JP4128370B2 - 燃料電池用暖機装置 - Google Patents
燃料電池用暖機装置 Download PDFInfo
- Publication number
- JP4128370B2 JP4128370B2 JP2002038958A JP2002038958A JP4128370B2 JP 4128370 B2 JP4128370 B2 JP 4128370B2 JP 2002038958 A JP2002038958 A JP 2002038958A JP 2002038958 A JP2002038958 A JP 2002038958A JP 4128370 B2 JP4128370 B2 JP 4128370B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- hydrogen
- hydrogen gas
- amount
- path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Description
【発明の属する技術分野】
本発明は、水素と酸素の電気化学反応によって発電する燃料電池を加温するための燃料電池用暖機装置に係り、特に燃料ガスを燃焼させて加熱した伝熱水(冷却水)を用いて燃料電池を加熱する燃料電池用暖機装置に関するものである。
【0002】
【従来の技術】
近年、車両の駆動源として、水素と酸素とを電気化学反応させて発電する燃料電池が注目されている。
燃料電池は低温環境下で反応の進行が遅く発電量が少ないため、低温環境下の燃料電池を一定温度まで加熱する必要があり、燃料電池を加熱するために燃料電池用暖機装置が提案されている。この種の燃料電池用暖機装置としては、発電時の燃料電池を冷却する目的で燃料電池を循環させる冷却水を加熱して、この冷却水により燃料電池を加熱する方式のものが提案されている。
【0003】
例えば、特開2000−164233号公報に示されているように、冷却水(不凍液)の循環流路中に燃焼器を設け、この燃料器に導入された燃料ガスを燃焼させて冷却水を加熱するとともに、この燃焼させた燃焼ガスを燃料ガス供給経路または酸化剤ガス供給経路に供給することにより、燃料電池を加熱するものがある。
また、特開2000−294263号公報に示されているように、燃料電池に供給する水素の一部を燃焼器内に導入して燃焼させ、その熱で加熱した冷却水により、燃料電池を加熱するものがある。
【0004】
【発明が解決しようとする課題】
しかしながら、低温下においては、上述したように、燃料電池の反応の進行が遅く、燃料電池に供給された反応ガス(水素ガス、酸化剤ガス)の大部分が未反応である。上述した従来の技術においては、加熱により反応が充分に進行するようになるまでに、燃料電池に供給される反応ガスの大部分が未反応のまま排出されてしまい、無駄となってしまうという問題があった。
【0005】
また、特開2000−294263号公報に示されている燃料電池用暖機装置では、燃料電池に供給する水素の一部を燃焼させて加熱するため、加熱時間を短縮できるものの、未反応の水素については考慮されておらず、特に低温時には多くの未利用水素が排出されるため、エネルギー効率が低下してしまうという問題があった。
【0006】
本発明は、このような事情に鑑みてなされたもので、低温下の燃料電池を短時間で加熱できるとともに、エネルギー的に負担を低減できる燃料電池用暖機装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するために、請求項1に記載した発明は、水素および酸素の電気化学反応によって発電する燃料電池(例えば、後述する実施の形態における燃料電池2)を暖機する燃料電池用暖機装置(例えば、後述する実施の形態における燃料電池用暖機装置1)であって、前記燃料電池と熱交換する伝熱流体(例えば、後述する実施の形態における伝熱水3)の流体流路(例えば、後述する実施の形態における循環流路4)に、水素ガスを燃焼させる触媒燃焼器(例えば、後述する実施の形態における触媒燃焼器5)を設けて、前記伝熱流体を水素ガス燃焼熱で加熱可能とし、前記触媒燃焼器に水素ガスを導入する水素ガス導入路(例えば、後述する実施の形態における水素ガス導入路6)を設け、この水素ガス導入路が前記燃料電池の水素ガス排出経路(例えば、後述する実施の形態における水素ガス排出経路7)に接続され、該水素ガス排出経路中の水素ガスを前記触媒燃焼器内に導入可能とし、前記燃料電池に水素ガスを供給する水素ガス供給経路(例えば、実施の形態における水素ガス供給経路8)が前記水素ガス導入路に接続され、前記水素ガス供給経路中の水素ガスを前記触媒燃焼器内に導入可能とし、前記触媒燃焼器に導入される水素ガスの流量を制御する流量制御手段(例えば、後述する実施の形態における流量制御弁9)を備え、前記流量制御手段は、前記水素ガス排出経路中の反応残水素量が目標水素量よりも少ない場合に、前記水素ガス排出経路中の水素ガスに加えて前記水素ガス供給経路中の水素ガスを前記触媒燃焼器に導入可能としたことを特徴とする燃料電池用暖機装置である。
【0008】
この発明によれば、低温下で燃料電池を作動させる際に、燃料電池に供給される水素ガスは、その大部分が発電に寄与せずに燃料電池から未反応のまま水素排出経路中に排出されるが、この排出された水素ガスが前記水素ガス導入路を介して触媒燃料器内に導入され、該触媒燃焼器内で燃焼する。前記触媒燃焼器は前記伝熱流体経路を加熱可能に設けられているため、水素ガスの燃焼熱で伝熱流体を加熱することができ、この伝熱流体により燃料電池が暖機される。燃料電池が暖機されるに従って燃料電池での水素の反応量が増大し、また燃料電池での電気化学反応は発熱を伴うため、燃料電池の温度上昇はさらに促進される。
【0009】
一方、反応する水素量が増大するにつれて、未反応のまま燃料電池から排出される水素量が減少して燃焼熱量も減少するため伝熱流体に伝導される熱量も減少していく。従って、燃料電池が充分に暖機されたときには、未反応のまま排出される水素の流量は略一定に収束し、これにより伝熱流体を加熱する熱量も略一定に保持される。燃料電池は発電によりさらに発熱するため、燃料電池の暖機に使用していた伝熱流体を、そのまま冷却媒体として使用することができる。このように、燃料電池から排出された未反応の水素ガスにより燃料電池の暖機を行うため、水素ガスを無駄に排出することがなく、エネルギー効率を高めることができる。
【0010】
また、前記燃料電池に水素ガスを供給する水素ガス供給経路(例えば、実施の形態における水素ガス供給経路8)が前記水素ガス導入路に接続され、前記水素ガス供給経路中の水素ガスを前記触媒燃焼器内に導入可能としたことを特徴とする燃料電池用暖機装置である。
【0011】
この発明によれば、前記燃料電池排出経路中の水素ガスに加え、水素ガス供給経路中の水素も前記触媒燃焼器に導入し、燃焼させることができるため、伝熱流体をより短時間で加熱することができ、低温下の燃料電池をより短時間で暖機することができる。
【0012】
また、前記触媒燃焼器に導入される水素ガスの流量を制御する流量制御手段(例えば、後述する実施の形態における流量制御弁9)を備えたことを特徴とする燃料電池用暖機装置である。
【0013】
この発明によれば、前記流量制御手段を介して燃焼に必要な水素ガスの流量を制御することができるため、効率的に燃料電池の暖機を行うことができる。
【0014】
また、前記目標水素量が、前記伝熱流体の温度(例えば、後述する実施の形態における伝熱水温度TFCIN、TFCOUT)に応じて設定されることを特徴とする燃料電池用暖機装置である。
【0015】
この発明によれば、前記伝熱流体の温度に応じて、前記制御手段により触媒燃焼器に導入される水素ガスの流量が調整され、伝熱流体の温度を前記燃料電池を暖機するために最適な温度となるように、伝熱流体を加熱することができるため、さらに効率的に燃料電池を暖機することができる。
【0016】
また、前記触媒燃焼器内で燃焼される燃焼水素量が前記目標水素量となるように、前記制御手段を制御することを特徴とする燃料電池用暖機装置である。
【0017】
この発明によれば、燃料電池の温度上昇により反応が進行して排出される水素の量が減少しても、前記制御手段により触媒燃焼器内に確実に所定の量の水素が導入されるため、燃料電池が所定の温度になるまで暖機を確実に行うことができる。また、これにより、水素ガス供給経路から触媒燃焼器内に導入される水素の量を必要最小限に抑えることができ、その分残りの水素を燃料電池の発電に寄与させることができるため、エネルギー効率を高めることができる。
【0018】
また、前記目標水素量が、前記燃料電池の温度に基づいて設定されることを特徴とする燃料電池用暖機装置である。
この発明によれば、燃料電池の温度により暖機に必要となる燃料水素量が異なる点を考慮して、前記燃焼水素量の所定の値が設定されるので、より効率的に燃料電池の暖機を行うことができる。
【0019】
【発明の実施の形態】
以下、本発明の実施形態における燃料電池用暖機装置を図面と共に説明する。図1は本発明の第1の実施の形態における燃料電池用暖機装置1を示す概略構成図である。前記燃料電池用暖機装置1は車両に搭載され、この車両に駆動源として搭載された燃料電池2を暖機するためのものである。本実施の形態における燃料電池2は、固体高分子型(PEM型)の燃料電池である。前記燃料電池2は、アノード電極とカソード電極(いずれも図示せず)とを備えており、アノード電極に燃料ガス(例えば水素)が供給されるとともに、カソード電極に酸化剤ガス(例えば酸素を含む空気)が供給され、水素および酸素の電気化学反応によって発電する。
【0020】
前記燃料電池2への水素の供給源として水素タンク10が設けられている。この水素タンク10は圧縮した水素ガスを貯蔵し、水素ガス供給経路8および図示しない減圧弁を介して前記燃料電池2に接続され、燃料電池2のアノード電極に水素ガスを供給する。また、前記燃料電池2には前記アノード電極を通過した水素ガスを排出するための水素ガス排出経路7が接続されている。なお、前記燃料電池2には、カソード電極への酸素の供給源や供給経路、またカソード電極からの酸素の排出経路が接続されているが、これらについては図示と説明を省略する。
【0021】
前記燃料電池2には、伝熱流体としての伝熱水3が流通する循環流路4が接続され、該循環流路4を介して前記燃料電池2に伝熱水3が流入し、かつ流出する。前記循環流路4上には切替バルブV1〜V5が設けられ、これらの切替バルブV1〜V5により、伝熱水3の流通経路が低温時水流路4a、4bまたは通常時水流路4a’、4b’に切り替えられる。これらの切替バルブV1〜V5には、制御装置(ECU、図2参照)11が接続され、該制御装置11からの制御信号により切替バルブV1〜V5の切替制御を行っている。前記循環流路4(4a、4a’、4b’、4b)については詳細を後述する。
【0022】
そして、燃料電池用暖機装置1には、水素ガスを燃焼させる触媒燃焼器5が設けられている。前記触媒燃焼器5は、セラミックハニカム上に酸化触媒(例えば白金)を担持したものである。前記触媒燃焼器5に水素を導入する水素ガス導入路6は、前記燃料電池2の水素ガス排出経路7に接続しているとともに、前記水素ガス供給経路8の分岐路8aに流量制御弁9を介して接続している。この流量制御弁9は前記制御装置11に接続され、前記制御装置11からの制御信号により前記水素ガス供給経路8から前記水素ガス導入路6に流入する水素の流量を制御できるようにしている。また、前記水素ガス排出経路7には、流量測定器(FI)14が設けられ、該流量測定器14により前記水素ガス排出経路7中の水素流量を測定できるようにしている。この流量測定器14は、前記制御装置11に接続しており、測定した水素流量を前記制御装置11に送信可能としている。
【0023】
前記水素導入路6には混合部12が設けられており、該混合部12には空気を導入するための空気導入路13が接続されている。この混合部12にて水素が空気と混合されることで触媒燃焼器5に供給される水素の濃度が調整される。これにより、触媒燃焼器5に急激に多量の水素が供給され、水素が充分燃焼しないまま触媒燃焼器5を通過し(吹き抜け)たりすることを防止できる。前記触媒燃焼器5は前段側に燃焼部(図示せず)を有し、この燃焼部にて水素を燃焼させる。そして、前記触媒燃焼器5の後段側には熱交換部15a、15bを有している。これについては詳細を後述する。混合ガス中の水素は前記触媒燃焼器5内で燃焼した後、排出路18から外部に排出される。
【0024】
以下、伝熱水3の流路である循環流路4について説明する。前記循環流路4は燃料電池2が低温始動時に伝熱水3が流入する低温時水流路4aと、熱利用機器であるヒータ16へ伝熱水3が流入するための低温時水流路4bと、燃料電池2が通常運転時に伝熱水3が流入する通常時水流路4a’および通常時水流路4b’から構成される。
【0025】
伝熱水3が燃料電池2から排出された直後の循環流路4には温度センサT1が接続されており、該温度センサT1により前記燃料電池2から排出されて循環流路4を流れる伝熱水3の温度TFCOUTを測定できるようにしている。前記循環流路4は、切替バルブV1によって触媒燃焼器5の燃焼部15bを流通する低温時水流路4bと、該燃焼部15bを迂回する通常時水流路4b’のいずれかに切り替えられ、燃料電池2から排出された伝熱水3はこのいずれかの流路に流入する。低温時水流路4bおよび通常時水流路4b’はその後切替バルブV2のところで合流する。
【0026】
そして、切替バルブV2を通過した伝熱水3は熱利用機器である車両の室内空調用のヒータ16と熱交換する構成となっている。ヒータ16と熱交換した後の伝熱水3は、切替バルブV3によって切替可能に構成された、ラジエータ17を迂回する流路、またはラジエータ17と熱交換する流路のいずれかに流入し、該ラジエータ17を通過した伝熱水3は冷却される。その後これらの流路は切替バルブV4で合流し、該切替バルブV4によって触媒燃焼器の熱交換部15aに通流する低温時水流路4aおよび、該熱交換部15aを迂回する通常時水流路4a’とに切り替えられる。低温時水流路4aおよび通常時水流路4a’は切替バルブV5で合流し、燃料電池2へ戻る還流路となっている。切替バルブV5と燃料電池2との間には温度センサT2が接続されており、該温度センサT2により前記燃料電池2に供給される伝熱水3の温度TFCINを測定できるようにしている。前記温度センサT1と前記温度センサT2とはそれぞれ制御装置11に接続され、これらのセンサT1、T2で測定した温度TFCOUT、TFCINを送信できるようにしている。
【0027】
図2は、燃料電池用暖機装置1および30が備える制御装置11の制御処理を示す説明図である。前記制御装置11は、上述したように、水素の流量測定器14、温度センサT1、T2、切替バルブV1〜V5で測定した水素ガス排出経路7中の反応残水素量(電気化学反応後の水素ガス中に残存する水素量)、燃料電池2に供給される伝熱水の温度TFCIN、排出される伝熱水の温度TFCOUTがそれぞれ入力される。制御装置11は、入力されたこれらの測定値に基づいて切替バルブV1〜V5を切り換えて制御して伝熱水3の流路を制御するとともに、流量制御弁9を制御して前記水素ガス供給経路8から供給される水素の流量を調整する。このようにして、前記制御装置11は、触媒燃焼器5に供給され、燃焼する水素の流量が所定の値となるように制御を行う(詳細は後述する)。
【0028】
図3は図1の触媒燃焼器に流入する水素流量と燃料電池温度との関係を示すグラフである。図4は制御装置の暖機処理工程図である。これらの図を元に燃料電池用暖機装置1の始動制御フローについて説明する。
前述したように燃料電池2が低温状態では発電効率が悪く、供給した水素のうちほとんどが発電に寄与せず、燃料電池2から水素ガス排出経路7に反応残水素として排出される。本実施の形態においては、前記水素ガス排出経路7を水素ガス導入路6に接続しているため、前記反応残水素を触媒燃焼器5に導入することができる。
【0029】
また、上述したように、前記水素ガス導入路6には、水素ガス排出経路7の他に、水素ガス供給経路8から分岐した分岐路8aが流量制御弁9を介して接続され、水素ガス供給経路8の水素(供給水素の一部)も導入可能となっている。分岐路8aに設けられた流量制御弁9は、制御装置11の信号に応じてその開度が調整され、これにより導入路6に導入される水素流量が制御される。このとき、この供給水素の流量は、前記触媒燃焼器5に導入される水素の量が所定の値となるように前記制御装置11により制御される。この所定の量は燃料電池2の始動時に排出される水素量(Hmax、図3参照)に設定している。
【0030】
前記制御装置11の暖機処理工程について図4を用いて説明する。まず、燃料電池2の始動開始信号が送られるとステップS100に示したように、燃料電池2へ反応ガス(酸化剤と水素)を供給する。その反応ガスの供給を受けて燃料電池2が発電を開始する。ステップS102に示したように、前記制御装置11により切替バルブV1〜V5を切替制御して、伝熱水3の流通経路が暖機用冷媒流路(低温時水流路4a、4b、ラジエータ17を迂回する流路)に変更される。そして、ステップS104に示したように冷却水3の温度T1およびT2を冷媒温度として検知し、ステップS106に示したように前記冷媒温度が所定の温度(例えば70℃)よりも低いかどうかを判定する。冷媒温度が所定の温度よりも高い場合(判定結果がNOの場合)には、燃料電池2の温度が十分上昇したと判断して、暖機処理を終了する。なお、このとき、冷却水3の流路は通常時水流路(4a’、4b’、ラジエータ17と熱交換する流路)に切り替えられる。
【0031】
冷媒温度が所定の温度よりも低い場合(判定結果がYESの場合)には、ステップS108に示したように、反応残水素量(残水素量)が一定量Hmaxより小さいかどうかを判定する。残水素量がHmaxと等しいかそれより多い場合(判定結果がNOの場合)には、触媒燃焼器5には十分な水素が供給されるので、ステップS112に示したように流量制御弁9を「閉」にして、ステップS114の処理に進む。
【0032】
残水素量がHmaxよりも少ない場合(判定結果がNOの場合)には、ステップS110に示したように、流量制御弁9を「開」にして、前記残水素に加えて分岐路8aの水素(供給水素の一部)を前記触媒燃焼器5に導入する。このとき、流量制御弁9は前記制御装置11により、残水素と供給水素の合計がHmaxとなるように制御されている。その後、ステップS114の処理に進む。
ステップS114では、ステップS106と同様に、冷媒温度が所定温度より小さいかどうかを判定する。判定結果がYESの場合には、ステップS108の処理に戻り上述した一連の処理を行う。判定結果がNOの場合には、暖機処理を終了する。
なお、本実施の形態において燃焼器5へ導入する酸化剤量についての制御については触れていないが、上述した水素ガス流路の場合と同様に、酸化剤ガス流路に流量制御弁や流量測定器を設け、これらをECUに接続することで、燃焼器5へ導入する酸化剤量を制御することができる。酸化剤量を制御するにあたっては、一定の量の水素量を燃焼器5へ導入するので、その水素量に対応する一定量の酸化剤を導入させるのが望ましい。
【0033】
上述したように、低温の場合は燃料電池2の発電効率が悪いので、燃料電池2から排出される水素量(残水素量)は、暖機開始時の方が暖機完了後よりも多い。したがって、暖機開始時においては、残水素量が十分にあるため、触媒燃焼器5の燃焼は残水素のみで行う。
このように暖機処理を行うと、燃料電池2は前記触媒燃焼器5で加熱された伝熱水3に暖機されるとともに、発電によって発熱するため、燃料電池の温度は速やかに上昇していく。
【0034】
一方、燃料電池2の温度上昇に伴って、燃料電池2の発電に寄与する水素が増えるので、図4のように反応残水素量が減少していく。しかし、上述したように、残水素が減少した分に応じて供給水素の一部が供給され、触媒燃焼器5には一定量Hmaxが供給されるため、燃料電池2が所定の温度になるまで暖機を確実に行うことができる。
【0035】
上述のようにしたため、低温下で燃料電池2を作動させる際に、燃料電池2に供給される水素ガスは、その大部分が発電に寄与せずに燃料電池2から未反応のまま水素ガス排出経路7中に排出されるが、この排出された水素ガスが前記水素ガス導入路6を介して触媒燃焼器5に導入され、該触媒燃焼器5内で燃焼する。前記触媒燃焼器5は前記循環流路4上に設けられているため、水素ガスの燃焼熱で伝熱水3を加熱することができ、この伝熱水3により燃料電池2が暖機される。また、燃料電池2に供給された未反応の水素ガスにより燃料電池2の暖機を行うため、水素ガスを無駄に排出することがなく、エネルギー効率を高めることができる。
【0036】
次に、第2の実施の形態の燃料電池用暖機装置30について説明する。なお、本実施の形態において前の実施の形態の部材に対応する部材については、同一の符号を付して適宜その説明を省略する。図5は本発明の第2の実施の形態における燃料電池用暖機装置30を示す概略説明図である。図6は図5の水素吸蔵タンク(MHタンク)31を示す拡大図である。
【0037】
本実施の形態においては、燃料電池2への水素供給源として、水素吸蔵合金を収納した水素吸蔵タンク(MHタンク)を用いている。ここで、水素吸蔵合金は貯蔵された水素を放出する際に吸熱反応を伴い、所定の温度未満になると水素放出平衡圧力が放出先の圧力よりも低くなってしまい、水素を放出できなくなってしまう。そのため、前記水素吸蔵タンク31は、内部に伝熱水33が流通する循環経路32により貫通され、該循環経路32中の伝熱水33により水素吸蔵合金が加熱されるようになっている。前記循環経路32は、前記触媒燃焼器5内の熱交換器15内を貫通し、触媒燃焼器5内の熱交換部15cで水素の燃焼熱により加熱される。これにより、燃料電池2を暖機するのと並行して、水素吸蔵タンク31が加熱され、水素吸蔵タンク31が貯蔵している水素をより効果的に燃料電池2や触媒燃焼器5に供給することができるため、燃料電池2の始動を早めることができる。
図7および図8を元に燃料電池用暖機装置30の始動制御フローについて説明する。なお、第1の実施の形態と同様の部分に関しては説明を省略する。
【0038】
第1の実施例と異なるのは、ステップS120に示したように、燃焼器5へ導入する目標水素量を一定の量Hmaxではなく燃料電池2の温度に基づいて変化させる点である。ここで燃料電池2の温度は温度センサT1およびT2から予測する。前記制御装置11には、図8のMAP1に示したように、燃料電池2の温度に応じた目標水素量のデータが格納されており、これに基づいて目標水素量が算出される。そして、ステップS122に示したように、残水素量が目標水素量よりも少ないかどうかを判定する。残水素量が目標水素量よりも少ない場合(判定結果がYESの場合)には、ステップS124に示したように、残水素と供給水素の合計が目標水素量となるように流量制御弁9の開度を調整して、上述したステップS114の処理に進む。残水素量が目標水素量よりも多い場合(判定結果がNOの場合)には、上述したステップS112の処理を経て、ステップS114の処理に進む。そして、第1の実施の形態と同様に処理を行う。
尚、本実施の形態においても、上述した前実施の形態の場合と同様に、燃焼器5へ導入する酸化剤量を制御することができる。本実施の形態においては、燃焼器5へ導入させる流量が燃料電池2の温度によって変わるので、それに応じて燃焼器5へ導入する酸化剤量もその導入される燃料量に応じて変えることが望ましい。例えば目標水素量が減少した場合には燃焼器へ導入する酸化剤量も減少させるように制御する。
【0039】
本実施の形態においては、前記制御装置11により、前記触媒燃焼器5内で燃焼される燃焼水素量の所定の値が、前記燃料電池2の温度に基づいて設定される。図7は図5の触媒燃焼器に流入する水素流量と燃料電池温度との関係を示すグラフであり、図8のMAP1の詳細を示したものである。このように、燃料電池2の温度により暖機に必要となる燃料水素量が異なる点を考慮して、前記燃焼水素量の所定の値を設定したため、より効率的に燃料電池2の暖機を行うことができる。
【0040】
以上の実施の形態においては、伝熱流体として、伝熱水を用いた場合について説明したが、伝熱水は純水または不凍液などの液体であってもよく、さらにはガスであってもよい。
【0041】
また、実施の形態においては、未反応の水素と水素供給経路中の水素とを触媒燃焼器に供給したが、水素パージを行う場合には、このパージした水素を触媒燃焼器に供給してもよい。
【0042】
また、未反応の水素のみで燃料電池2の暖機をしてもよい。この場合には、燃料電池2が充分に暖機されたときには、未反応のまま排出される水素の流量は略一定に収束し、これにより伝熱水を加熱する熱量も略一定に保持される。燃料電池2は発電によりさらに発熱するため、燃料電池2の暖機に使用していた伝熱水を、そのまま冷却媒体として使用することができる。他にも発明の要旨を逸脱しない範囲での変更を行ってもよいことはもちろんである。
【0043】
【発明の効果】
以上説明したように、請求項1に記載した発明によれば、燃料電池に供給された未反応の水素ガスにより燃料電池の暖機を行うため、水素ガスを無駄に排出することがなく、エネルギー効率を高めることができる。
【0044】
また、低温下の燃料電池をより短時間で暖機することができる。
また、燃料電池の温度状態に応じて燃焼に必要な水素ガスの流量を制御することができるため、効率的に燃料電池の暖機を行うことができる。
【0045】
請求項2に記載した発明によれば、燃料電池が所定の温度になるまで暖機を確実に行うことができる。また、エネルギー効率を高めることができる。
請求項3に記載した発明によれば、前記燃料電池を暖機する伝熱流体の温度を、より短時間で制御することができるため、さらに効率的に暖機することができる。
【0046】
請求項4に記載した発明によれば、燃料電池の温度により暖機に必要となる燃料水素量が異なる点を考慮して、前記燃焼水素量の所定の値が設定されるので、より効率的に燃料電池の暖機を行うことができる。
【図面の簡単な説明】
【図1】 図1は本発明の第1の実施の形態における燃料電池用暖機装置を示す概略構成図である。
【図2】 図1の燃料電池用暖機装置が備える制御装置(ECU)の制御処理を示す説明図である。
【図3】 図1の触媒燃焼器に流入する水素流量と燃料電池温度との関係を示すグラフである。
【図4】 図1の燃料電池用暖機装置が備える制御装置の暖機処理工程図である。
【図5】 図5は本発明の第2の実施の形態における燃料電池用暖機装置を示す概略説明図である。
【図6】 図5の水素吸蔵タンク(MHタンク)を示す拡大図である。
【図7】 図5の触媒燃焼器に流入する水素流量と燃料電池温度との関係を示すグラフである。
【図8】 図5の燃料電池用暖機装置が備える制御装置の工程図である。
【符号の説明】
1 燃料電池用暖機装置
2 燃料電池
3 伝熱水(冷却水)
4 循環流路
5 触媒燃焼器
6 水素ガス導入路
7 水素ガス排出経路
8 水素ガス供給経路
9 流量制御弁
Claims (4)
- 水素および酸素の電気化学反応によって発電する燃料電池を暖機する燃料電池用暖機装置であって、
前記燃料電池と熱交換する伝熱流体の流体流路に、水素ガスを燃焼させる触媒燃焼器を設けて、前記伝熱流体を水素ガス燃焼熱で加熱可能とし、
前記触媒燃焼器に水素ガスを導入する水素ガス導入路を設け、この水素ガス導入路が前記燃料電池の水素ガス排出経路に接続され、該水素ガス排出経路中の水素ガスを前記触媒燃焼器内に導入可能とし、
前記燃料電池に水素ガスを供給する水素ガス供給経路が前記水素ガス導入路に接続され、前記水素ガス供給経路中の水素ガスを前記触媒燃焼器内に導入可能とし、
前記触媒燃焼器に導入される水素ガスの流量を制御する流量制御手段を備え、
前記流量制御手段は、前記水素ガス排出経路中の反応残水素量が目標水素量よりも少ない場合に、前記水素ガス排出経路中の水素ガスに加えて前記水素ガス供給経路中の水素ガスを前記触媒燃焼器に導入可能であることを特徴とする燃料電池用暖機装置。 - 前記触媒燃焼器内で燃焼される燃焼水素量が前記目標水素量となるように、前記流量制御手段を制御することを特徴とする請求項1に記載の燃料電池用暖機装置。
- 前記目標水素量が、前記伝熱流体の温度に基づいて設定されることを特徴とする請求項1または請求項2に記載の燃料電池用暖機装置。
- 前記目標水素量が、前記燃料電池の温度に基づいて設定されることを特徴とする請求項1または請求項2に記載の燃料電池用暖機装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002038958A JP4128370B2 (ja) | 2002-02-15 | 2002-02-15 | 燃料電池用暖機装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002038958A JP4128370B2 (ja) | 2002-02-15 | 2002-02-15 | 燃料電池用暖機装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003243009A JP2003243009A (ja) | 2003-08-29 |
JP4128370B2 true JP4128370B2 (ja) | 2008-07-30 |
Family
ID=27780135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002038958A Expired - Fee Related JP4128370B2 (ja) | 2002-02-15 | 2002-02-15 | 燃料電池用暖機装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4128370B2 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4575701B2 (ja) | 2004-04-20 | 2010-11-04 | 本田技研工業株式会社 | 燃料電池システム |
JP4824915B2 (ja) * | 2004-07-06 | 2011-11-30 | 本田技研工業株式会社 | 燃料電池システム |
JP4830277B2 (ja) * | 2004-09-07 | 2011-12-07 | カシオ計算機株式会社 | 燃料電池装置 |
JP4670316B2 (ja) * | 2004-11-11 | 2011-04-13 | 株式会社デンソー | 燃料電池システム |
JP2006179345A (ja) * | 2004-12-22 | 2006-07-06 | Mitsubishi Heavy Ind Ltd | 燃料電池発電システム及びその運転方法 |
JP5080884B2 (ja) * | 2007-07-11 | 2012-11-21 | 本田技研工業株式会社 | 燃料電池システムおよび燃料電池システムの運転方法 |
CN108630975B (zh) * | 2018-06-29 | 2023-12-15 | 张家港氢云新能源研究院有限公司 | 能实现-40℃以下超低温冷启动的质子交换膜燃料电池电堆 |
JP7261828B2 (ja) * | 2021-03-17 | 2023-04-20 | 本田技研工業株式会社 | 燃料電池システム及び該システムの制御方法 |
-
2002
- 2002-02-15 JP JP2002038958A patent/JP4128370B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003243009A (ja) | 2003-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110957503B (zh) | 一种燃料电池低温启动的空气加热回流系统及控制方法 | |
JP4575701B2 (ja) | 燃料電池システム | |
CA2367128A1 (en) | Method for the cold-starting of a fuel cell battery, and associated fuel cell battery | |
JP2007522623A (ja) | 燃料電池システムのための細分割冷却回路 | |
JP4128370B2 (ja) | 燃料電池用暖機装置 | |
JP4178849B2 (ja) | 燃料電池システム | |
JP2006528827A (ja) | 低温燃料電池発電装置の動作 | |
JP2004296351A (ja) | 燃料電池システム | |
JP2004055379A (ja) | 燃料電池システム | |
JP2005203263A (ja) | 燃料電池システムの起動方法 | |
JP4845899B2 (ja) | 燃料電池システム | |
JP3960002B2 (ja) | 燃料電池システム | |
JP2002025591A (ja) | 燃料電池発電システム | |
JP3470909B2 (ja) | ハイブリッド燃料電池 | |
JP2005322527A (ja) | 燃料電池システム | |
JP4087840B2 (ja) | 燃料電池システム | |
JP2005044630A (ja) | 燃料電池システム | |
JP2007038952A (ja) | 燃料電池を搭載した車両の空調装置 | |
JP4128369B2 (ja) | 燃料電池用暖機装置 | |
JP2001236978A (ja) | 燃料電池システム | |
JP2006127861A (ja) | 燃料電池システム | |
JP4322040B2 (ja) | 燃料電池システムおよびその制御方法 | |
JP4964368B2 (ja) | 燃料電池用燃料ガス生成装置 | |
JP2004164951A (ja) | 燃料電池システム | |
JP2002305013A (ja) | 燃料電池暖機装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041130 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070313 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070511 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080507 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080514 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110523 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110523 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130523 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130523 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140523 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |