JP4124459B2 - Grease - Google Patents
Grease Download PDFInfo
- Publication number
- JP4124459B2 JP4124459B2 JP2003408642A JP2003408642A JP4124459B2 JP 4124459 B2 JP4124459 B2 JP 4124459B2 JP 2003408642 A JP2003408642 A JP 2003408642A JP 2003408642 A JP2003408642 A JP 2003408642A JP 4124459 B2 JP4124459 B2 JP 4124459B2
- Authority
- JP
- Japan
- Prior art keywords
- grease
- powder
- average particle
- volume
- silicone oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Lubricants (AREA)
Description
本発明はグリースに関する。 The present invention relates to grease.
近年、発熱性電子部品の高密度化や、携帯用パソコンをはじめとする電子機器の小型、薄型、軽量化に伴い、その放熱に用いられる放熱部材の低熱抵抗化の要求が益々高まっている。放熱部材としては、シリコーンゴムに熱伝導性無機粉末の充填された硬化物からなるシート、シリコーンゲルに熱伝導性無機粉末が充填され、柔軟性を有する硬化物からなるスペーサー、液状シリコーンに熱伝導性無機粉末の充填された流動性のあるグリース、発熱電子部品の作動温度で軟化又は流動化する相変化型放熱部材などがある。これらのうちで低熱抵抗化の容易なものは、グリースと相変化型放熱部材である。 In recent years, with the increase in the density of heat-generating electronic components and the reduction in size, thickness, and weight of electronic devices such as portable personal computers, there has been an increasing demand for lowering the heat resistance of heat dissipation members used for heat dissipation. As a heat dissipation member, a sheet made of a cured product in which silicone rubber is filled with a thermally conductive inorganic powder, a spacer made of a cured product having flexibility in which a silicone gel is filled with a thermally conductive inorganic powder, and heat conduction to liquid silicone There are fluid grease filled with a conductive inorganic powder, a phase change heat radiation member that softens or fluidizes at the operating temperature of a heat generating electronic component, and the like. Among these, greases and phase change heat radiating members that can be easily reduced in thermal resistance are used.
グリースは、シリコーンオイルに熱伝導性無機粉末を含有させてなるものである。今日の更なる高熱伝導化の要求を満たさせるため、窒化アルミニウム粉末を熱伝導性無機粉末として用いることが提案されている(特許文献1)。しかしながら、窒化アルミニウム粉末は、六方晶の結晶構造であるので、その充填量を高めて高熱伝導化することには限界がある。 The grease is made of silicone oil containing heat conductive inorganic powder. In order to satisfy today's demand for higher thermal conductivity, it has been proposed to use aluminum nitride powder as the thermally conductive inorganic powder (Patent Document 1). However, since the aluminum nitride powder has a hexagonal crystal structure, there is a limit to increasing the filling amount and achieving high thermal conductivity.
一方、グリースは、例えば上記放熱部材等のようにヒートサイクルが長期間繰り返されるところで使用すると、シリコーンオイル成分が分離するいわゆる「離油」を生じ、熱抵抗が上昇する。これを解決するため、特殊なシリコーンを用いること提案されているが(特許文献2)、この文献には更なる高熱伝導化については記載されていない。
本発明の目的は、熱伝導性の改善されたグリース、特に発熱性電子部品の放熱部材に適したグリースを提供することである。 An object of the present invention is to provide a grease having improved thermal conductivity, particularly a grease suitable for a heat radiating member of a heat-generating electronic component.
すなわち、本発明は、平均球形度が0.8以上で平均粒径が2〜10μmであるアルミニウム粉末の含有率が39〜62体積%、平均球形度が0.8以上で平均粒径が0.3〜0.6μmであるアルミナ粉末の含有率が3〜13体積%、室温における粘度が100〜3000mm 2 /sであるシリコーンオイルの含有率が35〜50体積%であり、(アルミニウム粉末の平均粒径)/(アルミナ粉末の平均粒径)の比が5〜50であることを特徴とするグリースである。
また、平均粒径が2〜10μmであるアルミニウム粉末を2種類用いることを特徴とするグリースである。
That is, according to the present invention, the content of aluminum powder having an average sphericity of 0.8 or more and an average particle size of 2 to 10 μm is 39 to 62% by volume, the average sphericity is 0.8 or more and the average particle size is 0. The content of alumina powder that is 3 to 0.6 μm is 3 to 13% by volume, the content of silicone oil that has a viscosity at room temperature of 100 to 3000 mm 2 / s is 35 to 50% by volume, A grease having a ratio of (average particle diameter) / (average particle diameter of alumina powder) of 5 to 50.
Further, the grease is characterized by using two kinds of aluminum powder having an average particle diameter of 2 to 10 μm.
本発明で使用される熱伝導性無機粉末は、アルミニウム粉末とアルミナ粉末を必須成分とするものである。例えば炭化ホウ素粉末、炭化ケイ素粉末、酸化亜鉛、窒化ケイ素、窒化ホウ素、銅粉、窒化アルミニウム粉末等の熱伝導性無機粉末は、アルミニウム粉末及び/又はアルミナ粉末の最大10体積%までを置き換えて使用することができる。 The thermally conductive inorganic powder used in the present invention contains aluminum powder and alumina powder as essential components. For example, thermally conductive inorganic powders such as boron carbide powder, silicon carbide powder, zinc oxide, silicon nitride, boron nitride, copper powder, aluminum nitride powder are used by replacing up to 10% by volume of aluminum powder and / or alumina powder. can do.
本発明において、アルミニウム粉末とアルミナ粉末の平均粒径を異ならせ、しかもアルミニウム粉末の平均粒径をアルミナ粉末のそれよりも大きくしているのは、グリースの流動性を損なわせないで熱伝導性を改善するためである。アルミニウム粉末の平均粒径が15μmをこえると、グリースが薄肉化したときにそれが表面に突出し、低熱抵抗化が困難となる。一方、アルミナ粉末の平均粒径が0.2μm未満であると、グリ−スの粘度が高くなりすぎて薄化が容易でなくなり、1μmをこえると、アルミニウム粉末を多く充填することに悪影響を及ぼす。平均粒径は、アルミニウム粉末が2〜10μm、アルミナ粉末が0.3〜0.6μmである。また、(アルミニウム粉末の平均粒径)/(アルミナ粉末の平均粒径)の比は5〜50である。 In the present invention, the average particle size of the aluminum powder and the alumina powder is different, and the average particle size of the aluminum powder is larger than that of the alumina powder. It is for improving. If the average particle size of the aluminum powder exceeds 15 μm, when the grease is thinned, it protrudes to the surface, making it difficult to reduce the thermal resistance. On the other hand, if the average particle diameter of the alumina powder is less than 0.2 μm, the viscosity of the grease becomes too high and thinning becomes difficult, and if it exceeds 1 μm, it will adversely affect the filling of the aluminum powder. . The average particle size is 2 to 10 μm for aluminum powder and 0.3 to 0.6 μm for alumina powder. The ratio of (average particle diameter of aluminum powder) / (average particle diameter of alumina powder) is 5-50.
グリース中の熱伝導性無機粉末の含有率は、アルミニウム粉末が39〜62体積%、アルミナ粉末が3〜13体積%、シリコーンオイルが35〜50体積%であり、シリコーンオイルは特に33〜43体積%であることが好ましい。シリコーンオイルの含有率が50体積%をこえると、熱伝導率を向上させる効果が少なく、グリースをいくら薄化しても低熱抵抗化は困難となる。また、シリコーンオイルの含有率が35体積%未満であると、グリースの粘度が高くなり、流動性が悪化する。 The content of the thermally conductive inorganic powder in grease, aluminum powder is 39 to 62 vol%, alumina powder 3-13% by volume, a silicone oil 35 to 50% by volume, the silicone oil is particularly 33-43 volume % Is preferred. When the content of silicone oil exceeds 50% by volume, the effect of improving the thermal conductivity is small, and it is difficult to reduce the thermal resistance no matter how thin the grease is. On the other hand, if the silicone oil content is less than 35% by volume, the viscosity of the grease increases and the fluidity deteriorates.
アルミナ粉末は、アルミニウム粉末の粒子と粒子の隙間を埋め、熱伝導性を一段と向上させるために用いており、その含有率が1体積%未満ではその効果が認められず、15体積%をこえるとグリースの粘度が高くなる。アルミニウム粉末は高熱伝導率の付与を担っている。 The alumina powder is used to fill the gap between the particles of the aluminum powder and further improve the thermal conductivity. When the content is less than 1% by volume, the effect is not observed and exceeds 15% by volume. The viscosity of the grease increases. Aluminum powder is responsible for imparting high thermal conductivity.
熱伝導性無機粉末の形状は、球形度が高いほどグリースの流動性が高まる。本発明では、以下で定義された平均球形度が0.8以上、特に0.85以上であることが好ましい。 As for the shape of the thermally conductive inorganic powder, the higher the sphericity, the higher the fluidity of the grease. In the present invention, the average sphericity defined below is preferably 0.8 or more, particularly 0.85 or more.
平均球形度は、実体顕微鏡、例えば「モデルSMZ−10型」(ニコン社製)、走査型電子顕微鏡にて撮影した粒子像を画像解析装置、例えば(日本アビオニクス社製など)に取り込み、次のようにして測定することができる。すなわち、写真から粒子の投影面積(A)と周囲長(PM)を測定する。周囲長(PM)に対応する真円の面積を(B)とすると、その粒子の真円度はA/Bとして表示できる。そこで、試料粒子の周囲長(PM)と同一の周囲長をもつ真円を想定すると、PM=2πr、B=πr2であるから、B=π×(PM/2π)2となり、個々の粒子の球形度は、球形度=A/B=A×4π/(PM)2として算出することができる。このようにして得られた任意の粒子200個の球形度を求めその平均球形度とした。 The average sphericity is obtained by taking a particle image taken with a stereomicroscope such as “Model SMZ-10” (Nikon Corporation) or a scanning electron microscope into an image analyzer such as Nihon Avionics Co., Ltd. Thus, it can be measured. That is, the projected area (A) and the perimeter (PM) of particles are measured from a photograph. When the area of a perfect circle corresponding to the perimeter (PM) is (B), the roundness of the particle can be displayed as A / B. Thus, assuming a perfect circle having the same circumference as the sample particle (PM), PM = 2πr and B = πr 2 , so that B = π × (PM / 2π) 2 Can be calculated as sphericity = A / B = A × 4π / (PM) 2 . The sphericity of 200 arbitrary particles thus obtained was determined and used as the average sphericity.
本発明で用いられるシリコーンオイルは、普通に入手できるもので十分であり、ジメチ
ルシリコーンオイル、メチルフェニルシリコーンオイル、変性シリコーンオイルと呼ばれ
るものなどを例示することができる。シリコーンオイルは、低動粘度であり、具体的には室温に於ける動粘度が100〜3000mm2/sである。特に100〜1000mm2/sであることが好ましい。
As the silicone oil used in the present invention, a commonly available one is sufficient, and examples thereof include dimethyl silicone oil, methylphenyl silicone oil, and modified silicone oil. Silicone oil has a low kinematic viscosity , specifically, a kinematic viscosity at room temperature of 100 to 3000 mm 2 / s . In particular, it is preferably 100 to 1000 mm 2 / s.
本発明のグリースは、低熱抵抗であることが望ましく、0.10℃/W以下、特に0.05℃/W以下であることが好ましい。このような低熱抵抗性は、上記熱伝導性無機粉末の含有率によって調整することができる。また、粘度は、5〜350Pa・s、特に50〜300Pa・sであることが好ましい。5Pa・s未満では、電子機器の作動中にグリースが流れ出しやすくなり、また350Pa・sをこえると、高粘度により流動性が悪いため薄肉化が困難となる。グリースの粘度は、シリコーンオイルの粘度によって調整することができる。 The grease of the present invention desirably has low thermal resistance, and is preferably 0.10 ° C./W or less, particularly 0.05 ° C./W or less. Such a low heat resistance can be adjusted by the content of the heat conductive inorganic powder. The viscosity is preferably 5 to 350 Pa · s, particularly 50 to 300 Pa · s. If it is less than 5 Pa · s, the grease tends to flow out during the operation of the electronic device, and if it exceeds 350 Pa · s, the fluidity is poor due to the high viscosity, making it difficult to reduce the thickness. The viscosity of the grease can be adjusted by the viscosity of the silicone oil.
本発明のグリースは、上記材料を万能混合攪拌機、ニーダー等で混練りすることによって製造することができる。 The grease of the present invention can be produced by kneading the above materials with a universal mixing stirrer, kneader or the like.
実施例1〜3 比較例1〜3
表1に示されるアルミニウム粉末(東洋アルミニウム社製「03−0026」、「03−0027」、「PFX5010」)、アルミナ粉末(住友化学工業社製商品名「AA−03」、「AKP−G008」、電気化学工業社製商品名「DAW−45」)から選ばれた少なくとも1種の熱伝導性無機粉末と、表2に示される室温粘度が100〜3000mm2/sの範囲にあるシリコーンオイル(信越化学社製商品名、「KF−96−300CS」)とを、表2の割合で配合し、万能混合攪拌機を用い、30分混合しながら真空脱泡し、グリースを製造した。
Examples 1-3 Comparative Examples 1-3
Aluminum powders (“03-0026”, “03-0027”, “PFX5010” manufactured by Toyo Aluminum Co., Ltd.) and alumina powders (trade names “AA-03”, “AKP-G008” manufactured by Sumitomo Chemical Co., Ltd.) shown in Table 1 And at least one thermally conductive inorganic powder selected from the trade name “DAW-45” manufactured by Denki Kagaku Kogyo Co., Ltd.) and a silicone oil having a room temperature viscosity of 100 to 3000 mm 2 / s shown in Table 2 ( The product name “KF-96-300CS” manufactured by Shin-Etsu Chemical Co., Ltd.) was blended in the ratio shown in Table 2, and vacuum defoamed while mixing for 30 minutes using a universal mixing stirrer to produce a grease.
得られたグリースの熱抵抗と粘度、及び熱伝導性無機粉末の平均粒径を以下に従って測定した。それらの結果を表1及び表2に示す。 The thermal resistance and viscosity of the obtained grease and the average particle size of the thermally conductive inorganic powder were measured as follows. The results are shown in Tables 1 and 2.
(1)グリースの熱抵抗:ASTM D5470に準拠して測定した。すなわち、ヒーターの埋め込まれた直方体の銅製治具(先端が□10mm)と、冷却ユニットを有する直方体の銅製治具(先端が□10mm)とを、試料(グリース)約0.5cm3を挟んで4.2kgの荷重を掛け、密着させて銅製冷却治具とした。試料量は、密着面全体を埋めるのに十分な量であり、少しはみ出させた状態とした。ヒーターに電力20Wをかけて30分間保持し、銅製治具と銅製治具との温度差(℃)を測定し、式、熱抵抗(℃/W)=温度差(℃)/電力(W)、により算出した。 (1) Thermal resistance of grease: measured in accordance with ASTM D5470. That is, a rectangular parallelepiped copper jig (tip is □ 10 mm) embedded with a heater and a rectangular parallelepiped copper jig (tip is □ 10 mm) having a cooling unit, with a sample (grease) of about 0.5 cm 3 interposed therebetween. A 4.2 kg load was applied and brought into close contact to form a copper cooling jig. The amount of the sample was a sufficient amount to fill the entire contact surface, and was in a state where it protruded slightly. Hold the heater with electric power of 20W and hold it for 30 minutes, measure the temperature difference (° C) between the copper jig and copper jig, formula, thermal resistance (° C / W) = temperature difference (° C) / power (W) Calculated by
(2)グリースの粘度:キャピラリー・レオメーター(東洋精機社製「Capirograph」)を用い、せん断応力を0.37MPaとして測定した。 (2) Viscosity of grease: Using a capillary rheometer (“Capirograph” manufactured by Toyo Seiki Co., Ltd.), the shear stress was measured at 0.37 MPa.
(3)熱伝導性無機粉末の平均粒径:L&N社製粒度分布計「マイクロトラックSP−A」を用いて測定した。なお、平均球形度は上記によって測定した。 (3) Average particle size of thermally conductive inorganic powder: measured using a particle size distribution meter “Microtrac SP-A” manufactured by L & N. The average sphericity was measured as described above.
本発明のグリースは、発熱性電子部品の放熱部材等として使用できる。 The grease of the present invention can be used as a heat radiating member for a heat-generating electronic component.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003408642A JP4124459B2 (en) | 2003-12-08 | 2003-12-08 | Grease |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003408642A JP4124459B2 (en) | 2003-12-08 | 2003-12-08 | Grease |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005170971A JP2005170971A (en) | 2005-06-30 |
JP4124459B2 true JP4124459B2 (en) | 2008-07-23 |
Family
ID=34730268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003408642A Expired - Fee Related JP4124459B2 (en) | 2003-12-08 | 2003-12-08 | Grease |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4124459B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103221520A (en) * | 2010-11-18 | 2013-07-24 | 电气化学工业株式会社 | High durability thermally conductive composite and low pump-out grease |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7695817B2 (en) | 2003-11-05 | 2010-04-13 | Dow Corning Corporation | Thermally conductive grease and methods and devices in which said grease is used |
JP4942978B2 (en) * | 2005-09-30 | 2012-05-30 | モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 | Thermally conductive silicone grease composition and semiconductor device using the same |
WO2008047809A1 (en) * | 2006-10-17 | 2008-04-24 | Denki Kagaku Kogyo Kabushiki Kaisha | Grease |
JP2010106209A (en) * | 2008-10-31 | 2010-05-13 | Eishindo:Kk | Lubricant |
JP2014070123A (en) * | 2012-09-28 | 2014-04-21 | Fukoku Co Ltd | Heat-conductive grease composition and heater unit using the same |
CN115698222A (en) | 2020-06-05 | 2023-02-03 | 电化株式会社 | Two-component curable composition for thermally conductive grease, and electronic device |
-
2003
- 2003-12-08 JP JP2003408642A patent/JP4124459B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103221520A (en) * | 2010-11-18 | 2013-07-24 | 电气化学工业株式会社 | High durability thermally conductive composite and low pump-out grease |
Also Published As
Publication number | Publication date |
---|---|
JP2005170971A (en) | 2005-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3957596B2 (en) | Thermally conductive grease | |
JP5231236B2 (en) | Grease | |
JP3290127B2 (en) | Heat conductive silicone rubber composition and heat dissipation sheet comprising the heat conductive silicone rubber composition | |
JP4933094B2 (en) | Thermally conductive silicone grease composition | |
JP2009096961A (en) | Heat-conductive silicone grease composition excellent in reworkability | |
JP3891969B2 (en) | Thermally conductive grease | |
KR102478791B1 (en) | Low Heat Resistance Silicone Composition | |
CN111315825B (en) | Thermally conductive silicone grease composition | |
WO2016111139A1 (en) | Heat-storage, thermally conductive sheet | |
JP2010155870A (en) | Thermally conductive compound and method for producing the same | |
JP2010018646A (en) | Heat-conductive silicone composition | |
JP2007277406A (en) | Highly heat-conductive resin compound, highly heat-conductive resin molded article, compounding particle for heat-releasing sheet, highly heat-conductive resin compound, highly heat-conductive resin molded article, heat-releasing sheet, and method for producing the same | |
JP2008222776A (en) | Heat-conductive silicone grease composition | |
JP5542280B2 (en) | Thermal grease composition | |
JP4124459B2 (en) | Grease | |
JP2005330426A (en) | Heat-dissipating silicone grease composition | |
JP2002030217A (en) | Thermally conductive silicone composition | |
JP4014454B2 (en) | Resin composition, method for producing the same, and heat radiating member | |
JP4481019B2 (en) | Mixed powder and its use | |
JP2004075760A (en) | Heat-conductive resin composition and phase-change type heat radiation member | |
US7381346B2 (en) | Thermal interface material | |
JP2000095896A (en) | Powder for addition to resin, and resin composition and heat-releasing spacer using the powder | |
JP2009185212A (en) | Thermal conductive grease | |
WO2016028661A1 (en) | Thermally conductive clay | |
KR20110121881A (en) | Silicone composition having excellent long-term storage stability and heat-radiating function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050408 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080205 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080404 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080430 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080501 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4124459 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110516 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120516 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130516 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130516 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |