[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4196736B2 - 高分子化合物およびそれを用いた高分子発光素子 - Google Patents

高分子化合物およびそれを用いた高分子発光素子 Download PDF

Info

Publication number
JP4196736B2
JP4196736B2 JP2003154746A JP2003154746A JP4196736B2 JP 4196736 B2 JP4196736 B2 JP 4196736B2 JP 2003154746 A JP2003154746 A JP 2003154746A JP 2003154746 A JP2003154746 A JP 2003154746A JP 4196736 B2 JP4196736 B2 JP 4196736B2
Authority
JP
Japan
Prior art keywords
group
polymer
light emitting
compound
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003154746A
Other languages
English (en)
Other versions
JP2004075981A (ja
Inventor
公信 野口
義昭 津幡
千津 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2003154746A priority Critical patent/JP4196736B2/ja
Publication of JP2004075981A publication Critical patent/JP2004075981A/ja
Application granted granted Critical
Publication of JP4196736B2 publication Critical patent/JP4196736B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高分子化合物および該高分子化合物を用いた高分子発光素子(以下、高分子LEDということがある。)に関する。
【0002】
【従来の技術】
高分子量の発光材料は、低分子量の発光材料とは異なり溶媒に可溶で塗布法により発光素子における発光層を形成できることから種々検討されており、その例としては、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体、ポリフェニレン誘導体などが知られている。
【0003】
【発明が解決しようとする課題】
本発明の目的は、発光材料として有用な新規な高分子化合物、該高分子化合物を用いた高分子発光素子を提供することにある。
【0004】
【課題を解決するための手段】
本発明者等は、上記課題を解決すべく鋭意検討した結果、芳香族基で置換されたビニリデン構造を有する高分子化合物が、発光材料として有用であることを見出し、本発明に至った。
【0005】
すなわち本発明は、 下記式(1)で示される繰り返し単位を含み、ポリスチレン換算の数平均分子量が1×103〜1×108である高分子化合物を提供するものである。
Figure 0004196736
〔ここで、ArおよびArは、それぞれ独立に、アリーレン基、2価の複素環基または2価の芳香族アミン基を示す。またArは、アリール基、1価の複素環基または1価の芳香族アミン基を示す。Xは、−CR1=CR2−または−C≡C−を表す。R1、R2およびRはそれぞれ独立に水素原子、アルキル基、アリール基、1価の複素環基またはシアノ基を示す。nは、0または1を示す。〕
【0006】
【発明の実施の形態】
本発明の高分子化合物は、前記式(1)で示される繰り返し単位を1種類以上含む。
【0007】
上記式(1)におけるAr1およびArは、それぞれ独立に、アリーレン基2価の複素環基または2価の芳香族アミン基を示す。 ここで、 Ar1およびArは、アルキル基、アルコキシ基、アルキルチオ基、アルキルシリル基、アルキルアミノ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アリールアルケニル基、アリールアルキニル基、アリールアミノ基、1価の複素環基などの置換基を有していてもよい。Ar1、Arが複数の置換基を有する場合、それらは同一であってもよいし、それぞれ異なっていてもよい。
【0008】
前記式(1)において、アリーレン基とは、芳香族炭化水素から、水素原子2個を除いた残りの原子団であり、炭素数は、通常6〜60程度である。炭素数には置換基の炭素数は含まない。ここに芳香族炭化水素には縮合環をもつもの、独立したベンゼン環または縮合環2個以上が直接又はビニレン等の基を介して結合したものも含まれる。
アリーレン基としては、フェニレン基(例えば、下図の式1〜3)、ナフタレンジイル基(下図の式4〜13)、アントラセニレン基(下図の式14〜19)、ビフェニレン基(下図の式20〜25)、トリフェニレン基(下図の式26〜28)、縮合環化合物基(下図の式29〜38)、スチルベン−ジイル(下図AからD)、ジスチルベン−ジイル(下図E,F)などが例示される。
中でもフェニレン基、ビフェニレン基、フルオレンージイル基(下図の式36〜38)、スチルベン−ジイル(下図AからD)、ジスチルベン−ジイル(下図E,F)が好ましい。
【0009】
Figure 0004196736
【0010】
Figure 0004196736
【0011】
Figure 0004196736
【0012】
Figure 0004196736
【0013】
Figure 0004196736
【0014】
Figure 0004196736
【0015】
上記式1〜38、A〜Fにおいて、Rは、それぞれ独立に水素原子、アルキル基、アルコキシ基、アルキルチオ基、アルキルシリル基、アルキルアミノ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アリールアルケニル基、アリールアルキニル基、アリールアミノ基、1価の複素環基またはシアノ基を示す。上記の例において、1つの構造式中に複数のRを有しているが、それらは同一であってもよいし、異なっていてもよい。
【0016】
ここに、アルキル基は、直鎖、分岐または環状のいずれでもよく、炭素数は通常1〜20程度であり、具体的には、メチル基、エチル基、プロピル基、i−プロピル基、ブチル基、 i−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、2−エチルヘキシル基、ノニル基、デシル基、3,7−ジメチルオクチル基、ラウリル基などが挙げられ、ペンチル基、ヘキシル基、オクチル基、2−エチルヘキシル基、デシル基、3,7−ジメチルオクチル基が好ましい。
【0017】
アルコキシ基は、直鎖、分岐または環状のいずれでもよく、炭素数は通常1〜20程度であり、具体的には、メトキシ基、エトキシ基、プロピルオキシ基、 i−プロピルオキシ基、ブトキシ基、 i−ブトキシ基、t−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7−ジメチルオクチルオキシ基、ラウリルオキシ基などが挙げられ、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、デシルオキシ基、3,7−ジメチルオクチルオキシ基が好ましい。
【0018】
アルキルチオ基は、直鎖、分岐または環状のいずれでもよく、炭素数は通常1〜20程度であり、具体的には、メチルチオ基、エチルチオ基、プロピルチオ基、 i−プロピルチオ基、ブチルチオ基、 i−ブチルチオ基、t−ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、2−エチルヘキシルチオ基、ノニルチオ基、デシルチオ基、3,7−ジメチルオクチルチオ基、ラウリルチオ基などが挙げられ、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、2−エチルヘキシルチオ基、デシルチオ基、3,7−ジメチルオクチルチオ基が好ましい。
【0019】
アルキルシリル基は、直鎖、分岐または環状のいずれでもよく、炭素数は通常1〜60程度であり、具体的には、メチルシリル基、エチルシリル基、プロピルシリル基、 i−プロピルシリル基、ブチルシリル基、i−ブチルシリル基、t−ブチルシリル基、ペンチルシリル基、ヘキシルシリル基、シクロヘキシルシリル基、ヘプチルシリル基、オクチルシリル基、2−エチルヘキシルシリル基、ノニルシリル基、デシルシリル基、3,7−ジメチルオクチルシリル基、ラウリルシリル基、トリメチルシリル基、エチルジメチルシリル基、プロピルジメチルシリル基、 i−プロピルジメチルシリル基、ブチルジメチルシリル基、t−ブチルジメチルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、ヘプチルジメチルシリル基、オクチルジメチルシリル基、2−エチルヘキシル−ジメチルシリル基、ノニルジメチルシリル基、デシルジメチルシリル基、3,7−ジメチルオクチル−ジメチルシリル基、ラウリルジメチルシリル基などが挙げられ、ペンチルシリル基、ヘキシルシリル基、オクチルシリル基、2−エチルヘキシルシリル基、デシルシリル基、3,7−ジメチルオクチルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、オクチルジメチルシリル基、2−エチルヘキシル−ジメチルシリル基、デシルジメチルシリル基、3,7−ジメチルオクチル−ジメチルシリル基が好ましい。
【0020】
アルキルアミノ基は、直鎖、分岐または環状のいずれでもよく、モノアルキルアミノ基でもジアルキルアミノ基でもよく、炭素数は通常1〜40程度であり、具体的には、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、 i−プロピルアミノ基、ブチルアミノ基、 i−ブチルアミノ基、t−ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、シクロヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2−エチルヘキシルアミノ基、ノニルアミノ基、デシルアミノ基、3,7−ジメチルオクチルアミノ基、ラウリルアミノ基などが挙げられ、ペンチルアミノ基、ヘキシルアミノ基、オクチルアミノ基、2−エチルヘキシルアミノ基、デシルアミノ基、3,7−ジメチルオクチルアミノ基が好ましい。
【0021】
アリール基は、炭素数は通常6〜60程度であり、具体的には、フェニル基、C1〜C12アルコキシフェニル基(C1〜C12は、炭素数1〜12であることを示す。以下も同様である。)、C1〜C12アルキルフェニル基、1−ナフチル基、2−ナフチル基などが例示され、 C1〜C12アルコキシフェニル基、C1〜C12アルキルフェニル基が好ましい。
【0022】
アリールオキシ基は、炭素数は通常6〜60程度であり、具体的には、フェノキシ基、C1〜C12アルコキシフェノキシ基、C1〜C12アルキルフェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基などが例示され、 C1〜C12アルコキシフェノキシ基、C1〜C12アルキルフェノキシ基が好ましい。
【0023】
アリールアルキル基は、炭素数は通常7〜60程度であり、具体的には、フェニル−C1〜C12アルキル基、C1〜C12アルコキシフェニル−C1〜C12アルキル基、C1〜C12アルキルフェニル−C1〜C12アルキル基、1−ナフチル−C1〜C12アルキル基、2−ナフチル−C1〜C12アルキル基などが例示され、C1〜C12アルコキシフェニル−C1〜C12アルキル基、C1〜C12アルキルフェニル−C1〜C12アルキル基が好ましい。
【0024】
アリールアルコキシ基は、炭素数は通常7〜60程度であり、具体的には、フェニル−C1〜C12アルコキシ基、C1〜C12アルコキシフェニル−C1〜C12アルコキシ基、C1〜C12アルキルフェニル−C1〜C12アルコキシ基、1−ナフチル−C1〜C12アルコキシ基、2−ナフチル−C1〜C12アルコキシ基などが例示され、C1〜C12アルコキシフェニル−C1〜C12アルコキシ基、C1〜C12アルキルフェニル−C1〜C12アルコキシ基が好ましい。
【0025】
アリールアルケニル基としては、炭素数は通常8〜60程度であり、具体的には、フェニル−C2〜C12アルケニル基、C1〜C12アルコキシフェニル−C2〜C12アルケニル基、C1〜C12アルキルフェニル−C2〜C12アルケニル基、1−ナフチル−C1〜C12アルケニル基、2−ナフチル−C2〜C12アルケニル基などが例示され、C1〜C12アルコキシフェニル−C2〜C12アルケニル基、C1〜C12アルキルフェニル−C2〜C12アルケニル基が好ましい。
【0026】
アリールアルキニル基としては、炭素数は通常8〜60程度であり、具体的には、フェニル−C2〜C12アルキニル基、C1〜C12アルコキシフェニル−C2〜C12アルキニル基、C1〜C12アルキルフェニル−C2〜C12アルキニル基、1−ナフチル−C2〜C12アルキニル基、2−ナフチル−C2〜C12アルキニル基などが例示され、C1〜C12アルコキシフェニル−C2〜C12アルキニル基、C1〜C12アルキルフェニル−C2〜C12アルキニル基が好ましい。
【0027】
アリールアミノ基は、炭素数は通常6〜60程度であり、フェニルアミノ基、ジフェニルアミノ基、C1〜C12アルコキシフェニルアミノ基、ジ(C1〜C12アルコキシフェニル)アミノ基、ジ(C1〜C12アルキルフェニル)アミノ基、1−ナフチルアミノ基、2−ナフチルアミノ基などが例示され、C1〜C12アルキルフェニルアミノ基、ジ(C1〜C12アルキルフェニル)アミノ基が好ましい。
【0028】
1価の複素環基は、炭素数は通常4〜60程度であり、具体的には、チエニル基、C1〜C12アルキルチエニル基、ピロリル基、フリル基、ピリジル基、C1〜C12アルキルピリジル基などが例示され、チエニル基、C1〜C12アルキルチエニル基、ピリジル基、C1〜C12アルキルピリジル基が好ましい。1価の複素環基とは、複素環化合物から水素原子1個を除いた残りの原子団をいう。
【0029】
上記置換基がアルキル鎖を含む基の場合は、該アルキル鎖は、ヘテロ原子またはヘテロ原子を含む基で中断されていてもよい。ここに、ヘテロ原子としては、酸素原子、硫黄原子、窒素原子などが例示される。ヘテロ原子またはヘテロ原子を含む基としては、例えば、以下の基が挙げられる。
【0030】
Figure 0004196736
【0031】
ここで、R’としては、例えば、水素原子、炭素数1〜20のアルキル基、炭素数6〜60のアリール基、炭素数4〜60の1価の複素環基が挙げられる。
【0032】
本発明の高分子化合物の溶媒への溶解性を高めるためには、繰り返し単位の形状の対称性が少ないことが好ましく、Rのうちの1つ以上に環状または分岐のあるアルキル鎖が含まれることが好ましい。また、複数のRが連結して環を形成していてもよい。 Rのうち、アルキル鎖を含む置換基においては、それらは直鎖、分岐または環状のいずれかまたはそれらの組み合わせであってもよい。直鎖でない場合、例えば、イソアミル基、2−エチルヘキシル基、3,7−ジメチルオクチル基、シクロヘキシル基、4−C1〜C12アルキルシクロヘキシル基などが例示される。
【0033】
前記式(1)において、2価の複素環基とは、複素環化合物から水素原子2個を除いた残りの原子団をいい、炭素数は通常4〜60程度である。炭素数には置換基の炭素数は含まない。
ここに複素環化合物とは、環式構造をもつ有機化合物のうち、環を構成する元素が炭素原子だけでなく、酸素、硫黄、窒素、リン、ホウ素などのヘテロ原子を環内に含むものをいい、例えば以下のものが挙げられる。
ヘテロ原子として、窒素を含む基;ピリジンージイル基(下図の式39〜44)、ジアザフェニレン基(下図の式45〜48)、キノリンジイル基(下図の式49〜63)、キノキサリンジイル基(下図の式64〜68)、アクリジンジイル基(下図の式69〜72)、ビピリジルジイル基(下図の式73〜75)、フェナントロリンジイル基(下図の式76〜78)など。
ヘテロ原子としてけい素、窒素、酸素、硫黄、セレンなどを含みフルオレン構造を有する基(下図の式79〜93)。
ヘテロ原子としてけい素、窒素、酸素、硫黄、セレンなどを含む5員環複素環基:(下図の式94〜98)が挙げられる。
ヘテロ原子としてけい素、窒素、酸素、硫黄、セレンなどを含む5員環縮合複素環基:(下図の式99〜108)が挙げられる。
ヘテロ原子として硫黄などを含む5員環複素環基でそのヘテロ原子のα位で結合し2量体やオリゴマーになっている基:(下図の式109〜110)が挙げられる。
ヘテロ原子としてけい素、窒素、酸素、硫黄、セレンなどを含む5員環複素環基でそのヘテロ原子のα位でフェニル基に結合している基:(下図の式111〜117)が挙げられる。
【0034】
Figure 0004196736
【0035】
Figure 0004196736
【0036】
Figure 0004196736
【0037】
Figure 0004196736
【0038】
Figure 0004196736
【0039】
Figure 0004196736
【0040】
Figure 0004196736
【0041】
Figure 0004196736
【0042】
Figure 0004196736
【0043】
上記式39〜117において、Rは、前記と同じ意味を表す。
【0044】
前記式(1)において、2価の芳香族アミン基とは、芳香族アミンから水素原子2個を除いた残りの原子団をいい、炭素数は通常4〜60程度であり、炭素数には置換基の炭素数は含まない。2価の芳香族アミン基としては、例えば、下記一般式(3)で示される基が挙げられる。
【0045】
−Ar−N(Ar)−Ar− (3)
式中、ArおよびArはそれぞれ独立にアリーレン基、一般式(4)で表される基、または一般式(5)で表される基である。Arは、アリール基、一般式(6)で表される基または一般式(7)で表される基を示す。また、ArとArの間、ArとArの間、またはArとArの間に環を形成していてもよい。
【0046】
Figure 0004196736
(4)
式中、ArおよびArは、それぞれ独立にアリーレン基を示す。RおよびRは、それぞれ独立に水素原子、アルキル基、アリール基、1価の複素環基またはシアノ基を示す。lは0または1である。
【0047】
Figure 0004196736
式中、Ar10およびAr11は、それぞれ独立に、アリーレン基を示す。Ar12は、置換基を有してもよいアリール基である。また、Ar10とAr12の間、Ar10とAr11の間、またはAr11とAr12の間に環を形成していてもよい。
【0048】
Figure 0004196736
式中、Ar13は、アリーレン基を示す。Ar16およびAr17は、それぞれ独立に、置換基を有してもよいアリール基である。また、Ar1 とAr16の間、Ar1 とAr17の間、またはAr1 とAr17の間に環を形成していてもよい。
【0049】
Figure 0004196736
式中、Ar14は、アリーレン基を示す。Ar15は、アリール基を示す。R11およびR12は、それぞれ独立に水素原子、アルキル基、アリール基、1価の複素環基またはシアノ基を示す。rは0または1である。
【0050】
上記式(4)のAr、Ar、式(5)のAr10、Ar11、式(6)のAr13、式(7)のAr14は、アルキル基、アルコキシ基、アルキルチオ基、アルキルシリル基、アルキルアミノ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アリールアルケニル基、アリールアルキニル基、アリールアミノ基、1価の複素環基、シアノ基等の置換基を有していてもよい。
また上記式(3)のAr 上記式(5)のAr12、上記式(6)のAr1 とAr17、上記式(7)のAr15はアルキル基、アルコキシ基、アルキルチオ基、アルキルシリル基、アルキルアミノ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アリールアルケニル基、アリールアルキニル基、アリールアミノ基、1価の複素環基、シアノ基等の置換基を有していてもよい。
【0051】
2価の芳香族アミン基として、具体的には以下の基が例示される。
Figure 0004196736
Figure 0004196736
【0052】
上記式118〜122において、Rは、前記と同じ意味を表す。
【0053】
前記式(1)において、Arは、アリール基、1価の複素環基、または1価の芳香族アミン基である。該Arは置換基を有していても良い。置換基としては、アルキル基、アルコキシ基、アルキルチオ基、アルキルシリル基、アルキルアミノ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アリールアルケニル基、アリールアルキニル基、アリールアミノ基、1価の複素環基などがあげられる。
【0054】
ここにアリール基としては、炭素数は通常6〜60程度であり、例えば、フェニル基、ナフチル基、アントラセニル基、ビフェニル基、トリフェニル基、ピレニル基、フルオレニル基、スチルベン−イル基、ジスチルベン−イル基などが例示される。中でもフェニル基、ビフェニル基、フルオレニル基、スチルベン−イル基、ジスチルベン−イル基が好ましい。
【0055】
また、1価の複素環基とは、複素環化合物から水素原子1個を除いた残りの原子団をいい、炭素数は通常2〜60程度である。
1価の複素環基としては、例えば、以下のものが挙げられる。
ヘテロ原子として、窒素を含む1価の複素環基;ピリジニル基、ジアザフェニル基、キノリニル基、キノキサリニル基、アクリジニル基、ビピリジニル基、フェナントロリンーイル基など。
ヘテロ原子としてけい素、窒素、酸素、硫黄、セレンなどを含みフルオレン構造を有する基(前記式、79〜93で示された環を有する基)、
ヘテロ原子としてけい素、窒素、酸素、硫黄、セレンなどを含む5員環複素環基(前記式、94〜98で示された環を有する基)ヘテロ原子として、けい素、窒素、酸素、硫黄、セレンなどを含む5員環縮合複素環基(前記式、99〜108で示された環を有する基)。
ヘテロ原子として硫黄などを含む5員環複素環基でそのヘテロ原子のα位で結合し2両体やオリゴマーになっている基(前記式、109〜110で示された環を有する基)。
ヘテロ原子としてけい素、窒素、酸素、硫黄、セレンなどを含む5員環複素環基でそのヘテロ原子のα位でフェニル基に結合している基(前記式、111〜117で示された環を有する基)。
【0056】
さらに、1価の複素環基としては、たとえば、三重項発光錯体なども含まれ、例えば、以下に例示されるような1価の金属錯体基が例示される。
【0057】
Figure 0004196736
Figure 0004196736
Figure 0004196736
Figure 0004196736
Figure 0004196736
Figure 0004196736
Figure 0004196736
【0058】
また、1価の芳香族アミン基とは、芳香族アミンから水素原子1個を除いた残りの原子団をいい、炭素数は通常4〜60程度であり、炭素数には置換基の炭素数は含まない。1価の芳香族アミン基としては、例えば、具体的には、下記式123〜127に示す基が例示される。
Figure 0004196736
上記式123〜127において、Rは、前記と同じ意味を表す。
【0059】
上記式(1)において、Xは、−CR1=CR2−または−C≡C−を表し、−CR1=CR2が安定性の観点から好ましい。またnは、0または1であり光安定性の観点からは、0が好ましい。
ここに、R1およびR2はそれぞれ独立に水素原子、アルキル基、アリール基、1価の複素環基またはシアノ基を示す。
また、Rは、水素原子、アルキル基、アリール基、1価の複素環基またはシアノ基を示す。
【0060】
式(1)で示される繰り返し単位の合計は全繰り返し単位の1モル%以上100モル%以下が好ましい。
【0061】
本発明の高分子化合物の中では、さらに下記式(2)で示される繰り返し単位を含むものが好ましい。
− Ar−(Z)− (2)
【0062】
上記式(2)におけるArは、アリーレン基、2価の複素環基、または2価の芳香族アミン基である。Arとしては、Arと同じ基が例示される。
上記式(2)において、Zは、 −CR4=CR5−または−C≡C−を表す。R4およびRはそれぞれ独立に水素原子、アルキル基、アリール基、1価の複素環基またはシアノ基を示す。pは、0または1を示す。
【0063】
式(2)で示される繰り返し単位として具体的には、上記式1から117、上記式AからF、上記式118〜122、および下記式128〜133に記載の構造のものが挙げられる。中でも、フェニレン基(例えば、上図の式1〜3)、ナフタレンジイル基(上図の式4〜13)、アントラセニレン基(上図の式14〜19)、ビフェニレン基(上図の式20〜25)、トリフェニレン基(上図の式26〜28)、縮合環化合物基(上図の式29〜38)、ジベンゾフランージイル基(上図の式85〜87)、ジベンゾチオフェンージイル基(上図の式88〜90)、スチルベン−ジイル基、ジスチルベン−ジイル基、2価の芳香族アミン基(上図の118〜119、122)、アリーレンビニレン基(下図の式128〜133)などが好ましく、中でもフェニレン基、ビフェニレン基、フルオレンージイル基(上図の式36〜38)、ジベンゾフランージイル基(上図の式85〜87)、ジベンゾチオフェンージイル基(上図の式88〜90)、スチルベン−ジイル基、ジスチルベン−ジイル基、2価の芳香族アミン基が特に好ましい。
【0064】
Figure 0004196736
ここにRは前記と同じ意味を表す。
【0065】
式(1)及び(2)で示される繰り返し単位を含む高分子化合物の中で、式(1)および式(2)で示される繰り返し単位の合計が全繰り返し単位の50モル%以上であり、かつ式(1)および式(2)で示される繰り返し単位の合計に対して、式(1)で示される繰り返し単位が 2モル%以上90モル%以下であるものが耐熱性の観点からより好ましい。
【0066】
本発明の高分子化合物は、典型的には、ポリスチレン換算の数平均分子量103〜10であり、2×10〜10であることが好ましい。
【0067】
また、本発明の高分子化合物の末端基は、重合活性基がそのまま残っていると、素子にしたときの発光特性や寿命が低下する可能性があるので、安定な基で保護されていてもよい。主鎖の共役構造と連続した共役結合を有しているものが好ましく、また、例えば、ビニレン基を介してアリール基または複素環基と結合している構造であっても良い。具体的には、特開平9−45478号公報の化10に記載の置換基等が例示される。
【0068】
なお、本発明の高分子化合物は、蛍光特性や電荷輸送特性を損なわない範囲で上記、式(1)及び(2)で示される繰り返し単位以外の繰り返し単位を含んでいてもよいが、実質的に式(1)で示される繰り返し単位からなるもの、実質的に式(1)および(2)で示される繰り返し単位からなるものが好ましい。
繰り返し単位が、ビニレンや非共役部分で連結されていてもよいし、繰り返し単位にそれらのビニレンや非共役部分が含まれていてもよい。上記非共役部分を含む結合構造としては、以下に示すもの、以下に示すものとビニレン基を組み合わせたもの、および以下に示すもののうち2つ以上を組み合わせたものなどが例示される。ここで、Rは前記のものと同じ置換基から選ばれる基であり、Arは炭素数6〜60個の炭化水素基を示す。
【0069】
Figure 0004196736
【0070】
本発明の高分子化合物は、ランダム、ブロックまたはグラフト共重合体であってもよいし、それらの中間的な構造を有する高分子、例えばブロック性を帯びたランダム共重合体であってもよい。蛍光の量子収率の高い高分子化合物を得る観点からは完全なランダム共重合体よりブロック性を帯びたランダム共重合体やブロックまたはグラフト共重合体が好ましい。主鎖に枝分かれがあり、末端部が3つ以上ある場合やデンドリマーも含まれる。
【0071】
本発明の高分子化合物を高分子LEDの発光材料として用いる場合、薄膜からの発光やりん光を利用するので本発明の高分子化合物としては、固体状態で蛍光またはりん光を有するものが好ましい。
【0072】
本発明の高分子化合物に対する良溶媒としては、クロロホルム、塩化メチレン、ジクロロエタン、テトラヒドロフラン、トルエン、キシレン、メシチレン、テトラリン、デカリン、n−ブチルベンゼンなどが例示される。高分子化合物の構造や分子量にもよるが、通常はこれらの溶媒に0.1重量%以上溶解させることができる。
【0073】
次に、本発明の高分子化合物の製造方法について説明する。
本発明の高分子化合物は下記式で示される化合物を原料の一つとして縮合重合することにより製造することができる。
Figure 0004196736
(式中、Ar、Ar2、Ar、およびRは、式(1)と同じ。DおよびDはそれぞれ独立にハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基、ホウ酸エステル基、スルホニウムメチル基、ホスホニウムメチル基、ホスホネートメチル基、モノハロゲン化メチル基、ホウ酸基、ホルミル基、シアノメチル基またはビニル基を示す。)
ここにアルキルスルホネート基としては、メタンスルホネート基、エタンスルホネート基、トリフルオロメタンスルホネート基などが例示され、アリールスルホネート基としては、ベンゼンスルホネート基、p−トルエンスルホネート基などが例示され、アリールアルキルスルホネート基としては、ベンジルスルホネート基などが例示される。
ホウ酸エステル基としては、下記式で示される基が例示される。
Figure 0004196736
スルホニウムメチル基としては、下記式で示される基が例示される。
−CHSMe2X、−CHSPh2X (Xはハロゲン原子を示す。)
ホスホニウムメチル基としては、下記式で示される基が例示される。
−CHPPh3X (Xはハロゲン原子を示す。)
ホスホネートメチル基としては、下記式で示される基が例示される。
−CHPO(OR''')2
(R'''はアルキル基、アリール基またはアリールアルキル基を示す。)
モノハロゲン化メチル基としては、フッ化メチル基、塩化メチル基、臭化メチル基、ヨウ化メチル基が例示される。
縮合重合の方法としては、主鎖にビニレン基を有する場合には、必要に応じてその他の単量体を用いて、例えば、〔1〕アルデヒド基を有する化合物とホスホニウム塩基を有する化合物とのWittig反応による重合、〔2〕アルデヒド基とホスホニウム塩基とを有する化合物のWittig反応による重合、〔3〕ビニル基を有する化合物とハロゲン原子を有する化合物とのHeck反応による重合〔4〕ビニル基とハロゲン原子とを有する化合物のHeck反応による重合、〔5〕アルデヒド基を有する化合物とアルキルホスホネート基を有する化合物とのHorner−Wadsworth−Emmons法による重合〔6〕アルデヒド基とアルキルホスホネート基とを有する化合物のHorner−Wadsworth−Emmons法による重合、〔7〕ハロゲン化メチル基を2つ以上有する化合物の脱ハロゲン化水素法による重縮合、〔8〕スルホニウム塩基を2つ以上有する化合物のスルホニウム塩分解法による重縮合、〔9〕アルデヒド基を有する化合物とアセトニトリル基を有する化合物とのKnoevenagel反応による重合〔10〕アルデヒド基とアセトニトリル基とを有する化合物のKnoevenagel反応による重合などの方法、〔11〕アルデヒド基を2つ以上有する化合物のMcMurry反応による重合などの方法が例示される。
上記〔1〕〜〔11〕の重合について以下に式で示す。
〔1〕
Figure 0004196736
〔2〕
Figure 0004196736
〔3〕
Figure 0004196736
〔4〕
Figure 0004196736
〔5〕
Figure 0004196736
〔6〕
Figure 0004196736
〔7〕
Figure 0004196736
〔8〕
Figure 0004196736
〔9〕
Figure 0004196736
〔10〕
Figure 0004196736
〔11〕
Figure 0004196736
また、本発明の高分子化合物の製造方法として、主鎖にビニレン基を有しない場合には、例えば、〔12〕Suzukiカップリング反応により重合する方法、〔13〕Grignard反応により重合する方法、〔14〕Ni(0)触媒により重合する方法、〔15〕FeCl3等の酸化剤により重合する方法、電気化学的に酸化重合する方法、あるいは〔16〕適当な脱離基を有する中間体高分子の分解による方法などが例示される。
上記〔12〕〜〔16〕までの重合法について、以下に式で示す。
〔12〕
Figure 0004196736
〔13〕
Figure 0004196736
〔14〕
Figure 0004196736
〔15〕
Figure 0004196736
〔16〕
Figure 0004196736
これらのうち、 Wittig反応による重合、Heck反応による重合、Horner−Wadsworth−Emmons法による重合、Knoevenagel反応による重合、およびSuzukiカップリング反応により重合する方法、Grignard反応により重合する方法、Ni(0)触媒により重合する方法が、構造制御がしやすいので好ましい。さらにSuzukiカップリング反応により重合する方法、Grignard反応により重合する方法、Ni(0)触媒により重合する方法が原料の入手しやすさと重合反応操作の簡便さから好ましい。
【0074】
また、本発明の高分子化合物は、反応活性基を有する重合体(以下、この重合体を、前駆体ということがある)を合成した後、この前駆体の反応活性基と反応する活性基を持つ化合物とを反応させることにより製造できる。
前駆体の反応活性基としては、前駆体を合成するための重合反応を阻害しないものであれば、特に限定されないが、例えば、ハロゲン原子、アルキルスルホニルオキシ基、アリールスルホニルオキシ基、−B(OR’’)2、アシル基、−CHR’’−P(=O)(OR’’)2で表される基、または−CHR’’−P+(R’’)3-で表される基、クロルカルボニル基、カルボキシル基、水酸基、アミノ基等があげられる。ここにR’’はそれぞれ独立にアルキル基を示す。
Xはハロゲン原子を示す。
具体的には、例えば、前記のいずれかの方法で得た、
Figure 0004196736
で示される繰り返し単位を含む前駆体と、
Ar3−CHR−P(=O)(OR’’)2
とを塩基を用いて反応させることにより、
Figure 0004196736
で示される繰り返し単位を含む本発明の高分子化合物を得ることができる。
【0075】
本発明の高分子化合物を製造終了後、必要に応じ、酸洗浄、アルカリ洗浄、中和、水洗浄、有機溶媒洗浄、再沈殿、遠心分離、抽出、カラムクロマトグラフィーなどの慣用の分離操作、精製操作、乾燥その他の操作に供してもよい。
【0076】
本発明の高分子化合物を高分子LEDの発光材料として用いる場合、その純度が発光特性に影響を与えるため、本発明の製造方法においては、上記分離操作、精製操作を十分行い、未反応モノマー、副生成物、触媒残渣などを十分除いておくことが好ましい。
乾燥の際には、残存する溶媒が十分に除去される条件であればよい。高分子化合物の変質を防止するために、不活性な雰囲気で遮光して乾燥することが好ましい。また、高分子化合物が熱的に変質しない温度で乾燥することが好ましい。
【0077】
本発明の高分子化合物は、発光材料の有効成分として用いることができる。さらに、電荷輸送性材料有機半導体材料、光学材料、あるいはドーピングにより導電性材料として用いることもできる。
【0078】
次に、本発明の高分子LEDについて説明する。
本発明の高分子LEDは、陽極および陰極からなる電極間に、発光層を有し、該発光層が本発明の高分子化合物を含むことを特徴とする。
【0079】
また、本発明の高分子LEDとしては、陰極と発光層との間に、電子輸送層を設けた高分子LED、陽極と発光層との間に、正孔輸送層を設けた高分子LED、陰極と発光層との間に、電子輸送層を設け、かつ陽極と発光層との間に、正孔輸送層を設けた高分子LED等が挙げられる。
【0080】
本発明の高分子LEDには少なくとも一方の電極と発光層との間に該電極に隣接して導電性高分子を含む層を設けた高分子LED;少なくとも一方の電極と発光層との間に該電極に隣接して膜厚2nm以下の絶縁層を設けた高分子LEDも含まれる。
【0081】
例えば、具体的には、以下のa)〜d)の構造が例示される。
a)陽極/発光層/陰極
b)陽極/正孔輸送層/発光層/陰極
c)陽極/発光層/電子輸送層/陰極
d)陽極/正孔輸送層/発光層/電子輸送層/陰極
(ここで、/は各層が隣接して積層されていることを示す。以下同じ。)
【0082】
ここで、発光層とは、発光する機能を有する層であり、正孔輸送層とは、正孔を輸送する機能を有する層であり、電子輸送層とは、電子を輸送する機能を有する層である。なお、電子輸送層と正孔輸送層を総称して電荷輸送層と呼ぶ。
発光層、正孔輸送層、電子輸送層は、それぞれ独立に2層以上用いてもよい。
【0083】
また、電極に隣接して設けた電荷輸送層のうち、電極からの電荷注入効率を改善する機能を有し、素子の駆動電圧を下げる効果を有するものは、特に電荷注入層(正孔注入層、電子注入層)と一般に呼ばれることがある。
【0084】
さらに電極との密着性向上や電極からの電荷注入の改善のために、電極に隣接して前記の電荷注入層又は膜厚2nm以下の絶縁層を設けてもよく、また、界面の密着性向上や混合の防止等のために電荷輸送層や発光層の界面に薄いバッファー層を挿入してもよい。
積層する層の順番や数、および各層の厚さについては、発光効率や素子寿命を勘案して適宜用いることができる。
【0085】
本発明において、電荷注入層(電子注入層、正孔注入層)を設けた高分子LEDとしては、陰極に隣接して電荷注入層を設けた高分子LED、陽極に隣接して電荷注入層を設けた高分子LEDが挙げられる。
例えば、具体的には、以下のe)〜p)の構造が挙げられる。
e)陽極/電荷注入層/発光層/陰極
f)陽極/発光層/電荷注入層/陰極
g)陽極/電荷注入層/発光層/電荷注入層/陰極
h)陽極/電荷注入層/正孔輸送層/発光層/陰極
i)陽極/正孔輸送層/発光層/電荷注入層/陰極
j)陽極/電荷注入層/正孔輸送層/発光層/電荷注入層/陰極
k)陽極/電荷注入層/発光層/電荷輸送層/陰極
l)陽極/発光層/電子輸送層/電荷注入層/陰極
m)陽極/電荷注入層/発光層/電子輸送層/電荷注入層/陰極
n)陽極/電荷注入層/正孔輸送層/発光層/電荷輸送層/陰極
o)陽極/正孔輸送層/発光層/電子輸送層/電荷注入層/陰極
p)陽極/電荷注入層/正孔輸送層/発光層/電子輸送層/電荷注入層/陰極
【0086】
電荷注入層の具体的な例としては、導電性高分子を含む層、陽極と正孔輸送層との間に設けられ、陽極材料と正孔輸送層に含まれる正孔輸送材料との中間の値のイオン化ポテンシャルを有する材料を含む層、陰極と電子輸送層との間に設けられ、陰極材料と電子輸送層に含まれる電子輸送材料との中間の値の電子親和力を有する材料を含む層などが例示される。
【0087】
上記電荷注入層が導電性高分子を含む層の場合、該導電性高分子の電気伝導度は、10-5S/cm以上103S/cm以下であることが好ましく、発光画素間のリーク電流を小さくするためには、10-5S/cm以上102S/cm以下がより好ましく、10-5S/cm以上101S/cm以下がさらに好ましい。
通常は該導電性高分子の電気伝導度を10-5S/cm以上103S/cm以下とするために、該導電性高分子に適量のイオンをドープする。
【0088】
ドープするイオンの種類は、正孔注入層であればアニオン、電子注入層であればカチオンである。アニオンの例としては、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、樟脳スルホン酸イオンなどが例示され、カチオンの例としては、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラブチルアンモニウムイオンなどが例示される。
電荷注入層の膜厚としては、例えば1nm〜100nmであり、2nm〜50nmが好ましい。
【0089】
電荷注入層に用いる材料は、電極や隣接する層の材料との関係で適宜選択すればよく、ポリアニリンおよびその誘導体、ポリチオフェンおよびその誘導体、ポリピロールおよびその誘導体、ポリフェニレンビニレンおよびその誘導体、ポリチエニレンビニレンおよびその誘導体、ポリキノリンおよびその誘導体、ポリキノキサリンおよびその誘導体、芳香族アミン構造を主鎖または側鎖に含む重合体などの導電性高分子、金属フタロシアニン(銅フタロシアニンなど)、カーボンなどが例示される。
【0090】
膜厚2nm以下の絶縁層は電荷注入を容易にする機能を有するものである。上記絶縁層の材料としては、金属フッ化物、金属酸化物、有機絶縁材料等が挙げられる。膜厚2nm以下の絶縁層を設けた高分子LEDとしては、陰極に隣接して膜厚2nm以下の絶縁層を設けた高分子LED、陽極に隣接して膜厚2nm以下の絶縁層を設けた高分子LEDが挙げられる。
【0091】
具体的には、例えば、以下のq)〜ab)の構造が挙げられる。
q)陽極/膜厚2nm以下の絶縁層/発光層/陰極
r)陽極/発光層/膜厚2nm以下の絶縁層/陰極
s)陽極/膜厚2nm以下の絶縁層/発光層/膜厚2nm以下の絶縁層/陰極
t)陽極/膜厚2nm以下の絶縁層/正孔輸送層/発光層/陰極
u)陽極/正孔輸送層/発光層/膜厚2nm以下の絶縁層/陰極
v)陽極/膜厚2nm以下の絶縁層/正孔輸送層/発光層/膜厚2nm以下の絶縁層/陰極
w)陽極/膜厚2nm以下の絶縁層/発光層/電子輸送層/陰極
x)陽極/発光層/電子輸送層/膜厚2nm以下の絶縁層/陰極
y)陽極/膜厚2nm以下の絶縁層/発光層/電子輸送層/膜厚2nm以下の絶縁層/陰極
z)陽極/膜厚2nm以下の絶縁層/正孔輸送層/発光層/電子輸送層/陰極
aa)陽極/正孔輸送層/発光層/電子輸送層/膜厚2nm以下の絶縁層/陰極
ab)陽極/膜厚2nm以下の絶縁層/正孔輸送層/発光層/電子輸送層/膜厚2nm以下の絶縁層/陰極
【0092】
本発明の高分子LEDにおける 発光層の膜厚としては、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよいが、例えば1nmから1μmであり、好ましくは2nm〜500nmであり、さらに好ましくは5nm〜200nmである。
【0093】
本発明の高分子LEDにおいては、発光層に上記高分子化合物以外の発光材料を混合して使用してもよい。また、本発明の高分子LEDにおいては、上記高分子化合物以外の発光材料を含む発光層が、上記高分子化合物を含む発光層と積層されていてもよい。
該発光材料としては、公知のものが使用できる。低分子化合物では、例えば、ナフタレン誘導体、アントラセンもしくはその誘導体、ペリレンもしくはその誘導体、ポリメチン系、キサンテン系、クマリン系、シアニン系などの色素類、8−ヒドロキシキノリンもしくはその誘導体の金属錯体、芳香族アミン、テトラフェニルシクロペンタジエンもしくはその誘導体、またはテトラフェニルブタジエンもしくはその誘導体などを用いることができる。
具体的には、例えば特開昭57−51781号、同59−194393号公報に記載されているもの等、公知のものが使用可能である。
【0094】
発光層の成膜の方法に制限はないが、溶液からの成膜による方法が例示される。溶液からの成膜方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の塗布法を用いることができる。
【0095】
本発明の高分子LEDが正孔輸送層を有する場合、使用される正孔輸送材料としては、ポリビニルカルバゾールもしくはその誘導体、ポリシランもしくはその誘導体、側鎖もしくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体、ポリピロールもしくはその誘導体、ポリ(p−フェニレンビニレン)もしくはその誘導体、またはポリ(2,5−チエニレンビニレン)もしくはその誘導体などが例示される。
【0096】
具体的には、該正孔輸送材料として、特開昭63−70257号公報、同63−175860号公報、特開平2−135359号公報、同2−135361号公報、同2−209988号公報、同3−37992号公報、同3−152184号公報に記載されているもの等が例示される。
【0097】
これらの中で、正孔輸送層に用いる正孔輸送材料として、ポリビニルカルバゾールもしくはその誘導体、ポリシランもしくはその誘導体、側鎖もしくは主鎖に芳香族アミン化合物基を有するポリシロキサン誘導体、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体、ポリ(p−フェニレンビニレン)もしくはその誘導体、またはポリ(2,5−チエニレンビニレン)もしくはその誘導体等の高分子正孔輸送材料が好ましく、さらに好ましくはポリビニルカルバゾールもしくはその誘導体、ポリシランもしくはその誘導体、側鎖もしくは主鎖に芳香族アミンを有するポリシロキサン誘導体である。低分子の正孔輸送材料の場合には、高分子バインダーに分散させて用いることが好ましい。
【0098】
ポリビニルカルバゾールもしくはその誘導体は、例えばビニルモノマーからカチオン重合またはラジカル重合によって得られる。
【0099】
ポリシランもしくはその誘導体としては、ケミカル・レビュー(Chem.Rev.)第89巻、1359頁(1989年)、英国特許GB2300196号公開明細書に記載の化合物等が例示される。合成方法もこれらに記載の方法を用いることができるが、特にキッピング法が好適に用いられる。
【0100】
ポリシロキサンもしくはその誘導体は、シロキサン骨格構造には正孔輸送性がほとんどないので、側鎖または主鎖に上記低分子正孔輸送材料の構造を有するものが好適に用いられる。特に正孔輸送性の芳香族アミンを側鎖または主鎖に有するものが例示される。
【0101】
正孔輸送層の成膜の方法に制限はないが、低分子正孔輸送材料では、高分子バインダーとの混合溶液からの成膜による方法が例示される。また、高分子正孔輸送材料では、溶液からの成膜による方法が例示される。
【0102】
溶液からの成膜に用いる溶媒としては、正孔輸送材料を溶解させるものであれば特に制限はない。該溶媒として、クロロホルム、塩化メチレン、ジクロロエタン等の塩素系溶媒、テトラヒドロフラン等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテート等のエステル系溶媒が例示される。
【0103】
溶液からの成膜方法としては、溶液からのスピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の塗布法を用いることができる。
【0104】
混合する高分子バインダーとしては、電荷輸送を極度に阻害しないものが好ましく、また可視光に対する吸収が強くないものが好適に用いられる。該高分子バインダーとして、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサン等が例示される。
【0105】
正孔輸送層の膜厚としては、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよいが、少なくともピンホールが発生しないような厚さが必要であり、あまり厚いと、素子の駆動電圧が高くなり好ましくない。従って、該正孔輸送層の膜厚としては、例えば1nmから1μmであり、好ましくは2nm〜500nmであり、さらに好ましくは5nm〜200nmである。
【0106】
本発明の高分子LEDが電子輸送層を有する場合、使用される電子輸送材料としては公知のものが使用でき、オキサジアゾール誘導体、アントラキノジメタンもしくはその誘導体、ベンゾキノンもしくはその誘導体、ナフトキノンもしくはその誘導体、アントラキノンもしくはその誘導体、テトラシアノアンスラキノジメタンもしくはその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレンもしくはその誘導体、ジフェノキノン誘導体、または8−ヒドロキシキノリンもしくはその誘導体の金属錯体、ポリキノリンもしくはその誘導体、ポリキノキサリンもしくはその誘導体、ポリフルオレンもしくはその誘導体等が例示される。
【0107】
具体的には、特開昭63−70257号公報、同63−175860号公報、特開平2−135359号公報、同2−135361号公報、同2−209988号公報、同3−37992号公報、同3−152184号公報に記載されているもの等が例示される。
【0108】
これらのうち、オキサジアゾール誘導体、ベンゾキノンもしくはその誘導体、アントラキノンもしくはその誘導体、または8−ヒドロキシキノリンもしくはその誘導体の金属錯体、ポリキノリンもしくはその誘導体、ポリキノキサリンもしくはその誘導体、ポリフルオレンもしくはその誘導体が好ましく、2−(4−ビフェニリル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール、ベンゾキノン、アントラキノン、トリス(8−キノリノール)アルミニウム、ポリキノリンがさらに好ましい。
【0109】
電子輸送層の成膜法としては特に制限はないが、低分子電子輸送材料では、粉末からの真空蒸着法、または溶液もしくは溶融状態からの成膜による方法が、高分子電子輸送材料では溶液または溶融状態からの成膜による方法がそれぞれ例示される。溶液または溶融状態からの成膜時には、高分子バインダーを併用してもよい。
【0110】
溶液からの成膜に用いる溶媒としては、電子輸送材料および/または高分子バインダーを溶解させるものであれば特に制限はない。該溶媒として、クロロホルム、塩化メチレン、ジクロロエタン等の塩素系溶媒、テトラヒドロフラン等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテート等のエステル系溶媒が例示される。
【0111】
溶液または溶融状態からの成膜方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の塗布法を用いることができる。
【0112】
混合する高分子バインダーとしては、電荷輸送を極度に阻害しないものが好ましく、また、可視光に対する吸収が強くないものが好適に用いられる。該高分子バインダーとして、ポリ(N−ビニルカルバゾール)、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体、ポリ(p−フェニレンビニレン)もしくはその誘導体、ポリ(2,5−チエニレンビニレン)もしくはその誘導体、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、またはポリシロキサンなどが例示される。
【0113】
電子輸送層の膜厚としては、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよいが、少なくともピンホールが発生しないような厚さが必要であり、あまり厚いと、素子の駆動電圧が高くなり好ましくない。従って、該電子輸送層の膜厚としては、例えば1nmから1μmであり、好ましくは2nm〜500nmであり、さらに好ましくは5nm〜200nmである。
【0114】
本発明の高分子LEDを形成する基板は、電極を形成し、有機物の層を形成する際に変化しないものであればよく、例えばガラス、プラスチック、高分子フィルム、シリコン基板などが例示される。不透明な基板の場合には、反対の電極が透明または半透明であることが好ましい。
【0115】
本発明において、陽極および陰極からなる電極の少なくとも一方が透明または半透明であり、陽極側が透明または半透明であることが好ましい。
該陽極の材料としては、導電性の金属酸化物膜、半透明の金属薄膜等が用いられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、およびそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等からなる導電性ガラスを用いて作成された膜(NESAなど)や、金、白金、銀、銅等が用いられ、ITO、インジウム・亜鉛・オキサイド、酸化スズが好ましい。作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。また、該陽極として、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などの有機の透明導電膜を用いてもよい。
陽極の膜厚は、光の透過性と電気伝導度とを考慮して、適宜選択することができるが、例えば10nmから10μmであり、好ましくは20nm〜1μmであり、さらに好ましくは50nm〜500nmである。
また、陽極上に、電荷注入を容易にするために、フタロシアニン誘導体、導電性高分子、カーボンなどからなる層、あるいは金属酸化物や金属フッ化物、有機絶縁材料等からなる平均膜厚2nm以下の層を設けてもよい。
【0116】
本発明の高分子LEDで用いる陰極の材料としては、仕事関数の小さい材料が好ましい。例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウムなどの金属、およびそれらのうち2つ以上の合金、あるいはそれらのうち1つ以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1つ以上との合金、グラファイトまたはグラファイト層間化合物等が用いられる。合金の例としては、マグネシウム−銀合金、マグネシウム−インジウム合金、マグネシウム−アルミニウム合金、インジウム−銀合金、リチウム−アルミニウム合金、リチウム−マグネシウム合金、リチウム−インジウム合金、カルシウム−アルミニウム合金などが挙げられる。陰極を2層以上の積層構造としてもよい。
陰極の膜厚は、電気伝導度や耐久性を考慮して、適宜選択することができるが、例えば10nmから10μmであり、好ましくは20nm〜1μmであり、さらに好ましくは50nm〜500nmである。
【0117】
陰極の作製方法としては、真空蒸着法、スパッタリング法、また金属薄膜を熱圧着するラミネート法等が用いられる。また、陰極と有機物層との間に、導電性高分子からなる層、あるいは金属酸化物や金属フッ化物、有機絶縁材料等からなる平均膜厚2nm以下の層を設けてもよく、陰極作製後、該高分子LEDを保護する保護層を装着していてもよい。該高分子LEDを長期安定的に用いるためには、素子を外部から保護するために、保護層および/または保護カバーを装着することが好ましい。
【0118】
該保護層としては、高分子化合物、金属酸化物、金属フッ化物、金属ホウ化物などを用いることができる。また、保護カバーとしては、ガラス板、表面に低透水率処理を施したプラスチック板などを用いることができ、該カバーを熱効果樹脂や光硬化樹脂で素子基板と貼り合わせて密閉する方法が好適に用いられる。スペーサーを用いて空間を維持すれば、素子がキズつくのを防ぐことが容易である。該空間に窒素やアルゴンのような不活性なガスを封入すれば、陰極の酸化を防止することができ、さらに酸化バリウム等の乾燥剤を該空間内に設置することにより製造工程で吸着した水分が素子にタメージを与えるのを抑制することが容易となる。これらのうち、いずれか1つ以上の方策をとることが好ましい。
【0119】
また、陽極および陰極からなる電極間に、電荷輸送層と発光層とを有し、該電荷輸送層が本発明の高分子化合物を含む高分子LEDも可能である。
【0120】
本発明の高分子発光素子は、面状光源、セグメント表示装置、ドットマトリックス表示装置、液晶表示装置のバックライトとして用いることができる。
【0121】
本発明の高分子LEDを用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。また、パターン状の発光を得るためには、前記面状の発光素子の表面にパターン状の窓を設けたマスクを設置する方法、非発光部の有機物層を極端に厚く形成し実質的に非発光とする方法、陽極または陰極のいずれか一方、または両方の電極をパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にOn/OFFできるように配置することにより、数字や文字、簡単な記号などを表示できるセグメントタイプの表示素子が得られる。更に、ドットマトリックス素子とするためには、陽極と陰極をともにストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる発光材料を塗り分ける方法や、カラーフィルターまたは蛍光変換フィルターを用いる方法により、部分カラー表示、マルチカラー表示が可能となる。ドットマトリックス素子は、パッシブ駆動も可能であるし、TFTなどと組み合わせてアクティブ駆動してもよい。これらの表示素子は、コンピュータ、テレビ、携帯端末、携帯電話、カーナビゲーション、ビデオカメラのビューファインダーなどの表示装置として用いることができる。
さらに、前記面状の発光素子は、自発光薄型であり、液晶表示装置のバックライト用の面状光源、あるいは面状の照明用光源として好適に用いることができる。また、フレキシブルな基板を用いれば、曲面状の光源や表示装置としても使用できる。
【0122】
【実施例】
以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。
ここで、数平均分子量については、クロロホルムを溶媒として、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算の数平均分子量を求めた。
【0123】
実施例1
<高分子化合物1の合成>
4、4’−ジクロロベンゾフェノン0.63gと1,4−ジブロムー2,5−ジ(3,7−ジメチルオクチルオキシ)ベンゼン2.74gと2,2‘−ビピリジル2.75gとをテトラヒドロフラン(脱水)200gに溶解した後、窒素ガスでバブリングして、系内を窒素ガス置換した。この溶液に、ビス(1,5−シクロオクタジエン)ニッケル(0){Ni(COD)2}5gを加え、室温で約10分間攪拌した後、昇温し、60℃で3時間反応した。
この反応液を冷却した後、25%アンモニア水20ml/メタノール100ml/イオン交換水200ml混合溶液を加え、約1時間攪拌した。この溶液を室温で一夜静置した後、生成した沈殿をろ過することにより、回収した。次に、この沈殿を乾燥した後、クロロホルムに溶解した。不溶物をろ過することにより、除去した後、この溶液を、アルミナを充填したカラムを通過させることにより精製した。次に、この溶液をメタノール中に注ぎ込み、再沈精製した。生成した沈殿を回収し、エタノールで洗浄した後、これを減圧乾燥して、重合体1 、0.8gを得た。
【0124】
仕込みから推定される重合体1に含まれる繰り返し単位の構造を下記に示す。
Figure 0004196736
【0125】
次に、この重合体1、0.3gと、4−tert.−ブチルベンジルブロミドと亜りん酸トリエチルとを反応して得られたホスホン酸エステル0.3gとを、テトラヒドロフラン(脱水)30gに溶解した後、窒素ガスでバブリングして、系内を窒素ガス置換した。この溶液に、あらかじめカリウムーtert.−ブトキシド0.3gをテトラヒドロフラン(脱水)5gに溶解した溶液を滴下した。滴下後、引き続き室温で2時間反応した。
次に、この反応液に酢酸を加え中和した後、この溶液にメタノールを加えて、再沈処理した。生成した沈殿をろ過により回収し、減圧乾燥した後、この沈殿をトルエンに溶解した。このトルエン溶液を、アルミナを充填したカラムを通すことにより精製した後、メタノール中に注ぎ込み、再沈処理した。生成した沈殿をろ過により回収し、エタノールで洗浄した後、これを減圧乾燥して、重合体0.2gを得た。得られた重合体を高分子化合物1と呼ぶ。
【0126】
該高分子化合物1のポリスチレン換算の数平均分子量は、2.2×10であり、重量平均分子量は5.3×10であった。仕込みから推定される高分子化合物1に含まれる繰り返し単位の構造を下記に示す。
Figure 0004196736
【0127】
実施例2
<高分子化合物2の合成>
4−tert.−ブチルベンジルブロミドに亜りん酸トリエチルを反応して得られたホスホン酸エステルと4、4’−ジクロロベンゾフェノンとを反応して得られたアリールメチレン化合物1.13gと2,2‘−ビピリジル1.1gとをテトラヒドロフラン(脱水)80gに溶解した後、窒素ガスでバブリングして、系内を窒素ガス置換した。この溶液に、ビス(1,5−シクロオクタジエン)ニッケル(0){Ni(COD)2}2gを加え、室温で約10分間攪拌した後、昇温し、60℃で3時間反応した。
この反応液を冷却した後、25%アンモニア水20ml/メタノール100ml/イオン交換水200ml混合溶液を加え、約1時間攪拌した。この溶液を室温で一夜静置した後、生成した沈殿をろ過することにより、回収した。次に、この沈殿を乾燥した後、トルエンに溶解した。不溶物をろ過することにより、除去した後、この溶液を、1規定塩酸水溶液で洗浄、次に、2%アンモニア水で洗浄した。洗浄後のトルエン溶液をメタノール中に注ぎ込み、再沈精製した。生成した沈殿を回収し、エタノールで洗浄した後、これを減圧乾燥して、重合体0.03gを得た。得られた重合体を高分子化合物2と呼ぶ。
【0128】
該高分子化合物2のポリスチレン換算の数平均分子量は、1.1×10であり、重量平均分子量は3.2×10であった。仕込みから推定される高分子化合物2に含まれる繰り返し単位の構造を下記に示す。
Figure 0004196736
【0129】
実施例3
<高分子化合物3の合成>
4−tert.−ブチルベンジルブロミドに亜りん酸トリエチルを反応して得られたホスホン酸エステルと4、4’−ジクロロベンゾフェノンとを反応して得られたアリールメチレン化合物0.79gとN,N‘−ビス(4−ブロモフェニル)−N,N’−ビス(4−nーブチルフェニル)−1,4−フェニレンジアミン0.61gと2,2‘−ビピリジル1.1gとをテトラヒドロフラン(脱水)80gに溶解した後、窒素ガスでバブリングして、系内を窒素ガス置換した。この溶液に、ビス(1,5−シクロオクタジエン)ニッケル(0){Ni(COD)2}2gを加え、室温で約10分間攪拌した後、昇温し、60℃で3時間反応した。
この反応液を冷却した後、25%アンモニア水20ml/メタノール100ml/イオン交換水200ml混合溶液を加え、約1時間攪拌した。この溶液を室温で一夜静置した後、生成した沈殿をろ過することにより、回収した。次に、この沈殿を乾燥した後、トルエンに溶解した。不溶物をろ過することにより、除去した後、この溶液を、1規定塩酸水溶液で洗浄、次に、2%アンモニア水で洗浄した。洗浄後のトルエン溶液をメタノール中に注ぎ込み、再沈精製した。生成した沈殿を回収し、エタノールで洗浄した後、これを減圧乾燥して、重合体0.2gを得た。得られた重合体を高分子化合物3と呼ぶ。
【0130】
該高分子化合物3のポリスチレン換算の数平均分子量は、1.4×10であり、重量平均分子量は4.0×10であった。仕込みから推定される高分子化合物3に含まれる繰り返し単位の構造を下記に示す。
Figure 0004196736
【0131】
参考例1
【0132】
(合成例1) (化合物Aの合成)
Figure 0004196736
化合物A
不活性雰囲気下1lの四つ口フラスコに2,8−ジブロモジベンゾチオフェン7gとTHF 280mlを入れ、室温で撹拌、溶かした後、−78℃まで冷却した。n−ブチルリチウム 29ml(1.6モルヘキサン溶液)を滴下した。滴下終了後、温度を保持したまま2時間撹拌し、トリメトキシボロン酸 13gを滴下した。滴下終了後、ゆっくり室温まで戻した。3時間室温で撹拌後、TLCで原料の消失を確認した。5%硫酸 100mlを加えて反応を終了させ、室温で12時間撹拌した。水を加えて洗浄し、有機層を抽出した。溶媒を酢酸エチルに置換した後、30%過酸化水素水 5mlを加え、40℃で5時間撹拌した。その後有機層を抽出し、10%硫酸アンモニウム鉄(II)水溶液で洗浄後乾燥、溶媒を除去することにより、茶色の固体 4.43gを得た。LC−MS測定からは二量体などの副生成物も生成しており、化合物Aの純度は77%であった(LC面百)。
MS(APCI(−)):(M−H)- 215
【0133】
(合成例2) (化合物Bの合成)
Figure 0004196736
化合物B
不活性雰囲気下で200mlの三つ口フラスコに化合物A 4.43gと臭化n−オクチル 25.1g、および炭酸カリウム 12.5g(23.5mmol)を入れ、溶媒としてメチルイソブチルケトン 50mlを加えて125℃で6時間加熱還流した。反応終了後、溶媒を除き、クロロホルムと水で分離、有機層を抽出し、さらに水で2回洗浄した。無水硫酸ナトリウムで乾燥後、シリカゲルカラム(展開溶媒:トルエン/シクロヘキサン=1/10)で精製することにより、8.49g(LC面百97%、収率94%)の化合物Bを得た。
1H−NMR(300MHz/CDCl3):
δ0.91(t、6H)、1.31〜1.90(m、24H)、4.08(t、4H)、7.07(dd、2H)、7.55(d、2H)、7.68(d、2H)
【0134】
(合成例3) (化合物Cの合成)
Figure 0004196736
化合物C
100ml三つ口フラスコに化合物B 6.67gと酢酸 40mlを入れ、オイルバスでバス温度140℃まで昇温した。続いて、30%過酸化水素水 13mlを冷却管から加え、1時間強く撹拌した後、冷水180mlに注いで反応を終了させた。クロロホルムで抽出、乾燥後溶媒を除去することによって、6.96g(LC面百90%、収率97%)の化合物Cを得た。
1H−NMR(300MHz/CDCl3):
δ0.90(t、6H)、1.26〜1.87(m、24H)、4.06(t、4H)、7.19(dd、2H)、7.69(d、2H)、7.84(d、2H)
MS(APCI(+)):(M+H)+ 473
【0135】
(合成例4) (化合物Dの合成)
Figure 0004196736
化合物D
不活性雰囲気下200ml四つ口フラスコに化合物C 3.96gと酢酸/クロロホルム=1:1混合液 15mlを加え、70℃で撹拌し、溶解させた。続いて、臭素 6.02gを上記の溶媒 3mlに溶かして加え、3時間撹拌した。チオ硫酸ナトリウム水溶液を加えて未反応の臭素を除き、クロロホルムと水で分離、有機層を抽出、乾燥した。溶媒を除去し、シリカゲルカラム(展開溶媒:クロロホルム/ヘキサン=1/4)で精製することにより、4.46g(LC面百98%、収率84%)の化合物Dを得た。
1H−NMR(300MHz/CDCl3):
δ0.95(t、6H)、1.30〜1.99(m、24H)、4.19(t、4H)、7.04(s、2H)、7.89(s、2H)
MS(FD+)M 630
【0136】
(合成例5) (化合物Eの合成)
Figure 0004196736
化合物E
不活性雰囲気下200ml三つ口フラスコに化合物D 3.9gとジエチルエーテル 50mlを入れ、40℃まで昇温、撹拌した。水素化アルミニウムリチウム 1.17gを少量ずつ加え、5時間反応させた。水を少量ずつ加えることによって過剰な水素化アルミニウムリチウムを分解し、36%塩酸 5.7mlで洗浄した。クロロホルム、水で分離、有機層を抽出後乾燥した。シリカゲルカラム(展開溶媒:クロロホルム/ヘキサン=1/5)で精製することにより、1.8g(LC面百99%、収率49%)の化合物Eを得た。
1H−NMR(300MHz/CDCl3):
δ0.90(t、6H)、1.26〜1.97(m、24H)、4.15(t、4H)、7.45(s、2H)、7.94(s、2H)
MS(FD)M 598
【0137】
MS(APCI(+))法によれば、615、598にピークが検出された。
【0138】
実施例4
<高分子化合物4の合成>
ビス(4−クロロフェニル)ブロムメタンに亜りん酸トリエチルを反応して得られたホスホン酸エステルと4−(N,N−ジフェニルアミノ)ベンズアルデヒドとを反応して得られたアリールメチレン化合物0.37gと化合物E(3,7−ジブロモー2,8−ジオクチルオキシジベンゾチオフェン)0.45gと2,2‘−ビピリジル0.62gとをテトラヒドロフラン(脱水)50gに溶解した後、窒素ガスでバブリングして、系内を窒素ガス置換した。この溶液に、ビス(1,5−シクロオクタジエン)ニッケル(0){Ni(COD)2}1.13gを加え、室温で20時間反応した。
この反応液に、メタノール150ml/イオン交換水150ml混合溶液を加え、約1時間攪拌した。この溶液を室温で一夜静置した後、生成した沈殿をろ過することにより、回収した。次に、この沈殿を乾燥した後、トルエンに溶解した。不溶物をろ過することにより、除去した後、このトルエン溶液を、アルミナを充填したカラムを通過させることにより精製した。次に、このトルエン溶液をメタノール中に注ぎ込み、再沈精製した。生成した沈殿を回収し、エタノールで洗浄した後、これを減圧乾燥して、重合体0.04gを得た。得られた重合体を高分子化合物4と呼ぶ。
【0139】
該高分子化合物4のポリスチレン換算の数平均分子量は、2.1×10であり、重量平均分子量は1.8×10であった。仕込みから推定される高分子化合物4に含まれる繰り返し単位の構造を下記に示す。
Figure 0004196736
【0140】
参考例2
(合成例6) (化合物Fの合成)
Figure 0004196736
化合物F
不活性雰囲気下1lの三つ口フラスコにベンゾフラン(23.2g、137.9mmol)と酢酸(232g)を入れ、室温で撹拌、溶かした後、75℃まで昇温した。昇温後、臭素(92.6g、579.3mmol)を酢酸(54g)で希釈したものを滴下した。滴下終了後、温度を保持したまま3時間撹拌し、放冷した。TLCで原料の消失を確認した後、チオ硫酸ナトリウム水を加え反応を終了させ、室温で1時間撹拌した。撹拌後、ろ過を行いケーキをろ別し、さらにチオ硫酸ナトリウム水、水で洗浄した後、乾燥した。得られた粗生成物をヘキサンにて再結晶し、目的物を得た。(収量:21.8g、収率:49%)
1H−NMR(300MHz/CDCl3):
δ7.44(d、2H)、7.57(d、2H)、8.03(s、2H)
【0141】
(合成例7)(化合物Gの合成)
化合物G
Figure 0004196736
不活性雰囲気下で500mlの四つ口フラスコに化合物F(16.6g、50.9mmol)とテトラヒドロフラン(293g)を入れ、−78℃まで冷却した。n−ブチルリチウム(80ml<1.6 mol/L ヘキサン溶液>、127.3mmol)を滴下した後、温度を保持したまま1時間撹拌した。この反応液を、不活性雰囲気下で1000mlの四つ口フラスコにトリメトキシボロン酸(31.7g、305.5mmol)とテトラヒドロフラン(250ml)を入れ、−78℃まで冷却したものに滴下した。滴下終了後、ゆっくり室温まで戻し、2時間室温で撹拌後、TLCで原料の消失を確認した。反応終了マスを、2000mlビーカーに濃硫酸(30g)と水(600ml)をいれたものに、注入し、反応を終了させた。トルエン(300ml)を加え、有機層を抽出し、さらに水を加えて洗浄した。溶媒を留去後、そのうち8gと酢酸エチル(160ml)を300mlの四つ口フラスコにいれ、つづいて30%過酸化水素水(7.09g)を加え、40℃で2時間撹拌した。この反応液を、1000mlのビーカーに硫酸アンモニウム鉄(II)(71g)と水(500ml)の水溶液に注入した。撹拌後、有機層を抽出し、有機層を水で洗浄した。溶媒を除去することにより、化合物G粗製物7.57gを得た。
MSスペクトル:[M-H]- 199.0
【0142】
(合成例8) (化合物Hの合成)
Figure 0004196736
化合物H
不活性雰囲気下で200mlの四つ口フラスコに合成例7と同様の方法で合成した化合物G(2.28g、11.4mmol)とN,N−ジメチルホルムアミド(23g)を入れ、室温で撹拌、溶かした後、炭酸カリウム(9.45g、68.3mmol) を入れ100℃まで昇温した。昇温後、臭化n−オクチル(6.60g、34.2mmol)をN,N−ジメチルホルムアミド(11g)で希釈したものを滴下した。滴下終了後、60℃まで昇温し、温度を保持したまま2時間撹拌し、TLCで原料の消失を確認した。水(50ml)を加え反応を終了させ、つづいてトルエン(50ml)を加え、有機層を抽出し、有機層を水で2回洗浄した。無水硫酸ナトリウムで乾燥後、溶媒留去した。得られた粗生成物をシリカゲルカラムで精製することにより、目的物を得た。(収量:1.84g、収率:38%)
MSスペクトル:M+ 425.3
【0143】
(合成例9)(化合物Iの合成)
Figure 0004196736
化合物I
不活性雰囲気下500ml四つ口フラスコに合成例8と同様の方法で合成した化合物H(7.50g、17.7mmol)とN,N−ジメチルホルムアミドを入れ、室温で撹拌、溶かした後、氷浴で冷却した。冷却後、N−ブロモスクシンイミド(6.38g、35.9mmol)をN,N−ジメチルホルムアミド(225ml)で希釈したものを滴下した。滴下終了後、氷浴で1時間、室温で18.5時間、40℃まで昇温し、温度を保持したまま6.5時間撹拌し、液体クロマトグラフィーで原料の消失を確認した。溶媒を除去し、トルエン(75ml)を加え溶解した後、有機層を水で3回洗浄した。無水硫酸ナトリウムで乾燥後、溶媒留去した。得られた粗生成物の約半量をシリカゲルカラムおよび液体クロマトグラフィー分取で精製することにより、目的物を得た。(収量:0.326g)
1H−NMR(300MHz/CDCl3):
δ0.90(t、6H)、1.26〜1.95(m、24H)、4.11(t、4H)、7.34(s、2H)、7.74(s、2H)
MSスペクトル:M+ 582.1
【0144】
参考例3
【0145】
(合成例10)(化合物Jの合成)
Figure 0004196736
化合物J
ビス(4−クロロフェニル)ブロムメタンに亜りん酸トリエチルを反応して得られたホスホン酸エステル3.7gと4−(2−ピリジル)ベンズアルデヒド2.0gとをテトラヒドロフラン(脱水)40gに溶解した溶液に、あらかじめ、tert.−ブトキシカリウム2.2gをテトラヒドロフラン(脱水)10gに溶解した溶液を、室温で滴下した。引き続き室温で2時間反応した。反応後、この溶液に酢酸を添加し、反応液を中和した。この溶液に、メタノールを加えた後、溶媒を減圧留去した。生成した沈殿をトルエンに溶解した後、ろ過することにより、不溶物を除去した。このトルエン溶液から、シリカゲルカラムを用いて、目的物(化合物J)2.0gを分取した。
【0146】
実施例5
<高分子化合物5の合成>
ビス(4−クロロフェニル)ブロムメタンに亜りん酸トリエチルを反応して得られたホスホン酸エステルと4−(2−ピリジル)ベンズアルデヒドとを反応して得られたアリールメチレン化合物(化合物J)0.24gと化合物I(3,7−ジブロモー2,8−ジオクチルオキシジベンゾフラン)1.4gと2,2‘−ビピリジル1.26gとをテトラヒドロフラン(脱水)100gに溶解した後、窒素ガスでバブリングして、系内を窒素ガス置換した。この溶液に、ビス(1,5−シクロオクタジエン)ニッケル(0){Ni(COD)2}2.3gを加え、室温で約10分間攪拌した後、昇温し、60℃で3時間反応した。
この反応液を、冷却した後、この反応液に、25%アンモニア水20ml/メタノール100ml/イオン交換水100ml混合溶液を加え、約1時間攪拌した。この溶液を室温で一夜静置した後、生成した沈殿をろ過することにより、回収した。次に、この沈殿を乾燥した後、トルエンに溶解した。不溶物をろ過することにより、除去した後、このトルエン溶液を、アルミナを充填したカラムを通過させることにより精製した。次に、このトルエン溶液をメタノール中に注ぎ込み、再沈精製した。生成した沈殿を回収し、エタノールで洗浄した後、これを減圧乾燥して、重合体0.3gを得た。得られた重合体を高分子化合物5と呼ぶ。
【0147】
該高分子化合物5のポリスチレン換算の数平均分子量は、2.8×10であり、重量平均分子量は2.0×10であった。仕込みから推定される高分子化合物5に含まれる繰り返し単位の構造を下記に示す。
Figure 0004196736
【0148】
実施例6
<高分子化合物6の合成>
ビス(4−クロロフェニル)ブロムメタンに亜りん酸トリエチルを反応して得られたホスホン酸エステルと4−(2−ピリジル)ベンズアルデヒドとを反応して得られたアリールメチレン化合物(化合物J)0.24gと1,4−ジクロロー2−{4−(3,7−ジメチルオクチルオキシ)フェニル}ベンゼン0.9gと2,2‘−ビピリジル1.1gとをテトラヒドロフラン(脱水)100gに溶解した後、窒素ガスでバブリングして、系内を窒素ガス置換した。この溶液に、ビス(1,5−シクロオクタジエン)ニッケル(0){Ni(COD)2}2.0gを加え、室温で約10分間攪拌した後、昇温し、60℃で3時間反応した。
この反応液を、冷却した後、この反応液に、25%アンモニア水20ml/メタノール100ml/イオン交換水100ml混合溶液を加え、約1時間攪拌した。この溶液を室温で一夜静置した後、生成した沈殿をろ過することにより、回収した。次に、この沈殿を乾燥した後、トルエンに溶解した。不溶物をろ過することにより、除去した後、このトルエン溶液を、アルミナを充填したカラムを通過させることにより精製した。次に、このトルエン溶液をメタノール中に注ぎ込み、再沈精製した。生成した沈殿を回収し、エタノールで洗浄した後、これを減圧乾燥して、重合体0.3gを得た。得られた重合体を高分子化合物6と呼ぶ。
【0149】
該高分子化合物6のポリスチレン換算の数平均分子量は、2.8×10であり、重量平均分子量は4.6×10であった。仕込みから推定される高分子化合物6に含まれる繰り返し単位の構造を下記に示す。
Figure 0004196736
【0150】
実施例7
<高分子化合物7の合成>
実施例6で得られた「高分子化合物6」0.1gをキシレン(脱水)5gに溶解した溶液を、Ir金属錯体化合物(下図)0.02g
Figure 0004196736
を2−エトキシエタノール(脱水)30gに溶解した溶液に加え、反応系内を窒素ガスで置換した後、130℃で20時間反応する。反応液を冷却した後、トルエンを加え攪拌、反応生成物を抽出する。分液により、トルエン層を回収する。このトルエン溶液を数回水洗する。次に、このトルエン溶液をメタノール中に注ぎ込み、再沈精製する。生成した沈殿を回収し、エタノールで洗浄した後、これを減圧乾燥して、重合体を得る。この重合体を高分子化合物7と呼ぶ。
高分子化合物7に含まれる繰り返し単位の構造を下記に示す。
Figure 0004196736
【0151】
実施例8
<吸収スペクトル、蛍光スペクトルの測定>
高分子化合物1〜6は、クロロホルムに容易に溶解させることができた。その0.2%クロロホルム溶液を石英板上にスピンコートして重合体の薄膜を作成した。この薄膜の紫外可視吸収スペクトルと蛍光スペクトルをそれぞれ島津製作所製自記分光光度計UV365および日立製作所製蛍光分光光度計850を用いて測定した。高分子化合物1〜6の蛍光ピーク波長と相対強度を表1に示す。
【表1】
Figure 0004196736
【0152】
実施例9
<素子の作成および評価>
スパッタ法により150nmの厚みでITO膜を付けたガラス基板に、ポリ(エチレンジオキシチオフェン)/ポリスチレンスルホン酸の溶液(バイエル社、Baytron)を用いてスピンコートにより50nmの厚みで成膜し、ホットプレート上200℃で10分間乾燥した。次に、高分子化合物1の1.5wt%トルエン溶液を用いてスピンコートにより800rpmの回転速度で成膜した。さらに、これを減圧下80℃で1時間乾燥した後、フッ化リチウムを約4nmを蒸着し、陰極として、カルシウムを約20nm、ついで、アルミニウムを約50nm蒸着して、高分子LEDを作製した。なお、真空度が1×10- Pa以下に達した後、金属の蒸着を開始した。得られた素子に電圧を印加することにより、高分子化合物1からのEL発光が得られた。発光開始電圧は約5Vであり、発光効率は最大約0.1cd/A、最高輝度は約100cd/m2であった。ELピーク波長は、高分子化合物1の薄膜の蛍光ピーク波長とほぼ一致しており、高分子化合物1からのEL発光が確認された。
【0153】
実施例10
<素子の作成および評価>
スパッタ法により150nmの厚みでITO膜を付けたガラス基板に、ポリ(エチレンジオキシチオフェン)/ポリスチレンスルホン酸の溶液(バイエル社、Baytron)を用いてスピンコートにより80nmの厚みで成膜し、ホットプレート上200℃で10分間乾燥した。次に、高分子化合物5の1.5wt%トルエン溶液を用いてスピンコートにより1200rpmの回転速度で成膜した。さらに、これを減圧下50〜60℃で1時間乾燥した後、フッ化リチウムを約5nmを蒸着し、陰極として、カルシウムを約5nm、ついで、アルミニウムを約120nm蒸着して、高分子LEDを作製した。なお、真空度が1×10- Pa以下に達した後、金属の蒸着を開始した。得られた素子に電圧を印加することにより、高分子化合物5からのEL発光が得られた。発光開始電圧は約9.0Vであり、発光効率は最大約0.34cd/Aであった。ELピーク波長は、高分子化合物5の薄膜の蛍光ピーク波長とほぼ一致しており、高分子化合物5からのEL発光が確認された。
【0154】
実施例11
<素子の作成および評価>
スパッタ法により150nmの厚みでITO膜を付けたガラス基板に、ポリ(エチレンジオキシチオフェン)/ポリスチレンスルホン酸の溶液(バイエル社、Baytron)を用いてスピンコートにより80nmの厚みで成膜し、ホットプレート上200℃で10分間乾燥した。次に、高分子化合物6の1.5wt%トルエン溶液を用いてスピンコートにより1200rpmの回転速度で成膜した。さらに、これを減圧下50〜60℃で1時間乾燥した後、フッ化リチウムを約5nmを蒸着し、陰極として、カルシウムを約5nm、ついで、アルミニウムを約120nm蒸着して、高分子LEDを作製した。なお、真空度が1×10- Pa以下に達した後、金属の蒸着を開始した。得られた素子に電圧を印加することにより、高分子化合物6からのEL発光が得られた。発光開始電圧は約8.1Vであり、発光効率は最大約0.31cd/Aであった。ELピーク波長は、高分子化合物6の薄膜の蛍光ピーク波長とほぼ一致しており、高分子化合物6からのEL発光が確認された。
【0155】
【発明の効果】
本発明の高分子化合物は、発光材料として有用である。該高分子化合物を用いた高分子発光素子は高性能であり、バックライトとしての面状光源,フラットパネルディスプレイ等の装置として使用できる。

Claims (8)

  1. 下記式(1)で示される繰り返し単位を含み、ポリスチレン換算の数平均分子量が1×103〜1×108であることを特徴とする高分子化合物。
    Figure 0004196736
    〔ここで、ArおよびArは、それぞれ独立に、アリーレン基、2価の複素環基または2価の芳香族アミン基を示す。またArは、アリール基、1価の複素環基または1価の芳香族アミン基を示す。Xは、−CR1=CR2−または−C≡C−を表す。R1、R2およびRはそれぞれ独立に水素原子、アルキル基、アリール基、1価の複素環基またはシアノ基を示す。nは、0または1を示す。〕
  2. さらに下記式(2)で示される繰り返し単位を含むことを特徴とする請求項1記載の高分子化合物。
    − Ar−(Z)− (2)
    〔ここで、Arは、アリーレン基、2価の複素環基または2価の芳香族アミン基を示す。Zは、 −CR4=CR−または−C≡C−を表す。RおよびR5はそれぞれ独立に水素原子、アルキル基、アリール基、1価の複素環基またはシアノ基を示す。pは、0または1を示す。〕
  3. 請求項1または2記載の高分子化合物を有効成分とすることを特徴とする発光材料。
  4. 陽極および陰極からなる電極間に、発光層を有し、該発光層が請求項1または2に記載の高分子化合物を含むことを特徴とする高分子発光素子。
  5. 請求項4に記載の高分子発光素子を用いたことを特徴とする面状光源。
  6. 請求項4に記載の高分子発光素子を用いたことを特徴とするセグメント表示装置。
  7. 請求項4に記載の高分子発光素子を用いたことを特徴とするドットマトリックス表示装置。
  8. 請求項4に記載の高分子発光素子をバックライトとすることを特徴とする液晶表示装置。
JP2003154746A 2002-06-17 2003-05-30 高分子化合物およびそれを用いた高分子発光素子 Expired - Fee Related JP4196736B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003154746A JP4196736B2 (ja) 2002-06-17 2003-05-30 高分子化合物およびそれを用いた高分子発光素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002175406 2002-06-17
JP2003154746A JP4196736B2 (ja) 2002-06-17 2003-05-30 高分子化合物およびそれを用いた高分子発光素子

Publications (2)

Publication Number Publication Date
JP2004075981A JP2004075981A (ja) 2004-03-11
JP4196736B2 true JP4196736B2 (ja) 2008-12-17

Family

ID=32032404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003154746A Expired - Fee Related JP4196736B2 (ja) 2002-06-17 2003-05-30 高分子化合物およびそれを用いた高分子発光素子

Country Status (1)

Country Link
JP (1) JP4196736B2 (ja)

Also Published As

Publication number Publication date
JP2004075981A (ja) 2004-03-11

Similar Documents

Publication Publication Date Title
JP4341212B2 (ja) 高分子蛍光体およびそれを用いた高分子発光素子
KR101001847B1 (ko) 고분자 화합물 및 이를 사용한 고분자 발광 소자
KR101031992B1 (ko) 고분자 형광체 및 이를 사용한 고분자 발광 소자
JP4622022B2 (ja) 高分子発光素子ならびにそれを用いた表示装置および面状光源
US7258932B2 (en) Polymeric fluorescent substrate and polymer light-emitting device using the same
WO2003099901A1 (fr) Polymere et element luminescent polymere contenant ce polymere
JP4934888B2 (ja) 高分子蛍光体およびそれを用いた高分子発光素子
JP4273856B2 (ja) 高分子化合物およびそれを用いた高分子発光素子
JP2004002703A (ja) 高分子化合物およびそれを用いた高分子発光素子
JP5092199B2 (ja) 有機エレクトロルミネッセンス素子
JP4147778B2 (ja) 高分子化合物、その製造方法および高分子発光素子
JP5034140B2 (ja) 高分子蛍光体、その製造方法、およびそれを用いた高分子発光素子
KR101056953B1 (ko) 중합체성 형광 물질 및 이를 사용하는 중합체 발광 장치
JP2004002654A (ja) 共重合体、高分子組成物および高分子発光素子
JP4940493B2 (ja) 高分子蛍光体、その製造方法および高分子発光素子
JP4045883B2 (ja) 高分子蛍光体およびそれを用いた高分子発光素子
JP4329486B2 (ja) 高分子化合物およびそれを用いた高分子発光素子
JP2004315777A (ja) 共重合体およびそれを用いた高分子発光素子
JP2002038142A (ja) 高分子蛍光体およびそれを用いた高分子発光素子
JP4045848B2 (ja) 高分子蛍光体およびそれを用いた高分子発光素子
JP3922005B2 (ja) 高分子蛍光体およびそれを用いた高分子発光素子
JP4904805B2 (ja) 高分子化合物およびそれを用いた高分子発光素子
JP3900897B2 (ja) 高分子蛍光体およびそれを用いた高分子発光素子
JP5299017B2 (ja) 高分子化合物およびそれを用いた高分子発光素子
JP2003253001A (ja) 高分子化合物の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060320

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080130

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080922

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees