[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4137784B2 - Solar power generator control system - Google Patents

Solar power generator control system Download PDF

Info

Publication number
JP4137784B2
JP4137784B2 JP2003428013A JP2003428013A JP4137784B2 JP 4137784 B2 JP4137784 B2 JP 4137784B2 JP 2003428013 A JP2003428013 A JP 2003428013A JP 2003428013 A JP2003428013 A JP 2003428013A JP 4137784 B2 JP4137784 B2 JP 4137784B2
Authority
JP
Japan
Prior art keywords
discharge
power
charging
charge
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003428013A
Other languages
Japanese (ja)
Other versions
JP2005192282A (en
Inventor
喜彦 大塚
勝 久保田
修 前川
俊之 石川
義春 石田
昌之 久保
勝彦 西脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003428013A priority Critical patent/JP4137784B2/en
Publication of JP2005192282A publication Critical patent/JP2005192282A/en
Application granted granted Critical
Publication of JP4137784B2 publication Critical patent/JP4137784B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、太陽光によって発電する太陽光発電手段と、該太陽光発電手段で発電した電力を蓄える蓄電手段と、前記太陽光発電手段で発電した電力で前記蓄電手段を充電すると共に、当該蓄電手段で負荷への放電を制御する充放電制御手段とを備えた太陽光発電装置制御システムに関する。   The present invention includes a solar power generation means for generating electricity by sunlight, a power storage means for storing the power generated by the solar power generation means, charging the power storage means with the power generated by the solar power generation means, and The present invention relates to a photovoltaic power generation apparatus control system comprising charge / discharge control means for controlling discharge to a load by means.

従来の太陽光発電装置制御システムとしては、例えば、昼間時、太陽電池で発電を行い、インバータによって交流にして光端末装置に電力を供給すると共に、蓄電池を充電し、余剰電力を電力会社に売却し、夜間は商用電力を使用し、また、夜間の停電時や又は太陽光発電の行えない昼間の停電時は充電していた蓄電池電力で動作させるようにした光端末装置用電源システムが提案されている(例えば、特許文献1参照)。   As a conventional solar power generation device control system, for example, in the daytime, power is generated by a solar cell, and an inverter is used as an alternating current to supply power to the optical terminal device, and the storage battery is charged, and surplus power is sold to an electric power company. On the other hand, a power system for optical terminal devices that uses commercial power at night and is operated with stored battery power during nighttime power outages or during daytime power outages when solar power generation cannot be performed has been proposed. (For example, refer to Patent Document 1).

また、太陽電池及び蓄電池を備えた自家発電電力供給部を有し、太陽電池は日照を受けて発電して負荷電力供給部を介して光通信端末装置に電力を供給し、且つ蓄電池に電力を供給し、また蓄電池は商用電力補充供給部及び太陽電池から供給される電力を充電し、且つ負荷電力供給部に充電電力を供給し、さらに商用電源補充供給部は商用電源から受ける交流電流を受け、蓄電池及び負荷電力供給部に供給する直流電流に変換し、電流計等のセンサ情報を利用して、蓄電池の充電電力量と商用電力補充供給部が供給する補充電力とを電力供給制御部で制御するようにした電源電力供給システムが提案されている(例えば、特許文献2参照)。   Moreover, it has a private power generation power supply part provided with a solar battery and a storage battery, the solar battery generates power in response to sunlight, supplies power to the optical communication terminal device via the load power supply part, and supplies power to the storage battery. The storage battery charges the power supplied from the commercial power supplement supply unit and the solar cell, and supplies the charging power to the load power supply unit. The commercial power supplement supply unit receives the AC current received from the commercial power source. The power supply control unit converts the charging power amount of the storage battery and the supplementary power supplied by the commercial power supplementary supply unit using sensor information such as an ammeter by converting the direct current to the storage battery and the load power supply unit. A power supply system for controlling power supply has been proposed (see, for example, Patent Document 2).

さらに、蓄電池併用型の交流端商用切り替え太陽電池電源システムにおいて、積算電力計にて太陽電池の発電電気量をカウントし一日の発電量に応じて蓄電池からの放電量を確定し、蓄電池が過充電状態に近づいた場合は、蓄電池容量の50%まで放電することにより、蓄電池の保護と効率的な運用を図るようにした太陽電池電源システムの蓄電池制御方法も提案されている(例えば、特許文献3参照)。   Furthermore, in an ac-end commercial switching solar cell power supply system that uses a storage battery, the amount of electricity generated by the solar cell is counted by an integrating wattmeter, and the amount of discharge from the storage battery is determined according to the amount of power generated per day. A storage battery control method for a solar battery power system has also been proposed in which the battery is protected and efficiently operated by discharging to 50% of the storage battery capacity when approaching a charged state (for example, Patent Documents). 3).

さらにまた、連系運転、自立運転により太陽電池及び蓄電池の直流電力を交流電力に逆変換して負荷給電し、充電運転により電力系統の交流電力を充電用の直流電力に順変換して蓄電池に供給する電力変換装置の制御装置に、太陽電池の電圧の大小から昼間と夜間とを判別する手段と、蓄電池の電圧を監視する手段と、系統正常時の昼間は蓄電池の電圧が過放電電圧近傍に設定した放電限界電圧に低下する毎に電力変換装置を充電運転に制御し、系統正常時の夜間は蓄電池の電圧が放電限界電圧より高い充電状態の下限電圧に低下する毎に電力変換装置を充電運転に制御する手段とを設けた太陽光発電装置が提案されている(例えば、特許文献4参照)。
特開平8−163793号公報(第1頁、図1) 特開平10−285825号公報(第1頁、図1) 特開平7−38130号公報(第1頁、図1) 特開2001−224142号公報(第1頁、図1)
Furthermore, the DC power of solar cells and storage batteries is reversely converted to AC power by interconnection operation and self-sustained operation, and power is supplied to the load, and the AC power of the power system is forward-converted to DC power for charging by charging operation. The control device of the power converter to be supplied has a means for discriminating between daytime and nighttime from the magnitude of the solar battery voltage, a means for monitoring the voltage of the storage battery, and the voltage of the storage battery is close to the overdischarge voltage during the daytime when the system is normal The power conversion device is controlled to be charged every time the discharge limit voltage is set to, and at night when the system is normal, the power conversion device is turned on every time the storage battery voltage drops to the lower limit voltage of the charge state higher than the discharge limit voltage. A solar power generation device provided with a means for controlling charging operation has been proposed (see, for example, Patent Document 4).
JP-A-8-163793 (first page, FIG. 1) Japanese Patent Laid-Open No. 10-285825 (first page, FIG. 1) JP-A-7-38130 (first page, FIG. 1) Japanese Unexamined Patent Publication No. 2001-224142 (first page, FIG. 1)

しかしながら、上記特許文献1に記載された従来例にあっては、太陽電池で発電された電力で蓄電池への充電と負荷への給電を行う太陽光発電システムであるが、太陽電池の発電電力と負荷容量との関係によりシステムを制御しているので、昼間は太陽電池の電力は蓄電池の補充電に使用され、夜間は商用電源の使用のみであり、蓄電池を有効利用することができないという未解決の課題がある。   However, in the conventional example described in Patent Document 1, it is a solar power generation system that charges a storage battery and supplies power to a load with power generated by the solar battery. Since the system is controlled by the relationship with the load capacity, the solar battery power is used for supplementary charging of the storage battery during the daytime, and only the commercial power supply is used at night, and the storage battery cannot be used effectively. There is a problem.

また、特許文献2に記載された従来例にあっては、商用電源の停電時に必要な電力は蓄電池で十分に蓄えられているので、蓄電池を有効利用することができるシステムであるが、蓄電池が満充電になると蓄電池保護のために放電をおこなわなければならず、蓄電池の充放電サイクルが非常に過多になる可能性があり、蓄電池の寿命への影響が考慮されていないという未解決の課題がある。   Moreover, in the conventional example described in Patent Document 2, since the power necessary for the power failure of the commercial power supply is sufficiently stored in the storage battery, it is a system that can effectively use the storage battery. When fully charged, the battery must be discharged to protect the battery, which can lead to excessive battery charge / discharge cycles, and the unresolved issue of not considering the impact on the life of the battery. is there.

さらに、特許文献3に記載された従来例にあっては、蓄電池の放電深度が蓄電池の寿命に悪影響を及ぼす状態となるまで深くなる前に制御して蓄電池の寿命を延ばす太陽電池電源システム蓄電池制御が開示されているが、これは蓄電池の持つ電力を一定量放電させ、電力の減った蓄電池に対して放電量より充電量を多少高めることで、繰り返しの充放電により蓄電池が充電されるものであるが、商用電源との系統連系機能を持たない独立型のシステムであると共に、年間を通じての太陽電池からの発電電力量の変化については考慮されておらず、放電深度が一定のため、過充電状態となりやすい場合や逆に蓄電池への充電に非常に時間がかかる状態もあるという未解決の課題がある。   Furthermore, in the conventional example described in Patent Document 3, a solar battery power supply system storage battery control that extends before the depth of discharge of the storage battery becomes deep until it reaches a state that adversely affects the life of the storage battery, thereby extending the life of the storage battery. However, this is because the storage battery is charged by repeated charge and discharge by discharging a certain amount of power of the storage battery and slightly increasing the charge amount from the discharge amount to the storage battery with reduced power. However, it is a stand-alone system that does not have a grid connection function with a commercial power source, and changes in the amount of power generated from solar cells throughout the year are not taken into account. There is an unsolved problem that there is a case where it is likely to be in a charged state and there is a state where it takes a very long time to charge the storage battery.

さらにまた、特許文献4に記載された従来例にあっては、系統正常時の昼間時は蓄電池の電圧が過放電電圧近傍に設定した放電限界電圧に低下する毎に電力変換装置を充電運転に制御し、系統正常時の夜間は蓄電池の電圧が放電限界電圧より高い充電状態の下限電圧に低下する毎に電力変換装置を充電運転に制御するので、充放電回数が多くなり、電池寿命に影響を与えるという未解決の課題がある。
そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、太陽電池から得られる電力による蓄電池への充電とその蓄電池電力を活用することができ、且つ期待する蓄電池寿命を確保することができる太陽光発電装置制御システムを提供することを目的としている。
Furthermore, in the conventional example described in Patent Document 4, during the daytime when the system is normal, the power converter is put into charge operation every time the voltage of the storage battery decreases to the discharge limit voltage set near the overdischarge voltage. When the power is normal, the power converter is controlled to charge every time the storage battery voltage drops to the lower limit voltage of the charging state that is higher than the discharge limit voltage. There is an unsolved problem of giving
Therefore, the present invention has been made paying attention to the unsolved problems of the above-described conventional example, and charging the storage battery with electric power obtained from the solar battery and its storage battery power can be utilized and expected It aims at providing the photovoltaic power generation device control system which can ensure a lifetime.

上記目的を達成するために、請求項1に係る太陽光発電装置制御システムは、太陽光によって発電する太陽光発電手段と、該太陽光発電手段で発電した電力を蓄える蓄電手段と、前記太陽光発電手段で発電した電力で前記蓄電手段を充電すると共に、当該蓄電手段から負荷への放電を制御する充放電制御手段とを備えた太陽光発電装置制御システムにおいて、前記充放電制御手段は、前記負荷の電力使用量が少ない時間帯における所定時間内で前記蓄電手段の充電を行う充電制御手段と、該充電制御手段での充電時間外で、前記蓄電手段から前記負荷に対して放電を行う放電制御手段と、前記充電制御手段により過充電状態に至る態様を検出する過充電状態検出手段と、過充電状態検出手段で検出した過充電状態の検出回数が所定数未満であるときに前記放電制御手段により前記蓄電手段の放電深度を浅くさせ、過充電状態の検出回数が所定数範囲内であるときに前記放電制御手段により前記蓄電手段の放電深度を維持し、過充電状態の検出回数が所定数を超えているときに前記放電制御手段により前記蓄電手段の放電深度を深くさせる放電深度決定手段とを備えたことを特徴としている。 In order to achieve the above object, a solar power generation apparatus control system according to claim 1 includes a solar power generation unit that generates power by sunlight, a power storage unit that stores electric power generated by the solar power generation unit, and the solar power generation unit. In the solar power generation device control system comprising the charge / discharge control means for charging the power storage means with the power generated by the power generation means and controlling the discharge from the power storage means to the load, the charge / discharge control means includes the A charge control means for charging the power storage means within a predetermined time in a time zone in which the power consumption of the load is low, and a discharge for discharging the load from the power storage means to the load outside the charging time of the charge control means and control means, and the over-charge state detecting means for detecting a manner that leads to overcharge state by the charge control unit, the number of detected overcharged state detected by the overcharge detecting means is less than a predetermined number The discharge control means reduces the depth of discharge of the power storage means, and the discharge control means maintains the discharge depth of the power storage means when the number of overcharge state detections is within a predetermined number range. Discharge depth determining means for deepening the discharge depth of the power storage means by the discharge control means when the number of state detections exceeds a predetermined number is provided.

また、請求項2に係る太陽光発電装置制御システムは、太陽光によって発電する太陽光発電手段と、該太陽光発電手段で発電した電力を蓄える蓄電手段と、前記太陽光発電手段で発電した電力で前記蓄電手段を充電すると共に、当該蓄電手段から負荷への放電を制御する充放電制御手段とを備えた太陽光発電装置制御システムにおいて、前記充放電制御手段は、前記負荷の電力使用量が少ない時間帯における所定時間内で前記蓄電手段の充電を行う充電制御手段と、該充電制御手段での充電時間外で、前記蓄電手段から前記負荷に対して放電を行う放電制御手段と、前記充電制御手段により過充電状態に至る態様を検出する過充電状態検出手段と、該過充電状態検出手段で検出した所定放電深度から過充電状態に至るまでの充電時間が設定充電時間であるときに前記蓄電手段の放電深度を維持し、前記充電時間が設定充電時間より短いときに前記蓄電手段の放電深度を深くさせ、前記充電時間が設定充電時間より長いときに前記蓄電手段の放電深度を浅くさせる放電深度決定手段とを備えたことを特徴としている。 In addition, the solar power generation device control system according to claim 2 includes a solar power generation unit that generates power using sunlight, a power storage unit that stores electric power generated by the solar power generation unit, and electric power generated by the solar power generation unit. And charging / discharging control means for controlling discharge from the power storage means to the load, and the charge / discharge control means is configured such that the power consumption of the load is A charge control means for charging the power storage means within a predetermined time in a small time zone; a discharge control means for discharging the load from the power storage means to the load outside the charge time at the charge control means; and the charging Overcharge state detection means for detecting the mode leading to the overcharge state by the control means, and the charging time from the predetermined discharge depth detected by the overcharge state detection means to the overcharge state is set and charged. The depth of discharge of the power storage means is maintained when it is time, the depth of discharge of the power storage means is deepened when the charging time is shorter than a set charging time, and the power storage means is set when the charging time is longer than the set charging time. And a discharge depth determining means for reducing the depth of discharge .

さらに、請求項に係る太陽光発電装置制御システムは、請求項1又は2に係る発明において、前記充電制御手段は、負荷の電力使用量が少ない時間帯として太陽光発電手段での発電が可能な早朝から午前中の所定時刻間を設定するように構成されていることを特徴としている。 Furthermore, photovoltaic power generator control system according to Motomeko 3 is the invention according to claim 1 or 2, wherein the charging control means, power generation by the solar power generation means as a time zone less power consumption of the load It is characterized in that it is configured to set a predetermined time between possible early morning and morning .

また、請求項に係る太陽光発電装置制御システムは、請求項1乃至3の何れか1つの発明において、前記放電手段は、蓄電手段の放電電力量を充電電力量によって増減するように構成されていることを特徴としている。 According to a fourth aspect of the present invention, there is provided a photovoltaic power generation apparatus control system according to any one of the first to third aspects, wherein the discharging means is configured to increase or decrease a discharging power amount of the power storage means depending on a charging power amount. It is characterized by having.

請求項1に係る発明によれば、過充電状態の検出回数が所定数未満であるか、所定数範囲内であるか、所定数を超えているかに応じて放電深度を変化させることにより、太陽光発電手段での発電量に応じて放電深度を自動的に制御して、蓄電手段の蓄電量を適正状態に維持して、長寿命化を図ることができるという効果が得られる。 According to the invention of claim 1, by changing the depth of discharge depending on whether the number of overcharged state detections is less than a predetermined number, within a predetermined number range, or exceeding a predetermined number, The depth of discharge is automatically controlled in accordance with the amount of power generated by the photovoltaic power generation means, and the effect that the life of the battery can be increased by maintaining the amount of power stored in the power storage means in an appropriate state .

また、請求項2に係る発明によれば、所定放電深度から過充電状態にいるまでの充電時間が設定時間未満であるか、設定時間範囲内であるか、設定時間を超えているかに応じて放電深度を変化させることにより、太陽光発電手段での発電量に応じて放電深度を自動的に制御して、蓄電手段の蓄電量を適正状態に維持し、長寿命化を図ることができるという効果が得られる。 According to the invention of claim 2, depending on whether the charging time from the predetermined depth of discharge to the overcharge state is less than the set time, within the set time range, or exceeds the set time By changing the depth of discharge, it is possible to automatically control the depth of discharge according to the amount of power generated by the solar power generation means, to maintain the amount of power stored in the power storage means in an appropriate state, and to extend the service life. An effect is obtained.

さらに、請求項に係る発明によれば、充電制御手段で、負荷の電力使用量が少ない時間帯として、太陽光発電手段での発電が可能な早朝例えば6時程度から午前中の10時の間程度に設定することにより、負荷の電力使用量が少ない時間帯で、蓄電手段を確実に充電することができるという効果が得られる。 Furthermore, according to the invention according to claim 3, in the charging control unit, a period of low power usage of the load, 10:00 in the morning from early morning, for example, about 6:00 possible power generation in solar power unit by setting the degree, time zone less power consumption of the load, Ru effect is obtained that the power storage means can be reliably charged.

なおさらに、請求項に係る発明によれば、蓄電手段の蓄電量を放電する放電手段は、蓄電手段の放電電力量を充電電力量によって増減するように構成されているので、過充電に至る態様に応じて放電電力量が制御されることにより、放電深度を過充電に至る態様に応じて設定することができるという効果が得られる。 Still further, according to the invention of claim 4 , the discharging means for discharging the amount of electricity stored in the electricity storage means is configured to increase or decrease the amount of electric power discharged from the electricity storage means depending on the amount of charging electric power, leading to overcharging. By controlling the amount of discharge electric power according to the mode, an effect that the depth of discharge can be set according to the mode leading to overcharge is obtained.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は本発明の一実施形態を示すブロック図であり、図中、1は太陽光発電装置制御システムであって、この太陽光発電装置制御システム1は、太陽光によって発電する太陽光発電手段としての太陽電池2と、この太陽光電池2から出力される直流電力が入力され、これを交流電力に変換するインバータ3と、太陽電池2によって充電される蓄電池4と、商用交流を供給する商用電源5と、インバータ3及び商用電源5から電力が供給される重要負荷6と、太陽電池2、インバータ3及び蓄電池4の系統切換え等を制御する太陽電池制御装置7とを備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing an embodiment of the present invention. In the figure, reference numeral 1 denotes a solar power generation apparatus control system, and this solar power generation apparatus control system 1 is a solar power generation means for generating power by sunlight. As a solar cell 2, a DC power output from the solar cell 2, an inverter 3 that converts this into AC power, a storage battery 4 that is charged by the solar cell 2, and a commercial power source that supplies commercial AC 5, an important load 6 to which electric power is supplied from the inverter 3 and the commercial power source 5, and a solar cell control device 7 that controls system switching of the solar cell 2, the inverter 3, and the storage battery 4.

ここで、太陽電池2は、13個の多結晶シリコン太陽電池を直列に接続して構成を有する9つの電池ユニットBU1〜BU9が並列に接続された構成を有し、総直流出力が約19kWに設定されている。各電池ユニットBU1〜BU9の出力側には、ストリング制御用の選択スイッチSW1〜SW9及びダイオードD1〜D9の直列回路が接続され、ダイオードD1〜D9のカソードが互いに接続されて開閉スイッチSW0の一端に接続され、この開閉スイッチSW0の他端がインバータ3の入力側に介装された開閉スイッチSWIに直接接続されている。   Here, the solar cell 2 has a configuration in which nine battery units BU1 to BU9 having a configuration in which 13 polycrystalline silicon solar cells are connected in series are connected in parallel, and the total DC output is about 19 kW. Is set. A series circuit of string control selection switches SW1 to SW9 and diodes D1 to D9 is connected to the output side of each battery unit BU1 to BU9, and the cathodes of the diodes D1 to D9 are connected to each other at one end of the open / close switch SW0. The other end of the open / close switch SW0 is directly connected to the open / close switch SWI provided on the input side of the inverter 3.

インバータ3は、商用電源5と連系して重要負荷6に電力を供給する連系出力端子3aと、商用電源5から切り離して自立運転によって重要負荷6に電力を供給する自立運転出力端子3bとを有し、連系出力端子3aが商用電源5と接続され、それらの接続点が切換スイッチSWLの一方の固定側接点taに、自立運転出力端子3bが切換スイッチSWLの他方の固定側接点tbに夫々接続され、切換スイッチSWLの可動接点tcが重要負荷6に接続されている。   The inverter 3 is connected to the commercial power source 5 to supply power to the important load 6. The inverter 3 is connected to the commercial power source 5. The independent output terminal 3 b is disconnected from the commercial power source 5 to supply power to the important load 6 by independent operation. The interconnection output terminal 3a is connected to the commercial power source 5, the connection point thereof is one fixed side contact ta of the changeover switch SWL, and the self-sustained operation output terminal 3b is the other fixed side contact tb of the changeover switch SWL. The movable contact tc of the changeover switch SWL is connected to the important load 6.

蓄電池4は、2Vのクラッド(CS)式のセルが直列に138個接続されて公称電圧が276Vに設定され、各セルの過電圧が2.4Vで全体の過電圧が331.2Vに設定され、放電終始電圧が各セルで1.8V、全体で248.4Vに設定されている。そして、この蓄電池4が太陽電池2の開閉スイッチSW0とインバータ3との接続点に開閉スイッチSWBを介して接続されている。
重要負荷6は、災害発生時に商用電源5が停電状態となったときにも交流電力の供給を必要とする例えば防災センターに設置されたファクシミリ、気象端末、複写機、プリンタ、モニタ、非常照明装置等で構成され、その入力側に切換スイッチSWLの切換え時の瞬間停電に対応する無停電電源8が配設されている。
In the storage battery 4, 138 clad (CS) cells of 2V are connected in series, the nominal voltage is set to 276V, the overvoltage of each cell is set to 2.4V, and the overall overvoltage is set to 331.2V. The entire voltage is set to 1.8V for each cell and 248.4V for the whole. The storage battery 4 is connected to a connection point between the open / close switch SW0 of the solar battery 2 and the inverter 3 via the open / close switch SWB.
The important load 6 is a facsimile, a weather terminal, a copier, a printer, a monitor, an emergency lighting device, etc. installed in a disaster prevention center that needs to be supplied with AC power even when the commercial power supply 5 is in a power failure state in the event of a disaster. The uninterruptible power supply 8 corresponding to the instantaneous power failure at the time of switching of the change-over switch SWL is disposed on the input side thereof.

太陽電池制御装置7は、太陽電池2から出力される出力電圧及び出力電流を検出する電圧計VM1及び電流計AM1、蓄電池4の出力電圧及び充放電電流を検出する電圧計VM2及び電流計AM2及びインバータ3の連系出力及び自立出力の電流、電圧、電力を同時に計測するマルチメータMM1及びMM2からの各検出信号が入力され、これらに基づいて運転モードを連系運転モード、蓄電池4を定期的に充電する充電モード、蓄電池4を放電させる放電モード、商用電源5が停電時の自立運転モードを選択し、選択した運転モードに応じて開閉スイッチSW0、SWB、SWIを開閉制御すると共に、インバータ3の連系運転及び自立運転の切換及び切換スイッチSWLの切換えを制御する。   The solar cell controller 7 includes a voltmeter VM1 and an ammeter AM1 that detect an output voltage and an output current output from the solar cell 2, a voltmeter VM2 and an ammeter AM2 that detect an output voltage and a charge / discharge current of the storage battery 4, and The detection signals from the multimeters MM1 and MM2 that simultaneously measure the current, voltage, and power of the interconnection output and the independent output of the inverter 3 are input, and based on these, the operation mode is set to the interconnection operation mode, and the storage battery 4 is periodically set. A charging mode for charging the battery, a discharging mode for discharging the storage battery 4, and a self-sustained operation mode when the commercial power source 5 is in the event of a power failure, and opening / closing control of the open / close switches SW0, SWB, SWI according to the selected operation mode and the inverter 3 The switching between the interconnection operation and the independent operation and the switching of the changeover switch SWL are controlled.

この太陽電池制御装置7では、図2に示す制御処理を実行する。この制御処理は、先ず、ステップS1で、予め設定した充電開始時刻であるか否かを判定し、充電開始時刻であるときには、ステップS2に移行して、インバータ3の入力側の開閉スイッチSWIをオフ状態に制御し、次いでステップS3に移行してインバータ3の運転を停止させ、次いでステップS4に移行して、蓄電池4の開閉スイッチSWB及び電池ユニットBU1〜BU9の開閉スイッチSW0を共にオン状態とすると共に、重要負荷6に対する切換スイッチSWLの可動接点tcを商用電源6側の固定接点taに切換えてからステップS5に移行する。   The solar cell control device 7 executes the control process shown in FIG. In this control process, first, in step S1, it is determined whether or not it is a preset charging start time. If it is the charging start time, the process proceeds to step S2 and the open / close switch SWI on the input side of the inverter 3 is set. Then, the process proceeds to step S3 to stop the operation of the inverter 3, and then the process proceeds to step S4 to turn on both the open / close switch SWB of the storage battery 4 and the open / close switch SW0 of the battery units BU1 to BU9. At the same time, after the movable contact tc of the changeover switch SWL for the important load 6 is switched to the fixed contact ta on the commercial power source 6 side, the process proceeds to step S5.

このステップS5では、電池ユニットBU1〜BU9の開閉スイッチSW1〜SW9に対してストリングス制御を開始する指令を出力し、次いでステップS6に移行して、開閉スイッチSWBをオン状態として電流計AM2で検出した充電電流を読込み、この充電電流に基づいて推定された蓄電池容量VB1が予め設定した過充電設定値VOs(蓄電池容量400Ah)以上であるかを判定する。なお、充電池容量と蓄電池電圧の関係は比例鑑定でないために、電圧で蓄電池容量を管理することは難しいので、本発明では電流計AM2を用いて蓄電池4への充放電電力量を検出することにより、蓄電池容量を推定し、管理するようにしている。   In this step S5, a command to start string control is output to the open / close switches SW1 to SW9 of the battery units BU1 to BU9, and then the process proceeds to step S6, where the open / close switch SWB is turned on and detected by the ammeter AM2. The charging current is read, and it is determined whether the storage battery capacity VB1 estimated based on the charging current is equal to or greater than a preset overcharge setting value VOs (storage battery capacity 400Ah). In addition, since the relationship between the rechargeable battery capacity and the storage battery voltage is not a proportional appraisal, it is difficult to manage the storage battery capacity with the voltage. Therefore, in the present invention, the charge / discharge power amount to the storage battery 4 is detected using the ammeter AM2. Thus, the storage battery capacity is estimated and managed.

このステップS6でVB1>VOsでないと判定された場合には、ステップS7に移行して充電終了時刻に達したか否かを判定する。このステップS7で充電終了時刻に達していないと判定された場合にはステップS6に戻り、充電を継続する。
ステップS6でVB1>VOsであると判定された場合にはステップS8に移行し、過充電到達回数NをインクリメントしてからステップS9に移行する。また、ステップS7で充電終了時刻に達したと判断された場合にもステップS9に移行する。
If it is determined in this step S6 that VB1> VOs, the process proceeds to step S7 to determine whether or not the charging end time has been reached. If it is determined in step S7 that the charging end time has not been reached, the process returns to step S6 to continue charging.
If it is determined in step S6 that VB1> VOs, the process proceeds to step S8, the overcharge arrival count N is incremented, and then the process proceeds to step S9. Further, when it is determined in step S7 that the charging end time has been reached, the process proceeds to step S9.

ステップS9では、蓄電池の放電深度を変えるための放電可能電力量VUsの見直しを行う日、例えば月末であるかを判定し、月末でなければステップS15に移行する。ステップS9で月末であると判定された場合には、ステップS10に移行して1ヶ月間の過充電到達回数Nが下限値Ns1よりも小さいか否かを判定し、小さいと判定された場合にはステップS11に移行し、放電可能電力量設定値VUsをΔVだけ大きくしてステップS14に移行し、過充電到達回数Nを“0”にクリアする。   In step S9, it is determined whether it is the end of the day when the dischargeable electric energy VUs for changing the discharge depth of the storage battery is reviewed, for example, the end of the month. If not the end of the month, the process proceeds to step S15. If it is determined in step S9 that it is the end of the month, the process proceeds to step S10, where it is determined whether or not the number N of overcharge arrivals for one month is smaller than the lower limit value Ns1, and if it is determined that it is small Shifts to step S11, increases the dischargeable energy setting value VUs by ΔV, shifts to step S14, and clears the overcharge arrival count N to “0”.

ステップS10で過充電到達回数Nが下限値Ns1よりも大きいと判定された場合には、ステップS12に移行して過電到達回数Nが上限値Ns2よりも小さいか否かを判定し、小さいと判定された場合にはステップS14に移行し、過充電到達回数Nを"0"にクリアする。
ステップS12で過充電到達回数Nが上限値Ns2よりも小さいか否かを判定し、大きいと判定された場合には、ステップS13に移行し、放電可能電力量設定値VUsをΔVだけ小さくしてステップS14に移行し、過充電到達回数Nを"0"にクリアする。
When the overcharge reached the number N is determined to be larger than the lower limit value Ns1 in step S10, proceeds to over-charging reaches the number N is determined whether less than the upper limit value Ns2 in step S12, a small If it is determined, the process proceeds to step S14, and the overcharge arrival count N is cleared to "0".
In step S12, it is determined whether or not the overcharge arrival frequency N is smaller than the upper limit value Ns2. If it is determined that the overcharge arrival number N is larger, the process proceeds to step S13, and the dischargeable energy setting value VUs is decreased by ΔV. The process proceeds to step S14, and the overcharge arrival count N is cleared to "0".

下限値Ns1、上限値Ns2としては、例えば2回/月、6回/月のように設定しておくことにより、過充電到達回数Nが2回に達しない場合には、放電深度が深すぎるということであるので、放電可能電力量設定値VUsをΔVだけ大きくして放電深度を浅くする処理う行い、過充電到達回数Nが6回を超える場合には、放電深度が浅すぎるということであるので、放電可能電力量設定値VUsをΔVだけ小さくして放電深度を深くする処理を行うことができる。   As the lower limit value Ns1 and the upper limit value Ns2, for example, by setting such as 2 times / month and 6 times / month, when the overcharge arrival number N does not reach twice, the discharge depth is too deep. Therefore, if the dischargeable energy setting value VUs is increased by ΔV to reduce the discharge depth, and the overcharge arrival count N exceeds 6, the discharge depth is too shallow. Therefore, the discharge depth setting value VUs can be reduced by ΔV to increase the discharge depth.

ステップS14で過充電到達回数Nが“0”にクリアされると、ステップS15に移行してストリングス制御の停止指令が出力され、ステップS16に移行して開閉スイッチSWBがオフ状態、開閉スイッチSW1をオン状態とする制御が行われて、蓄電池4への充電は終了し、太陽電池2で発電した電力はインバータ3に供給される。
ステップS16の処理が終了するとステップS17に移行し、このステップS17では、予め設定された放電開始時刻であるか否かを判定し、放電開始時刻でないときにはステップS18に移行して、太陽電池2で発電した電力をインバータ3で交流電力に変換して、商用電源5からの交流電力とともに重要負荷6に供給する連系処理を行ってからステップS1に戻り、放電開始時刻であるときにはステップS19に移行して、後述する図3の放電処理を実行してからステップS1に戻る。
When the overcharge arrival count N is cleared to “0” in step S14, the process proceeds to step S15 to output a string control stop command, and the process proceeds to step S16 to open / close the switch SWB. The control to turn on is performed, the charging of the storage battery 4 is finished, and the electric power generated by the solar battery 2 is supplied to the inverter 3.
When the process of step S16 ends, the process proceeds to step S17. In this step S17, it is determined whether or not it is a preset discharge start time. If it is not the discharge start time, the process proceeds to step S18 and the solar cell 2 After the generated power is converted into AC power by the inverter 3 and connected to the important load 6 together with the AC power from the commercial power source 5, the process returns to Step S <b> 1, and when it is the discharge start time, the process proceeds to Step S <b> 19. Then, after performing the discharge process of FIG. 3 described later, the process returns to step S1.

また、前記ステップS1の判定結果が、充電開始時刻ではないときにはステップS21に移行して、商用電源5が停電状態であるか否かを判定し、停電状態であるときにはステップS22に移行して、太陽電池2又は充電池4の電力をインバータ3で交流に変換して切換スイッチSWLを介して重要負荷6に供給する自立運転処理を行ってから処理を終了し、停電状態ではないときには前記ステップS18に移行する。   Moreover, when the determination result of said step S1 is not a charge start time, it transfers to step S21, it is determined whether the commercial power source 5 is a power failure state, and when it is a power failure state, it transfers to step S22, The self-sustained operation process of converting the electric power of the solar battery 2 or the rechargeable battery 4 into alternating current by the inverter 3 and supplying it to the important load 6 via the changeover switch SWL is terminated, and the process is terminated. Migrate to

また、ステップS19の放電処理は、図3に示すように、先ず、ステップS31で、太陽電池2の開閉スイッチSW0をオフ状態とすると共に、蓄電池4の開閉スイッチSWB及びインバータ3の入力側開閉スイッチSWIを共にオン状態に制御し、次いでステップS32に移行して、インバータ3を自立運転状態として、次いでステップS33に移行して、マルチメータMM2で検出したインバータ3の自立出力電圧を読込み、この自立出力電圧が有るか否かを判定し、自立出力電圧が無い場合には自立出力電圧が有る状態となるまで待機し、自立出力電圧が有る場合にはステップS34に移行する。   As shown in FIG. 3, the discharge process in step S19 is first performed in step S31 by turning off the open / close switch SW0 of the solar cell 2 and the open / close switch SWB of the storage battery 4 and the input side open / close switch of the inverter 3. Both of the SWIs are controlled to be in the ON state, then the process proceeds to step S32, the inverter 3 is set in the self-sustained operation state, and then the process proceeds to step S33 to read the self-supporting output voltage of the inverter 3 detected by the multimeter MM2. It is determined whether or not there is an output voltage. If there is no self-sustained output voltage, the process waits until there is a self-sustained output voltage. If there is a self-sustained output voltage, the process proceeds to step S34.

このステップ34では、重要負荷6に対する切換スイッチSWLの可動接点tcをインバータ3の自立出力側となる固定接点tb側に切換え制御してステップS35に移行して、電流計AM2で検出した放電電流に基づいて推定される蓄電池4の蓄電池容量VB1が過充電設定値VOsに等しいか、又は大きいかを判定し、等しいか、又は大きい、すなわち充電時に過充電設定に達していた場合にはステップS36に移行し、蓄電池容量VB1が放電可能電力量設定値VUsに達するまで放電を行う。ステップS36で蓄電池容量VB1が放電可能電力量設定値VUsに達するまで放電が行われるとステップS39に移行する。なお、重要負荷6の抵抗値は既知であり、且つ変化はしないので、単位時間当たりの放電量は蓄電池容量に関わらず一定である。従って、蓄電池容量VB1が過充電設定量VOsに達した後の放電時には、次の充電開始時刻までに放電可能電力量設定値VUsの放電が行われるように放電可能電力量設定値VUsが選ばれる。 In this step 34, the movable contact tc of the changeover switch SWL for the important load 6 is controlled to be switched to the fixed contact tb side which is the self-sustained output side of the inverter 3, and the process proceeds to step S35, where the discharge current detected by the ammeter AM2 is obtained. It is determined whether the storage battery capacity VB1 of the storage battery 4 estimated based on this is equal to or larger than the overcharge set value VOs. If equal to or larger, that is, if the overcharge setting has been reached during charging, the process proceeds to step S36. The discharge is performed until the storage battery capacity VB1 reaches the dischargeable electric energy set value VUs. When discharging is performed until the storage battery capacity VB1 reaches the dischargeable power amount set value VUs in step S36, the process proceeds to step S39. Since the resistance value of the important load 6 is known and does not change, the discharge amount per unit time is constant regardless of the storage battery capacity. Therefore, at the time of discharging after the storage battery capacity VB1 reaches the overcharge set amount VOs, the dischargeable power amount set value VUs is selected so that the dischargeable power amount set value VUs is discharged by the next charge start time. .

ステップS35で蓄電池容量VB1が過充電設定値VOsに達していないと判定されると、ステップS37に移行して1回当たりの放電量設定値Vdsの算出、設定が行われる。この放電量設定値Vdsは、一例として充電量の1/2として設定することができる。充電量の1/2を放電することにより、充放電を数回繰り返すことにより、蓄電池容量VB1が過充電設定値VOsに達するようになる。   If it is determined in step S35 that the storage battery capacity VB1 has not reached the overcharge set value VOs, the process proceeds to step S37, and the discharge amount set value Vds per time is calculated and set. This discharge amount set value Vds can be set as ½ of the charge amount as an example. By discharging 1/2 of the charged amount, the storage battery capacity VB1 reaches the overcharge set value VOs by repeating charging and discharging several times.

ステップS37において放電量設定値Vdsが設定されると、ステップS38に移行し、放電の制御が行われる。この放電の制御は、電流計AM2により検出され電流値に基づいて放電量Vdを推定し、この推定された放電量Vdが放電量設定値Vdsに達したかを判定することにより行われる。放電量Vdが放電量設定値Vdsに達すると、ステップS39に移行する。   When the discharge amount set value Vds is set in step S37, the process proceeds to step S38, and discharge control is performed. This discharge control is performed by estimating the discharge amount Vd based on the current value detected by the ammeter AM2 and determining whether the estimated discharge amount Vd has reached the discharge amount set value Vds. When the discharge amount Vd reaches the discharge amount set value Vds, the process proceeds to step S39.

このステップS39では、重要負荷6に対する切換スイッチSWLの可動接点tcをインバータ3及び商用電源5側となる固定接点ta側に切換え制御してからステップS40に移行して、インバータ3の入力側開閉スイッチSWIをオフ状態とし、次いでステップS41に移行してインバータ3の運転を停止させてから前述した図2の処理に戻る。
この図2及び図3の処理において、ステップS1〜S8、S15〜S17の処理が充電制御手段に対応し、ステップS6の処理が過充電状態検出手段に対応し、ステップS9〜S14の処理が放電深度決定手段に対応している。
In this step S39, the movable contact tc of the changeover switch SWL for the important load 6 is controlled to be switched to the fixed contact ta side on the inverter 3 and the commercial power source 5 side, and then the process proceeds to step S40, where the input side on / off switch of the inverter 3 is switched. The SWI is turned off, and then the process proceeds to step S41 to stop the operation of the inverter 3 and returns to the above-described process of FIG.
2 and 3, the processes in steps S1 to S8 and S15 to S17 correspond to the charge control means, the process in step S6 corresponds to the overcharge state detection means, and the processes in steps S9 to S14 are discharged. Corresponds to the depth determination means.

次に、上記実施形態の動作を説明する。
先ず、太陽電池2による蓄電池4の充電時間を季節にかかわらず、図4に示すように、重要負荷6の消費電力が少ない時間帯で且つ日の出後で太陽光による発電が可能な午前6時から午前10までの4時間に設定する。一方、蓄電池4の放電開始時刻を重要負荷6の消費電力量が最も少ない時間、例えば午前0時に設定する。ここで、放電開始時刻は、蓄電池4の放電深度が最大に設定されているときに、過充電電圧から最大放電深度まで放電することが可能となるように設定する。
Next, the operation of the above embodiment will be described.
First, regardless of the season, the charging time of the storage battery 4 by the solar battery 2 is from 6:00 am, when the power consumption of the important load 6 is low and after solar power generation, as shown in FIG. Set 4 hours until 10am. On the other hand, the discharge start time of the storage battery 4 is set to a time when the power consumption of the important load 6 is the smallest, for example, midnight. Here, the discharge start time is set so that the discharge from the overcharge voltage to the maximum discharge depth can be performed when the discharge depth of the storage battery 4 is set to the maximum.

今、月初めの早朝で、放電処理が終了し、充電開始時刻より前であるものとすると、この状態では、図2の制御処理で、ステップS1からステップS20に移行し、商用電源5が正常であるとするとステップS17に移行し、充電開始時刻を過ぎているので、ステップS18に移行して、連系運転処理が実行される。このとき、蓄電池4の開閉スイッチSWBはオフ状態に制御されており、日の出前で、太陽電池2での発電量が殆ど無い状態では、これが電圧計VM1及び電流計AM1で検出されるので、インバータ3の入力側開閉スイッチSWIが共にオフ状態に制御されると共に、インバータ3の運転が停止されて、商用電源5の交流電力が切換スイッチSWLを介して重要負荷6に供給され、気象端末、コピー、プリンタ、ファクシミリ等が使用可能な状態となっている。   If it is assumed that the discharge process ends in the early morning of the month and is before the charge start time, in this state, the control process of FIG. 2 proceeds from step S1 to step S20, and the commercial power supply 5 is normal. If it is, since it will transfer to step S17 and the charge start time has passed, it will transfer to step S18 and an interconnection operation process will be performed. At this time, the open / close switch SWB of the storage battery 4 is controlled to be in an off state, and in the state where there is almost no power generation amount in the solar battery 2 before sunrise, this is detected by the voltmeter VM1 and the ammeter AM1. 3 and the input side open / close switch SWI are both controlled to be in an OFF state, the operation of the inverter 3 is stopped, and the AC power of the commercial power supply 5 is supplied to the important load 6 via the changeover switch SWL. Printers, facsimiles, etc. are ready for use.

この状態で、日の出時刻となって太陽電池2に太陽光が照射する状態となると、この太陽電池2を構成する各電池ユニットBU1〜BU9で発電された電力を電圧計VA1及び電流計AM1で検出すると、インバータ3の入力側スイッチSWIがオン状態とされると共に、インバータ3が連系運転制御されて、インバータ3から交流電力が出力されて、商用電源5からの交流電力との連系運転が行われる。   In this state, when the solar cell 2 is irradiated with sunlight at the sunrise time, the voltmeter VA1 and the ammeter AM1 detect the electric power generated by the battery units BU1 to BU9 constituting the solar cell 2. Then, the input side switch SWI of the inverter 3 is turned on, the inverter 3 is controlled to be connected, and AC power is output from the inverter 3 so that the connected operation with the AC power from the commercial power supply 5 is performed. Done.

この連系運転状態で、午前6時となって充電開始時刻となると、図2の制御処理によって、インバータ3の入力側開閉スイッチSWIがオフ状態とされると共に、インバータ3が停止制御され(ステップS2、S3)、また、太陽電池2の開閉スイッチSW0がオン状態を継続し、蓄電池4の開閉スイッチSWBがオン状態に切換えられることにより、太陽電池2の発電電力が蓄電池4に供給されて蓄電池4の充電が開始される。一方、重要負荷6の切換スイッチSWLは商用電源5側の切換状態を維持するので、重要負荷6には、交流電源5から商用交流が供給されており、引き続き気象端末、コピー、ファクシミリ等が使用可能な状態となっている。   In this interconnection operation state, when the charging start time comes at 6:00 am, the input side open / close switch SWI of the inverter 3 is turned off and the inverter 3 is controlled to stop by the control processing of FIG. S2, S3) and the open / close switch SW0 of the solar battery 2 continues to be in the on state, and the open / close switch SWB of the storage battery 4 is switched to the on state, whereby the generated power of the solar battery 2 is supplied to the storage battery 4 4 starts charging. On the other hand, since the changeover switch SWL of the important load 6 maintains the state of switching on the commercial power supply 5 side, the commercial load is supplied to the important load 6 from the AC power supply 5 and is continuously used by a weather terminal, copy, facsimile, etc. It is possible.

この蓄電池4の充電状態では、太陽電池2を構成する電池ユニットBU1〜BU9の出力側に接続された開閉スイッチSW1〜SW9がストリングス制御されて、蓄電池4に供給される充電電力量が適正状態に制御される(ステップS5)。
このため、電圧計VM2で検出される蓄電池4の蓄電池容量VB1は図5に示すように時間の経過と共に増加する。そして、蓄電池容量VB1が予め設定された過充電設定値VOs以上となると、過充電到達回数Nがインクリメントされるが(ステップS7)、蓄電池電圧VB1が過充電設定値VOsに達しないときには、午前10時に設定された充電終了時刻となったか否かを判定し、充電終了時刻でないときには充電状態を継続し、充電終了時刻となると、過充電到達回数Nをインクリメントすることなく充電処理を終了して、連系運転処理に移行する。
In this charged state of the storage battery 4, the open / close switches SW1 to SW9 connected to the output sides of the battery units BU1 to BU9 constituting the solar battery 2 are string controlled so that the amount of charging power supplied to the storage battery 4 is in an appropriate state. It is controlled (step S5).
For this reason, the storage battery capacity VB1 of the storage battery 4 detected by the voltmeter VM2 increases with time as shown in FIG. When the storage battery capacity VB1 becomes equal to or greater than the preset overcharge set value VOs, the overcharge arrival count N is incremented (step S7), but when the storage battery voltage VB1 does not reach the overcharge set value VOs, 10 am It is determined whether or not the charging end time set at the time has come, and when it is not the charging end time, the charging state is continued, and when the charging end time is reached, the charging process is terminated without incrementing the overcharge arrival number N, Transition to interconnected operation processing.

その後、午前0時の放電開始時刻となると、図3の放電処理が実行開始され、インバータ3の入力側開閉スイッチSWI及び蓄電池4の開閉スイッチSWBが共にオン状態に制御されると共にインバータ3が自立運転状態に制御されることにより、インバータ3から自立出力電圧が得られる状態となると、重要負荷6の切換スイッチSWLが商用電源5側からインバータ3の自立出力側に切換られ、蓄電池4の放電電力による交流電力が重要負荷6に供給されて、蓄電池4が放電状態となる。このとき、重要負荷6の抵抗は一定であるので、蓄電池容量VB1は図5に示すように一定勾配で減少することになり、放電量設定値Vdsの放電が行われるか、又は放電可能電力量設定値VUsの放電が行われると蓄電池4の放電処理が終了されて、商用電源5からの給電に移行する。   Thereafter, when the discharge start time at midnight is reached, the discharge process of FIG. 3 is started, and both the input side open / close switch SWI of the inverter 3 and the open / close switch SWB of the storage battery 4 are controlled to be on and the inverter 3 is independent. When the operation state is controlled so that a self-sustained output voltage can be obtained from the inverter 3, the changeover switch SWL of the important load 6 is switched from the commercial power source 5 side to the self-sustained output side of the inverter 3, and the discharge power of the storage battery 4 is discharged. Is supplied to the important load 6 and the storage battery 4 is discharged. At this time, since the resistance of the important load 6 is constant, the storage battery capacity VB1 decreases with a constant slope as shown in FIG. 5, and the discharge amount set value Vds is discharged or the dischargeable electric energy When the set value VUs is discharged, the discharge process of the storage battery 4 is terminated, and the power supply from the commercial power source 5 is started.

ところで、冬期では日照量が少なく太陽光による太陽電池2での発電量も少なく、逆に夏期では日照量が多く太陽光による太陽電池2での発電量も多く、太陽電池2での発電量は季節によって大きく変化することになる。このため、例えば5月の月末に設定された放電可能電力量設定値VUs に基づいて梅雨時の6月に蓄電池4の充放電処理が図5で実線図示のように行われていたものとすると、この状態で7月になって梅雨明けと同時に日照量が増加すると共に、太陽電池2での発電量も増加した場合には、梅雨明けまでの間は図2の処理において計数される過充電到達回数Nが6月と略等しいが梅雨明け後の過充電到達回数Nが増加することにより、7月末での過充電到達回数Nが例えば上限値Ns2を超えると、放電可能電力量設定値VUs が現在値に所定値ΔVを加算することにより.放電可能電力量設定値VUs1に変更され、蓄電池4の放電量が多くなって放電深度が図5で破線図示のように深くなる。 By the way, in winter, the amount of sunlight is small and the amount of power generated by the solar cell 2 is small. In summer, the amount of sunlight is large and the amount of power generated by the solar cell 2 is large. It will vary greatly depending on the season. For this reason, for example, the dischargeable electric energy set value VUs set at the end of May Assuming that the charging / discharging process of the storage battery 4 was performed as shown by the solid line in FIG. 5 in June during the rainy season, the amount of sunshine increased simultaneously with the end of the rainy season in July. When the amount of power generated by the solar cell 2 also increases, the overcharge arrival count N counted in the processing of FIG. 2 until the end of the rainy season is substantially equal to June, but the overcharge arrival count N after the end of the rainy season. When the overcharge arrival count N at the end of July exceeds, for example, the upper limit value Ns2, the dischargeable energy setting value VUs By adding a predetermined value ΔV to the current value. The dischargeable power amount set value VUs1 is changed, and the discharge amount of the storage battery 4 increases, and the discharge depth becomes deeper as shown by the broken line in FIG.

さらに、8月となると、日照量がさらに増加するので、同様にして過重電到達回数に基づいて所定値ΔVを加算することにより、放電深度が1年のうちで最大となる。
その後、9月では過充電到達回数Nが下限値Ns1及び上限値Ns2の範囲内となり、放電可能電力量設定値VUs が維持されるが、その後日照量や太陽電池2の発電量が減少することにより、過充電到達回数Nが減少すると、これに応じて放電可能電力量設定値VUs が減少し、放電深度が浅くなる。
Furthermore, since the amount of sunshine increases further in August, the discharge depth becomes the maximum in one year by adding a predetermined value ΔV based on the number of overload arrivals in the same manner.
After that, in September, the overcharge arrival frequency N falls within the range between the lower limit value Ns1 and the upper limit value Ns2, and the dischargeable energy setting value VUs. However, if the number of overcharges N decreases due to a decrease in the amount of sunlight and the amount of power generated by the solar cell 2 thereafter, the dischargeable power amount set value VUs is accordingly increased. Decreases and the depth of discharge becomes shallower.

このように、上記実施形態によると、過充電到達回数Nを検出することにより、放電深度を制御して、蓄電池4の充電後の蓄電量を季節にかかわらず高い状態に維持することができ、常に満充電状態とすることができるで、災害発生時に商用電源5が停電した場合でも確実に重要負荷6を駆動することができると共に、過充電到達回数Nに基づいて放電深度を設定するので、蓄電池容量を正確に管理することができる。因みに、蓄電池容量を蓄電池電圧で管理する場合には、蓄電池からの放電電流が大きい場合は蓄電池電圧も降下しやすく、残存する蓄電池容量を蓄電池電圧から推定しやすいが、非常保安電源として12時間〜24時間程度の長時間の停電時に非常保安負荷へ電力を供給できるようにするには放電電流が少なくなりやすく、蓄電池電圧と蓄電池容量とが比例関係とはならず、蓄電池電圧に基づいて蓄電池容量を管理することは困難となる。 Thus, according to the above-described embodiment, by detecting the overcharge arrival frequency N, it is possible to control the depth of discharge and maintain the charged amount after charging the storage battery 4 in a high state regardless of the season, always be able to be fully charged, it is possible to drive reliably important load 6 even if the commercial power source 5 is a power failure in the event of a disaster, so setting the depth of discharge based on the overcharge reached number N The storage battery capacity can be accurately managed. Incidentally, when managing the storage battery capacity with the storage battery voltage, if the discharge current from the storage battery is large, the storage battery voltage is also likely to drop, and the remaining storage battery capacity can be easily estimated from the storage battery voltage. In order to be able to supply power to the emergency safety load during a long power outage of about 24 hours, the discharge current tends to decrease, and the storage battery voltage and the storage battery capacity are not proportional to each other, and the storage battery capacity is based on the storage battery voltage. It becomes difficult to manage.

しかも、毎日の決められたサイクル運転により、蓄電池の充放電が制御されるので、蓄電池の期待寿命に対する計画が立てやすくなると共に、蓄電池4の充電量に応じて放電量が制御されるので、蓄電池を有効利用して商用電源の使用量を低減することができる。
また、過充電到達回数Nに基づいて放電深度を設定するので、蓄電池の平均放電深度が浅くなり、蓄電池の期待寿命を長期化することができる。
なお、上記実施形態においては、過充電到達回数Nに基づいて放電深度を設定する場合について説明したが、これに限定されるものではなく、過充電到達回数Nに基づいて蓄電池の放電量を設定し、このときの放電電力量を検出器で検出し、蓄電池4の放電電力量が設定値放電量に達したときに放電を停止するようにしてもよい。
Moreover, since the charging / discharging of the storage battery is controlled by the cycle operation determined every day, it is easy to make a plan for the expected life of the storage battery, and the discharge amount is controlled according to the charge amount of the storage battery 4, so the storage battery Can be used effectively to reduce the amount of commercial power used.
Moreover, since the depth of discharge is set based on the number N of overcharge arrivals, the average discharge depth of the storage battery becomes shallow, and the expected life of the storage battery can be prolonged.
In addition, in the said embodiment, although the case where the depth of discharge was set based on the overcharge arrival frequency N was demonstrated , it is not limited to this, The discharge amount of a storage battery is set based on the overcharge arrival frequency N Then, the discharge power amount at this time may be detected by a detector, and the discharge may be stopped when the discharge power amount of the storage battery 4 reaches the set value discharge amount.

また、上記実施形態においては、過充電到達回数Nを検出することにより、蓄電池4の充電状態を検出する場合について説明したが、これに限定されるものではなく、図7に示すように、蓄電池容量VB1が設定値Vs未満にあるときに充電を開始して、蓄電池容量VB1が設定値Vsから過充電設定値VOsに達するまでの過充電到達時間Tdを計測し、冬期のように計測した過充電到達時間Tdが予め設定した上限値Td1以上であるときに現在の放電深度を浅くし(充電パターン1)、春期や秋期のように上限値Td1及び下限値Td2の範囲内であるときに現在の放電深度を維持し(充電パターン2)、夏期のように下限値Td2未満のときに現在の放電深度を深くする(充電パターン3)ことにより、上記実施形態と同様の作用効果を得ることができる。   Moreover, in the said embodiment, although the case where the charge state of the storage battery 4 was detected by detecting the overcharge arrival frequency N was demonstrated, it is not limited to this, As shown in FIG. Charging is started when the capacity VB1 is less than the set value Vs, and the overcharge arrival time Td until the storage battery capacity VB1 reaches the overcharge set value VOs from the set value Vs is measured. When the charge arrival time Td is greater than or equal to the preset upper limit value Td1, the current discharge depth is reduced (charging pattern 1), and when the charge arrival time Td is within the upper limit value Td1 and lower limit value Td2 as in the spring or fall The current discharge depth is maintained (charge pattern 2), and the current discharge depth is deepened (charge pattern 3) when it is less than the lower limit value Td2 as in summer, so that the same effect as in the above embodiment is obtained. It is possible to obtain.

このように放電可能電力量設定値を変更した場合の充電電力量と放電電力量の関係及び過充電到達回数を図6により説明する。図6において、(a)は放電可能電力量設定を大きい値VUs1として放電深度を深くした場合、(b)は放電可能電力量設定を小さい値VUs2として放電深度を浅くした場合を示している。一回当たりの放電電力量は、図5と同様に過充電設定値に達しない場合には充電電力量の半分、過充電設定値に達した場合には放電可能電力量設定値の全てを放電するものとすると、図6の(a)と(b)は充電電力量と放電電力量は全く同じであり、過充電到達回数は(a)が回、(b)が2回である。従って、充電電力量と放電電力量が同じであれば、過充電到達回数が多くなる(b)のように放電可能電力量設定値VUs2を小さくし、放電深度を浅くして充放電を繰り返したほうが電池寿命を確保することできる。 The relationship between the charge power amount and the discharge power amount and the overcharge arrival frequency when the dischargeable power amount setting value is changed in this way will be described with reference to FIG. 6A shows a case where the discharge depth is increased by setting the dischargeable power amount setting to a large value VUs1, and FIG. 6B shows a case where the discharge depth is made shallow by setting the dischargeable power amount setting a small value VUs2. As in FIG. 5, the discharge electric energy per time is half of the charge electric energy when it does not reach the overcharge set value, and when the overcharge set value is reached, all the dischargeable electric energy set values are discharged. assuming that, in FIG. 6 and (a) (b) is completely discharged electric power amount and the charging electric energy the same, overcharge reached number (a) is one, it is twice (b). Accordingly, if the charge power amount and the discharge power amount are the same, the number of overcharge arrivals increases, and the dischargeable power amount set value VUs2 is reduced as shown in (b), and the charge / discharge is repeated with a shallow discharge depth. Can secure the battery life.

さらに、上記実施形態においては、過充電到達回数Nが下限値Ns1及び上限値Ns2の範囲内にあるときに現在の放電状態を維持する場合について説明したが、これに限定されるものではなく、過充電到達回数Nが設定値Nsに一致したときに現在の放電状態を維持し、設定値Ns未満であるときに放電時間を短くし、設定値Nsを超えているときに放電時間を長くするようにしてもよい。   Furthermore, in the said embodiment, although the overcharge arrival frequency N demonstrated the case where the present discharge state is maintained when it exists in the range of lower limit Ns1 and upper limit Ns2, it is not limited to this, The current discharge state is maintained when the overcharge arrival count N matches the set value Ns, the discharge time is shortened when it is less than the set value Ns, and the discharge time is lengthened when it exceeds the set value Ns. You may do it.

さらにまた、上記実施形態においては、蓄電池4の充電時間を4時間に設定した場合について説明したが、これに限定されるものではなく、充電時間は任意に設定することができると共に、充電開始時刻も任意に設定することができ、夏期と冬期とで異なる充電開始時刻を設定するようにしてもよい。
なおさらに、上記実施形態においては、1カ月単位で放電条件を設定する場合について説明したが、これに限定されるものではなく、任意の期間毎に放電条件を設定することができる。
また、上記実施形態においては、重要負荷として災害発生時に必要とする電気設備を適用した場合について説明したが、これに限定されるものではなく、商用電源4の停電時に駆動する必要が有る設備に本発明を適用することができる。
Furthermore, in the above embodiment, the case where the charging time of the storage battery 4 is set to 4 hours has been described. However, the present invention is not limited to this, and the charging time can be arbitrarily set and the charging start time is set. The charging start time may be set differently in summer and winter.
Furthermore, in the above embodiment, the case where the discharge condition is set in units of one month has been described. However, the present invention is not limited to this, and the discharge condition can be set every arbitrary period.
Moreover, in the said embodiment, although the case where the electrical equipment required at the time of a disaster occurrence as an important load was applied was demonstrated, it is not limited to this, For the equipment which needs to be driven at the time of a power failure of the commercial power source 4 The present invention can be applied.

本発明の一実施形態を示すブロック図である。It is a block diagram which shows one Embodiment of this invention. 図1の太陽電池制御装置で実行する制御処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the control processing procedure performed with the solar cell control apparatus of FIG. 図2の放電処理手順の具体例を示すフローチャートである。It is a flowchart which shows the specific example of the discharge processing procedure of FIG. 本発明の動作の説明に供する1日の充放電サイクルを示すタイムチャートである。It is a time chart which shows the charge / discharge cycle of 1 day with which it uses for description of operation | movement of this invention. 蓄電池の充放電状態を示すタイムチャートである。It is a time chart which shows the charging / discharging state of a storage battery. 異なる放電深度における蓄電池の充放電状態を示すタイムチャートである。It is a time chart which shows the charging / discharging state of the storage battery in a different discharge depth. 蓄電池の充電時間を示す図である。It is a figure which shows the charging time of a storage battery.

符号の説明Explanation of symbols

1…太陽光発電装置制御システム、2…太陽電池、UB1〜UP9…電池ユニット、SW0〜SW9…開閉スイッチ、3…インバータ、SWI…開閉スイッチ、4…蓄電池、SWB…開閉スイッチ、VM1,VM2…電圧計、5…商用電源、6…重要負荷、SWL…切換スイッチ、7…太陽電池制御装置   DESCRIPTION OF SYMBOLS 1 ... Solar power generation device control system, 2 ... Solar cell, UB1-UP9 ... Battery unit, SW0-SW9 ... Open / close switch, 3 ... Inverter, SWI ... Open / close switch, 4 ... Storage battery, SWB ... Open / close switch, VM1, VM2 ... Voltmeter, 5 ... Commercial power supply, 6 ... Important load, SWL ... Changeover switch, 7 ... Solar cell control device

Claims (4)

太陽光によって発電する太陽光発電手段と、該太陽光発電手段で発電した電力を蓄える蓄電手段と、前記太陽光発電手段で発電した電力で前記蓄電手段を充電すると共に、当該蓄電手段から負荷への放電を制御する充放電制御手段とを備えた太陽光発電装置制御システムにおいて、
前記充放電制御手段は、前記負荷の電力使用量が少ない時間帯における所定時間内で前記蓄電手段の充電を行う充電制御手段と、該充電制御手段での充電時間外で、前記蓄電手段から前記負荷に対して放電を行う放電制御手段と、前記充電制御手段により過充電状態に至る態様を検出する過充電状態検出手段と、過充電状態検出手段で検出した過充電状態の検出回数が所定数未満であるときに前記放電制御手段により前記蓄電手段の放電深度を浅くさせ、過充電状態の検出回数が所定数範囲内であるときに前記放電制御手段により前記蓄電手段の放電深度を維持し、過充電状態の検出回数が所定数を超えているときに前記放電制御手段により前記蓄電手段の放電深度を深くさせる放電深度決定手段とを備えたことを特徴とする太陽光発電装置制御システム。
Solar power generation means for generating power by sunlight, power storage means for storing the power generated by the solar power generation means, charging the power storage means with the power generated by the solar power generation means, and from the power storage means to the load In a solar power generation device control system comprising a charge / discharge control means for controlling the discharge of
The charge / discharge control means includes: a charge control means for charging the power storage means within a predetermined time in a time zone where the power consumption of the load is low; and the charge control means from the power storage means outside the charge time in the charge control means. a discharge control means for discharging to the load, and the overcharged state detecting means for detecting a manner that leads to overcharge state by the charge control unit, the number of detected overcharged state detected by the overcharge detection means a predetermined The discharge control means makes the depth of discharge of the power storage means shallow when the discharge control means is less than a number, and maintains the discharge depth of the power storage means by the discharge control means when the number of overcharge detections is within a predetermined number range. , photovoltaic instrumentation, characterized in that the number of detected overcharge state has a depth of discharge determining means for deeper depth of discharge of the accumulator unit by said discharge control means when it exceeds the predetermined number Control system.
太陽光によって発電する太陽光発電手段と、該太陽光発電手段で発電した電力を蓄える蓄電手段と、前記太陽光発電手段で発電した電力で前記蓄電手段を充電すると共に、当該蓄電手段から負荷への放電を制御する充放電制御手段とを備えた太陽光発電装置制御システムにおいて、
前記充放電制御手段は、前記負荷の電力使用量が少ない時間帯における所定時間内で前記蓄電手段の充電を行う充電制御手段と、該充電制御手段での充電時間外で、前記蓄電手段から前記負荷に対して放電を行う放電制御手段と、前記充電制御手段により所定放電深度から過充電状態に至るまでの充電時間を検出する過充電状態検出手段と、該過充電状態検出手段で検出した所定放電深度から過充電状態に至るまでの充電時間が設定充電時間であるときに前記蓄電手段の放電深度を維持し、前記充電時間が設定充電時間より短いときに前記蓄電手段の放電深度を深くさせ、前記充電時間が設定充電時間より長いときに前記蓄電手段の放電深度を浅くさせる放電深度決定手段とを備えたことを特徴とする太陽光発電装置制御システム。
Solar power generation means for generating power by sunlight, power storage means for storing the power generated by the solar power generation means, charging the power storage means with the power generated by the solar power generation means, and from the power storage means to the load In a solar power generation device control system comprising a charge / discharge control means for controlling the discharge of
The charge / discharge control means includes: a charge control means for charging the power storage means within a predetermined time in a time zone where the power consumption of the load is low; and the charge control means from the power storage means outside the charge time in the charge control means. A discharge control means for discharging the load; an overcharge state detection means for detecting a charging time from a predetermined depth of discharge to an overcharge state by the charge control means; and a predetermined value detected by the overcharge state detection means When the charging time from the depth of discharge to the overcharge state is a set charging time, the depth of discharge of the power storage means is maintained, and when the charging time is shorter than the set charging time, the depth of discharge of the power storage means is increased. A photovoltaic power generation apparatus control system comprising: a discharge depth determining means for reducing a discharge depth of the power storage means when the charging time is longer than a set charging time .
前記充電制御手段は、負荷の電力使用量が少ない時間帯として太陽光発電手段での発電が可能な早朝から午前中の所定時刻間を設定するように構成されていることを特徴とする請求項1又は2に記載の太陽光発電装置制御システム。 The charging control means is configured to set a predetermined time in the morning from early morning in which the power generation by the solar power generation means is possible as a time zone when the amount of power used by the load is small. The solar power generation device control system according to 1 or 2 . 前記放電手段は、蓄電手段の放電電力量を充電電力量によって増減するように構成されていることを特徴とする請求項1乃至3の何れか1項に記載の太陽光発電装置制御システム。 It said discharge means, photovoltaic power generator control system according to any one of claims 1 to 3, characterized in that it is configured to increase or decrease the charging electric energy discharged power amount of the power storage means.
JP2003428013A 2003-12-24 2003-12-24 Solar power generator control system Expired - Fee Related JP4137784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003428013A JP4137784B2 (en) 2003-12-24 2003-12-24 Solar power generator control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003428013A JP4137784B2 (en) 2003-12-24 2003-12-24 Solar power generator control system

Publications (2)

Publication Number Publication Date
JP2005192282A JP2005192282A (en) 2005-07-14
JP4137784B2 true JP4137784B2 (en) 2008-08-20

Family

ID=34787127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003428013A Expired - Fee Related JP4137784B2 (en) 2003-12-24 2003-12-24 Solar power generator control system

Country Status (1)

Country Link
JP (1) JP4137784B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102235931B1 (en) * 2020-07-29 2021-04-07 주식회사 아미텍 Power management system using state of charging for battery

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4723952B2 (en) * 2005-08-22 2011-07-13 シャープ株式会社 Indoor ventilation system
GB2448504B (en) * 2007-04-17 2012-07-25 Timothy Patrick Cooper A load management controller
WO2011078151A1 (en) * 2009-12-24 2011-06-30 三洋電機株式会社 Power feeding method, computer readable recording medium, and power generation system
JP5338831B2 (en) * 2011-03-15 2013-11-13 オムロン株式会社 Power control apparatus and power control method
JP5677161B2 (en) * 2011-03-28 2015-02-25 株式会社東芝 Charge / discharge determination device and program
JP5953663B2 (en) * 2011-07-08 2016-07-20 住友電気工業株式会社 Traffic signal controller
JP5820984B2 (en) * 2011-09-30 2015-11-24 パナソニックIpマネジメント株式会社 Power distribution system
JP5795229B2 (en) * 2011-09-30 2015-10-14 大和ハウス工業株式会社 Power supply system
JP5891367B2 (en) * 2013-03-25 2016-03-23 パナソニックIpマネジメント株式会社 Power storage system
JP2015073368A (en) * 2013-10-02 2015-04-16 日本電信電話株式会社 Power conditioner system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102235931B1 (en) * 2020-07-29 2021-04-07 주식회사 아미텍 Power management system using state of charging for battery

Also Published As

Publication number Publication date
JP2005192282A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
WO2012049915A1 (en) Power management system
JP5401003B2 (en) Solar power system
US9590443B2 (en) Power supply device using secondary battery and method of switching the battery mode
US7535201B2 (en) Uninterruptible power supply system
US9331512B2 (en) Power control device and power control method for measuring open-circuit voltage of battery
KR101256077B1 (en) Power control system and controlling method thereof
US10454286B2 (en) Conversion circuit device for uninterruptible power supply (UPS) systems
JP4137784B2 (en) Solar power generator control system
CN102934320A (en) Battery power supply device and power controlling method for same
EP3923441A1 (en) Battery controller, wireless battery control system, battery pack, and battery balancing method
KR101550304B1 (en) Appratus for portable self-electric generation
JP2002058174A (en) Independent solar generation system and its control method
JP2001268815A (en) Charge circuit
JP3796918B2 (en) Battery device
JP4977805B1 (en) Stand-alone power supply
KR101162221B1 (en) An apparatus of preventing over-charging/over-discharging for an energy storage and a method thereof
JP2002010495A (en) Power supply system
JP6713101B2 (en) Storage battery system and storage battery control method
JP3530519B2 (en) Voltage equalizing device for power storage device and power storage system provided with the device
JP2000341875A (en) Solar generator
KR102081780B1 (en) Energy management system for multi-battery
KR101523941B1 (en) Energy storage system
JPH0738130A (en) Battery controlling method of solar cell power supply system
JP6995457B1 (en) Charge / discharge management system
KR20150059222A (en) Solar power storage apparatus and method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080604

R150 Certificate of patent or registration of utility model

Ref document number: 4137784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees