[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4133657B2 - X-ray fluoroscope for precision measurement - Google Patents

X-ray fluoroscope for precision measurement Download PDF

Info

Publication number
JP4133657B2
JP4133657B2 JP2003270746A JP2003270746A JP4133657B2 JP 4133657 B2 JP4133657 B2 JP 4133657B2 JP 2003270746 A JP2003270746 A JP 2003270746A JP 2003270746 A JP2003270746 A JP 2003270746A JP 4133657 B2 JP4133657 B2 JP 4133657B2
Authority
JP
Japan
Prior art keywords
ray
magnification
fluoroscopic
spatial calibration
sample table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003270746A
Other languages
Japanese (ja)
Other versions
JP2005024506A (en
Inventor
雅行 光原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2003270746A priority Critical patent/JP4133657B2/en
Publication of JP2005024506A publication Critical patent/JP2005024506A/en
Application granted granted Critical
Publication of JP4133657B2 publication Critical patent/JP4133657B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、工業計測や、物品内部の欠陥の検査並びに内部構造の調査などの非破壊検査等に用いられるX線透視装置に関し、特に、透視像から精密な寸法計測が可能な精密計測用X線透視装置に関する。   The present invention relates to an X-ray fluoroscopic apparatus used for industrial measurement, nondestructive inspection such as inspection of defects inside articles and inspection of internal structures, and in particular, X for precise measurement capable of precise dimension measurement from a fluoroscopic image. The present invention relates to a fluoroscopic apparatus.

X線透視装置においては、一般に、X線管球とX線検出器の間に3次元方向に移動可能な試料テーブルを配置し、その試料テーブル上に透視対象物を載せた状態でX線を照射することにより、透視対象物を透過したX線をX線検出器で検出して、そのX線検出器の出力を用いて透視対象物のX線透視像を表示器の画面上に表示する。   In an X-ray fluoroscopy apparatus, generally, a sample table movable in a three-dimensional direction is arranged between an X-ray tube and an X-ray detector, and X-rays are emitted with a fluoroscopic object placed on the sample table. By irradiating, the X-ray transmitted through the fluoroscopic object is detected by the X-ray detector, and the X-ray fluoroscopic image of the fluoroscopic object is displayed on the display screen using the output of the X-ray detector. .

この種の透視装置においては、通常、X線管球の焦点とX線検出器(受像面)とのなす距離と、X線管球の焦点と透視対象物とのなす距離によって幾何学的な透視倍率、換言すればX線検出器の受像面上への透視対象物の結像倍率が定まる。表示器の画面上に表示されたX線透視像の大きさと、透視対象物の実物の大きさとの比である透視拡大率(撮像倍率)は、上記した結像倍率に、X線検出器の画素と表示器の画素との関係、更にはX線検出器にレンズ等の光学系が組み込まれている場合にはその光学系による像の拡大率などを考慮して決定されなければならない。   In this type of fluoroscopic apparatus, a geometrical shape is usually determined by the distance formed between the focal point of the X-ray tube and the X-ray detector (image receiving surface) and the distance formed between the focal point of the X-ray tube and the fluoroscopic object. The perspective magnification, in other words, the imaging magnification of the fluoroscopic object on the image receiving surface of the X-ray detector is determined. The fluoroscopic magnification (imaging magnification), which is the ratio between the size of the X-ray fluoroscopic image displayed on the display screen and the actual size of the fluoroscopic object, is determined by the X-ray detector. When an optical system such as a lens is incorporated in the X-ray detector, the relationship between the pixel and the pixel of the display device must be determined in consideration of the magnification ratio of the image by the optical system.

そこで、従来、これらの全ての要素を含んだ透視拡大率を求めるために、試料テーブル上に、例えばミクロチャート等と称される寸法既知の参照試料を配置し、その参照試料のX線透視像を表示器に表示することにより、表示器の1画素当たりの実寸法、つまり空間校正値を求めることが行われる。この空間校正値を求めておけば、マウス等の操作によって移動並びに伸縮自在の測定バーツール等と称されるバーを表示器の画面上に表示して、画面上の任意の2点間にそのバーを指し渡すように移動・伸縮させることにより、その2点間の実寸法を自動的に算出して数値で表示できるようなソフトが多用されている。   Therefore, conventionally, in order to obtain a fluoroscopic magnification including all of these elements, a reference sample having a known dimension called a microchart or the like is arranged on a sample table, and an X-ray fluoroscopic image of the reference sample is provided. Is displayed on the display, the actual size per pixel of the display, that is, the spatial calibration value is obtained. If this spatial calibration value is obtained, a bar called a measurement bar tool that can be moved and expanded by operating the mouse or the like is displayed on the screen of the display unit, and the bar is displayed between any two points on the screen. Software that can automatically calculate and display the actual dimensions between the two points by moving and expanding and contracting so as to point to the bar is often used.

以上のような空間校正値を用いてX線透視像上の任意の2点間の実寸法を正確に表示するためには、当然のことながら、空間校正値を求めたときと同じ透視拡大率のもとにX線透視像を表示している必要がある。そのため、ある拡大率のもとに空間校正を行った後、観察したい場所に視野を移動させて任意の部位の寸法を知ろうとするとき、拡大率を変更すると、先の校正により求めた空間校正値を用いた寸法計測は不可能となるため、再度その拡大率で空間校正を行わなければならない。また、再度空間校正を行うに際しても、校正基準に決めていた参照試料の寸法がその拡大率では小さすぎたり、あるいは大きすぎたりするなどで不適当である場合もある。   In order to accurately display the actual dimensions between any two points on the X-ray fluoroscopic image using the spatial calibration values as described above, it is natural that the same perspective magnification as when the spatial calibration values are obtained. It is necessary to display an X-ray fluoroscopic image. Therefore, after performing spatial calibration under a certain magnification ratio, if you want to know the dimensions of any part by moving the field of view to the place you want to observe, if you change the magnification ratio, the spatial calibration obtained by the previous calibration Since dimensional measurement using values becomes impossible, spatial calibration must be performed again at the enlargement ratio. In addition, when performing spatial calibration again, there are cases where the size of the reference sample determined as the calibration standard is too small or too large for the enlargement ratio.

更に、従来のこの種の透視装置においては、透視対象物の内部の注目部位と試料テーブル表面とのX線光軸方向への寸法が不明であるため、試料テーブルやX線検出器あるいはX線管球をX線光軸方向に全く移動させずに、従って見かけ上の透視拡大率を空間校正時から変化させなくとも、厳密には、注目部位の実寸法を高精度に計測することはできない。   Furthermore, in this type of conventional fluoroscopic apparatus, since the dimension in the X-ray optical axis direction between the site of interest inside the fluoroscopic object and the surface of the sample table is unknown, the sample table, X-ray detector, or X-ray Strictly speaking, the actual dimension of the target site cannot be measured with high accuracy without moving the tube at all in the X-ray optical axis direction, and thus changing the apparent perspective magnification from the time of spatial calibration. .

すなわち、空間校正値は、X線管球の焦点位置とX線検出器の受像面との距離と、X線管球の焦点位置と参照試料とのなす距離によって定まる、前記した幾何学的倍率である結像倍率が一定である場合に有効に機能するものであって、この結像倍率が相違すると正確な実寸法を求めることができない。透視対象物の内部の注目部位は、透視対象物を試料テーブル上に載せたとき、通常、試料テーブルの表面からX線光軸方向への距離が不明であるが故に、X線管球の焦点位置からの距離が不明であり、従って、見かけ上の透視拡大率を変化させなくとも、結像倍率が参照試料を用いた空間校正時とは相違する。   That is, the spatial calibration value is determined by the distance between the focal position of the X-ray tube and the image receiving surface of the X-ray detector and the distance between the focal position of the X-ray tube and the reference sample. It functions effectively when the imaging magnification is constant, and if this imaging magnification is different, an accurate actual dimension cannot be obtained. Since the distance from the surface of the sample table to the X-ray optical axis direction is usually unknown when the fluoroscopic object is placed on the sample table, the site of interest inside the fluoroscopic object is the focus of the X-ray tube. The distance from the position is unknown, and therefore the imaging magnification is different from that at the time of spatial calibration using the reference sample without changing the apparent perspective magnification.

透視対象物内部の注目部位の正確な透視拡大率を求める方法として、従来、試料テーブル上に透視対象物を載せてX線透視像を表示している状態で注目部位を指定した後、試料テーブルをX線光軸に直交する方向に所定量δだけ移動させ、その移動により表示器の画面上で注目部位の像が移動した量Δを画像処理によって求め、その画面上での注目部位の移動量Δと、試料テーブルの移動量δとから、透視拡大率をΔ/δによって算出するX線透視装置が提案されている(特許文献1参照)。
特開2002−243663号公報
Conventionally, as a method for obtaining an accurate perspective enlargement ratio of a target region inside the fluoroscopic object, after specifying the target region in a state where an X-ray fluoroscopic image is displayed by placing the fluoroscopic object on the sample table, the sample table Is moved by a predetermined amount δ in the direction orthogonal to the X-ray optical axis, and the amount Δ of the movement of the image of the target region on the display screen by the movement is obtained by image processing, and the movement of the target region on the screen There has been proposed an X-ray fluoroscopic apparatus that calculates a fluoroscopic magnification by Δ / δ from an amount Δ and a movement amount δ of a sample table (see Patent Document 1).
JP 2002-243663 A

しかしながら、以上の提案技術を採用して、注目部位の透視拡大率を正確に知ることができても、この技術と、前記した参照試料の撮像による空間校正値並びに測定バーツールを用いて、画面上で指定した任意の2点間の実寸法を自動的に算出して表示するソフトとは無関係に機能するため、そのソフトを用いて透視像上の任意の2点間の実寸法を簡単かつ高精度に計測することはできない。   However, even if the above-described proposed technique is used to accurately know the perspective magnification of the site of interest, the screen is displayed using this technique, the spatial calibration value obtained by imaging the reference sample and the measurement bar tool described above. Since it functions independently of the software that automatically calculates and displays the actual dimensions between any two points specified above, the actual dimensions between any two points on the fluoroscopic image can be easily and It cannot be measured with high accuracy.

本発明はこのような実情に鑑みてなされたもので、参照試料を用いて空間校正をした後、透視拡大率を変更しても、あるいは透視対象物内部の試料テーブル表面からの距離が不明な注目部位についても、画面上から空間校正値を用いて簡単かつ高精度に実寸法を自動的に計算して表示することのできる精密計測用X線透視装置の提供を目的としている。   The present invention has been made in view of such circumstances, and after performing spatial calibration using a reference sample, the distance from the sample table surface inside the fluoroscopic object is unknown even if the fluoroscopic magnification is changed. An object of the present invention is to provide an X-ray fluoroscopy device for precision measurement that can automatically calculate and display the actual dimensions with high accuracy using a spatial calibration value from the screen.

上記の目的を達成するため、本発明の精密計測用X線透視装置は、X線管球と、3次元方向への移動機能を備えた試料テーブルと、その試料テーブルを挟んでX線管球に対向配置されたX線検出器と、そのX線検出器を上記X線管球の焦点を中心として傾動させる傾動機構と、上記X線検出器からの画素情報に基づくX線透視像を表示器に表示する画像形成手段と、上記試料テーブルの表面に対するX線光軸方向への距離が既知の位置に置かれた既知寸法の参照試料のX線透視像から空間校正値を算出する空間校正値算出手段を備えた精密計測用X線透視装置において、上記空間校正値を、当該空間校正値の算出に用いた参照試料のX線透視像の透視拡大率と併せて記憶する記憶手段と、上記試料テーブルの表面からの距離が道の位置に存在する透視対象物の注目部位の透視拡大率を算出する注目部位透視拡大率算出手段を備え、その注目部位透視拡大率算出手段により注目部位の透視拡大率を算出したとき、その算出値と上記記憶手段に記憶されている透視拡大率との比に基づいて上記空間校正値を自動的に変更し、その変更後の空間校正値と、算出された注目部位の透視拡大率によって、上記記憶手段の内容を更新する空間校正値・透視拡大率更新手段を備えているとともに、上記注目部位透視拡大率算出手段は、上記傾動機構によりX線検出器を所定角度だけ傾動させたとき、その傾動前後においてX線検出器の視野中での注目部位の位置を変化させないために必要な試料テーブルの移動量xと、上記傾動機構による傾動角度θから、X線管球の焦点に対する注目部位の距離を算出する工程を含むことによって特徴づけられる。 In order to achieve the above object, an X-ray fluoroscopic apparatus for precision measurement according to the present invention includes an X-ray tube, a sample table having a function of moving in a three-dimensional direction, and an X-ray tube sandwiching the sample table. An X-ray detector disposed opposite to the X-ray detector, a tilting mechanism for tilting the X-ray detector around the focal point of the X-ray tube, and an X-ray fluoroscopic image based on pixel information from the X-ray detector Spatial calibration for calculating a spatial calibration value from an X-ray fluoroscopic image of a reference sample with a known dimension placed at a position where the distance in the X-ray optical axis direction with respect to the surface of the sample table is known. In the precision measurement X-ray fluoroscopy device provided with the value calculation means, the storage means for storing the spatial calibration value together with the fluoroscopic magnification of the X-ray fluoroscopic image of the reference sample used for calculating the spatial calibration value; The distance from the surface of the sample table exists at the road position Includes a site of interest perspective enlargement ratio calculation means for exiting calculate the perspective magnification region of interest of the object of fluoroscopy that, when calculating the perspective magnification attention site by the attention site fluoroscopic magnification ratio calculating means, the calculated value and the The spatial calibration value is automatically changed based on the ratio with the perspective magnification stored in the storage means, and the storage means is determined based on the spatial calibration value after the change and the calculated perspective magnification of the target region. A spatial calibration value / perspective magnification update means for updating the contents of the image, and the attention site fluoroscopic magnification calculation means, when the X-ray detector is tilted by a predetermined angle by the tilt mechanism, The distance of the region of interest with respect to the focal point of the X-ray tube is determined from the amount of movement x of the sample table necessary to prevent the position of the region of interest in the field of view of the X-ray detector from changing and the tilt angle θ by the tilt mechanism. It is characterized by including a calculating step .

本発明によれば、参照試料を用いて任意の透視拡大率のもとに空間校正値を求めたとき、その空間校正値が透視拡大率と併せて記憶されるとともに、透視対象物内部の試料テーブル表面からの距離が不明な注目部位の透視拡大率を、傾動機構によりX線検出器を傾動させ、その傾動前後においてX線検出器の視野中で注目部位の位置を変化させないために必要な試料テーブルの移動量と傾動角度とから正確に求める手段を備えているので、任意の透視拡大率のもとに一旦空間校正を行っておけば、透視対象物内の任意の高さに存在する注目部位の透視拡大率を正確に求めることにより、その透視拡大率に併せて空間校正値が自動的に更新されて、測定バーツール等を用いて画面上からその注目部位の実寸法を簡単かつ正確に計測することが可能となる。 According to the present invention, when a spatial calibration value is obtained based on an arbitrary perspective magnification using a reference sample, the spatial calibration value is stored together with the perspective magnification, and the sample inside the fluoroscopic object is stored. the fluoroscopic magnification of the distance is unknown attention site from the table surface, necessary for by tilting the X-ray detector by tilting mechanism, does not change the position of the target sites in the field of view of the X-ray detector at its tilting back and forth Because it is equipped with a means to accurately determine the amount of movement and tilt angle of the sample table , once it is spatially calibrated based on an arbitrary perspective magnification, it exists at an arbitrary height within the fluoroscopic object. By accurately determining the perspective magnification of the target area to be updated, the spatial calibration value is automatically updated in accordance with the perspective magnification ratio, and the actual size of the target area can be easily determined from the screen using a measurement bar tool or the like. Can be measured accurately To become.

X線検出器の傾動機構を備えたX線透視装置に本発明を適用し、傾動機構によるX線検出器を傾動させるとともに、その傾動により画面上で注目部位の移動を相殺するように試料テーブルを移動させ、X線検出器の傾動角度と試料テーブルの移動量とから、透視対象物内部の注目部位のX線管球の焦点からの距離を算出する装置を実現した。   The present invention is applied to an X-ray fluoroscopic apparatus equipped with an X-ray detector tilting mechanism, and the X-ray detector is tilted by the tilting mechanism, and the sample table is offset by the tilting so as to cancel the movement of the region of interest on the screen. And an apparatus for calculating the distance from the focal point of the X-ray tube at the site of interest inside the fluoroscopic object from the tilt angle of the X-ray detector and the amount of movement of the sample table.

図1は本発明の実施例の要部構成図であり、機械的構成を表す模式図と電気的構成を表すブロック図とを併記して示す図である。 Figure 1 is a block diagram illustrating the principal components of a real施例of the present invention, is a view showing shown together with a block diagram illustrating a schematic electrical configuration representing the mechanical structure.

X線管球1は、X線の光軸Lが鉛直方向上方に向かうように配置され、その上方に水平面に沿った試料テーブル2が設けられている。試料テーブル2の上方には、空隙を開けてX線カメラ3が配置されており、透視対象物W(以下、試料Wと称する)は試料テーブル2の上に載せられた状態でその下方からX線が照射され、試料Wを透過したX線がX線カメラ3に入射する。X線カメラ3は例えばイメージインテンシファイアとCCDとを組み合わせた公知のものであり、その刻々の出力は、キャプチャーボードがインストールされたコンピュータ4に取り込まれ、表示器5に試料WのX線透視像が表示されるようになっている。   The X-ray tube 1 is disposed such that the optical axis L of the X-ray is directed upward in the vertical direction, and a sample table 2 along a horizontal plane is provided above the X-ray tube 1. An X-ray camera 3 is disposed above the sample table 2 with a gap between them, and the fluoroscopic object W (hereinafter referred to as the sample W) is placed on the sample table 2 from below X. The X-rays irradiated with the rays and transmitted through the sample W enter the X-ray camera 3. The X-ray camera 3 is, for example, a publicly known combination of an image intensifier and a CCD. The output of the X-ray camera 3 is taken into a computer 4 on which a capture board is installed, and the sample 5 is X-rayed through the display 5. An image is displayed.

X線カメラ3は、傾動機構6によってX線光軸Lに対して任意の角度θで傾動させることができるようになっている。この傾動は、図示のように鉛直方向にz軸を、水平面上で互いに直交する方向にx,y軸を取ったとき、x−z平面上において、X線カメラ3がX線管球1の焦点1aを中心とした円弧状の動作によって行われる。   The X-ray camera 3 can be tilted at an arbitrary angle θ with respect to the X-ray optical axis L by the tilt mechanism 6. As shown in the figure, when the z-axis is taken in the vertical direction and the x and y axes are taken in the directions orthogonal to each other on the horizontal plane, the X-ray camera 3 moves the X-ray tube 1 on the xz plane. This is performed by an arc-shaped motion centered on the focal point 1a.

試料テーブル2は、x軸駆動機構2a,y軸駆動機構2bおよびz軸駆動機構2cにより、x,y,z軸方向に移動させることができる。これらのx軸駆動機構2a,y軸駆動機構2b、z軸駆動機構2c、および傾動機構6は、それぞれに対応するモータを駆動源とし、これらのモータはそれぞれのドライバを含む軸制御装置7から供給される駆動信号によって駆動制御される。この軸制御装置7は前記したコンピュータ4に接続されており、コンピュータ4のキーボード4aやジョイスティック(図示せず)などを操作することによって、試料テーブル2を任意の3次元方向に移動させることができる。また、試料テーブル2のx,yおよびz軸方向への刻々の座標は、例えば各軸ごとに設けられているエンコーダ等の出力によってコンピュータ4が認識できるようになっている。   The sample table 2 can be moved in the x-, y-, and z-axis directions by the x-axis drive mechanism 2a, the y-axis drive mechanism 2b, and the z-axis drive mechanism 2c. The x-axis drive mechanism 2a, the y-axis drive mechanism 2b, the z-axis drive mechanism 2c, and the tilt mechanism 6 are driven by motors corresponding to the x-axis drive mechanism 2a, the y-axis drive mechanism 2b, and the tilt mechanism 6, respectively. The drive is controlled by the supplied drive signal. The axis control device 7 is connected to the computer 4 described above, and the sample table 2 can be moved in an arbitrary three-dimensional direction by operating a keyboard 4a or a joystick (not shown) of the computer 4. . Further, the coordinates of the sample table 2 in the x, y, and z axis directions can be recognized by the computer 4 by the output of, for example, an encoder provided for each axis.

コンピュータ4には、空間校正のための校正プログラムと、表示器5に表示された試料WのX線透視像上で任意の注目部位Vを指定することによって、注目部位Vの試料テーブル2の表面からの距離を自動的に算出してその正確な透視拡大率を算出し、その算出時に自動的に空間校正値を更新して、更新後の空間校正値を用いて透視画像上の任意の2点間の距離を求める計測プログラムが書き込まれている。   The computer 4 designates an arbitrary region of interest V on a calibration program for spatial calibration and an X-ray fluoroscopic image of the sample W displayed on the display 5, whereby the surface of the sample table 2 of the region of interest V is displayed. Automatically calculates the distance from the image to calculate the exact perspective magnification, updates the spatial calibration value automatically at the time of calculation, and uses the updated spatial calibration value to change any 2 A measurement program for obtaining the distance between points is written.

校正プログラムにおいては、図2にその手順を表すフローチャートを示すように、ミクロチャート等の所要の参照試料を試料テーブル2上の定められた位置にセットし、試料テーブル2を移動させてその参照試料をX線カメラ3の視野内に入れ、表示器5の画面上にその透視像を表示させ、空間校正を行う旨の指令をキーボード4a等から入力する。これにより、測定バーツールが画面上に表示される。オペレータがマウス4bを操作して、その測定バーツールを参照試料の実寸法既知の2点間に指し渡すように移動並びに伸縮させた後、その実寸法をキーボード4bから入力することにより、画面上の測定バーツールの長さと実寸法とから、画面の1画素当たりの実寸法を空間校正値Cとして算出し、コンピュータ4のメモリに記憶する。   In the calibration program, as shown in a flowchart showing the procedure in FIG. 2, a required reference sample such as a microchart is set at a predetermined position on the sample table 2, and the reference table is moved by moving the sample table 2. In the field of view of the X-ray camera 3, the fluoroscopic image is displayed on the screen of the display 5, and a command for spatial calibration is input from the keyboard 4 a or the like. As a result, the measurement bar tool is displayed on the screen. The operator operates the mouse 4b to move and expand / contract the measurement bar tool so that it passes between two known points of the actual size of the reference sample, and then inputs the actual size from the keyboard 4b. From the measurement bar tool length and actual dimension, the actual dimension per pixel of the screen is calculated as a spatial calibration value C and stored in the memory of the computer 4.

また、このとき、参照試料は、試料テーブルの定められた位置にセットすることによって、試料テーブル2の表面からの距離が一定となるようになっており、また、X線カメラ3の受像面とX線管球1の焦点1aとの距離が既知となっているため、空間校正時における試料テーブル2のz方向位置、並びに装置定数であるX線カメラ3の受像面への結像倍率と表示器5の画面上に表示される透視像の大きさとの関係とを併せて、正確な透視拡大率(総合倍率)Mを算出することができ、その透視拡大率Mを上記した空間校正値Cとともにコンピュータ4のメモリに記憶する。   At this time, the reference sample is set at a predetermined position on the sample table so that the distance from the surface of the sample table 2 becomes constant, and the reference surface of the X-ray camera 3 Since the distance from the focal point 1a of the X-ray tube 1 is known, the position in the z direction of the sample table 2 at the time of spatial calibration, and the imaging magnification and display on the image receiving surface of the X-ray camera 3 which are apparatus constants In addition to the relationship with the size of the fluoroscopic image displayed on the screen of the device 5, an accurate fluoroscopic magnification (total magnification) M can be calculated. In addition, it is stored in the memory of the computer 4.

一方、計測プログラムにおいては、図3にその手順を表すフローチャートを示すように、X線カメラ3を傾動させずに(傾動角度θ=0)透視対象物Wをその視野内に入れて、透視対象物Wの透視像を表示器5に表示させている状態で、その画面上で任意の注目部位Vを指定する。この状態におけるX線管球1と試料テーブル2およびX線カメラ3の相互の関係は図4(A)に示す通りである。   On the other hand, in the measurement program, as shown in the flowchart showing the procedure in FIG. 3, the fluoroscopic object W is placed in the field of view without tilting the X-ray camera 3 (tilt angle θ = 0), and the fluoroscopic object. In a state where a fluoroscopic image of the object W is displayed on the display device 5, an arbitrary target region V is designated on the screen. The mutual relationship between the X-ray tube 1, the sample table 2, and the X-ray camera 3 in this state is as shown in FIG.

以上の指定を行うことにより、傾動機構6があらかじめ設定された角速度であらかじめ設定された角度だけ傾動する。この傾動により、X線カメラ3の視野が移動し、注目部位Vの画面上での位置が変化していくことになるが、このプログラムにおいては、その注目部位Vが画面上の当初位置に位置するように試料テーブル2を自動的にx軸方向に移動させて追尾する。図4(B)に示すように、傾動角度θがあらかじめ設定されたθc に達した時点で、試料テーブル2がxc だけ移動していたとすると、そのθc とxc を用いて、注目部位Vの試料テーブル2の表面からの距離hを以下の式に基づいて算出する。
h=xc /tanθc ・・・・(1)
By performing the above designation, the tilt mechanism 6 tilts by a preset angle at a preset angular velocity. By this tilting, the field of view of the X-ray camera 3 moves and the position of the attention site V changes on the screen. In this program, the attention site V is positioned at the initial position on the screen. The sample table 2 is automatically moved in the x-axis direction for tracking. As shown in FIG. 4 (B), when the tilt angle theta has reached a preset theta c, when the sample table 2 has been moved by x c, using the theta c and x c, of interest The distance h from the surface of the sample table 2 of the part V is calculated based on the following formula.
h = x c / tan θ c (1)

前記したように、X線カメラ3の受像面とX線管球1の焦点1aとの距離が既知であり、また、試料テーブル2の表面とX線管球1の焦点1aとの距離もエンコーダ等の出力から知ることができるため、hが判明することによって、参照試料を用いた空間校正時と同様に、その注目部位Vの正確な透視拡大率(総合倍率)mを算出することができる。   As described above, the distance between the image receiving surface of the X-ray camera 3 and the focal point 1a of the X-ray tube 1 is known, and the distance between the surface of the sample table 2 and the focal point 1a of the X-ray tube 1 is also an encoder. Therefore, when h is known, an accurate perspective magnification (total magnification) m of the site of interest V can be calculated in the same manner as in spatial calibration using a reference sample. .

そして、このように注目部位Vの透視拡大率mを算出した時点で、空間校正時に記憶している透視拡大率Mをmに更新すると同時に、空間校正時に求めた透視拡大率Mと注目部位Vの透視拡大率mとを比較し、両者の比m/Mを用いて、その時点で記憶している空間校正値Cを、以下の式によって新たな空間校正値Crに更新する。
Cr=C・m/M ・・・・(2)
When the perspective magnification m of the attention site V is calculated in this way, the perspective magnification M stored at the time of spatial calibration is updated to m, and at the same time, the perspective magnification M and the attention site V obtained at the time of spatial calibration are updated. And the ratio m / M of the two is used to update the spatial calibration value C stored at that time to a new spatial calibration value Cr by the following equation.
Cr = C · m / M (2)

以上の更新動作を完了した後、測定バーツールを表示し、従来と同等の手順により注目部位Vの任意の2点間に測定バーツールを移動・伸縮させることによって、その2点間の実寸法が更新後の空間校正値Crを用いて計測され、その計測結果が表示器5に表示される。   After the above update operation is completed, the measurement bar tool is displayed, and the actual dimension between the two points is displayed by moving / stretching the measurement bar tool between any two points of the target region V by the same procedure as before. Is measured using the updated spatial calibration value Cr, and the measurement result is displayed on the display 5.

以上の動作により、試料テーブル2の表面からのz方向への距離が不明な注目部位V中の任意の2点間の距離を、簡単かつ高精度に求めることができる。   With the above operation, the distance between any two points in the site of interest V whose distance in the z direction from the surface of the sample table 2 is unknown can be determined easily and with high accuracy.

本発明の実施例の要部構成図であり、機械的構成を表す模式図と電気的構成を表すブロック図とを併記して示す図である。It is a principal part block diagram of the Example of this invention, and is the figure which writes together and shows the schematic diagram showing a mechanical structure, and the block diagram showing an electric structure. 本発明の実施例における校正プログラムの内容を示すフローチャートである。It is a flowchart which shows the content of the calibration program in the Example of this invention. 本発明の実施例における計測プログラムの内容を示すフローチャートである。It is a flowchart which shows the content of the measurement program in the Example of this invention. 本発明の実施例における計測プログラムで注目部位Vの透視拡大率を算出する際の説明図である。It is explanatory drawing at the time of calculating the fluoroscopy magnification of the attention site V with the measurement program in the example of the present invention.

符号の説明Explanation of symbols

1 X線管球
2 試料テーブル
3 X線カメラ
4 コンピュータ
5 表示器
6 傾動機構
7 軸制御装置
W 試料
V 注目部位
1 X-ray tube 2 Sample table 3 X-ray camera 4 Computer 5 Display 6 Tilt mechanism 7 Axis control device W Sample V Target region

Claims (1)

X線管球と、3次元方向への移動機能を備えた試料テーブルと、その試料テーブルを挟んでX線管球に対向配置されたX線検出器と、そのX線検出器を上記X線管球の焦点を中心として傾動させる傾動機構と、上記X線検出器からの画素情報に基づくX線透視像を表示器に表示する画像形成手段と、上記試料テーブルの表面に対するX線光軸方向への距離が既知の位置に置かれた既知寸法の参照試料のX線透視像から空間校正値を算出する空間校正値算出手段を備えた精密計測用X線透視装置において、
上記空間校正値を、当該空間校正値の算出に用いた参照試料のX線透視像の透視拡大率と併せて記憶する記憶手段と、上記試料テーブルの表面からの距離が未知の位置に存在する透視対象物の注目部位の透視拡大率を算出する注目部位透視拡大率算出手段を備え、その注目部位透視拡大率算出手段により注目部位の透視拡大率を算出したとき、その算出値と上記記憶手段に記憶されている透視拡大率との比に基づいて上記空間校正値を自動的に変更し、その変更後の空間校正値と、算出された注目部位の透視拡大率によって、上記記憶手段の内容を更新する空間校正値・透視拡大率更新手段を備えているとともに、上記注目部位透視拡大率算出手段は、上記傾動機構によりX線検出器を所定角度だけ傾動させたとき、その傾動前後においてX線検出器の視野中での注目部位の位置を変化させないために必要な試料テーブルの移動量xと、上記傾動機構による傾動角度θから、X線管球の焦点に対する注目部位の距離を算出する工程を含むことを特徴とする精密計測用X線透視装置。
And X-ray tube, a sample table having a moving function of the three-dimensional directions, the X-ray detector disposed facing the X-ray tube across the sample table, the X-ray that the X-ray detector A tilting mechanism for tilting about the focal point of the tube ; an image forming means for displaying an X-ray fluoroscopic image based on pixel information from the X-ray detector on the display; and an X-ray optical axis direction with respect to the surface of the sample table In the X-ray fluoroscopic apparatus for precision measurement provided with a spatial calibration value calculating means for calculating a spatial calibration value from an X-ray fluoroscopic image of a reference sample of a known size placed at a position where the distance to is known,
Storage means for storing the spatial calibration value together with the fluoroscopic magnification of the X-ray fluoroscopic image of the reference sample used for calculation of the spatial calibration value, and the distance from the surface of the sample table exists at an unknown position includes a site of interest perspective enlargement ratio calculation means for exiting calculate the perspective magnification region of interest of the object of fluoroscopy, when calculating the perspective magnification attention site by the attention site fluoroscopic magnification ratio calculating means, the calculated value and the stored The spatial calibration value is automatically changed based on the ratio with the perspective magnification stored in the means, and the spatial calibration value after the change and the calculated perspective magnification of the target region A spatial calibration value / perspective magnification update means for updating contents is provided, and when the X-ray detector is tilted by a predetermined angle by the tilt mechanism, the attention site fluoroscopic magnification calculation means is before and after the tilt. X A step of calculating the distance of the site of interest with respect to the focal point of the X-ray tube from the amount x of movement of the sample table necessary for not changing the position of the site of interest in the field of view of the detector and the tilt angle θ by the tilt mechanism. X-ray fluoroscopic apparatus for precision measurement, characterized by comprising:
JP2003270746A 2003-07-03 2003-07-03 X-ray fluoroscope for precision measurement Expired - Fee Related JP4133657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003270746A JP4133657B2 (en) 2003-07-03 2003-07-03 X-ray fluoroscope for precision measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003270746A JP4133657B2 (en) 2003-07-03 2003-07-03 X-ray fluoroscope for precision measurement

Publications (2)

Publication Number Publication Date
JP2005024506A JP2005024506A (en) 2005-01-27
JP4133657B2 true JP4133657B2 (en) 2008-08-13

Family

ID=34190629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003270746A Expired - Fee Related JP4133657B2 (en) 2003-07-03 2003-07-03 X-ray fluoroscope for precision measurement

Country Status (1)

Country Link
JP (1) JP4133657B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4760072B2 (en) * 2005-03-17 2011-08-31 パナソニック株式会社 X-ray inspection apparatus and X-ray inspection method
JP4793541B2 (en) * 2005-04-07 2011-10-12 株式会社島津製作所 Computed tomography equipment
JP4577213B2 (en) * 2005-12-27 2010-11-10 株式会社島津製作所 X-ray inspection equipment
US7796724B2 (en) * 2006-12-01 2010-09-14 Shimadzu Corporation X-ray fluoroscopic system
JP5532539B2 (en) * 2008-02-05 2014-06-25 株式会社島津製作所 X-ray inspection equipment
JP5309583B2 (en) * 2008-02-05 2013-10-09 株式会社島津製作所 X-ray inspection equipment

Also Published As

Publication number Publication date
JP2005024506A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
KR101167292B1 (en) Method for planing an inspection path for determining areas that are to be inspected
KR101110145B1 (en) X-ray fluoroscope
TWI510756B (en) A shape measuring device, a shape measuring method, a manufacturing method and a program for a structure
TWI623724B (en) Shape measuring device, structure manufacturing system, stage system, shape measuring method, structure manufacturing method, shape measuring program, and computer readable recording medium
JP2008254150A (en) Teaching method and teaching device of robot
KR20070053759A (en) Fluorocope
JP2005106505A (en) Detector and method for detecting corresponding points between images
JP7273185B2 (en) COORDINATE SYSTEM ALIGNMENT METHOD, ALIGNMENT SYSTEM AND ALIGNMENT APPARATUS FOR ROBOT
KR101041840B1 (en) Defect-inspecting apparatus and contol method therof
JP4133657B2 (en) X-ray fluoroscope for precision measurement
JP2015072197A (en) Shape measurement device, structure manufacturing system, shape measurement method, structure manufacturing method, and shape measurement program
JP2000205821A (en) Instrument and method for three-dimensional shape measurement
JP3487292B2 (en) X-ray fluoroscope
JP2004257914A (en) X-ray fluoroscopic apparatus
JP4687853B2 (en) X-ray fluoroscopic equipment
JP2005172610A (en) Three-dimensional measurement apparatus
JP2009258135A (en) Three-dimensional measuring device
JP4636258B2 (en) X-ray equipment
JP2007085912A (en) Position measurement method, position measuring device and position measuring system
JP4577213B2 (en) X-ray inspection equipment
JPH10221018A (en) Three-dimensional measuring method
JP4696826B2 (en) X-ray inspection equipment
JPH0821722A (en) Method and equipment for measuring shape
JP2007121085A (en) X-ray inspection device
JP4340138B2 (en) Non-contact 3D shape measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4133657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees