JP4130255B2 - プラズマ処理装置 - Google Patents
プラズマ処理装置 Download PDFInfo
- Publication number
- JP4130255B2 JP4130255B2 JP11140198A JP11140198A JP4130255B2 JP 4130255 B2 JP4130255 B2 JP 4130255B2 JP 11140198 A JP11140198 A JP 11140198A JP 11140198 A JP11140198 A JP 11140198A JP 4130255 B2 JP4130255 B2 JP 4130255B2
- Authority
- JP
- Japan
- Prior art keywords
- line
- coaxial line
- characteristic impedance
- radial
- plasma processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32174—Circuits specially adapted for controlling the RF discharge
- H01J37/32183—Matching circuits
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Drying Of Semiconductors (AREA)
- Plasma Technology (AREA)
- Chemical Vapour Deposition (AREA)
- ing And Chemical Polishing (AREA)
Description
【発明の属する技術分野】
この発明はプラズマを利用してCVD(Chemical Vapor Deposition)やエッチング等の処理をする装置に関し、特に、高周波電力をプラズマに供給する伝送路の構造に特徴のあるプラズマ処理装置に関する。
【0002】
【従来の技術】
現在、プラズマを利用してCVDやエッチング等の表面処理が広く行われており、これらの技術を利用してLSI(大規模集積回路)やFPD(Flat Panel Device)が製造されている。プラズマを生成する方式には各種のものが知られているが、高周波放電を利用したプラズマ生成方式は、安定したプラズマが大面積で得られることから広く使われている。高周波放電を利用したプラズマ生成方式は、容量結合型と誘導結合型とに大別されるが、この出願の発明は、容量結合型のプラズマ生成方式に関係している。
【0003】
米国特許第5210466号明細書は高い周波数(VHF/UHF帯)を利用するのに適した容量結合型のプラズマ処理装置を開示している。図7はこの従来のプラズマ処理装置の正面断面図である。真空容器10は円筒状の側壁12と天板14と底板16で構成されている。真空容器10の内部の中央には円柱状のカソード電極18があり、その周囲を絶縁体20を挟んで環状導体22が取り囲んでいる。そして、カソード電極18と絶縁体20と環状導体22とで容器内伝送路24を構成している。真空容器10は排気装置34で排気される。放電ガスはガス導入装置30のガス吹き出し板32を通して適切な流量で真空容器10内に導入され、所定の圧力に保たれる。高周波電源26からの高周波エネルギーをマッチング回路28を介して上述の容器内伝送路24に導くと、カソード電極18とアノード電極(主としてガス吹き出し板32)の間にプラズマが生成する。そして、エッチングの例で説明すると、プラズマ中のイオンがカソード電極18上の基板36に作用してエッチングが行われる。
【0004】
図7のプラズマ処理装置は、上述のような伝送路構造を採用することで、50〜800MHzといった高い周波数でプラズマを発生させることを可能にしている。このように高い周波数を用いることにより、電極シース電圧を低くして基板への電気的ダメージを少なくし、しかも、商業的にも利用できるだけの十分な堆積速度またはエッチング速度を得ている。
【0005】
図7に示す従来装置では、容器内伝送路24は1本の同軸線であり、この同軸線は次のような考え方で設計されている。同軸線の特性インピーダンスをZ0、長さをL、位相定数をβとすると、プラズマを負荷インピーダンス(ZL)とする同軸線の、マッチング回路28からみた入力インピーダンスZinは次の(1)式で与えられる。
【0006】
【数1】
Zin=Z0[ZL+jZ0tan(βL)]/[Z0+jZLtan(βL)] …(1)
【0007】
この式から明らかなように、Z0=ZLのとき、Lに無関係にZin=Z0となる。すなわち、プラズマインピーダンスZLに等しい特性インピーダンスZ0をもつ同軸線を設定することにより、マッチング回路28から見た同軸線のインピーダンスは一定値(プラズマインピーダンスに等しい)になり、理想的な整合条件になる。しかし、実際にはプラズマインピーダンスはプラズマの状態によって変化して、ある幅をもつものであるから、同軸線の特性インピーダンスZ0はその変化幅のほぼ中央値に設定することになる。この場合、厳密にはZ0=ZLではなくなり、線路長Lの影響がでてきて、マッチング回路の整合条件を悪くする。この影響度を小さくするためには、線路長Lを4分の1波長より大幅に短くすることが必要になる。
【0008】
【発明が解決しようとする課題】
図7に示す従来装置では、容器内伝送路24は、カソード電極18を内側導体とし環状導体22を外側導体とする同軸線である。基板36はカソード電極18の上に置く必要があるために、カソード電極18の直径は基板の直径よりも必ず大きくなければならない。そして、このカソード電極18の外側に環状導体22があり、さらにその外側に側壁12がある。このような装置構造では、基板が大型化すると真空容器の側壁12の外形寸法は非常に大きくなり、装置重量が増加することになる。最近の技術動向として、LSIに使用されるウェーハの寸法を直径300mmへと大口径化することが要請されている。また、FPDの場合には、ガラス基板の寸法を550mm×650mm、あるいは1メートル角級へと大型化することが要請されている。したがって、カソード電極18の直径は大きくならざるを得ず、その結果、装置重量も増え、製造費用も高くなるという問題が生じる。
【0009】
この発明は上述の問題点を解決するためになされたものであり、その目的は、基板の寸法が大きくなっても装置の重量があまり増加しないプラズマ処理装置を提供することにある。この発明の別の目的は、高周波エネルギーがプラズマに有効に結合して、しかも比較的小型で低コストのプラズマ処理装置を提供することにある。
【0010】
【課題を解決するための手段】
この発明のプラズマ処理装置は30〜300MHz(VHF帯)の高周波電力を利用するものであり、容器内伝送路の構造に特徴がある。この発明における容器内伝送路は、第1の同軸線と、第1の同軸線よりも径の小さい第2の同軸線と、第1の同軸線と第2の同軸線とをつなぐラジアル線とから構成されている。ここで、径の異なる二つの同軸線をつなぐ「ラジアル線」とは、高周波電力が軸方向ではなくて半径方向に伝搬する伝送路を意味する。
【0011】
第1の同軸線の外側導体と第2の同軸線の外側導体はいずれも真空容器が兼用している。第1の同軸線の端面はプラズマ生成空間に面しており、第2の同軸線は前記マッチング回路に接続されている。高周波電源から出力された高周波電力は、マッチング回路、第2の同軸線、ラジアル線、第1の同軸線の順に伝搬して、プラズマに供給される。第1の同軸線のプラズマに面する端面(または対向電極のプラズマに面する端面)に被処理基板が置かれる。
【0012】
容器内伝送路は各構成部分間でインピーダンス整合をとる必要がある。まず、基本的には、第1の同軸線の特性インピーダンスがプラズマインピーダンスにほぼ等しくなるように設計する。その上で、この発明では、ラジアル線の外端部における特性インピーダンスを第1の同軸線の特性インピーダンスの0.5〜2.0倍の範囲内に設定し、第2の同軸線の特性インピーダンスをラジアル線の内端部における特性インピーダンスの0.5〜2.0倍の範囲内に設定している。さらに、容器内伝送路を電磁波が通過するときの総位相変化量が0〜40度の範囲内になるように伝送路を設計することが好ましい。
【0013】
ラジアル線は、典型的には、互いに平行に対向する1対の中空円板状の導体面を備えた構造であるが、この発明では、ラジアル線のギャップ間隔を半径方向に変化させている。すなわち、ラジアル線を、中空円板状の第1の導体面と、この第1の導体面に対向していて切頭円錐面の形状をした第2の導体面とを備えた構造にして、ラジアル線の外側から内側に向かって第1の導体面と第2の導体面との間隔が広がっていくようにする。この場合に、ラジアル線の横断面形状において第1の導体面と第2の導体面とのなす角度は0度を超えて30度以下の範囲内にするのが好ましい。このように内側におけるギャップ間隔を外側よりも広くすると、ラジアル線の内端部における特性インピーダンスが高くなって、第2の同軸線の特性インピーダンスも高くでき、径の小さい第2の同軸線の導体間ギャップを広くできる。
【0014】
この発明では、一般的には、第1の同軸線と第2の同軸線は円筒状であり、ラジアル線は対向する中空円板の形状である。ただし、第1の同軸線と第2の同軸線の横断面形状を、円形以外の形状、例えば矩形、にすることもできる。
【0015】
この発明は、2周波プラズマ処理装置にも適用できる。すなわち、対向電極の一方の電極にMH帯(0.3〜3MHz)からHF帯(3〜30MHz)の範囲の高周波電力を供給し、他方の電極にVHF帯(30〜300MHz)の高周波電力を供給する。そして、どちらの対向電極の容器内伝送路も、径の異なる同軸線をラジアル線でつないだ構造にする。
【0016】
【発明の実施の形態】
図1は、この発明の第1の参考例の正面断面図である。真空容器40は円筒状の第1側壁42と円形の天板44と円形の底板46で構成されている。さらに、底板46の中央では、第1側壁42よりも大幅に径の小さい円筒状の第2側壁68が下方に突き出している。天板44にはガス導入装置48が設けられていて、ガス吹き出し板50から放電ガス52が噴き出すようになっている。真空容器40は排気装置64で排気される。
【0017】
真空容器40の内部の中央にはカソード電極54がある。カソード電極54は、長さがL1で直径がD1の短い円柱状の大径部分56と、長さがL2で直径がD2の細長い円柱状の小径部分58とから構成されていて、これらが一体に形成されている。大径部分56の上端面はプラズマ生成空間76に面している。大径部分56の上端面にはプラズマ処理すべき基板66を載せることになる。小径部分58の下端はマッチング回路60を介して高周波電源62に接続されている。小径部分58の下方のかなりの部分は円筒状の第2側壁68に取り囲まれている。
【0018】
容器内伝送路は、径の異なる二つの同軸線とこれらをつなぐラジアル線とで構成されている。大径の第1の同軸線(以下、大径同軸線という)は、カソード電極54の大径部分56と真空容器40の第1側壁42とこれらの間の絶縁体70とで形成されている。この大径同軸線の長さはL1である。絶縁体70には排気用の貫通孔71が形成されている。ラジアル線は、カソード電極54の大径部分56の下面と底板46の上面と両者の間のギャップ72(ギャップ間隔はd)とによって形成されている。このラジアル線は、中空円板が互いに対向した平行平板の形状をしている。このラジアル線の部分では、高周波エネルギーが半径方向に伝搬する。小径の第2の同軸線(以下、小径同軸線という。)は、カソード電極54の小径部分58と真空容器40の第2側壁68とこれらの間のギャップ74とで形成されている。この第2同軸線の長さL3は(L2−d)に等しい。なお、伝送路を設計する場合には、大径同軸線の長さとしてはL1+(d/2)を、小径同軸線の長さとしてはL3+(d/2)を、それぞれの実効長さとして使用するのが好ましい。
【0019】
図1のプラズマ処理装置をエッチング装置として使う場合を例にして、このプラズマ装置の使用方法を説明する。カソード電極54の大径部分56の上端面に基板66を載せる。真空容器40を排気装置64で排気する。放電ガス52をガス導入装置48のガス吹き出し板50から導入して、その流量を適切に調整することにより、真空容器40の内部を所定の圧力に保つ。高周波電源62からマッチング回路60を介してVHF帯(30〜300MHz)の高周波エネルギーを容器内伝送路に供給する。これにより、カソード電極54とアノード電極(主としてガス吹き出し板50)の間の空間(プラズマ生成空間76)に高周波電界が誘起され、プラズマが生成される。プラズマ中のイオンは基板66に作用し、エッチングが行われる。
【0020】
さて、図1に示した容器内伝送路は上述のように三つの伝送路で構成されているが、各伝送路をどのように設計すれば高周波エネルギーがプラズマに有効に結合するかが重要な問題である。そこで、この点を以下に詳しく説明する。
【0021】
最初に、大径同軸線とその負荷とのインピーダンス整合条件について述べる。大径同軸線は、特性インピーダンスZ01、伝送長L1、位相定数βを備えており、プラズマはこの大径同軸線の負荷ZL(プラズマインピーダンス)となっている。ゆえに、大径同軸線の入力インピーダンスZ1は次の(2)式で与えられる。
【0022】
【数2】
Z1=Z01[ZL+jZ01tan(βL1)]/[Z01+jZLtan(βL1)] …(2)
【0023】
通常のエッチング条件では、伝送線から見たプラズマインピーダンスZLは直列RC回路で表現され、そのときの抵抗Rはおよそ1〜30Ω、容量Cは50〜400pFの範囲内にある。大径同軸線の特性インピーダンスZ01は、この直列RC回路のインピーダンスにほぼ等しくなるように例えば10Ωに設定される。
【0024】
上述の(2)式から明らかなように、Z01=ZLのとき、L1に無関係にZ1=Z01となる。すなわち、プラズマインピーダンスZLに等しい特性インピーダンスZ01をもつ大径同軸線を設計することにより、ラジアル線から見た大径同軸線の入力インピーダンスZ1は、大径同軸線の特性インピーダンスZ01にほぼ等しくなる。ここで、大径同軸線の伝送長L1は非常に短い値に設定されているから、必ずしもZ01=ZLの関係を満足しなくても、これに近い関係のときに、ほぼZ1=Z01の関係が成立する。すなわち、Z01=(0.5〜2.0)ZLの関係にあればよく、好ましくはZ01=(0.8〜1.2)ZLとする。この条件であっても、ほぼZ1=Z01の関係が成立する。すなわち、大径同軸線の入力インピーダンスがその特性インピーダンスに等しくなり(大径同軸線の長さに無関係に一定になり)、理想的な整合条件となる。
【0025】
次に、ラジアル線とその負荷とのインピーダンス整合条件を検討する。大径同軸線の入力インピーダンスZ1はラジアル線の負荷となっており、ラジアル線の、小径同軸線から見た入力電磁界インピーダンスZfiは次の(3)式で与えられる。ここで、式中のZfL(ラジアル線の負荷)としては、大径同軸線の入力インピーダンスZ1を電磁界インピーダンスに変換したものを用いる(この点は後述する)。
【0026】
【数3】
Zfi=Z0i[ZfLcos(θi−ψL)+jZ0Lsin(θi−θL)]/[Z0Lcos(ψi−θL)+jZfLsin(ψi−ψL)] …(3)
【0027】
ここで、Z0i、Z0Lは、ラジアル線の入力位置、負荷位置における特性電磁界インピーダンス、θi、θLは、ラジアル線の入力位置、負荷位置における軸方向電界の位相、ψi、ψLは、ラジアル線の入力位置、負荷位置における周方向磁界の位相である。これらの特性電磁界インピーダンスや位相は、中空円板の形状をしたラジアル線の中心からの距離rに応じて変化する。その変化の様子を図2に示す。図2の横軸は規格化半径krである。kはラジアル線の径方向位相定数であり、k=(ω/c)εr 1/2である。ここで、εrはギャップ72を構成する絶縁体の比誘電率であり、ギヤップ72の材質は真空であるから、εr=1.0とすることができる(すなわち、k=ω/c)。
【0028】
ところで、ラジアル線における電磁界インピーダンスZfは、軸方向電界Ezと周方向磁界Hφの比として、Zf=Ez/Hφで定義される。また、この電磁界インピーダンスZfと、電圧と電流の比で定義される通常のインピーダンス(トータルインピーダンス)Ztとの間には、次の(4)式または(5)式の関係がある。
【0029】
【数4】
ri>rLのとき
Zt=[d/(2πr)]Zf …(4)
ri<rLのとき
Zt=−[d/(2πr)]Zf …(5)
ここで、riはラジアル線の入力位置の半径、rLはラジアル線の負荷位置の半径、dは図1に示すギャップ72のギャップ間隔、rはラジアル線の中心からの距離である。
【0030】
ラジアル線を設計する場合、ラジアル線の外端部における特性インピーダンスを大径同軸線の特性インピーダンスに等しく設定し、さらに、ラジアル線の内端部における特性インピーダンスを小径同軸線の特性インピーダンスに等しく設定する。これにより、ラジアル線と大径同軸線との接続部、および、ラジアル線と小径同軸線との接続部でインピーダンス整合をとるようにする。
【0031】
この設計過程で、ラジアル線のギャップ間隔dを変化させて上述の計算を行い、プラズマ処理装置として最適なd値を決定する。ラジアル線の外端部における特性インピーダンスは大径同軸線の特性インピーダンスにほぼ等しいのが理想であるが、実用的には、他の設計要件も勘案して、ラジアル線の外端部における特性インピーダンスは大径同軸線の特性インピーダンスの0.5〜2.0倍(好ましくは0.8〜1.2倍)になるように設定する。同様に、ラジアル線の内端部における特性インピーダンスは小径同軸線の特性インピーダンスにほぼ等しいのが理想であるが、実用的には、他の設計要件も勘案して、ラジアル線の内端部における特性インピーダンスは小径同軸線の特性インピーダンスの0.5〜2.0倍(好ましくは0.8〜1.2倍)になるように設定する。
【0032】
以上のような手法を用いることで、ラジアル線の外端部と内端部において大径同軸線及び内径同軸線とのインピーダンス整合がなされたが、これだけでは不十分な場合がある。その場合には、マッチング回路からプラズマに至る容器内伝送路(小径同軸線・ラジアル線・大径同軸線)を電磁波が通過するときの総位相変化量をできるだけ小さくして、インピーダンスの変成を少なくすることが効果的である。発明者の考えでは、この総位相変化量が0〜40度の範囲内にあるように伝送長が設定されていれば、インピーダンスの変成は実用上問題にならないほど小さくなる。総位相変化量は次の(6)式で求めることができる。
【0033】
【数5】
[総位相変化量]=A(大径同軸線の位相変化量)+B(ラジアル線の位相変化量)+C(小径同軸線の位相変化量) …(6)
ここで、
A=(ω/c)εr 1/2L1(180/π) (度)
B=図2のθのラジアル線内(内端部から外端部まで)の変化量 (度)
C=(ω/c)L3(180/π) (度)
L1、L3は大径同軸線及び小径同軸線の長さ
εrは絶縁体の比誘電率
ωは角周波数
cは光速
【0034】
小径同軸線の入力インピーダンスは、マッチング回路60により通常の同軸ケーブルの特性インピーダンス50Ωに変換されて、高周波電源側に接続される。
【0035】
以上の設計によって、大径同軸線、ラジアル線、小径同軸線のインピーダンスはほぼ整合状態に保たれ、高周波エネルギーがプラズマに有効に結合する。
【0036】
図3はこの発明の第2の参考例の正面断面図である。この第2の参考例は図1に示すプラズマ処理装置の問題点(プラズマ密度とイオンエネルギーを独立に制御することができない)を解決するものである。第2の参考例が第1の参考例と異なるところは上部電極にも高周波電力を印加する点にある。下部電極54aの基本的な構造は第1の参考例と同じなので(使用周波数が異なるので下部電極の寸法は第1の参考例とは異なるが)、その説明は省略する。
【0037】
図3において、真空容器40aの内部には、下部電極54aに対向するように上部電極78が配置されている。この上部電極78は、下部電極54aと同様に、大径部分80と細長い小径部分82とから構成されていて、小径部分82にマッチング回路84を介して高周波電源86が接続されている。そして、この上部電極78の側でも、容器内伝送路が三つの部分から構成されている。すなわち、大径同軸線は大径部分80と第1側壁42とこれらの間の絶縁体88とで形成され、ラジアル線は大径部分80の上面と天板44aの下面と両者の間のギャップ90とで形成され、小径同軸線は小径部分82と第3側壁92とこれらの間のギャップ94とで形成されている。第3側壁92は第1側壁42よりも大幅に径の小さい円筒形状であり、天板44aの中央から上方に突き出している。
【0038】
この上部電極78側の容器内伝送路においても、上述の第1の参考例で説明したのと同じ手法を用いてインピーダンス整合を図っている。
【0039】
上部電極78の大径部分80の内部は放電ガス52の通路になっていて、放電ガス52はガス吹き出し板94から吹き出すようになっている。
【0040】
このプラズマ処理装置で基板66をエッチングする場合には、いわゆる2周波RIE(Reactive Ion Etching)方式の装置となる。この場合、第1の高周波電源62から、バイアス用のMF帯(0.3〜3MHz)からHF帯(3〜30MHz)のエネルギーが、マッチング回路60を介して下部電極54aに加えられる。一方、第2の高周波電源86からはプラズマ生成用のVHF帯(30〜300MHz)のエネルギーがマッチング回路84を介して上部電極78に加えられる。これによって、上下の電極間に高周波電界が誘起され、ガスが電離して、プラズマ生成空間76内にプラズマが生成される。プラズマ中のイオンのエネルギー(基板66に対する加速エネルギー)は第1の高周波電源62(バイアス側の電源)により制御され、プラズマ密度は第2の高周波電源86により制御される。すなわち、イオンエネルギーとプラズマ密度を独立に制御できる。
【0041】
図4はこの発明の実施形態の正面断面図である。この実施形態は、図1の参考例におけるラジアル線の構造を変更したものである。すなわち、図4において、底板46aの上面が切頭円錐面となるように傾斜しており、この点が図1の参考例とは異なっている。それ以外の構造は図1の参考例と同じである。
【0042】
図4において、底板46aの上面96は下に凸の切頭円錐面であり、その横断面形状は、中心に向かって下方に傾斜した直線になっている。その傾斜角はカソード電極54の大径部分56の底面(水平面)に対して0度を超えて30度以下の範囲内である。このような構造により、カソード電極54の大径部分56の下面と底板46aの上面96とで形成されるラジアル線は、中心にいくほどギャップ間隔が広くなっている。すなわち、このラジアル線は内側にいくほどインピーダンスの値が高くなる。ゆえに、このラジアル線の内端部でインピーダンス整合させるべき小径同軸線の特性インピーダンスの値も高くできる。小径同軸線の特性インピーダンスの値を高くできれば、小径部分58と第2側壁68との間のギャップ74を広くできて、同軸線の耐電力性が向上すると共に、50Ωの特性インピーダンスをもつ電源側ケーブルとの整合もとり易くなる。
【0043】
以上、この発明のプラズマ処理装置を主としてエッチング装置の例で説明してきたが、その電極構造を同じにしたままでプラズマCVD装置にも適用できる。
【0044】
また、この発明は、基板として、概略円形のウェーハだけでなく、550mm×650mmのような矩形の基板(FPDの基板)を使うこともできる。なお、矩形基板に対してカソード電極や真空容器の横断面もほぼ矩形にする場合は、矩形を、これと面積の等しい円形に置き換えてから、上述の各種の計算式を適用すればよい。
【0045】
次に、インピーダンスの決定方法について説明する。この発明では、容器内伝送路を3要素(大径同軸線とラジアル線と小径同軸線)で構成しているが、これらの要素間でインピーダンス整合を図ることが重要である。そこで、各要素の特性インピーダンスの算出方法について、以下に説明する。
【0046】
同軸線の特性インピーダンスは次のようにして算出する。図5(A)において、円柱状の内側導体98の外周面の半径をa、中空円筒状の外側導体100の内周面の半径をb、両者の間の誘電体の比誘電率をεrとすると、内側導体98と外側導体100からなる同軸線の特性インピーダンスZ0は次の(7)式で求めることができる。
【0047】
【数6】
Z0=(60/εr 1/2)ln(b/a) …(7)
【0048】
上述の(7)式において、比誘電率εrは誘電体の材質によって決まり周波数にはほとんど依存しないので、同軸線の特性インピーダンスは周波数に依存しない。
【0049】
同軸線の位相定数βは次の(8)式で求めることができる。
【0050】
【数7】
β=(2πf/c)εr 1/2 …(8)
【0051】
ラジアル線の特性インピーダンスは次のようにして算出する。図5(B)において、平行平板間のギャップ間隔をd、誘電体の比誘電率をεrとすると、任意の半径rにおける特性電磁界インピーダンスはZfは、軸方向電界Ezと周方向磁界Hφの比で定義され、次の(9)式で求めることができる。
【0052】
【数8】
Zf(kr)=Ez/Hφ =(377/εr 1/2)[G0(kr)]/[G1(kr)] …(9)
ここで、G0(x)=[J0 2(x)+N0 2(x)]1/2
G1(x)=[J1 2(x)+N1 2(x)]1/2
J0(x)、J1(x)は第1種のベッセル関数
N0(x)、N1(x)は第2種のベッセル関数
k=(ω/c)εr 1/2=(2πf/c)εr 1/2
【0053】
電磁界インピーダンスZfと通常のインピーダンスZtとの換算は上述の(4)式を使えばよい。上述の(9)式から分かるように、径方向位相定数kが周波数fに依存するので、ラジアル線の特性電磁界インピーダンスは半径及び周波数に依存する。
【0054】
【実施例】
次に、図1のプラズマ処理装置の設計例を図6を参照して説明する。60MHzのVHF帯の高周波を使用して8インチウェーハを処理するプラズマ処理装置を設計する場合を例にとって説明する。カソード電極54の小径部分58の外周面の半径をr1、第2側壁68の内周面の半径をr2、カソード電極54の大径部分56の外周面の半径をr3、第1側壁42の内周面の半径をr4とする。絶縁体70には石英(比誘電率εr=3.78)を使うことにする。
【0055】
まず、カソード電極54の大径部分56(ウェーハを載せる部分)の直径を280mmとし(r3=140mm)、大径部分56の長さL1を60mm、小径部分58の第2側壁68に囲まれた部分の長さL3を50mmと仮定する。
【0056】
最初に、大径同軸線の特性インピーダンスZ01を決定することで、第1側壁42の内周面の半径r4を求めることにする。周波数が60MHzのときのプラズマのインピーダンスは約10Ωである。これが大径同軸線の負荷となる。理想的には大径同軸線の特性インピーダンスZ01を負荷インピーダンスZL(10Ω)に等しくすべきであるが、ここでは、Z01=8Ω(ZLの0.8倍)になるように設計してみる。大径同軸線の特性インピーダンスZ01は、上述の(7)式で計算できる。この(7)式に、Z01=8Ω、比誘電率εr=3.78、a=r3=140mmを代入すると、b=r4=180mmが得られる。これにより、絶縁体70の半径方向の厚さ(r4−r3)が40mmとなる。これは、大径同軸線のギャップ間隔G1に等しい。
【0057】
次に、大径同軸線の入力インピーダンスZ1(ラジアル線から見たインピーダンス)を計算する。大径同軸線の入力インピーダンスZ1は上述の(2)式で計算できる。この(2)式に、ZL=10Ω、Z01=8Ω、β1=2.44rad/m(β1は上述の(8)式で計算できる)を代入し、L1としては、大径同軸線の長さL1(60mm)にギャップ間隔dの半分(25mm)を加えたもの(85mm)を実効長さとして代入する。その結果、Z1=9.81Ω=約10Ωが得られる。これがラジアル線の負荷となる。
【0058】
次に、ラジアル線については、ラジアル線の外端部における特性インピーダンスが大径同軸線の特性インピーダンス(8Ω)に等しくなるように設計する。ラジアル線の負荷端(外端部)の半径rLは、rL=(r3+r4)/2=160mmである。これに径方向位相定数kを掛けて規格化半径に変換するとkrL=0.200radとなる。この値を図2のグラフの横軸に当てはめると、Z0L=165Ω、θL=−47度、ψL=1.7度が得られる。このように、ラジアル線の外端部における特性電磁界インピーダンスZ0Lが165Ωと得られたので、これを通常の特性インピーダンスZ0otに変換する。すなわち、上述の(4)式を使って、Z0ot=[d/(2πrL)]Z0Lとなる。そして、この特性インピーダンスを大径同軸線の特性インピーダンス(8Ω)に等しいとおくと、Z0ot=[d/(2πrL)]Z0L=[d/(2π×160)]×165=8となる。これをギャップdについて解くと、d=49mmが得られる。そこで、ギャップ長dの設計値を50mmと設定することにする。
【0059】
一方、ラジアル線の入力端(内端部)の半径ri=(r1+r2)/2については、r1とr2が未定であるが、ここでは、r1とr2を未定のままにして、その平均値riだけをri=22.5mmと仮定する。これに径方向位相定数kを掛けて規格化半径に変換すると、kri=0.028radとなる。この値を図2のグラフの横軸に当てはめると、Z0i=45Ω、θi=−68度、ψi=0.0度が得られる。このように、ラジアル線の内端部における特性電磁界インピーダンスZ0iが45Ωと得られたので、これを通常の特性インピーダンスZ0itに変換する。すなわち、上述の(4)式を使って、Z0it=[d/(2πri)]Z0i=[50/(2π×22.5)]×45=16Ωとなる。
【0060】
次に、小径同軸線の特性インピーダンスZ02を決定することになるが、これは、基本的には、ラジアル線の内端部における特性インピーダンスZ0itに等しくなるように決定する。ただし、ここでは他の設計要件も勘案して、Z0it(16Ω)の1.5倍(すなわち24Ω)になるように設計する。同軸線の特性インピーダンスに関する上述の(7)式を用いて、Z02=24=(60/εr 1/2)ln(r2/r1)となり、同軸線のギャップ(空気)の比誘電率εrを1とおいて、r2/r1=1.47が得られる。この関係と、上述のri=(r1+r2)/2=22.5mmとを連立して解くことにより、r1=18.2mm、r2=26.8mmが得られる。したがって、小径同軸線のギャップ間隔G2はG2=(r2−r1)=8.6mmになる。
【0061】
次に、容器内伝送路の総位相変化量を求める。大径同軸線の位相変化量AはA=β1(L1+d/2)(180/π)=11.9度である。ラジアル線の位相変化量BはB=Δθ=(θL−θi)=21度である。小径同軸線の位相変化量CはC=β2(L3+d/2)(180/π)=5.4度である。したがって、総位相変化量はこれらの合計で38.3度となる。このように、総位相変化量が0〜40度の範囲内に収まったので、インピーダンスの変成は実用上問題にならない。
【0062】
以上の設計結果をまとめると次の表1と表2のようになる。表1は主として物理的な寸法を一覧表にしたものである。表2は主としてインピーダンスや位相の数値を一覧表にしたものである。
【0063】
【表1】
カソード電極54の大径部分56の直径 2r3=280mm
カソード電極54の大径部分56の長さ L1=60mm
大径同軸線の実効長さ L1+d/2=85mm
絶縁体70の材質 石英
絶縁体70の比誘電率 εr=3.78
大径同軸線のギャップ間隔 G1=40mm
ラジアル線のギャップ間隔 d=50mm
カソード電極54の小径部分58の直径 2r1=36.4mm
カソード電極54の小径部分58の長さ L2=100mm
小径同軸線の長さ L3=50mm
小径同軸線の実効長さ L3+d/2=75mm
小径同軸線のギャップ間隔 G2=8.6mm
【0064】
【表2】
プラズマインピーダンス ZL=約10Ω
大径同軸線の特性インピーダンス Z01=8Ω
大径同軸線の入力インピーダンス Z1=約10Ω
大径同軸線の位相定数 β1=2.44rad/m
ラジアル線の入力位置(内端)での
特性電磁界インピーダンス Z0i=45Ω
ラジアル線の負荷位置(外端)での
特性電磁界インピーダンス Z0L=165Ω
ラジアル線の入力位置(内端)での
軸方向電界の位相 θi=−68度
ラジアル線の負荷位置(外端)での
軸方向電界の位相 θL=−47度
ラジアル線の入力位置(内端)での
周方向磁界の位相 ψi=0度
ラジアル線の負荷位置(外端)での
周方向磁界の位相 ψL=1.7度
ラジアル線の径方向位相定数 k=1.26rad/m
小径同軸線の特性インピーダンス Z02=24Ω
小径同軸線の位相定数 β2=1.26rad/m
総位相変化量 38.3度
【0065】
【発明の効果】
この発明のプラズマ処理装置は、30〜300MHzの高周波電力を利用する場合に、容器内伝送路の構造を、径の異なる二つの同軸線をラジアル線でつないだ構造にしたので、1本の同軸線で容器内伝送路を構成する従来技術と比べて、装置の外形寸法が小さくなり、装置の重量が軽くなる。また、このような伝送路構造を採用した場合に、ラジアル線の外端部における特性インピーダンスを第1の同軸線の特性インピーダンスの0.5〜2.0倍の範囲内にし、第2の同軸線の特性インピーダンスをラジアル線の内端部における特性インピーダンスの0.5〜2.0倍の範囲内にすることで、実用的に問題のない程度にインピーダンス整合をとることができる。そして、ラジアル線の外側から内側に向かって第1の導体面と第2の導体面との間隔が広がっていくので、ラジアル線の内端部における特性インピーダンスが高くなって、第2の同軸線の特性インピーダンスも高くでき、径の小さい第2の同軸線の導体間ギャップを広くできる。
【図面の簡単な説明】
【図1】 この発明の第1の参考例の正面断面図である。
【図2】 ラジアル線の特性インピーダンス及び位相と規格化半径との関係を示したグラフである。
【図3】 この発明の第2の参考例の正面断面図である。
【図4】 この発明の実施形態の正面断面図である。
【図5】 特性インピーダンスの計算方法を説明する説明図である。
【図6】 図1のプラズマ処理装置の設計例を説明するための正面断面図である。
【図7】 従来のプラズマ処理装置の正面断面図である。
【符号の説明】
40 真空容器
42 第1側壁
44 天板
46 底板
48 ガス導入装置
50 ガス吹き出し板
52 放電ガス
54 カソード電極
56 大径部分
58 小径部分
60 マッチング回路
62 高周波電源
66 基板
68 第2側壁
70 絶縁体
72 ラジアル線のギャップ
74 小径同軸線のギャップ
76 プラズマ生成空間
Claims (5)
- 次の(イ)〜(ヘ)を備え、(ト)〜(ヌ)の特徴を有するプラズマ処理装置。
(イ)真空容器。
(ロ)真空容器を排気できる排気装置。
(ハ)真空容器に放電ガスを導入するガス導入装置。
(ニ)30〜300MHzの範囲内の高周波電力を供給する高周波電源。
(ホ)真空容器の内部に前記高周波電力を伝送する容器内伝送路。
(ヘ)高周波電源と容器内伝送路との間に設けられたマッチング回路。
(ト)前記容器内伝送路は、第1の同軸線と、第1の同軸線よりも径の小さい第2の同軸線と、第1の同軸線と第2の同軸線とをつなぐラジアル線とから構成されている。
(チ)第1の同軸線の外側導体と第2の同軸線の外側導体はいずれも真空容器が兼用している。
(リ)第1の同軸線の端面はプラズマ生成空間に面しており、第2の同軸線は前記マッチング回路に接続されている。
(ヌ)前記ラジアル線は、中空円板状の第1の導体面と、この第1の導体面に対向していて切頭円錐面の形状をした第2の導体面とを備えていて、ラジアル線の外側から内側に向かって第1の導体面と第2の導体面との間隔が広がっていく。 - 請求項1に記載のプラズマ処理装置において、ラジアル線の外端部における特性インピーダンスは第1の同軸線の特性インピーダンスの0.5〜2.0倍の範囲内であり、第2の同軸線の特性インピーダンスはラジアル線の内端部における特性インピーダンスの0.5〜2.0倍の範囲内であることを特徴とするプラズマ処理装置。
- 請求項1に記載のプラズマ処理装置において、ラジアル線の外端部における特性インピーダンスは第1の同軸線の特性インピーダンスの0.8〜1.2倍の範囲内であり、第2の同軸線の特性インピーダンスはラジアル線の内端部における特性インピーダンスの0.8〜1.2倍の範囲内であることを特徴とするプラズマ処理装置。
- 請求項2または3に記載のプラズマ処理装置において、容器内伝送路を電磁波が通過するときの総位相変化量が0〜40度の範囲内にあることを特徴とするプラズマ処理装置。
- 請求項1に記載のプラズマ処理装置において、ラジアル線の横断面形状において第1の導体面と第2の導体面とのなす角度が0度を超えて30度以下の範囲内であることを特徴とするプラズマ処理装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11140198A JP4130255B2 (ja) | 1998-04-08 | 1998-04-08 | プラズマ処理装置 |
US09/250,402 US6199505B1 (en) | 1998-04-08 | 1999-02-16 | Plasma processing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11140198A JP4130255B2 (ja) | 1998-04-08 | 1998-04-08 | プラズマ処理装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11297496A JPH11297496A (ja) | 1999-10-29 |
JP4130255B2 true JP4130255B2 (ja) | 2008-08-06 |
Family
ID=14560226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11140198A Expired - Lifetime JP4130255B2 (ja) | 1998-04-08 | 1998-04-08 | プラズマ処理装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US6199505B1 (ja) |
JP (1) | JP4130255B2 (ja) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3497092B2 (ja) * | 1998-07-23 | 2004-02-16 | 名古屋大学長 | プラズマ密度情報測定方法、および測定に用いられるプローブ、並びにプラズマ密度情報測定装置 |
TW516113B (en) * | 1999-04-14 | 2003-01-01 | Hitachi Ltd | Plasma processing device and plasma processing method |
US6228438B1 (en) * | 1999-08-10 | 2001-05-08 | Unakis Balzers Aktiengesellschaft | Plasma reactor for the treatment of large size substrates |
JP4286404B2 (ja) * | 1999-10-15 | 2009-07-01 | 東京エレクトロン株式会社 | 整合器およびプラズマ処理装置 |
US6363882B1 (en) * | 1999-12-30 | 2002-04-02 | Lam Research Corporation | Lower electrode design for higher uniformity |
US7030335B2 (en) * | 2000-03-17 | 2006-04-18 | Applied Materials, Inc. | Plasma reactor with overhead RF electrode tuned to the plasma with arcing suppression |
US6712929B1 (en) * | 2000-08-08 | 2004-03-30 | Lam Research Corporation | Deformation reduction at the main chamber |
JP4557400B2 (ja) * | 2000-09-14 | 2010-10-06 | キヤノン株式会社 | 堆積膜形成方法 |
JP4051209B2 (ja) * | 2001-02-02 | 2008-02-20 | キヤノンアネルバ株式会社 | 高周波プラズマ処理装置及び高周波プラズマ処理方法 |
US6841943B2 (en) * | 2002-06-27 | 2005-01-11 | Lam Research Corp. | Plasma processor with electrode simultaneously responsive to plural frequencies |
US20050139321A1 (en) * | 2002-07-03 | 2005-06-30 | Tokyo Electron Limited | Plasma processing apparatus |
JP4370789B2 (ja) * | 2002-07-12 | 2009-11-25 | 東京エレクトロン株式会社 | プラズマ処理装置及び可変インピーダンス手段の校正方法 |
US7767056B2 (en) * | 2003-01-14 | 2010-08-03 | Canon Anelva Corporation | High-frequency plasma processing apparatus |
JP2005137781A (ja) * | 2003-11-10 | 2005-06-02 | Marcom:Kk | プラズマ発生装置 |
US7381291B2 (en) * | 2004-07-29 | 2008-06-03 | Asm Japan K.K. | Dual-chamber plasma processing apparatus |
CN1909760B (zh) * | 2005-08-05 | 2010-07-21 | 中微半导体设备(上海)有限公司 | 真空反应室及其处理方法 |
US7777599B2 (en) * | 2007-11-02 | 2010-08-17 | Applied Materials, Inc. | Methods and apparatus for controlling characteristics of a plasma |
US20100101727A1 (en) * | 2008-10-27 | 2010-04-29 | Helin Ji | Capacitively coupled remote plasma source with large operating pressure range |
US8920597B2 (en) | 2010-08-20 | 2014-12-30 | Applied Materials, Inc. | Symmetric VHF source for a plasma reactor |
KR20120043636A (ko) * | 2010-10-26 | 2012-05-04 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 플라즈마 처리 장치 및 플라즈마 cvd 장치 |
US8895116B2 (en) | 2010-11-04 | 2014-11-25 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of crystalline semiconductor film and manufacturing method of semiconductor device |
US8815635B2 (en) | 2010-11-05 | 2014-08-26 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of photoelectric conversion device |
JP6249659B2 (ja) * | 2013-07-25 | 2017-12-20 | 東京エレクトロン株式会社 | プラズマ処理装置 |
US9852905B2 (en) * | 2014-01-16 | 2017-12-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Systems and methods for uniform gas flow in a deposition chamber |
JP6578646B2 (ja) * | 2014-10-24 | 2019-09-25 | セイコーエプソン株式会社 | ロボット |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4131533A (en) * | 1977-12-30 | 1978-12-26 | International Business Machines Corporation | RF sputtering apparatus having floating anode shield |
US5210466A (en) | 1989-10-03 | 1993-05-11 | Applied Materials, Inc. | VHF/UHF reactor system |
JP3137682B2 (ja) * | 1991-08-12 | 2001-02-26 | 株式会社日立製作所 | 半導体装置の製造方法 |
US5452510A (en) * | 1993-12-20 | 1995-09-26 | International Business Machines Corporation | Method of making an electrostatic chuck with oxide insulator |
US5535507A (en) * | 1993-12-20 | 1996-07-16 | International Business Machines Corporation | Method of making electrostatic chuck with oxide insulator |
US5688358A (en) * | 1995-03-08 | 1997-11-18 | Applied Materials, Inc. | R.F. plasma reactor with larger-than-wafer pedestal conductor |
-
1998
- 1998-04-08 JP JP11140198A patent/JP4130255B2/ja not_active Expired - Lifetime
-
1999
- 1999-02-16 US US09/250,402 patent/US6199505B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH11297496A (ja) | 1999-10-29 |
US6199505B1 (en) | 2001-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4130255B2 (ja) | プラズマ処理装置 | |
KR100797926B1 (ko) | 플라즈마에 동조된 오버헤드 rf 전극을 가진 플라즈마리액터 | |
JP4833469B2 (ja) | 面積の大きな基板の処理のためのプラズマ反応装置 | |
US20200312681A1 (en) | Substrate processing apparatus | |
JP4758046B2 (ja) | 均一なプロセス速度を生成するためのプラズマ処理装置及びアンテナ構成 | |
US8080126B2 (en) | Plasma processing apparatus | |
US5759280A (en) | Inductively coupled source for deriving substantially uniform plasma flux | |
JP3426382B2 (ja) | プラズマ処理装置 | |
KR100535171B1 (ko) | 플라즈마 처리방법 및 장치 | |
US6034346A (en) | Method and apparatus for plasma processing apparatus | |
EP1204134B1 (en) | RF plasma processor | |
US20130112666A1 (en) | Plasma processing apparatus | |
JP2006502556A (ja) | 半導体ワークピースを処理するためのプラズマリアクタ | |
JPH08339897A (ja) | 誘導プラズマ発生装置および容量結合を与える方法 | |
WO2008065744A1 (fr) | Appareil de traitement au plasma | |
KR20040068307A (ko) | 아킹 억제된 플라즈마에 튜닝되는 오버헤드 rf 전극을갖는 플라즈마 반응기 | |
JPH11317299A (ja) | 高周波放電方法及びその装置並びに高周波処理装置 | |
CN100392800C (zh) | 具有多个射频源频率的等离子体腔体 | |
JP4122467B2 (ja) | 高周波放電装置及び高周波処理装置 | |
JP4499323B2 (ja) | 電磁界供給装置およびプラズマ処理装置 | |
WO2022050083A1 (ja) | プラズマ処理装置 | |
JP3874726B2 (ja) | プラズマ処理装置及びプラズマ生成方法 | |
KR100404723B1 (ko) | 낮은 종횡비를 갖는 유도결합형 플라즈마 발생장치 | |
JPH08316212A (ja) | プラズマ処理方法及びプラズマ処理装置 | |
US20240170256A1 (en) | VHF Broadband Coaxial Adapter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050405 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071218 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080215 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080312 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080507 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080521 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110530 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120530 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130530 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130530 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140530 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |