム表面に埋め込まれるため、脱酸素剤組成物の脱落が防止され、更には両層の層間剥離を防止する強固な積層が可能になり、両フィルムが一体化した脱酸素性多層体が得られる。
【0035】
本発明の脱酸素性多層体は鮮度保持剤として、そのまま又は通気性を有する包材で包装して食品等の保存用途に使用される。しかし、脱酸素機能を有する包装容器の部材として用いる際には、片面にガスバリア層を積層した脱酸素性多層体が使い易い。即ち、本発明は、脱酸素性フィルムの片側表面、好ましくは、酸素吸収性樹脂フィルム(B)表面にガスバリア層が積層されてなる脱酸素性多層体である。
【0036】
ガスバリア層は、包装容器とした場合に容器外部から侵入する酸素を遮断する層であり、例えば、アルミ箔等の金属箔、ポリ塩化ビニリデン、エチレン−酢酸ビニル共重合体ケン化物、ナイロン6、ナイロン66、MXナイロン、非晶性ナイロン、ポリエチレンテレフタレート等のガスバリア性樹脂、アルミ蒸着フィルムやシリカ蒸着フィルム等の蒸着フィルム等を単独又は組み合わせて用いることができる。その酸素透過度は、加工性及びコストが許す限りできるだけ小さくすることが望ましく、その膜厚に関係なく100cc/m2・atm・day(23℃、100%RH)以下であることが必要であり、より好ましくは50cc/m2・atm・day(23℃、100%RH)以下である。このようにすることで、本発明にかかる脱酸素性多層体を用いて包装容器を製造した際に、包装容器の外部から侵入する酸素量を少なくすることができ、収納物品の保存性をより優れたものにすることができる。
【0037】
ガスバリア層の形成は、熱可塑性樹脂フィルム(A)と酸素吸収性樹脂フィルム(B)の接合前に、予めフィルム(A)又はフィルム(B)の接合面の反対側に積層しておいても良い。また、脱酸素剤(C-1)を挟み込む工程において、同時に熱可塑性樹脂フィルム(A)又は酸素吸収性樹脂フィルム(B)の接合面の反対側に同時に積層しても良い。あるいは、接合された脱酸素性フィルムの熱可塑性樹脂フィルム(A)側又は酸素吸収性樹脂フィルム(B)側に積層しても良い。ガスバリア層の積層方法は共押し出し、押し出しラミネート法、ドライラミネート法、ホットメルトラミネート法等の公知の積層方法を用いることができる。
【0038】
本発明では、脱酸素性多層フィルムのガスバリア材料を積層する面に、予め熱可塑性樹脂層を設けた後、ガスバリア材料を積層することもできる。特に、ガスバリア層を本発明の脱酸素性多層体における熱可塑性樹脂フィルム(B)側に積層した場合、この熱可塑性樹脂層を積層することにより、脱酸素性多層フィルムとガスバリア材料ガスバリア層とを積層した場合の両層の接着力が強化されるので、好ましい。熱可塑性樹脂層としては前述の熱可塑性樹脂フィルム(A)と同種のものを使用することができるが、特に、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂が好ましい。
【0039】
また、ガスバリア層の破損やピンホールを防ぐために、ガスバリア層の外側に熱可塑性樹脂からなる保護層を積層することができる。保護層に用いる熱可塑性樹脂としては、例えば、各種ポリエチレン、各種ポリプロピレン等の各種ポリオレフィン、ナイロン6、ナイロン66等の各種ポリアミド、ポリエチレンテレフタレート等の各種ポリエステルが挙げられ、これらを単独で、又は組み合わせて用いることができる。
【0040】
また本発明では、ガスバリア層を積層した面の反対側に強度向上などの目的で、さらに熱可塑性樹脂層(A')を設けることができる。特に、ガスバリア層を本発明の脱酸素性多層体における熱可塑性樹脂フィルム(A)側に積層した場合、酸素吸収性樹脂フィルム(B)表面上、又は、脱酸素性多層体容器内側表面上に、さらに熱可塑性樹脂層(A')を積層することが好ましい。脱酸素性フィルムの収納物側に位置する熱可塑性樹脂層(A')により、酸素吸収性樹脂フィルム(B)から脱酸素剤(C-2)が脱落して収納物が汚染されることが防止される。熱可塑性樹脂層(A')の積層方法は、従来公知の積層方法を利用することができる。
【0041】
熱可塑性樹脂層(A')としては前述の熱可塑性樹脂フィルム(A)と同種のものを使用することができるが、特に、ヒートシール性を有するポリエチレン、ポリプロピレンが好ましい。また、この熱可塑性樹脂には必要に応じて、エラストマー等の熱可塑性樹脂、酸化防止剤、酸化チタンなどの顔料、シリカなどの無機フィラー、カーボンブラックなどの着色剤、活性炭などの吸着剤、充填剤等を添加しても良い。
【0042】
本発明の脱酸素性多層体は、フィルム状又はシート状の包装材料として各種の用途に用いられる。これを袋やトレイ等の包装容器に加工することによって、外観や香味保持性等の物性に優れ、かつ包装加工性に優れた脱酸素性包装容器が得られる。本発明の脱酸素性多層体を容器の少なくとも一部に使用してなる包装容器は、容器外から僅かに侵入する酸素の他、容器内の酸素を吸収して、容器内保存物の酸素による変質を防止して長期の保存を可能にする。即ち、脱酸素性多層体を、袋、トレイ、チューブ等の包装容器に加工して使用することにより、また容器の蓋材、トップシールフィルムなどの部材として使用することにより、包装容器に脱酸素機能が付与される。例えば、フィルム状の脱酸素性多層体を側面用フィルム2枚と底面用フィルム1枚よりなる自立性を有する袋(スタンディングパウチ)の部材として使用することにより、機能的な包装袋とすることができる。
【0043】
本発明の脱酸素機能を有する包装容器は、酸素による品質劣化の防止に優れた効果を発揮するため、各種物品の保存用途に用いられる。また、小袋入り脱酸素剤(C)等の従来の脱酸素剤(C)では適用が困難な、液状の食品や医薬品、高水分の食品や医薬品等の水分を多量に含んだ物品の保存用途にも使用することができる。例えば、液体系食品としては、ジュース、酒、コーヒー、茶、ゼリー飲料、健康飲料等の液体飲料、調味液、ソース、醤油、ドレッシング、液体だし、マヨネーズ、味噌、すり下ろし香辛料等の調味料、クリーム、チョコレートペースト等のペースト状菓子、液体スープ、煮物、漬け物、シチュー等の液状加工食品、高水分食品としては、そば、うどん、ラーメン等の生麺及びゆで麺、精米、調湿米、無洗米等の調理前の米類や調理された炊飯米、五目飯等の加工米製品類、粉末スープ、だしの素等の粉末調味料、その他高水分及び液体系物品としては、工業材料、農薬や殺虫剤等の固体状や溶液状の化学薬品並びに乳液、液体及びペースト状の医薬品、化粧水、化粧クリーム、化粧乳液、整髪料、染毛剤、シャンプー等が挙げられる。
【0044】
【実施例】
本発明を実施例に沿ってさらに詳しく説明する。なお本発明は実施例に必ずしも限定されない。
【0045】
製造例1
平均粒径30μmの還元鉄粉100部(重量部、以下同じ)を加熱ジャケット付き真空混合乾燥機中に投入し、10mmHgの減圧下140℃で加熱しつつ、塩化カルシウム50重量%水溶液5部を噴霧し、乾燥した後、篩い分けして粗粒を除き、粒状の脱酸素剤組成物(真比重8g/cm3)を得た。
【0046】
実施例1
製造例1で作製した脱酸素剤組成物60部と、直鎖状低密度ポリエチレン(三井化学(株)製、商品名:ウルトゼックス15100C、真比重0.92g/cm3、以下LLDPEと略す)40部をドライブレンドし、二軸押し出し機を用いて樹脂温度230℃にて押し出しを行い、ブロワ付きネットベルトで冷却後ペレタイザーを経て、脱酸素剤組成物配合コンパウンド1を得た(真比重1.96g/cm3)。
【0047】
次いで、単軸押し出し機、Tダイ、冷却ロール、引き取り機からなる押出ラミネーターを用い、繰り出されるLLDPE(東京セロファン紙(株)製、商品名:TUX−TC#50)からなる厚さ50μmのフィルム表面に、製造例1で作製した脱酸素剤組成物を50g/m2となるように散布し、その上に、脱酸素剤組成物配合コンパウンド1からなる酸素吸収性樹脂を厚さ50μmの層となるように押し出し、両フィルムが重なった状態で冷却ロールに導入して押出ラミネートし、LLDPEフィルムと酸素吸収性樹脂層とで脱酸素剤組成物が挟み込まれた脱酸素性フィルムを得た。
【0048】
得られた脱酸素性フィルムにおける単位面積当たりの全脱酸素剤含有量は、109g/m2である。脱酸素性フィルムの含有する全脱酸素剤を厚さ50μmの酸素吸収性樹脂層に分散すると仮定した場合、脱酸素剤組成物含有量は77重量%に相当する。この脱酸素性フィルムの断面を顕微鏡にて観察したところ、熱可塑性樹脂層と酸素吸収性樹脂層とは空隙無く接合され、散布した脱酸素剤組成物の大部分は酸素吸収性樹脂層側接合面に、一部熱可塑性樹脂層側接合面に埋め込まれており、また熱可塑性樹脂層表面への脱酸素剤の露出はないことを確認した。
【0049】
脱酸素性フィルムの酸素吸収性樹脂層側にガスバリア層として厚さ9μmのアルミ箔を、厚さ20μmの低密度ポリエチレン(日本ユニカー(株)製、商品名:NUC8003、以下LDPEと略す)を接着剤樹脂として介して押し出しラミネートし、さらにアルミ箔側に保護層として厚さ12μmのポリエチレンテレフタレートフィルム(ユニチカ(株)製、商品名:エンブレットPTJ-12、以下PETと略す)をドライラミネートし、ガスバリア層を有する5層からなる脱酸素性多層体1を得た。
【0050】
2枚の脱酸素性多層体1を、LLDPEを内側にしてヒートシールし、内寸20cm×10cmの脱酸素性袋1を作製した。2つの脱酸素性袋1に水10ccを含ませた綿と空気200cc又は300ccを充填、ヒートシールにて密封した試験サンプルをそれぞれ作製した。この試験サンプルを25℃で保存して袋内部の酸素濃度経時変化を測定し、袋内酸素濃度が0.1%に到達するまでの所要時間を脱酸素所用時間として求めた。この結果を表1に示す。
【0051】
比較例1
脱酸素剤組成物をLLDPEフィルム表面に散布しないこと以外は実施例1と同様にして、脱酸素性多層体4を得た。脱酸素性多層体4の構成は、内面となる側から、LLDPEフィルム;50μm/酸素吸収性樹脂層(脱酸素剤含有量60重量%);50μm/LDPE;20μm/アルミ箔;9μm/PET;12μmである。この脱酸素性フィルムにおける単位面積当たりの全脱酸素剤含有量は、59g/m2である。この脱酸素性多層体2を用いて、実施例1と同様に脱酸素性袋4を作製し、袋内部酸素濃度の経時変化測定を行った。結果を表1に示す。
【0052】
比較例2
製造例1で得られた脱酸素剤組成物77部とLLDPE23部を用いて、脱酸素剤組成物配合コンパウンド3を、実施例1と同様の方法にて得た(真比重2.89g/cm3)。コンパウンド3は、厚さ50μmの層とした場合の単位面積当たりの全脱酸素剤含有量が109g/m2に相当する量の脱酸素剤組成物を含有する。なお、脱酸素剤組成物配合コンパウンド3は製造の際にストランド化することが困難で、安定した生産ができなかった。
続いて、脱酸素剤組成物をLLDPEフィルム表面に散布しないこと以外は実施例1と同様にして脱酸素性多層体を作製しようと試みたが、酸素吸収性樹脂層を厚さ50μmに連続的に製膜することが不可能であり、脱酸素性多層体を作製することができなかった。
【0053】
実施例2
製造例1で作製した脱酸素剤組成物及びLLDPEの配合量をそれぞれ30部と70部に変えた他は実施例1と同様にして、脱酸素剤組成物配合コンパウンド2を得た(真比重1.25g/cm3)。続いて、繰り出されるLLDPEからなる厚さ50μmのフィルム表面に、製造例1で作製した脱酸素剤組成物を80g/m2となるように散布し、その上に、脱酸素剤組成物配合コンパウンド2からなる酸素吸収性樹脂を厚さ30μmの層となるように押し出し、両フィルムが重なった状態で冷却ロールに導入して押出ラミネートし、LLDPEフィルムと酸素吸収性樹脂層とで脱酸素剤組成物が挟み込まれた脱酸素性フィルムを得た。
この脱酸素性フィルムにおける単位面積当たりの全脱酸素剤含有量は、91g/m2である。この脱酸素性フィルムの断面を顕微鏡にて観察したところ、熱可塑性樹脂層と酸素吸収性樹脂層とは空隙無く接合され、散布した脱酸素剤組成物の大部分は酸素吸収性樹脂層側接合面に、一部熱可塑性樹脂層側接合面に埋め込まれており、また熱可塑性樹脂層表面への脱酸素剤の露出はないことを確認した。
【0054】
次に、実施例1と同様にして、脱酸素性フィルムの酸素吸収性樹脂層側にアルミ箔及びPETを積層し、脱酸素性多層体2を得た。さらに、この脱酸素性多層体2を用いて、実施例1と同様に脱酸素性袋2を作製し、袋内部酸素の脱酸素所要時間の測定を行った。結果を表1に示す。
【0055】
実施例3
実施例2で得られた脱酸素性フィルムの酸素吸収性樹脂層側にLLDPEを厚さ50μmとなるように押し出しラミネートした後、脱酸素性フィルムのLLDPEフィルムからなる熱可塑性樹脂層側にガスバリア層として厚さ9μmのアルミ箔を、厚さ20μmの低密度ポリエチレンを接着剤樹脂として介して押し出しラミネートし、さらにアルミ箔側に保護層として厚さ12μmのPETをドライラミネートし、ガスバリア層を有する6層からなる脱酸素性多層体3を得た。さらに、この脱酸素性多層体3を用いて、実施例1と同様に脱酸素性袋3を作製し、袋内部酸素の脱酸素所要時間の測定を行った。結果を表1に示す。
【0056】
【表1】
【0057】
表1の結果から明らかなように、脱酸素剤組成物を散布して脱酸素性多層体中の脱酸素剤組成物含有量を向上させた実施例1乃至実施例3では、脱酸素剤組成物を散布しない従来例である比較例1と比較して、袋内の酸素濃度を速やかに吸収し、特に袋内の空気量が多い範囲にて脱酸素するまでの所要時間が大きく短縮されることが確認された。
脱酸素性フィルムの製造については、比較例2に示したように、脱酸素剤が高含有量に添加されたコンパウンドを作製して、これを酸素吸収性樹脂フィルム(層)を工業的に製造することはきわめて困難である。これに対し、本発明では、脱酸素剤が高含有量に添加された脱酸素性フィルムが、工業的に製造され、脱酸素剤の添加の制御も容易かつ安定的に行なうことができる。
【0058】
実施例4
実施例1にて作製した脱酸素性多層体1とKON積層フィルム(KON;ダイセル化学(株)製、商品名:セネシKON#6000、15μm/ポリエチレン;60μm)から脱酸素性袋5(内寸;縦18×横15cm)を作製した。この脱酸素性袋5にラーメン用の生麺100gを充填、袋内部の空気量が約80ccとなるようにヒートシールして密封した。続いてこの包装袋を25℃で保存して袋内部の酸素濃度経時変化を測定し、袋内酸素濃度が0.1%になるまでの脱酸素所要時間を調査した。また、生麺の保存を開始してから2ヶ月後に生麺の外観及び香りを調査した。これらの結果を表2に示す。
【0059】
比較例3
脱酸素性多層体1の代わりに比較例1にて作製した脱酸素性多層体4を使用したこと以外は実施例4と同様にして、脱酸素性袋6を作製し、生麺を充填、密封し、25℃で保存して袋内酸素濃度が0.1%になるまでの脱酸素所要時間、並びに、2ヶ月後の生麺の外観及び香りの調査を行った。これらの結果を表2に示す。
【0060】
比較例4
脱酸素性多層体1の代わりにアルミ箔積層フィルム(PET;12μm/アルミ箔;9μm/ポリエチレン;40μm)を使用したこと以外は実施例4と同様にして、脱酸素性袋7を作製し、生麺を充填、密封し、25℃で保存して袋内酸素濃度が0.1%になるまでの脱酸素所要時間、及び2ヶ月後の生麺の外観、及び香りの調査を行った。これらの結果を表2に示す。
【0061】
【表2】
【0062】
表2の結果から明らかなように、脱酸素剤組成物を散布し、脱酸素性多層体中の脱酸素剤添加量を多くした実施例4では、速やかに袋内の酸素を吸収し、内容物の保存性に優れていた。それに対して、脱酸素剤組成物の添加量が約半分の比較例3では、酸素吸収機能を持たない比較例4と比べて内容物保存性に優れるものの、実施例4と比べて酸素吸収速度がやや遅く、生麺に若干の黄変が見られ、内容物保存性に問題があることが確認された。
【0063】
実施例5
製造例1にて作製した脱酸素剤組成物40部と、プロピレン−エチレンランダム共重合体(日本ポリケム(株)製、商品名:ノバテックPPFL25R、真比重0.9g/cm3、以下ランダムPPと略す)60部をドライブレンドし、二軸押し出し機を用いて樹脂温度260℃にて押し出しを行い、ブロワ付きネットベルトで冷却後ペレタイザーを経て、脱酸素剤組成物配合コンパウンド4(真比重1.40g/cm3)を得た。
【0064】
次いで、単軸押し出し機、Tダイ、冷却ロール、引き取り機からなる押出ラミネーターを用い、繰り出される厚さ50μmの白色CPPフィルム表面に、製造例1にて作製した脱酸素剤組成物を80g/m2となるように散布し、一方押し出し機より脱酸素剤組成物配合コンパウンド4を厚さ50μmとなるように押し出し、両フィルムを重ねて冷却ロールに導入して押出ラミネートし、白色CPPフィルムと脱酸素剤組成物配合コンパウンド4から形成された酸素吸収樹脂層とで脱酸素剤組成物が挟み込まれた脱酸素性フィルムを得た。
【0065】
この脱酸素性多層体における全脱酸素剤含有量は、108g/m2である。脱酸素性フィルムの含有する全脱酸素剤を厚さ50μmの酸素吸収性樹脂層に分散すると仮定した場合、脱酸素剤組成物含有量は76重量%に相当する。この脱酸素性多層体の一部をサンプリングして断面を顕微鏡にて観察したところ、白色CPPフィルムと酸素吸収性樹脂層は空隙無く接着され、粒状の脱酸素剤(C)は酸素吸収性樹脂層側、或いは両方の層に埋め込まれていることを確認した。
【0066】
次に、共押し出し装置を用いてプロピレン−エチレンブロック共重合体(日本ポリケム(株)製、商品名:ノバテックPPEC9、以下ブロックPPと略す);100μm/無水マレイン酸変成ポリプロピレン(三井化学(株)製、商品名:アドマーQF305);20μm/ポリアミド(三菱瓦斯化学(株)製、商品名:MXナイロン6007);40μm/無水マレイン酸変性ポリプロピレン;20μm/白色ブロックPP;200μmからなるガスバリア性多層シートを作製した。次いで、無水マレイン酸変性ポリプロピレンを介して、ガスバリア性多層シートのブロックPP;100μm側と、脱酸素性多層体の酸素吸収性樹脂層側を接着し、脱酸素性多層体5を得た。
【0067】
次いで、脱酸素性多層体5からシート温度180℃にてプラグアシスト成形し、角形のトレイ状脱酸素性容器(容量300cc、内寸;縦15cm×横10cm×高さ2cm)を得た。この脱酸素性容器にお粥200gを充填し、CPP;50μm/アルミ箔;9μm/PET;12μmの構成を有するフィルムをトップフィルムとして、ヒートシールにより容器を密封した。その際の袋内部の空気量は約100ccであった。続いてこの包装容器を25℃で保存して容器内部の酸素濃度経時変化を測定し、容器内酸素濃度が0.1%に到達するまでの脱酸素所要時間を測定した。さらにこの包装容器を25℃で3ヶ月間保存した後、容器を開封し、お粥の外観及び香りを調査した。これらの結果を表3に示す。
【0068】
比較例3
脱酸素剤組成物をCPPフィルム上に散布しないこと以外は実施例4と同様にして、脱酸素性多層体6を得た。脱酸素性多層体の構成は、内面となる側から、白色CPPフィルム;50μm/酸素吸収性樹脂層(脱酸素剤含有量40重量%、単位面積当たり脱酸素剤含有量28g/m2);50μm/無水マレイン酸変性ポリプロピレン;30μm/ブロックPP;100μm/無水マレイン酸変成ポリプロピレン;30μm/MXナイロン;50μm/無水マレイン酸変性ポリプロピレン;30μm/ブロックPP;200μmである。
次いで、実施例5と同様に脱酸素性多層体6からなる脱酸素性容器を作製し、お粥を充填、容器内酸素濃度が0.1%に到達するまでの脱酸素所要時間、3ヶ月間保存後のお粥の外観及び香りの調査を行った。これらの結果を表3に示す。
【0069】
【表3】
【0070】
この結果から明らかなように、脱酸素性多層体中の脱酸素剤組成物添加量が多い実施例5では、速やかに容器内部の酸素を吸収し、内容物の保存性に優れていた。一方、脱酸素剤組成物添加量の少ない比較例5では、酸素吸収速度が遅く、内容物の保存性が劣っていた。
【0071】
【発明の効果】
本発明によれば、脱酸素剤が高含有量に添加された脱酸素性フィルムが、工業的に製造され、脱酸素剤の添加の制御も容易かつ安定的に行なうことができる。本発明の脱酸素性フィルムは、脱酸素剤含有量が大きく、優れた酸素吸収速度及び酸素吸収容量を有する。
【0072】
本発明の脱酸素性フィルム及びこれを用いて得られる脱酸素性多層体は、それ自体の厚み及びこれを用いて得られる脱酸素性多層体の総厚みが必要以上に厚くなることがないので、熱成形、製袋等の二次加工性が良く、樹脂の使用量も増えないので、原料コストの点でも優れた包装材料である。
本発明の脱酸素性多層体及びこれを用いて得られる包装容器は、酸素吸収性能が高く、収納物品の長期保存を可能とする極めて有用な包装材料及び容器である。
【図面の簡単な説明】
【図1】本発明の脱酸素性多層フィルムの製造工程の一例を示す模式図
【図2】本発明の脱酸素性多層体の一例を示す断面図
【符号の説明】
丸囲み番号は、以下を表す。
1:脱酸素剤(C-1)散布装置
2:Tダイ
3:圧着用ロール
4:熱可塑性樹脂フィルム(A)
5:脱酸素剤(C-1)
6:酸素吸収性樹脂フィルム(B)
7:酸素吸収性樹脂層
8:散布され圧着された脱酸素剤(C-1)
9:熱可塑性樹脂層
10:ガスバリア層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a deoxidizing multilayer body, a method for producing the same, and a packaging container comprising the same. Specifically, the oxygen absorber (C-1) is sandwiched between the thermoplastic resin film (A) and the oxygen absorbent resin film (B) in which the oxygen absorber (C-2) is dispersed in the thermoplastic resin. Oxygen-absorbing resin layer containing oxygen scavenger (C-2) that can exhibit excellent oxygen absorption rate due to the dense distribution of oxygen scavenger (C-1) sprayed between the layers Is laminated, the present invention relates to a deoxygenating multilayer body having a high oxygen absorption capacity, a large amount of oxygen scavenger per unit area of the multilayer body, a method for producing the same, and a packaging container comprising the same.
[0002]
[Prior art]
In recent years, as one of the deoxygenation packaging technologies, a container is constituted by a multilayer material in which an oxygen-absorbing resin layer composed of an oxygen-absorbing resin composition in which a deoxidizing agent composition is blended with a thermoplastic resin, and the gas barrier of the container is formed. Development of a packaging container in which a deoxygenation function is imparted to the container itself while improving the performance is being carried out. A multilayer body having a deoxygenating function usually has an oxygen-absorbing resin layer containing an oxygen scavenger composition as an intermediate layer, an outer layer having gas barrier properties on the outer surface side, and an oxygen-permeable inner layer on the inner surface side. It is composed of a deoxidized multilayer body provided, and has been developed as a film for containers such as bags and lids, or as a multilayer sheet that can be easily molded into containers such as cups, trays, and bottles.
[0003]
Examples of the deoxygenating multilayer body include a deoxygenating multilayer body in which an iron-based oxygen scavenger composition is dispersed in a resin as described in JP-A-2-72851 and JP-A-4-90848, and oxygen absorption. Film is known. Japanese Patent Application Laid-Open No. 8-72941 proposes a technique for improving the deoxygenation performance of a deoxygenating multilayer body. Furthermore, as a deoxygenating multilayer body and multilayer film having a structure in which a polyolefin layer is interposed between a deoxidizer-containing resin layer and a gas barrier layer, there are JP-A-8-132573 and JP-A-9-40024.
[0004]
As a process of laminating an oxygen-absorbing resin layer containing an oxygen scavenger, a compound in which an oxygen scavenger composition generally comprising an iron-based main agent and an auxiliary agent for activating the same is kneaded into a thermoplastic resin such as polyolefin is mixed. Is known in advance, and is remelted by an extruder or the like and laminated by various lamination methods such as co-extrusion.
[0005]
[Problems to be solved by the invention]
The oxygen-absorbing performance of the oxygen-absorbing multilayer body and the packaging container comprising the oxygen-absorbing multilayer body is determined by the rate of absorbing oxygen per unit area in the oxygen-absorbing multilayer body, the so-called oxygen absorption rate, and the unit area of the oxygen-absorbing multilayer body. The amount of oxygen that can be absorbed is evaluated by the so-called oxygen absorption capacity.
The oxygen absorption rate mainly depends on the oxygen scavenger content in the oxygen absorbing resin layer and the oxygen transfer rate from the container surface to the oxygen scavenging agent in the oxygen absorbing resin layer, and the oxygen absorption capacity is mainly deoxygenating. Depends on the oxygen scavenger content in the multilayer body.
[0006]
In order to obtain a deoxygenating multilayer body having excellent oxygen absorption performance, that is, oxygen absorption rate and oxygen absorption capacity, a compound having a high oxygen scavenger content is prepared in advance, and this is used to provide a high oxygen scavenger content. It is necessary to laminate an oxygen-absorbing resin layer. However, if the oxygen scavenger content in the compound is high, the fluidity of the compound is greatly reduced. Therefore, it is possible to produce the compound itself or to extrude the compound from an extruder equipped with a T die to form a film having a uniform thickness. Since it becomes difficult to form, there is a limit to adding a large amount of oxygen scavenger in the compound.
[0007]
Although the oxygen absorbing capacity can be improved by setting the film thickness of the oxygen absorbing resin layer to be large even if the oxygen scavenger content in the oxygen absorbing resin layer is suppressed, the oxygen absorbing resin layer is simply improved. However, it is difficult to achieve a substantial improvement in oxygen absorption performance by simply increasing the film thickness. In addition, a deoxygenating multilayer body having a thick oxygen-absorbing resin layer has a problem that the total thickness of the multilayer body is unnecessarily large, causing problems in physical properties as a packaging material, thermoforming, bag making, etc. There was a drawback that the next processability was deteriorated and the raw material cost was further increased.
[0008]
The problem to be solved by the present invention is to obtain a deoxygenating multilayer body having excellent oxygen absorption performance, that is, oxygen absorption rate and oxygen absorption capacity, and a packaging container comprising the same. Another problem to be solved by the present invention is to provide a deoxidizing film containing a large amount of an oxygen scavenger, which has been difficult to produce in the past, and a method for producing the same.
[0009]
[Means for Solving the Problems]
In view of the above-mentioned problems of the prior art, the present inventors have added a large amount of an oxygen scavenger in the oxygen-absorbing multilayer body and related to the oxygen-absorbing multilayer body that exhibits excellent oxygen absorption performance, and a method for producing the same. As a result of earnest research, the oxygen scavenger is sandwiched between the thermoplastic resin film (A) and the oxygen-absorbing resin film (B) made by dispersing the oxygen scavenger in the thermoplastic resin. Thus, it has been found that a large amount of oxygen scavenger can be contained in the oxygen-absorbing multilayer body without increasing the thickness of the oxygen-absorbing resin layer more than necessary, and the present invention has been achieved.
[0010]
That is, the present invention provides an oxygen absorbing resin film (B) obtained by dispersing an oxygen scavenger (C-1) in a thermoplastic resin film (A) and an oxygen scavenger (C-2) in the thermoplastic resin. The present invention relates to a deoxidizing multilayer body sandwiched between two.
Further, the present invention is that the sandwiched oxygen scavenger (C-1) is embedded in the surface of one or both of the thermoplastic resin film (A) and the oxygen-absorbing resin film (B). The present invention relates to a deoxygenating film.
The present invention also relates to the oxygen scavenging multilayer body, characterized in that the oxygen scavenging agent (C) is an oxygen scavenger composition mainly composed of iron powder having an average particle diameter of 1 to 100 μm.
In the present invention, the weight of the sandwiched oxygen scavenger (C-1) 2 The deoxygenating multilayer body is characterized by being 10 to 100 g per unit.
The present invention also relates to the above deoxidizing multilayer body, wherein the oxygen absorbing resin film (B) has a content of oxygen scavenger (C-2) of 10 to 60% by weight.
The present invention also relates to a deoxygenating multilayer body in which at least a gas barrier layer is laminated on the deoxygenating multilayer body.
Further, the present invention is characterized in that the oxygen-absorbing agent (C-1) is uniformly sprayed on the surface of the thermoplastic resin film (A), and the oxygen-absorbing resin film (B) is thermocompression-bonded to the sprayed surface. The present invention relates to a method for producing an oxygen-based multilayer body.
The present invention also relates to a packaging container using the above-mentioned deoxygenating multilayer body for at least a part of the packaging container.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The oxygen scavenger (C) used in the present invention, that is, (C-1) and (C-2) can be used without limitation as long as it can cause an oxygen absorption reaction. The oxygen absorber (C-1) sandwiched between the thermoplastic resin film (A) and the oxygen-absorbing resin film (B) and the oxygen absorber (C-2) dispersed in the thermoplastic resin are the same type. It can be different. As the oxygen scavengers (C-1) and (C-2), an oxygen scavenger composition comprising a combination of an oxidizable main agent and an auxiliary agent is preferably used. As the main agent, metal powder, sulfite, dithionite, ascorbic acid or a salt thereof, ascorbic acid ester and the like are used, among which metal powder is preferable, and iron powder is particularly preferably used. Further, a chemical substance that accelerates the oxygen absorption reaction of the main agent is used as the auxiliary agent.
[0012]
When iron powder is used as the main agent, it can be used without any particular limitation on purity, etc., as long as it can cause an oxygen absorption reaction. For example, a part of the surface may already be oxidized and contains other metals. It may be a thing. The iron powder is preferably granular, and for example, iron powder such as reduced iron powder, sprayed iron powder, and electrolytic iron powder, pulverized products of various iron such as cast iron and steel, and ground products are used. The iron powder is preferably finer in order to reduce the film thickness of the oxygen-absorbing resin film (B) to obtain strength, and preferably has an average particle size of 1 to 200 μm, particularly preferably 1 to 100 μm.
[0013]
In the case of an oxygen scavenger composition based on iron powder, a metal halide is used as an auxiliary agent. The metal halide acts catalytically on the oxygen absorption reaction of the main agent. Examples of the metal halide include alkali metal or alkaline earth metal chlorides, bromides, and iodides, and lithium, sodium, potassium, magnesium, calcium, or barium chlorides and iodides are preferably used. The compounding amount of the metal halide is preferably 0.1 to 20 parts by weight, more preferably 0.1 to 5 parts by weight per 100 parts by weight of the iron powder.
[0014]
In the case of using a metal halide as an auxiliary agent for an oxygen scavenger mainly composed of iron powder, it is preferable to add a mixture in advance. For example, a method of mixing a metal halide and iron powder using a ball mill, a speed mill, etc., a method of embedding a metal halide in the uneven portion of the iron powder surface, a method of attaching a metal halide to the iron powder surface using a binder A method in which a metal halide aqueous solution and iron powder are mixed and then dried to adhere the metal halide to the surface of the iron powder can be employed. Thereby, it can adhere to iron powder and it can avoid separating easily. A preferred oxygen scavenger composition is an iron powder-based composition containing iron powder and a metal halide, and particularly preferably a metal halide-coated iron powder composition in which a metal halide is attached to the iron powder.
[0015]
In the oxygen scavenger composition used in the present invention, alkaline earth metal oxides, silane or titanate dispersants, fillers such as clay, mica, silica, calcium carbonate, activated carbon, zeolite are optionally included. An adsorbent such as can be added.
[0016]
For the thermoplastic resin film (A) in the present invention, polyolefins excellent in weldability and oxygen permeability are preferably used. Examples of polyolefins include various polyethylenes exemplified by low density polyethylene, medium density polyethylene, linear low density polyethylene and high density polyethylene, polypropylene homopolymers, propylene-ethylene block copolymers and propylene-ethylene random copolymers. Examples thereof include various polypropylenes exemplified by coalescence, polyolefins by metallocene catalysts such as metallocene polyethylene and metallocene polypropylene, polymethylpentene, ethylene-vinyl acetate copolymers, ethylene-α olefin copolymers, and mixtures thereof.
[0017]
Among these, propylene-ethylene random copolymer, propylene-ethylene block copolymer, low density polyethylene, linear low density polyethylene and metallocene polyethylene are particularly preferable.
In addition, if necessary, the thermoplastic resin may be a thermoplastic resin such as an elastomer, an antioxidant, a pigment such as titanium oxide, an inorganic filler such as silica, a colorant such as carbon black, an adsorbent such as activated carbon, and a filler. An agent or the like may be added.
In particular, when an inorganic substance such as titanium oxide is added, the oxygen scavenger (C) is concealed when the thermoplastic resin film (A) is used as the isolation layer of the packaging container as it is, and is exposed on the surface of the isolation layer in appearance. Since there is nothing, it is preferable.
[0018]
The thickness of the thermoplastic resin film (A) is preferably in the range of 10 to 200 μm, more preferably in the range of 30 to 150 μm. If it is thinner than 10 μm, there may be a problem in workability or the oxygen scavenger (C-1) may be exposed on the surface. Moreover, when it is thicker than 200 μm, there is a problem in cost.
[0019]
The oxygen-absorbing resin film (B) in the present invention is formed from a compound prepared in advance by melt-kneading the oxygen scavenger (C-2) and a thermoplastic resin. As the oxygen scavenger (C-2), the oxygen scavenger (C) described above can be used.
For the thermoplastic resin, polyolefins excellent in weldability and oxygen permeability are preferably used. Examples of polyolefins include various polyethylenes exemplified by low density polyethylene, medium density polyethylene, linear low density polyethylene and high density polyethylene, polypropylene homopolymers, propylene-ethylene block copolymers and propylene-ethylene random copolymers. Examples thereof include various polypropylenes exemplified by coalescence, polyolefins by metallocene catalysts such as metallocene polyethylene and metallocene polypropylene, polymethylpentene, ethylene-vinyl acetate copolymers, ethylene-α olefin copolymers, and mixtures thereof.
Among these, propylene-ethylene random copolymer, propylene-ethylene block copolymer, low density polyethylene, linear low density polyethylene or metallocene polyethylene is particularly preferable.
[0020]
In addition, if necessary, the thermoplastic resin may be a thermoplastic resin such as an elastomer, an antioxidant, a pigment such as titanium oxide, an inorganic filler such as silica, a colorant such as carbon black, an adsorbent such as activated carbon, and a filler. An agent or the like may be added.
As the thermoplastic resin used for the oxygen-absorbing resin film (B), it is preferable to use the same kind of polyolefin as the thermoplastic resin film (A) described above, because the strength when both films are welded is high. . The compound for forming the oxygen-absorbing resin film (B) can be produced using a conventionally known method, for example, a method of extruding from a strand die after melt-kneading with an extruder, and pelletizing through a cooling step. it can.
[0021]
The content of the oxygen scavenger composition in the oxygen-absorbing resin film (B) in the present invention is preferably 10 to 60% by weight, more preferably 20 to 60% by weight. If it is lower than this, the large oxygen absorption capacity intended by the present invention may not be obtained. On the other hand, if it is higher than this, the film-forming property of the oxygen-absorbing resin film (B) deteriorates, which causes a problem in the manufacturing process.
[0022]
The thickness of the oxygen-absorbing resin film (B) is preferably in the range of 10 to 250 μm, and more preferably in the range of 20 to 200 μm. If the thickness is less than 10 μm, there are many problems in workability, and if it is thicker than 250 μm, the total thickness of the deoxidizing multilayer body is increased, so that the workability to the container is reduced and the cost is increased.
[0023]
In the oxygen-absorbing resin film (B) of the present invention, if necessary, a colorant such as titanium oxide or carbon black, an alkaline earth metal oxide, a silane-based or titanate-based dispersant, clay, mica, silica It is possible to add a filler such as calcium carbonate, an adsorbent such as an antioxidant, activated carbon and zeolite.
[0024]
In the present invention, between the thermoplastic resin film (A) and the oxygen-absorbing resin film (B) obtained by dispersing the oxygen-absorbing agent (C-2) in the thermoplastic resin, the oxygen-absorbing agent (C- A deoxidizing film is produced by sandwiching film (A) and film (B) by sandwiching 1). As the oxygen scavenger (C-1), the aforementioned oxygen scavenger (C) can be used.
[0025]
The film (A) and the film (B) can be joined by various methods. For example, an adhesive is applied or coated on the surface of the film (A) or the film (B), the oxygen scavenger composition is uniformly dispersed, and then the film (B) or the film (A) is bonded. Further, the film (A) or the film (B) may be bonded to the surface of the film (A) or the film (B) by uniformly dispersing the oxygen scavenger composition and then applying or coating the adhesive.
[0026]
In particular, a method using thermocompression bonding is preferable because of its low cost. That is, the oxygen absorption formed by uniformly dispersing the oxygen scavenger (C-1) on the surface of the thermoplastic resin film (A) and dispersing the oxygen scavenger (C-2) in the thermoplastic resin on the spray surface. Can be produced industrially by thermocompression bonding of the conductive resin film (B). Further, the oxygen scavenger (C-1) is uniformly sprayed on the surface of the oxygen-absorbing resin film (B) obtained by dispersing the oxygen scavenger (C-2) in the thermoplastic resin. It is also preferable to thermocompression-bond the plastic resin film (A). For thermocompression bonding, an extrusion lamination method is preferable.
[0027]
When the film (A) and the film (B) are joined, the thermoplastic resin film (A) and the oxygen-absorbing resin film (B) are bonded without gaps in the portion where the oxygen scavenger (C-1) is sandwiched. There must be. When a void is generated and the oxygen scavenger (C-1) is not fixed, the oxygen scavenger (C-1) may drop and contaminate the surroundings. For that purpose, a state in which the oxygen scavenger (C-1) is embedded in both films or one of the film surfaces is preferable.
[0028]
Preferably, the sprayed oxygen scavenger (C-1) is embedded in the oxygen-absorbing resin film (B) side at a high rate. That is, oxygen absorber (C-1) is uniformly sprayed on the surface of the thermoplastic resin film (A), and oxygen absorber formed by dispersing the oxygen scavenger (C-2) in the thermoplastic resin on the spray surface. It is preferable to pressure-bond the conductive resin film (B). The pressure bonding method is preferably extrusion lamination. The oxygen scavenging film obtained in this way has the thermoplastic resin film (A) as an isolating layer, so that oxygen that has permeated the isolating layer is on the surface of the film (B) where the oxygen scavenger density is high. It reacts efficiently with the oxygen scavenger, resulting in a high oxygen absorption rate.
[0029]
The weight of the oxygen scavenger (C-1) sandwiched between the thermoplastic resin film (A) and the oxygen-absorbing resin film (B) is as follows: 2 150 g or less, preferably 10 to 100 g, more preferably 20 to 100 g. If the weight of the oxygen scavenger (C-1) is lower than this range, the excellent oxygen absorption performance intended by the present invention cannot be obtained, and if it is higher than this range, the thermoplastic resin film (A) and oxygen absorption The adhesive strength of the resin film (B) becomes insufficient, which may adversely affect the mechanical strength, moldability, and performance of the packaging container.
[0030]
The oxygen-absorbing film of the present invention includes a thermoplastic resin film (A), an oxygen-absorbing resin film (B) made of a thermoplastic resin in which an oxygen-absorbing agent (C-2) is dispersed, and an oxygen-absorbing agent (C-1). The film (A) and the film (B) are joined by sandwiching the oxygen scavenger (C-1).
More specifically, the oxygen-absorbing film of the present invention includes a thermoplastic resin film (A), an oxygen-absorbing resin film (B) made of a thermoplastic resin in which an oxygen-absorbing agent (C-2) is dispersed, and an oxygen-absorbing agent ( C-1), and an oxygen scavenger (C-1) is embedded in the joining surface of at least one of the joined thermoplastic resin film (A) and oxygen-absorbing resin film (B).
[0031]
The oxygen scavenger content per unit area of the oxygen scavenging film, that is, the amount ratio and total content of the oxygen scavenger (C-1) and oxygen scavenger (C-2) are arbitrarily determined according to the intended use and purpose. Usually 10 to 450 g / m 2 , Preferably 50 to 450 g / m 2 It is. In particular, the production of a deoxygenating film having a high oxygen scavenger content is possible only with an oxygen-absorbing resin film (B) obtained by dispersing the oxygen scavenger (C-2) in a thermoplastic resin. However, in the present invention, the content of the oxygen absorber (C-2) dispersed in the oxygen-absorbing resin film (B) is determined by the oxygen-absorbing resin molding process. Therefore, industrial implementation is easy.
[0032]
As for the spraying, a known device for spraying powder can be used as long as the oxygen scavenger (C-1) is sprayed uniformly on the film. The addition of the oxygen scavenger can be controlled easily and stably by controlling the spray amount.
Moreover, about thermocompression bonding, the well-known apparatus for resin film lamination, such as extrusion lamination, can be utilized. According to the extrusion laminating method, mass production can be performed with a simple apparatus, so that it is possible to achieve an advantageous production cost.
[0033]
A specific example of the method for producing a deoxidizing film of the present invention will be described with reference to FIG.
Spread a granular oxygen scavenger composition on the surface of the thermoplastic resin film (A), laminate an oxygen-absorbing resin layer supplied in a molten state from a T-die, cool it after thermocompression bonding with a roll, A deoxidizing multilayer body is formed in a state where the oxygen scavenger composition is sandwiched. Also, spray the oxygen scavenger composition onto the adhesive surface of the thermoplastic resin film (A) whose surface is coated with an adhesive so that it does not fall off from the film surface after spraying the oxygen scavenger (C). An oxygen-absorbing resin layer supplied in a molten state from a T die may be laminated, and may be integrated by cooling after thermocompression bonding with a roll.
[0034]
By thermocompression bonding, the adhesion between the thermoplastic resin layer sandwiched with the granular oxygen absorber composition and the oxygen-absorbing resin layer is enhanced, and voids between both layers and around the granular oxygen absorber composition are eliminated. Can do. Moreover, since the oxygen scavenger composition is embedded in the film surface by thermocompression bonding, the scavenging of the oxygen scavenger composition is prevented, and further, a strong lamination that prevents delamination of both layers becomes possible. A deoxygenating multilayer body in which both films are integrated is obtained.
[0035]
The deoxygenated multilayer body of the present invention is used as a freshness-preserving agent as it is or for packaging for food or the like after being wrapped with a breathable packaging material. However, when used as a member of a packaging container having a deoxygenating function, a deoxygenating multilayer body in which a gas barrier layer is laminated on one side is easy to use. That is, the present invention is a deoxygenating multilayer body in which a gas barrier layer is laminated on one surface of a deoxidizing film, preferably on the surface of an oxygen absorbing resin film (B).
[0036]
The gas barrier layer is a layer that blocks oxygen entering from the outside of the container when used as a packaging container. For example, metal foil such as aluminum foil, polyvinylidene chloride, saponified ethylene-vinyl acetate copolymer, nylon 6, nylon 66, MX nylon, amorphous nylon, gas barrier resins such as polyethylene terephthalate, and vapor deposition films such as aluminum vapor deposition film and silica vapor deposition film can be used alone or in combination. It is desirable that the oxygen permeability be as small as possible as the workability and cost allow. Regardless of the film thickness, it is 100 cc / m. 2 -It must be atm · day (23 ° C, 100% RH) or less, more preferably 50 cc / m 2 ・ Atm · day (23 ° C., 100% RH) or less. By doing in this way, when manufacturing a packaging container using the deoxidizing multilayer body according to the present invention, the amount of oxygen entering from the outside of the packaging container can be reduced, and the storability of stored articles can be further improved. It can be excellent.
[0037]
Formation of the gas barrier layer may be laminated in advance on the opposite side of the bonding surface of the film (A) or film (B) before the bonding of the thermoplastic resin film (A) and the oxygen-absorbing resin film (B). good. In the step of sandwiching the oxygen scavenger (C-1), the thermoplastic resin film (A) or the oxygen-absorbing resin film (B) may be simultaneously laminated on the opposite side of the joining surface. Alternatively, it may be laminated on the thermoplastic resin film (A) side or the oxygen-absorbing resin film (B) side of the bonded deoxidizing film. As a method for laminating the gas barrier layer, known laminating methods such as co-extrusion, extrusion laminating method, dry laminating method and hot melt laminating method can be used.
[0038]
In the present invention, after providing a thermoplastic resin layer in advance on the surface of the deoxidized multilayer film on which the gas barrier material is laminated, the gas barrier material can also be laminated. In particular, when the gas barrier layer is laminated on the thermoplastic resin film (B) side in the deoxygenating multilayer body of the present invention, the deoxygenating multilayer film and the gas barrier material gas barrier layer are laminated by laminating this thermoplastic resin layer. Since the adhesive force of both layers at the time of lamination | stacking is strengthened, it is preferable. As the thermoplastic resin layer, the same kind as the above-described thermoplastic resin film (A) can be used, and polyolefin resins such as polyethylene and polypropylene are particularly preferable.
[0039]
In addition, a protective layer made of a thermoplastic resin can be laminated on the outside of the gas barrier layer in order to prevent damage to the gas barrier layer and pinholes. Examples of the thermoplastic resin used for the protective layer include various polyolefins such as various polyethylenes and various polypropylenes, various polyamides such as nylon 6 and nylon 66, and various polyesters such as polyethylene terephthalate. These may be used alone or in combination. Can be used.
[0040]
In the present invention, a thermoplastic resin layer (A ′) can be further provided on the opposite side of the surface on which the gas barrier layer is laminated for the purpose of improving the strength. In particular, when the gas barrier layer is laminated on the thermoplastic resin film (A) side in the deoxidized multilayer body of the present invention, on the surface of the oxygen-absorbing resin film (B) or on the inner surface of the deoxygenated multilayer container. Further, it is preferable to laminate a thermoplastic resin layer (A ′). Due to the thermoplastic resin layer (A ') located on the storage side of the oxygen-absorbing film, the oxygen-absorbing resin film (B) may cause the oxygen scavenger (C-2) to fall off and contaminate the storage. Is prevented. As a method for laminating the thermoplastic resin layer (A ′), a conventionally known laminating method can be used.
[0041]
As the thermoplastic resin layer (A ′), the same kind as the above-mentioned thermoplastic resin film (A) can be used, and in particular, polyethylene and polypropylene having heat sealing properties are preferable. In addition, if necessary, the thermoplastic resin may be a thermoplastic resin such as an elastomer, an antioxidant, a pigment such as titanium oxide, an inorganic filler such as silica, a colorant such as carbon black, an adsorbent such as activated carbon, and a filler. An agent or the like may be added.
[0042]
The deoxidizing multilayer body of the present invention is used for various applications as a film-like or sheet-like packaging material. By processing this into a packaging container such as a bag or tray, a deoxidizing packaging container having excellent physical properties such as appearance and flavor retention and excellent packaging processability can be obtained. The packaging container using the deoxygenating multilayer body of the present invention as at least a part of the container absorbs oxygen in the container in addition to oxygen that slightly enters from the outside of the container, and is based on oxygen stored in the container. Prevents alteration and enables long-term storage. That is, the oxygen-removing multilayer body is processed into a packaging container such as a bag, a tray, or a tube and used as a member such as a container lid or a top seal film. Functions are granted. For example, a functional packaging bag can be obtained by using a film-like deoxygenating multilayer body as a member of a self-supporting bag (standing pouch) composed of two side films and one bottom film. it can.
[0043]
Since the packaging container having a deoxygenating function of the present invention exhibits an excellent effect in preventing quality deterioration due to oxygen, it is used for storing various articles. In addition, it is difficult to apply with conventional oxygen scavengers (C) such as sachet oxygen absorbers (C). Can also be used. For example, liquid foods include juices, liquor, coffee, tea, jelly drinks, health drinks and other liquid drinks, seasonings, sauces, soy sauce, dressings, liquid soup, mayonnaise, miso, and spices Paste confectionery such as cream, chocolate paste, liquid processed food such as liquid soup, boiled food, pickles, stew, etc. Pre-cooked rice such as washed rice, cooked cooked rice, processed rice products such as gomoku rice, powdered soups, powdered seasonings such as dashi stock, and other high moisture and liquid products include industrial materials, agricultural chemicals, Examples thereof include solid and solution chemicals such as insecticides, emulsions, liquid and paste pharmaceuticals, lotions, cosmetic creams, cosmetic emulsions, hair conditioners, hair dyes, shampoos and the like.
[0044]
【Example】
The present invention will be described in more detail with reference to examples. In addition, this invention is not necessarily limited to an Example.
[0045]
Production Example 1
100 parts of reduced iron powder having an average particle size of 30 μm (parts by weight, hereinafter the same) is put into a vacuum mixing dryer equipped with a heating jacket, heated at 140 ° C. under a reduced pressure of 10 mmHg, and 5 parts of 50% by weight calcium chloride aqueous solution. After spraying and drying, coarse particles are removed by sieving to form a granular oxygen scavenger composition (true specific gravity 8 g / cm Three )
[0046]
Example 1
60 parts of the oxygen scavenger composition prepared in Production Example 1 and linear low density polyethylene (Mitsui Chemicals Co., Ltd., trade name: ULTZEX 15100C, true specific gravity 0.92 g / cm Three (Hereinafter abbreviated as LLDPE) 40 parts are dry blended, extruded using a biaxial extruder at a resin temperature of 230 ° C., cooled with a net belt with a blower, passed through a pelletizer, and mixed with an oxygen scavenger composition compound 1 Obtained (true specific gravity 1.96 g / cm Three ).
[0047]
Next, a film having a thickness of 50 μm made of LLDPE (manufactured by Tokyo Cellophane Paper Co., Ltd., trade name: TUX-TC # 50) is fed using an extrusion laminator comprising a single screw extruder, a T die, a cooling roll, and a take-up machine. On the surface, the oxygen scavenger composition prepared in Production Example 1 was 50 g / m. 2 The oxygen-absorbing resin composed of the oxygen scavenger composition compounding compound 1 is extruded so as to form a layer of 50 μm in thickness, and introduced into the cooling roll in a state where both films overlap. Extrusion lamination was performed to obtain an oxygen scavenging film in which the oxygen scavenger composition was sandwiched between the LLDPE film and the oxygen absorbing resin layer.
[0048]
The total oxygen scavenger content per unit area in the obtained oxygen scavenging film was 109 g / m. 2 It is. Assuming that the total oxygen scavenger contained in the oxygen scavenging film is dispersed in an oxygen-absorbing resin layer having a thickness of 50 μm, the content of the oxygen scavenger composition corresponds to 77% by weight. When the cross section of this oxygen-absorbing film was observed with a microscope, the thermoplastic resin layer and the oxygen-absorbing resin layer were bonded together without a gap, and most of the dispersed oxygen-absorbing agent composition was bonded to the oxygen-absorbing resin layer side. It was confirmed that the surface was partially embedded in the joining surface of the thermoplastic resin layer side and that the oxygen scavenger was not exposed to the surface of the thermoplastic resin layer.
[0049]
Adhere 9 μm thick aluminum foil as a gas barrier layer to the oxygen-absorbing resin layer side of the oxygen-absorbing film and 20 μm thick low-density polyethylene (trade name: NUC8003, hereinafter abbreviated as LDPE). Extruded and laminated as an adhesive resin, and further laminated with a 12 μm thick polyethylene terephthalate film (product name: Emblet PTJ-12, hereinafter abbreviated as PET) as a protective layer on the aluminum foil side, A deoxygenating multilayer body 1 comprising five layers having a gas barrier layer was obtained.
[0050]
The two deoxygenating multilayer bodies 1 were heat-sealed with LLDPE inside, and a deoxygenating bag 1 having an inner size of 20 cm × 10 cm was produced. Test samples were prepared by filling two oxygen scavenging bags 1 with 10 cc of water and 200 cc or 300 cc of air and sealing them with heat seal. This test sample was stored at 25 ° C., and the time-dependent change in oxygen concentration inside the bag was measured. The time required for the oxygen concentration in the bag to reach 0.1% was determined as the deoxygenation time. The results are shown in Table 1.
[0051]
Comparative Example 1
A deoxidizing multilayer body 4 was obtained in the same manner as in Example 1 except that the oxygen scavenger composition was not sprayed on the surface of the LLDPE film. The structure of the deoxidizing multilayer body 4 is as follows: LLDPE film; 50 μm / oxygen-absorbing resin layer (deoxygenating agent content 60% by weight); 50 μm / LDPE; 20 μm / aluminum foil; 9 μm / PET; 12 μm. The total oxygen scavenger content per unit area in this oxygen scavenging film was 59 g / m. 2 It is. Using this deoxygenating multilayer body 2, a deoxygenating bag 4 was produced in the same manner as in Example 1, and the change over time in the oxygen concentration inside the bag was measured. The results are shown in Table 1.
[0052]
Comparative Example 2
Using 77 parts of the oxygen scavenger composition obtained in Production Example 1 and 23 parts of LLDPE, a compound 3 containing the oxygen scavenger composition was obtained in the same manner as in Example 1 (true specific gravity 2.89 g / cm Three ). Compound 3 has a total oxygen scavenger content per unit area of 109 g / m when it is a layer having a thickness of 50 μm. 2 In an amount corresponding to the oxygen scavenger composition. In addition, the oxygen scavenger composition compounding compound 3 was difficult to be stranded during production, and stable production was not possible.
Subsequently, an attempt was made to produce a deoxidizing multilayer body in the same manner as in Example 1 except that the oxygen scavenger composition was not sprayed on the surface of the LLDPE film, but the oxygen-absorbing resin layer was continuously formed to a thickness of 50 μm. Thus, it was impossible to form a deoxidized multilayer body.
[0053]
Example 2
An oxygen scavenger composition blending compound 2 was obtained in the same manner as in Example 1 except that the blending amounts of the oxygen scavenger composition and LLDPE prepared in Production Example 1 were changed to 30 parts and 70 parts, respectively (true specific gravity) 1.25 g / cm Three ). Subsequently, the oxygen scavenger composition produced in Production Example 1 is applied to the surface of a 50 μm-thick film made of LLDPE to be fed at 80 g / m. 2 The oxygen absorbing resin composed of the oxygen scavenger composition compounding compound 2 is extruded to form a layer having a thickness of 30 μm, and introduced into the cooling roll in a state where both films overlap. Extrusion lamination was performed to obtain an oxygen scavenging film in which the oxygen scavenger composition was sandwiched between the LLDPE film and the oxygen absorbing resin layer.
The total oxygen scavenger content per unit area in this oxygen scavenging film was 91 g / m. 2 It is. When the cross section of this oxygen-absorbing film was observed with a microscope, the thermoplastic resin layer and the oxygen-absorbing resin layer were bonded together without a gap, and most of the dispersed oxygen-absorbing agent composition was bonded to the oxygen-absorbing resin layer side. It was confirmed that the surface was partially embedded in the joining surface of the thermoplastic resin layer side and that the oxygen scavenger was not exposed to the surface of the thermoplastic resin layer.
[0054]
Next, in the same manner as in Example 1, an aluminum foil and PET were laminated on the oxygen-absorbing resin layer side of the deoxidizing film to obtain a deoxygenating multilayer body 2. Furthermore, a deoxygenating bag 2 was produced using this deoxygenating multilayer body 2 in the same manner as in Example 1, and the time required for deoxygenation of oxygen inside the bag was measured. The results are shown in Table 1.
[0055]
Example 3
LLDPE was extruded and laminated to a thickness of 50 μm on the oxygen-absorbing resin layer side of the oxygen-absorbing film obtained in Example 2, and then the gas barrier layer on the thermoplastic resin layer side made of the LLDPE film of the oxygen-absorbing film. A 9 μm thick aluminum foil is extruded and laminated with 20 μm thick low-density polyethylene as an adhesive resin, and 12 μm thick PET is dry laminated as a protective layer on the aluminum foil side, and a gas barrier layer is provided. A deoxygenated multilayer body 3 comprising layers was obtained. Furthermore, using this deoxygenating multilayer body 3, a deoxygenating bag 3 was produced in the same manner as in Example 1, and the time required for deoxygenation of oxygen inside the bag was measured. The results are shown in Table 1.
[0056]
[Table 1]
[0057]
As is clear from the results in Table 1, in Examples 1 to 3 in which the oxygen scavenger composition was dispersed to improve the oxygen scavenger composition content in the oxygen scavenging multilayer body, the oxygen scavenger composition Compared with Comparative Example 1, which is a conventional example in which no objects are dispersed, the oxygen concentration in the bag is quickly absorbed, and the time required for deoxygenation in a range where the amount of air in the bag is particularly large is greatly reduced. It was confirmed.
As for the production of the oxygen-absorbing film, as shown in Comparative Example 2, an oxygen-absorbing resin film (layer) is industrially produced by preparing a compound containing a high content of oxygen-absorbing agent. It is extremely difficult to do. On the other hand, in the present invention, the oxygen scavenging film to which the oxygen scavenger is added in a high content is produced industrially, and the addition of the oxygen scavenger can be controlled easily and stably.
[0058]
Example 4
Deoxygenating multilayer body 1 produced in Example 1 and KON laminated film (KON; manufactured by Daicel Chemical Industries, Ltd., trade name: Senesi KON # 6000, 15 μm / polyethylene; 60 μm) from deoxygenating bag 5 (inner dimensions) ; 18 × 15 cm). This deoxygenating bag 5 was filled with 100 g of raw noodles for ramen and heat sealed so that the amount of air inside the bag was about 80 cc. Subsequently, this packaging bag was stored at 25 ° C., the oxygen concentration change with time in the bag was measured, and the time required for deoxygenation until the oxygen concentration in the bag reached 0.1% was investigated. In addition, the appearance and scent of raw noodles were investigated two months after starting to store raw noodles. These results are shown in Table 2.
[0059]
Comparative Example 3
A deoxygenating bag 6 was prepared and filled with raw noodles in the same manner as in Example 4 except that the deoxygenating multilayer body 4 prepared in Comparative Example 1 was used instead of the deoxygenating multilayer body 1. The container was sealed and stored at 25 ° C., and the time required for deoxidation until the oxygen concentration in the bag became 0.1%, and the appearance and aroma of raw noodles after two months were investigated. These results are shown in Table 2.
[0060]
Comparative Example 4
An oxygen scavenging bag 7 was prepared in the same manner as in Example 4 except that an aluminum foil laminated film (PET; 12 μm / aluminum foil; 9 μm / polyethylene; 40 μm) was used instead of the oxygen scavenging multilayer 1. Raw noodles were filled and sealed, and the time required for deoxidation until the oxygen concentration in the bag reached 0.1% after storage at 25 ° C., and the appearance and aroma of raw noodles after 2 months were investigated. These results are shown in Table 2.
[0061]
[Table 2]
[0062]
As is clear from the results in Table 2, in Example 4 in which the oxygen scavenger composition was sprayed and the amount of oxygen scavenger added in the oxygen scavenging multilayer was increased, oxygen in the bag was quickly absorbed, and the contents Excellent storage stability. On the other hand, Comparative Example 3 in which the amount of the oxygen scavenger composition added was approximately half, although the content preservation was superior to Comparative Example 4 having no oxygen absorbing function, but the oxygen absorption rate was higher than that of Example 4. However, it was confirmed that the raw noodles were slightly yellowed and there was a problem in the content preservation.
[0063]
Example 5
40 parts of the oxygen scavenger composition prepared in Production Example 1 and a propylene-ethylene random copolymer (manufactured by Nippon Polychem Co., Ltd., trade name: Novatec PPFL25R, true specific gravity 0.9 g / cm Three 60 parts dry blended, extruded using a twin screw extruder at a resin temperature of 260 ° C., cooled with a net belt with a blower, passed through a pelletizer, compounded with deoxidant composition 4 (True specific gravity 1.40 g / cm Three )
[0064]
Next, the oxygen scavenger composition produced in Production Example 1 was applied at 80 g / m on the surface of a white CPP film having a thickness of 50 μm fed using an extrusion laminator comprising a single screw extruder, a T die, a cooling roll, and a take-up machine. 2 It is sprayed so as to become, and the oxygen absorber composition compounding compound 4 is extruded from a single extruder so as to have a thickness of 50 μm, and both films are overlapped and introduced into a cooling roll and extrusion laminated, and a white CPP film and deoxygenated An oxygen scavenging film in which the oxygen scavenger composition was sandwiched between the oxygen absorbing resin layer formed from the agent composition blending compound 4 was obtained.
[0065]
The total oxygen scavenger content in this oxygen scavenging multilayer is 108 g / m. 2 It is. Assuming that the total oxygen scavenger contained in the oxygen scavenging film is dispersed in an oxygen-absorbing resin layer having a thickness of 50 μm, the oxygen scavenger composition content corresponds to 76% by weight. When a part of this deoxygenating multilayer was sampled and the cross section was observed with a microscope, the white CPP film and the oxygen-absorbing resin layer were bonded without voids, and the granular oxygen absorber (C) was an oxygen-absorbing resin. It was confirmed that it was embedded in the layer side or both layers.
[0066]
Next, using a coextrusion apparatus, a propylene-ethylene block copolymer (manufactured by Nippon Polychem Co., Ltd., trade name: Novatec PPEC9, hereinafter abbreviated as block PP); 100 μm / maleic anhydride modified polypropylene (Mitsui Chemicals, Inc.) Product name: Admer QF305); 20 μm / polyamide (Mitsubishi Gas Chemical Co., Ltd., product name: MX nylon 6007); 40 μm / maleic anhydride modified polypropylene; 20 μm / white block PP; 200 μm gas barrier multilayer sheet Was made. Next, the block PP; 100 μm side of the gas barrier multilayer sheet and the oxygen-absorbing resin layer side of the oxygen-absorbing multilayer body were adhered via maleic anhydride-modified polypropylene to obtain the oxygen-absorbing multilayer body 5.
[0067]
Next, plug assist molding was performed from the deoxidized multilayer body 5 at a sheet temperature of 180 ° C. to obtain a rectangular tray-shaped deoxygenated container (capacity: 300 cc, inner size: length 15 cm × width 10 cm × height 2 cm). This deoxygenating container was filled with 200 g of rice cake, and the container having a structure of CPP; 50 μm / aluminum foil; 9 μm / PET; 12 μm was used as a top film, and the container was sealed by heat sealing. The amount of air inside the bag at that time was about 100 cc. Then, this packaging container was preserve | saved at 25 degreeC, the oxygen concentration time-dependent change inside a container was measured, and the deoxygenation time required until the oxygen concentration in a container reached | attained 0.1% was measured. Furthermore, after storing this packaging container at 25 degreeC for 3 months, the container was opened and the external appearance and fragrance of the bowl were investigated. These results are shown in Table 3.
[0068]
Comparative Example 3
A deoxidizing multilayer body 6 was obtained in the same manner as in Example 4 except that the oxygen scavenger composition was not sprayed on the CPP film. The composition of the oxygen-removing multilayer body is as follows: white CPP film; 50 μm / oxygen-absorbing resin layer (oxygen absorber content 40 wt%, oxygen absorber content 28 g / m per unit area) 2 50 μm / maleic anhydride modified polypropylene; 30 μm / block PP; 100 μm / maleic anhydride modified polypropylene; 30 μm / MX nylon; 50 μm / maleic anhydride modified polypropylene; 30 μm / block PP;
Next, as in Example 5, a deoxygenating container made of the deoxygenating multilayer 6 was produced, filled with soot, and the time required for deoxygenation until the oxygen concentration in the container reached 0.1%, 3 months The appearance and scent of rice cake after storage was investigated. These results are shown in Table 3.
[0069]
[Table 3]
[0070]
As is clear from this result, in Example 5 in which the amount of the oxygen scavenger composition added in the oxygen-absorbing multilayer body was large, oxygen in the container was quickly absorbed, and the storage stability of the contents was excellent. On the other hand, in Comparative Example 5 in which the amount of the oxygen scavenger composition added was small, the oxygen absorption rate was slow, and the storage stability of the contents was poor.
[0071]
【The invention's effect】
According to the present invention, a deoxygenating film to which an oxygen scavenger is added in a high content is manufactured industrially, and the addition of the oxygen scavenger can be controlled easily and stably. The oxygen scavenging film of the present invention has a large oxygen scavenger content and has an excellent oxygen absorption rate and oxygen absorption capacity.
[0072]
The deoxygenating film of the present invention and the deoxygenating multilayer body obtained by using the same are not thicker than necessary due to their own thickness and the total thickness of the deoxygenating multilayer body obtained by using the same. Since the secondary processability such as thermoforming and bag making is good and the amount of resin used does not increase, it is an excellent packaging material in terms of raw material cost.
The deoxygenating multilayer body of the present invention and a packaging container obtained using the same are highly useful packaging materials and containers that have high oxygen absorption performance and enable long-term storage of stored articles.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a production process of a deoxidizing multilayer film of the present invention.
FIG. 2 is a cross-sectional view showing an example of a deoxidizing multilayer body of the present invention.
[Explanation of symbols]
The circled number represents the following.
1: Oxygen absorber (C-1) spraying device
2: T-die
3: Roll for crimping
4: Thermoplastic resin film (A)
5: Oxygen absorber (C-1)
6: Oxygen-absorbing resin film (B)
7: Oxygen absorbing resin layer
8: Sprinkled and pressure bonded oxygen scavenger (C-1)
9: Thermoplastic resin layer
10: Gas barrier layer
Claims (5)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21084898A JP4139924B2 (en) | 1998-07-27 | 1998-07-27 | Deoxygenating film and method for producing the same |
EP99104726A EP0941836B1 (en) | 1998-03-12 | 1999-03-10 | Oxygen-absorbing multi-layer laminate, production method thereof and packaging container |
DE1999625658 DE69925658T2 (en) | 1998-03-12 | 1999-03-10 | Oxygen absorbing multilayer film, its production process and packaging container |
US09/266,040 US6503587B2 (en) | 1998-03-12 | 1999-03-11 | Oxygen-absorbing multi-layer laminate, production method thereof and packaging container |
TW88103743A TW419433B (en) | 1998-03-12 | 1999-03-11 | Oxygen-absorbing multi-layer laminate production method thereof and packaging container |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21084898A JP4139924B2 (en) | 1998-07-27 | 1998-07-27 | Deoxygenating film and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000037820A JP2000037820A (en) | 2000-02-08 |
JP4139924B2 true JP4139924B2 (en) | 2008-08-27 |
Family
ID=16596120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21084898A Expired - Fee Related JP4139924B2 (en) | 1998-03-12 | 1998-07-27 | Deoxygenating film and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4139924B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007015708A (en) * | 2005-07-06 | 2007-01-25 | Nihon Yamamura Glass Co Ltd | Oxygen-absorbing pouch container |
WO2007004508A1 (en) * | 2005-07-06 | 2007-01-11 | Nihon Yamamura Glass Co., Ltd. | Oxygen-absorptive pouch |
JP4652156B2 (en) * | 2005-07-06 | 2011-03-16 | 日本山村硝子株式会社 | Oxygen-absorbing pouch container |
DE112022002087T5 (en) | 2021-06-11 | 2024-01-25 | Ngk Insulators, Ltd. | NICKEL-ZINC SECONDARY BATTERY |
-
1998
- 1998-07-27 JP JP21084898A patent/JP4139924B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000037820A (en) | 2000-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6503587B2 (en) | Oxygen-absorbing multi-layer laminate, production method thereof and packaging container | |
US6391407B1 (en) | Oxygen absorbing multi-layer film and oxygen absorbing packaging container | |
JP4441195B2 (en) | Deoxygenated lid and deoxygenated sealed container | |
JP3687720B2 (en) | Oxygen absorbing multilayer film and oxygen absorbing packaging container | |
JP4139924B2 (en) | Deoxygenating film and method for producing the same | |
JP4196142B2 (en) | Oxygen-absorbing multilayer film and packaging container | |
JP3460789B2 (en) | Deoxidizing multilayer film | |
JP2001354817A (en) | Oxygen absorbing rubber composition | |
JP2001121652A (en) | Oxygen absorbing multi layer film and deoxygenating container | |
JP4120735B2 (en) | Oxygen-absorbing multilayer body, production method and packaging container | |
JP2008006635A (en) | Oxygen-absorbent multilayer film superior in tearability and oxygen absorbing packaging container | |
JP2002052655A (en) | Oxygen absorbable multilayered material and method for preserving article containing low moisture content using the same | |
JP3376915B2 (en) | Deoxygenated multilayer body, packaging container using the same, and method of storing food or medicine | |
JP4178340B2 (en) | Deoxygenating multilayer film and packaging container | |
JP2003335367A (en) | Sealed container having deoxidizing property | |
JP2000255008A (en) | Oxygen absorbable multilayered object | |
JP3322304B2 (en) | Deoxidized multilayer film and packaging bag | |
JP4186035B2 (en) | Deoxygenated sealed container | |
JP4120723B2 (en) | Deoxygenating multilayer film and method for producing the same | |
JP4492762B2 (en) | Oxygen-absorbing multilayer film and packaging container | |
JP2000062102A (en) | Deoxidizing multilayer body of paper base material and paper container | |
JPH09278024A (en) | Filling method for liquid or semi-liquid substance | |
JP2007039079A (en) | Deoxidation type sealed container | |
JP4200342B2 (en) | Oxygen-absorbing multilayer and production method | |
JP4429710B2 (en) | Heat sealing method and sealed container for deoxidized sealed container |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050706 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071114 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080402 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080415 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080514 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080527 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140620 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |