JP4028363B2 - 燃料電池システムの発電停止方法 - Google Patents
燃料電池システムの発電停止方法 Download PDFInfo
- Publication number
- JP4028363B2 JP4028363B2 JP2002345751A JP2002345751A JP4028363B2 JP 4028363 B2 JP4028363 B2 JP 4028363B2 JP 2002345751 A JP2002345751 A JP 2002345751A JP 2002345751 A JP2002345751 A JP 2002345751A JP 4028363 B2 JP4028363 B2 JP 4028363B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- power generation
- anode
- hydrogen
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Description
【発明の属する技術分野】
この発明は、燃料電池システムの発電停止方法に関するものである。
【0002】
【従来の技術】
燃料電池自動車等に搭載される燃料電池には、例えば固体ポリマーイオン交換膜等からなる固体高分子電解質膜の両側にアノードとカソードとを備え、アノードに燃料(例えば水素ガス)を供給し、カソードに酸化剤(例えば空気中の酸素)を供給して、これらガスの酸化還元反応にかかる化学エネルギを直接電気エネルギとして抽出するようにしたものがある。なお、以下の説明では燃料として水素ガスを用い、酸化剤として空気中の酸素を用いた場合の例で説明する。
この固体高分子電解質膜型の燃料電池を備えた燃料電池システムでは、発電を停止するときに、コンプレッサを停止して燃料電池への酸素供給を停止し、水素供給遮断弁を閉じて燃料電池への水素供給を停止するのが一般的である。
また、発電停止後の極間電位差の解消やセパレータの腐食防止を目的として、発電を停止する時に、燃料電池への酸素供給を停止した後、カソードの酸素分圧が所定値まで低下するのを待ってから水素供給を停止する方法も知られている(例えば、特許文献1参照)。
【0003】
【特許文献1】
米国特許第6068942号明細書
【0004】
【発明が解決しようとする課題】
しかしながら、前記従来の方法で燃料電池システムの発電停止を行い、そのまま放置していると、燃料電池の固体高分子電解質膜上で局所的に水素と酸素の反応が起こり、水素よりも酸素の量が多い場合は、アノード側の水素がカソード側の酸素と反応して水となり、燃料電池内に水素ガスが大幅に減少してしまう。その結果、燃料電池内に残留するガスは空気が殆どとなり、固体高分子電解質膜は酸素と窒素が主となる状態で放置されることとなる。
【0005】
ところが、この状態になった後に、アノードに再び水素ガスを供給して燃料電池を再起動させると、固体高分子電解質膜の触媒には酸素が優先的に吸着されていて水素がきてもプロトンになりにくい状態のため、始動直後は燃料電池の発電できる電力量が制限され、本来必要な電力が発電することができず、始動性が悪くなる場合があった。
そこで、この発明は、始動後速やかに必要な電力を安定して発電することができる燃料電池システムの発電停止方法提供するものである。
【0009】
【課題を解決するための手段】
上記課題を解決するために、請求項1に係る発明は、アノードに燃料(例えば、後述する実施の形態における水素(水素ガス))を供給されカソードに酸化剤(例えば、後述する実施の形態における空気中の酸素)を供給されて発電する固体高分子電解質膜型の燃料電池(例えば、後述する実施の形態における燃料電池2)を備えた燃料電池システム(例えば、後述する実施の形態における燃料電池システム1)を停止する方法において、前記アノードへの燃料供給停止および前記カソードへの酸化剤供給停止による前記燃料電池の発電停止時に、前記アノードの圧力を検出する圧力センサ(例えば、後述する実施の形態における圧力センサ11)により検出される圧力が所定圧力以下に低下したときに前記アノードに連通する通路(例えば、後述する実施の形態における水素供給通路21)へ燃料を再供給し、発電停止後所定時間が経過したときには前記圧力センサによるアノードの圧力検出を終了するとともに前記通路への燃料の再供給を停止することを特徴とする。
このように構成することにより、発電停止後に燃料電池のアノードに燃料が不存在となるのを防止することができ、燃料電池システムの停止期間中もアノードに燃料を存在させることが可能になる。その結果、燃料電池システムの停止中も燃料電池の固体高分子電解質膜の触媒に水素を拡散・浸透させておくことが可能になる。さらに、無駄な電力の消費を抑えることができる。
請求項2に係る発明は、請求項1に記載の発明において、前記通路への燃料の再供給は、前記燃料電池の発電電圧が所定値以下になったときに終了することを特徴とする。
発電停止後に燃料電池内に残留する燃料と酸化剤が反応している間は前記所定値を越える大きさの発電電圧が認められるが、燃料電池内の酸化剤が消費されてその残量が減り、燃料電池内の燃料との反応が収まってくると、発電電圧は前記所定値以下に低下してくる。したがって、発電電圧が前記所定値以下になったときには燃料電池内における燃料と酸化剤との反応がほぼ終了したと判定して、燃料の再供給を停止することができる。これにより、燃料の再供給量を必要最小限に抑えることができる。
【0011】
【発明の実施の形態】
以下、この発明に係る燃料電池システムの発電停止方法の実施の形態を図1から図3の図面を参照して説明する。
図1は、この発明に係る発電停止方法の実施に好適な燃料電池システムの構成図である。この実施の形態において、燃料電池システム1は燃料電池自動車に搭載されており、固体高分子電解質膜型の燃料電池2を備えている。
燃料電池2は、例えば固体ポリマーイオン交換膜等からなる固体高分子電解質膜をアノードとカソードとで両側から挟み込んで形成されたセルを複数積層して構成されたスタックからなり、アノードに燃料として水素ガスを供給し、カソードに酸化剤として酸素を含む空気を供給すると、アノードで触媒作用により発生した水素イオンが、固体高分子電解質膜を通過してカソードまで移動して、カソードで酸素と電気化学反応を起こして発電し、水が生成される。燃料電池2は、各セルの電圧を検出するセル電圧検出手段12を備えている。
【0012】
高圧水素タンク(燃料供給手段)3に収容された水素ガスは、水素供給通路21を流通して燃料電池2の各セルのアノードに供給される。水素供給通路21には、高圧水素タンク3に近い側から順に、一次遮断弁4、圧力調整弁(圧力調整手段)5、二次遮断弁6、エゼクタ7が設けられている。
圧力調整弁5は、高圧水素タンク3の水素ガスを減圧して所定圧力に調圧するものである。エゼクタ7は燃料電池2のアノードから排出される後述するアノードオフガスを水素供給通路21に戻すためのものである。なお、エゼクタ7に代えてポンプを用いたり、あるいは、エゼクタ7とポンプを併用する場合もある。また、エゼクタ7よりも下流の水素供給通路21であって燃料電池2のアノード入口に近い部位には、アノード入口の水素圧力(以下、アノード入口圧という)を検出する圧力センサ11が設置されている。
【0013】
燃料電池2のアノードに供給された水素ガスのうち発電に供されなかった水素ガス、すなわち未反応の水素は、燃料電池1からアノードオフガスとして排出され、アノードオフガス通路22を通ってエゼクタ7に吸引され、高圧水素タンク3から供給される新鮮な水素ガスと合流して再び燃料電池2のアノードに供給される。すなわち、燃料電池2から排出される水素ガスは、アノードオフガス通路22を通って二次遮断弁6よりも下流の水素供給通路21に戻され、燃料電池2に循環せしめられる。
アノードオフガス通路22から分岐された排出通路23には排出弁24が設けられている。この排出弁24は通常は閉じており、燃料電池2のアノードに水分等が溜まって発電状態に影響を及ぼす時などに開いて、水分等を排出するためのものである。
【0014】
一方、空気はエアコンプレッサ8により所定圧力に加圧され、空気通路31を通って燃料電池2のカソードに供給される。燃料電池2に供給された空気は発電に供された後、燃料電池2からカソードオフガスとしてカソードオフガス通路32に排出され、圧力制御弁9を介して排出される。
また、燃料電池システム1は制御装置(ECU)10を備え、圧力センサ11およびセル電圧検出手段12からの出力信号や、車両のイグニッションスイッチ13からの出力信号、アクセル開度センサ14からの出力信号がECU10に入力される。ECU10はこれら出力信号等に基づいて、一次遮断弁4、二次遮断弁6、エアコンプレッサ8、圧力制御弁9、排出弁24を制御する。
【0015】
このように構成された燃料電池システム1においては、車両のイグニッションスイッチ13がONされると、ECU10は、一次遮断弁4および二次遮断弁6を開いて燃料電池2のアノードへの水素ガス供給を開始するとともに、エアコンプレッサ8を起動し圧力制御弁9の開度制御を行ってカソードへの空気供給を開始し、さらに排出弁24の開閉制御を開始して、燃料電池2を発電可能にする。
また、イグニッションスイッチ13がOFFされると、ECU10は、一次遮断弁4、二次遮断弁6、圧力制御弁9、排出弁24を閉じ、エアコンプレッサ8を停止して、燃料電池2への水素ガス供給および空気供給を停止し、これにより燃料電池システムを停止して、発電を停止させる。
【0016】
しかしながら、このように燃料電池システム1を停止し発電を停止して、そのままの状態で放置すると、前述したように、燃料電池2の固体高分子電解質膜上で局所的に水素と酸素の反応が起こり、その結果、アノード側の水素ガスが減少し、固体高分子電解質膜の触媒には酸素が主に吸着した状態になる。電極触媒材料としてよく知られている白金は、水素よりも酸素と吸着し易い性質を持つことが知られており、燃料電池の再始動時にアノードに水素ガスを供給しても、触媒が酸素を吸着した状態であった場合は水素イオン(プロトン)となりにくく、発電できる電力量が制限され始動性が悪くなる。
【0017】
そこで、この燃料電池システム1では、イグニッションスイッチ13がOFFされた場合には、一旦、前述と同様な動作で燃料電池2への水素ガス供給および空気供給を停止し発電を停止させるが、その後、燃料電池2のアノードの水素が消費されて燃料電池2内の水素量が減少してきた場合には、アノードに水素ガスを再供給することによって、発電停止後も常に固体高分子電解質膜の触媒に水素が拡散・浸透した状態となるようにし、これによって燃料電池システム1を再始動させる時の始動性を向上させ、始動後速やかに必要な電力を燃料電池2で発電することができるようにした。
なお、この実施の形態では、アノード入口圧が所定圧力(例えば、大気圧)以下に低下したときに、燃料電池2内の水素ガスが減少したと判断して、アノードに水素ガスの再供給を行うようにした。このようにすると、発電停止後にアノードの水素ガスが所定に減少したときに限ってアノードに水素ガスを再供給することができるので、水素ガスの再供給量を必要最小限に抑えることができる。さらに、アノードの水素圧力を前記所定圧力よりも低下しないように保持することができる。
【0018】
また、発電停止時のアノードへの水素ガスの再供給は、一次遮断弁4は閉じたまま保持し二次遮断弁6だけを開くことによって、一次遮断弁4と二次遮断弁6の間の水素供給通路21内に残留していた水素ガスを、二次遮断弁6よりも下流の水素供給通路21、すなわち、アノードに連通する通路に供給するようにした。なお、この場合、発電停止後にアノードに再供給すべき水素ガスの量は予め実験等により予測可能であるので、その水素ガス量を供給可能なように、一次遮断弁4と二次遮断弁6の間における水素供給通路21の内容積を予め設定しておく。
【0019】
また、この実施の形態では、発電停止時のアノードへの水素ガスの再供給は、燃料電池2のセル電圧が所定電圧以下に低下したときに、あるいは、発電停止後所定時間が経過したときに、終了するようにした。これは以下の理由による。
発電停止後に燃料電池2内に残留する水素と酸素が固体高分子電解質膜上で反応している間は前記所定電圧を越える大きさのセル電圧が生じる。これに対して、燃料電池2内の酸素が消費されてその残量が減っていき、水素との反応が収まってくると、セル電圧は前記所定電圧以下に低下してくる。したがって、セル電圧が前記所定電圧以下になったときには燃料電池2内における水素と酸素の反応がほぼ終了したと判断して、水素ガスの再供給を停止することができる。これにより、水素ガスの再供給量を必要最小限に抑えることができ、燃料電池自動車の燃費が向上する。
【0020】
なお、燃料電池2はセル積層構造上、エアコンプレッサ8を停止して空気の循環を停止すると、燃料電池2のカソード側は密閉空間に近い状態となり、空気循環を行わない限りカソード側に新たに酸素が供給されることは殆どない。したがって、エアコンプレッサ8を停止して発電停止した後に、アノード側に常に水素ガスが存在する状態にしておくと、カソード側の酸素は固体高分子電解質膜上で水素との反応に消費される結果、漸次減少していき、ついにはカソード側に酸素は殆どなくなり窒素が主となる。
【0021】
また、燃料電池システム1が再始動されるまで圧力センサ11でアノード入口圧を監視し続けるのは、無駄な電力を消費することとなるので、発電停止後所定時間が経過したときにはアノードへの水素ガスの再供給を終了する。
【0022】
次に、この実施の形態における燃料電池システム1の発電停止制御について、図2のフローチャートに従って説明する。図2のフローチャートに示す発電停止制御ルーチンは、ECU10が停止されるまでECU10によって一定時間毎に実行される。
まず、ステップS101においてイグニッションスイッチ13がOFFされると、ステップS102に進み、エアコンプレッサ8を停止し、一次遮断弁4、二次遮断弁6、圧力制御弁9、排出弁24を閉じる。これにより、燃料電池2への水素ガス供給および空気供給が停止され、燃料電池2の発電が停止される。
【0023】
次に、ステップS103に進み、圧力センサ11で検出されたアノード入口圧が所定圧力以下か否かが判定され、判定結果が「YES」(アノード入口圧≦所定圧力)である場合は、アノードの水素ガスが減少していると判断できるので、ステップS104に進んで二次遮断弁6を開くことにより、一次遮断弁4と二次遮断弁6の間の水素供給通路21内に保持されている水素をエゼクタ7を介して燃料電池2のアノード入口に供給する。一方、ステップS103における判定結果が「NO」(アノード入口圧>所定圧力)である場合は、アノードに水素ガスが十分に残留していると判断できるので、ステップS104に進むことなく、すなわち二次遮断弁6を開くことなく、ステップS107に進む。
【0024】
そして、ステップS104からステップS105に進み、セル電圧検出手段12により検出されたセル電圧が所定電圧以下か否かを判定する。ステップS105における判定結果が「YES」(セル電圧≦所定電圧)である場合は、燃料電池2における固体高分子電解質膜上での水素と酸素の反応が収まったと判断できるので、ステップS106に進んで二次遮断弁6を閉じ、アノードへの水素ガスの再供給を停止して、ステップS107に進む。
一方、ステップS105における判定結果が「NO」(セル電圧>所定電圧)である場合は、固体高分子電解質膜上での水素と酸素の反応がまだ続いていると判断できるので、ステップS106に進むことなく、二次遮断弁6の開状態を継続してステップS107に進む。
【0025】
ステップS107においては、発電停止後所定時間が経過したか否かを判定する。ステップS107における判定結果が「NO」(所定時間経過前)である場合は、ステップS108に進んでECU10を作動状態に保持し、本ルーチンを繰り返し実行する。一方、ステップS107における判定結果が「YES」(所定時間経過)である場合は、ステップS109に進んで二次遮断弁6を閉じ、さらにステップS110に進んでECU10を停止し、本ルーチンの実行を終了する。
【0026】
このように、発電停止後に二次遮断弁6を開閉制御することによって、発電停止後に燃料電池2のアノードに水素ガスが不存在となるのを防止することができ、燃料電池システム1の停止期間中もアノードに水素ガスを存在させることが可能になるので、燃料電池システム1の停止中も燃料電池2の固体高分子電解質膜の触媒に水素を拡散・浸透させておくことができる。その結果、燃料電池システム1の再始動時に一次遮断弁4と二次遮断弁6を開いてアノードへの水素ガス供給を開始し、エアコンプレッサ8を運転してカソードへの空気供給を開始すると、車両の走行等に必要な電力を速やかに安定して発電することができるようになり、始動性が向上する。
特に、燃料電池2は低温になるほど取り出せる電力が低下するという温度特性を有しているが、前述の発電停止制御を実行することにより、氷点下における低温始動性を向上させることができる。
【0027】
また、この実施の形態では、発電停止時にアノードへの水素ガスの再供給を行っているときにも、一次遮断弁4を閉じているので、発電停止後の高圧水素タンク3の遮断状態を確実に保持することができる。
【0028】
ところで、発電停止してからある時間tが経過するまでに固体高分子電解質膜上で酸素との反応により消費される水素の量は予め実験等により予測可能である。したがって、時間tを所定に設定すると、この所定時間が経過するまではアノードへの水素ガスの再供給を行わなくても、固体高分子電解質膜の触媒に水素が拡散・浸透した状態を保持することができ、前記所定時間経過後にアノードへの水素ガスの再供給を開始すれば足りることとなる。
そこで、前述した実施の形態ではアノード入口圧が所定圧力以下になったときに二次遮断弁6を開いてアノードへの水素ガスの再供給を開始するようにしているが、これに代えて、発電停止してから所定時間が経過したときに二次遮断弁6を開いてアノードへの水素ガスの再供給を開始するようにすることも可能である。この場合も、水素ガスの再供給量を必要最小限に抑えることができ、燃料電池自動車の燃費が向上する。
また、このようにする場合には、図2に示す発電停止制御ルーチンにおけるステップS103において、発電停止後所定時間が経過したか否かを判定するようにすればよい。
【0029】
また、前述した実施の形態では、圧力センサ11でアノード入口圧を検出し、アノード入口圧の大きさに基づいて二次遮断弁6の開閉を制御して、アノードへの水素ガスの再供給を制御しているが、図3に示すように、二次遮断弁6とエゼクタ7との間の水素供給通路21に、大気圧とアノード入口圧との差圧に応じて開閉するバルブ15を設置すると、アノードへの水素ガスの再供給開始および停止を機械的に制御することができる。このようにすると、発電停止後の電気的な制御がなくなるので、消費電力を低減することができる。ただし、この場合、発電停止後は二次遮断弁6が閉じた状態に保持されるので、二次遮断弁6とバルブ15との間の水素供給通路21内に残留する水素ガスをバルブ15の下流に供給することとなるため、発電停止後にアノードに再供給される水素ガス量を考慮して、二次遮断弁6とバルブ15との間の水素供給通路21の内容積を設定する必要がある。
【0030】
〔他の実施の形態〕
なお、この発明は前述した実施の形態に限られるものではない。
例えば、前述した実施の形態は、燃料電池システムが一次遮断弁4と二次遮断弁6を備え、二次遮断弁6の開閉で発電停止時の水素ガスの再供給を制御しているが、この発明は、二次遮断弁6がなく一次遮断弁4だけを備える燃料電池システムにも適用可能であり、その場合には一次遮断弁4の開閉により発電停止時の水素ガスの再供給を制御する。
【0033】
【発明の効果】
以上説明するように、請求項1に係る発明によれば、発電停止後に燃料電池のアノードに燃料が不存在となるのを防止することができ、燃料電池システムの停止期間中もアノードに燃料を存在させることが可能になるので、燃料電池システムの停止中も燃料電池の固体高分子電解質膜の触媒に水素を拡散・浸透させておくことができ、燃料電池システムの再始動時に燃料をアノードに供給した後速やかに必要な電力を安定して発電することができ、始動性が向上するという優れた効果が奏される。さらに、無駄な電力の消費を抑えることができる。
請求項2に係る発明によれば、発電停止後の燃料の再供給を、燃料電池の発電電圧が所定値以下になったときに終了するので、燃料の再供給量を必要最小限に抑えることができるという優れた効果が奏される。
【図面の簡単な説明】
【図1】 この発明に係る発電停止方法の実施に好適な燃料電池システムの第1の実施の形態の構成図である。
【図2】 前記第1の実施の形態における発電停止制御を示すフローチャートである。
【図3】 この発明に係る発電停止方法の実施に好適な燃料電池システムの他の実施の形態の構成図である。
【符号の説明】
1 燃料電池システム
2 燃料電池
3 高圧水素タンク(燃料供給手段)
4 一次遮断弁
5 圧力調整弁(圧力調整手段)
6 二次遮断弁
Claims (2)
- アノードに燃料を供給されカソードに酸化剤を供給されて発電する固体高分子電解質膜型の燃料電池を備えた燃料電池システムを停止する方法において、
前記アノードへの燃料供給停止および前記カソードへの酸化剤供給停止による前記燃料電池の発電停止時に、前記アノードの圧力を検出する圧力センサにより検出される圧力が所定圧力以下に低下したときに前記アノードに連通する通路へ燃料を再供給し、
発電停止後所定時間が経過したときには前記圧力センサによるアノードの圧力検出を終了するとともに前記通路への燃料の再供給を停止することを特徴とする燃料電池システムの発電停止方法。 - 前記通路への燃料の再供給は、前記燃料電池の発電電圧が所定値以下になったときに終了することを特徴とする請求項1に記載の燃料電池システムの発電停止方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002345751A JP4028363B2 (ja) | 2002-11-28 | 2002-11-28 | 燃料電池システムの発電停止方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002345751A JP4028363B2 (ja) | 2002-11-28 | 2002-11-28 | 燃料電池システムの発電停止方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007224464A Division JP4732407B2 (ja) | 2007-08-30 | 2007-08-30 | 燃料電池システムの発電停止方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004179054A JP2004179054A (ja) | 2004-06-24 |
JP4028363B2 true JP4028363B2 (ja) | 2007-12-26 |
Family
ID=32706851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002345751A Expired - Fee Related JP4028363B2 (ja) | 2002-11-28 | 2002-11-28 | 燃料電池システムの発電停止方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4028363B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8932772B2 (en) | 2009-10-07 | 2015-01-13 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and method of stopping fuel cell system |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4629986B2 (ja) * | 2004-03-17 | 2011-02-09 | 本田技研工業株式会社 | 燃料電池システム |
CN100464458C (zh) * | 2004-11-02 | 2009-02-25 | 上海神力科技有限公司 | 一种可使燃料氢气压力稳定的大功率燃料电池 |
JP2007188712A (ja) * | 2006-01-12 | 2007-07-26 | Yamaha Motor Co Ltd | 燃料電池システムおよびそれを備えた電動車 |
JP5164014B2 (ja) * | 2006-03-28 | 2013-03-13 | トヨタ自動車株式会社 | 燃料電池システムおよびその制御方法 |
DE102006051674A1 (de) | 2006-11-02 | 2008-05-08 | Daimler Ag | Brennstoffzellensystem und Verfahren zum Betreiben desselben |
JP2008186791A (ja) * | 2007-01-31 | 2008-08-14 | Fuji Electric Holdings Co Ltd | 燃料電池発電システム |
JP4993293B2 (ja) | 2007-07-19 | 2012-08-08 | トヨタ自動車株式会社 | 燃料電池システム及び移動体 |
JP5451248B2 (ja) * | 2008-09-02 | 2014-03-26 | 大阪瓦斯株式会社 | 燃料電池システムの停止保管方法 |
US8232014B2 (en) * | 2009-12-11 | 2012-07-31 | GM Global Technology Operations LLC | Fuel cell operational methods for hydrogen addition after shutdown |
JP2011150794A (ja) | 2010-01-19 | 2011-08-04 | Toyota Motor Corp | 燃料電池システム及びその制御方法 |
JP6409691B2 (ja) * | 2015-06-16 | 2018-10-24 | トヨタ自動車株式会社 | 燃料電池システム及び燃料電池システムの制御方法 |
-
2002
- 2002-11-28 JP JP2002345751A patent/JP4028363B2/ja not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8932772B2 (en) | 2009-10-07 | 2015-01-13 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and method of stopping fuel cell system |
Also Published As
Publication number | Publication date |
---|---|
JP2004179054A (ja) | 2004-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4804507B2 (ja) | 燃料電池システム及びその制御方法 | |
JP4028363B2 (ja) | 燃料電池システムの発電停止方法 | |
JP2007323954A (ja) | 燃料電池システムおよび燃料電池システムの制御方法 | |
JP4732407B2 (ja) | 燃料電池システムの発電停止方法 | |
JP2007035509A (ja) | 燃料電池システム | |
US9070916B2 (en) | Method for controlling fuel cell system | |
JP5409705B2 (ja) | 燃料電池システムおよびその制御方法 | |
US20180375120A1 (en) | Fuel cell system and control method for fuel cell system | |
US8895166B2 (en) | Fuel cell system and activation method of fuel cell | |
JP2009295505A (ja) | 燃料電池システム | |
JP2009176493A (ja) | 燃料電池システム | |
JP2008097993A (ja) | 燃料電池システムの掃気方法および燃料電池システム | |
JP2007220355A (ja) | 燃料電池システムと燃料電池の低温起動方法 | |
JP2012221637A (ja) | 高圧ガス供給システム | |
JP5358085B2 (ja) | 燃料電池システム及び燃料電池の低温下起動方法 | |
JP4675623B2 (ja) | 燃料電池システム及びその制御方法 | |
CN105609830B (zh) | 燃料电池系统及其控制方法 | |
JP2005149932A (ja) | 燃料電池の排出装置 | |
JP5161656B2 (ja) | 燃料電池システムおよび燃料電池システムの制御方法 | |
JP2009076261A (ja) | 燃料電池システム及びその起動方法 | |
JP4526800B2 (ja) | 燃料電池の排出装置 | |
JP2005141977A (ja) | 燃料電池システムの排出方法 | |
JP5410766B2 (ja) | 燃料電池システムおよび燃料電池システムのカソード圧制御方法 | |
JP4564347B2 (ja) | 燃料電池システム | |
JP2005302539A (ja) | 燃料電池システムおよび燃料電池システムの起動方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041130 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070403 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070417 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070615 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070710 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070830 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071002 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071011 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101019 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4028363 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101019 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111019 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111019 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121019 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131019 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |