[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4093897B2 - Surface heating type infrared radiation heating device - Google Patents

Surface heating type infrared radiation heating device Download PDF

Info

Publication number
JP4093897B2
JP4093897B2 JP2003097532A JP2003097532A JP4093897B2 JP 4093897 B2 JP4093897 B2 JP 4093897B2 JP 2003097532 A JP2003097532 A JP 2003097532A JP 2003097532 A JP2003097532 A JP 2003097532A JP 4093897 B2 JP4093897 B2 JP 4093897B2
Authority
JP
Japan
Prior art keywords
reflection mirror
infrared
heated
vacuum chamber
heated object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003097532A
Other languages
Japanese (ja)
Other versions
JP2004303672A (en
Inventor
智義 遠藤
Original Assignee
株式会社サーモ理工
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サーモ理工 filed Critical 株式会社サーモ理工
Priority to JP2003097532A priority Critical patent/JP4093897B2/en
Publication of JP2004303672A publication Critical patent/JP2004303672A/en
Application granted granted Critical
Publication of JP4093897B2 publication Critical patent/JP4093897B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Resistance Heating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、中面積の円板状材料を高速に、均一な温度分布で加熱処理する面加熱型赤外線放射加熱装置に関する。
【0002】
【従来の技術】
従来の面加熱型赤外線放射加熱装置は、複合型反射ミラー及び赤外線ランプから構成されており、複合型反射ミラーは中空の放物面状反射ミラーと円筒状反射ミラーとを組み合わせてなっており、該放物面状反射ミラーの焦点に赤外線ランプを設置し、該赤外線ランプから加熱物に赤外線を照射し、赤外線ランプから照射される赤外線が、直進光と、放物面状反射ミラーで反射される反射光と、円筒状反射ミラーで反射される斜反射光とを含み、加熱物を加熱することが可能である(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平10−82589号公報
【0004】
【発明が解決しようとする課題】
シリコン、炭化珪素等の良質な半導体材料の開発には、クリーンな雰囲気中で半導体材料を高速昇温、均一な温度分布で加熱処理することがきわめて重要である。上記公知の従前装置でも、半導体材料を高速昇温、均一な温度分布で加熱処理することができるが、10φ程度の小面積の円板状材料までしか加熱処理できないという課題がある。
本発明は、この課題に鑑み、50φ程度の中面積の円板状材料を高速昇温、均一な温度分布で加熱処理できる新規な面加熱型赤外線放射加熱装置を提供するものである。
【0005】
【課題を解決する為の手段】
そのために、本発明面加熱型赤外線放射加熱装置は、複合型反射ミラー及び赤外線ランプから構成され、複合型反射ミラーは中空の円錐状反射ミラーと円筒状反射ミラーとを組み合わせてなっており、赤外線ランプから放射される赤外線が、直進光と、円錐状反射ミラーで反射される反射光と、円筒状反射ミラーで反射される斜反射光とを含み、加熱物を照射加熱するようにしてある。
本発明によれば、複合型反射ミラーに中空の円錐状反射ミラーと円筒状反射ミラーとを組み合わせて、赤外線ランプから放射される赤外線を直進光と、円錐状反射ミラーで反射される上記直進光と平行する反射光と、円筒状反射ミラーで反射される斜反射光とによって、50φ程度の中面積の円板状材料を高速で昇温し、加熱処理できる。
【0006】
また、本発明は、上記複合型反射ミラーの下部に円板状均熱機構を設置し、赤外線ランプより直進放射された赤外線と水平方向に放射し円錐状反射ミラーで反射した赤外線の放射強度を均一化して加熱物を照射し、加熱物全体を略均一に加熱するようにしてある。
本発明によれば、複合型反射ミラーの下部に円板状均熱機構を設置し、赤外線ランプより直進放射された赤外線と、赤外線ランプから水平方向に放射し円錐状反射ミラーで反射した赤外線の放射強度を均一化して、加熱物を照射し、加熱物全体を略均一に加熱するようにしてあるから、50φ程度の中面積の円板状材料を高速度でしかも略均一な温度分布で昇温し、加熱処理できる。
【0007】
さらに、本発明は、上記円板状均熱機構が、周囲が薄い透明支持板であり、この透明支持板に支持された透明支持板より厚みのある中央部均熱円板からなっているものである。
本発明によれば、円板状均熱機構を、周囲が薄い透明支持板であり、この透明支持板に支持された、この透明支持板より厚みのある中央部均熱円板により構成してあるから、中央部均熱円板を透過する赤外線の照射強度を弱めて周囲の薄い透明支持板を透過する赤外線の照射強度と略均一化し、加熱物全体の加熱を略均一化し、50φ程度の中面積の円板状材料を高速度で略均一な温度分布で昇温し、加熱処理できる。
【0008】
また、本発明では、上記複合型反射ミラーの下方に、上部に透明円板を設けた真空チャンバーを配置し、この真空チャンバー中に加熱物を入れ、上記赤外線ランプから放射した赤外線が上記透明円板を透過し加熱物を照射して加熱物全体を略均一な温度分布に加熱するようにしてある。
本発明では、真空チャンバー中に加熱物を入れ、この真空チャンバー内で加熱物を照射して加熱物全体を略均一な温度分布に加熱するから、加熱効率を高め、高速でクリーンな雰囲気中で加熱物全体を加熱できる。
【0009】
さらに、本発明では、上記真空チャンバー内に、上記透明円板に固着して透明円柱を設けてあるものである。
本発明では、真空チャンバー内に、上記透明円板に固着して透明円柱を設けてあるから、赤外線ランプから放射される斜照射光あるいは円筒状反射ミラーで反射される斜反射光を透明円柱の外壁内面で全反射し、赤外線ランプからの赤外線を加熱物の外側に放射せず、直進光と共に加熱物を照射し、加熱物全体の加熱を均一化し、加熱効率を高めて、高速で均一な温度分布で昇温し、クリーンな雰囲気中で加熱処理できる。
【0010】
また、本発明では、上記請求項1〜5の何れかに記載の面加熱型赤外線放射加熱装置を上記真空チャンバーの上部及び下部の両方に取り付け、加熱物の上面及び下面の両面から赤外線を照射し加熱物全体を均一な温度分布に昇温加熱するようにしてある。
本発明では、加熱物の上面、下面の両方から赤外線を照射し加熱物全体を均一な温度分布に昇温加熱するから、きわめて高速にかつ高効率に加熱処理できる。
【0011】
【発明の実施の形態】
発明の実施の形態を図面に示した実施例に基づいて説明する。図中符号1が複合型反射ミラーで、これは上部に位置する中空の円錐状反射ミラー2とこの円錐状反射ミラー2に連設する中空の円筒状反射ミラー3とを組み合わせて構成してある。そして円錐状反射ミラー2の中心部に赤外線ランプ4を設けてある。
この複合型反射ミラー1は、後述する円筒状真空チャンバー5の上部蓋6上に固定してある。この円筒状真空チャンバー5の上部蓋6には透孔窓7を設け、この透孔窓7位置に透明円板8をOリング31により真空シールし押えリング13により固設してある。この透明円板8がOリング31により真空シールし押えリング13により固設された透孔窓7の直径は上記複合型反射ミラー1の円筒状反射ミラー3の内径と等しくしてあり、赤外線ランプ4からの赤外線が透孔窓7の透明円板を透過して後述する加熱物を照射するようにしてある。
【0012】
赤外線ランプ4から放射される赤外線は、赤外線ランプ4から直接照射される直進光と、赤外線ランプ4から直接照射される斜照射光と、円錐状反射ミラー2で反射される反射光と、円筒状反射ミラー3で反射される斜反射光とを含む。円錐状反射ミラー2で反射される反射光は大部分が赤外線ランプ4から直接照射される直進光と平行する直進光となり、中面積の円板状材料からなる加熱物を照射する。
上記の通り複合型反射ミラー1は、真空チャンバー5の上部蓋6に固定してあるが、複合型反射ミラー1と真空チャンバー5の上部蓋6との間に円板状均熱機構9を設けてある。この円板状均熱機構9は、周囲が薄い透明支持板10であり、この透明支持板10に支持された透明支持板10より厚みのある中央部均熱円板11からなっており、この円板状均熱機構は、その薄い透明支持板10の周囲を複合型反射ミラー1の円筒状反射ミラー2の下部と真空チャンバー5の上部蓋6との間に挟持して支持してある。
【0013】
上記の通り、円筒状反射ミラー2の下部と真空チャンバー5の上部蓋6との間に円板状均熱機構9の薄い透明支持板10の周囲を挟持するために、上記上部蓋6に透明円板8を押えて固定する押えリング13を設けてあり、この押えリング13上に薄い透明支持板10の周囲を挟持してある。
また、真空チャンバー5の上部蓋6は、真空チャンバー5に着脱自在としてあり、複合型反射ミラー1を上部蓋6上に固定したまま、この上部蓋6を真空チャンバー5から離脱して真空チャンバー5の上部を開放し、この開放部から後述する加熱物16を出し入れできるようにしてある。
【0014】
上記真空チャンバー5の上部蓋6にOリング31により真空シールし押えリング13により固設した透明円板8には、真空チャンバー5内に位置付けられる透明円柱12を固着してある。
真空チャンバー5の下方には、上方の複合型反射ミラー1と赤外線ランプ4及び円板状均熱機構9と対称的に下方の複合型反射ミラー1と赤外線ランプ4及び円板状均熱機構9を設けてある。そのために、真空チャンバー5の底板15には上記蓋6と全く同様に透孔窓7を設け、透明円板8を押えリング13で固定してあり、透明円板8には真空チャンバー5内に位置付けられる透明円柱12を固着してある。
また、真空チャンバー5内には加熱物16を載置する加熱物載置台14を設けてある。この加熱物載置台14は中央に透孔17を設け、この透孔17の縁に加熱物16を載置するようにしてある。
さらに、複合型反射ミラー1中には複合型反射ミラー1を冷却するための冷却水を流すようにしてあり、冷却水入口18から冷却水を送り込み、冷却水出口19から冷却水が出てゆくようにしてある。
【0015】
図3に本発明面加熱型赤外線放射加熱装置の外観図を示してある。図に示すように本発明面加熱型赤外線放射加熱装置は支持架台20に支持されている。具体的には支持架台20の上部水平台21の中央に真空チャンバー5を支持し、下方の複合型反射ミラー1を下向きに支持させてある。
上記上部水平台21上に少なくとも2本の螺子軸22,22を起立させ、夫々の螺子軸22,22を回転自在にしてある。夫々の螺子軸22,22に螺子23,23を形成してあり、何れかの螺子軸22の下端にベベルギヤー24を固着し、上部水平台21上に軸支台25を設け、この軸支台25に回転自在に軸支した水平軸26にベベルギヤー24を設け、これらベベルギヤー24,24を噛合せて水平軸26に設けた操作ハンドル27を回転することにより螺子軸22を回転するようにしてある。2本の螺子軸22,22は、同期作動するようにその上端でエンドレスチェーン28により連繋してある。
【0016】
上記夫々の螺子軸22の螺子23,23には、雌螺子29,29を螺合してあり、真空チャンバー5の上部蓋6に固設した連結支持板30に上記雌螺子29を連結してある。この構成により、螺子軸22,22を回転して雌螺子29,29を上下動し、真空チャンバー5の上部蓋6と上方の複合型反射ミラー1を上下動し、真空チャンバー5の上部蓋6を開閉するようにしてある。
【0017】
上記の通りの構成からなる本発明面加熱型赤外線放射加熱装置で加熱物16を加熱する場合には、上記した通り真空チャンバー5の上部蓋6を開放し、加熱物載置台14に加熱物16を載置する。その後上部蓋6を下降して閉じ、真空チャンバー5内の空気を真空ポンプにより排気し、真空チャンバー5内を真空とする。しかる後赤外線ランプ4を点灯して赤外線を放射する。この赤外線ランプ4から放射される赤外線は、赤外線ランプ4から加熱物16に直進する直進光と、赤外線ランプ4から加熱物16に直接照射される斜照射光と、円錐状反射ミラー2で反射されて加熱物16に照射される直進光と斜照射光と、さらに円筒状反射ミラー3で反射される斜反射光とを含む。
【0018】
上記の通りからなる赤外線照射光の放射強度分布は、中心部が強く、外周部は弱くなり、図2のaのようになる。そこで本発明装置では、複合型反射ミラー1と真空チャンバー5の上部蓋6に設けた透明円板8との間に設けた円板状均熱機構9により、中心部の赤外線を吸収し、全体の赤外線強度分布は図2のbのような近似台形状になる。さらに本発明装置では、真空チャンバー5内の透明円柱12によって、この透明円柱12の外壁内面で全反射する照射光によって、加熱物16の周囲を加熱し、加熱物への赤外線強度分布は図2のcのような台形状となり、中面積の円板状加熱物をその全面に亘って等しく加熱することができる。
【0019】
【発明の効果】
本発明面加熱型赤外線放射加熱装置は、複合型反射ミラー及び赤外線ランプから構成され、複合型反射ミラーは中空の円錐状反射ミラーと円筒状反射ミラーとを組み合わせてなっており、赤外線ランプから放射される赤外線が、直進光と、円錐状反射ミラーで反射される反射光と、円筒状反射ミラーで反射される斜反射光とを含み、加熱物を照射加熱するようにしてあるから、赤外線ランプから放射される赤外線を直進光と、円錐状反射ミラーで反射される上記直進光と平行する反射光と、円筒状反射ミラーで反射される斜反射光とによって、50φ程度の中面積の円板状材料を高速で昇温し、加熱処理できる。
【0020】
また、本発明は、上記複合型反射ミラーの下部に円板状均熱機構を設置し、複合型反射ミラーと赤外線ランプより直進放射された赤外線と水平方向に放射し円錐状反射ミラーで反射した赤外線の放射強度を均一化して加熱物を照射し、加熱物全体を略均一に加熱するようにしてあるから、50φ程度の中面積の円板状材料を高速度でしかも略均一な温度分布で昇温し、加熱処理できる。
【0021】
さらに、本発明は、上記円板状均熱機構が、周囲が薄い透明支持板であり、この透明支持板に支持された透明支持板より厚みのある中央部透明円板からなっているものであるから、中央部透明円板を透過する赤外線の照射強度を弱めて周囲の薄い透明支持板を透過する赤外線の照射強度と略均一化し、加熱物全体の加熱を略均一化し、50φ程度の中面積の円板状材料を高速度で略均一な温度分布で昇温し、加熱処理できる。
【0022】
また、本発明では、上記複合型反射ミラーの下方に、上部に透明円板を設けた真空チャンバーを配置し、この真空チャンバー中に加熱物を入れ、上記赤外線ランプから放射した赤外線が上記透明円板を透過し加熱物を照射して加熱物全体を略均一な温度分布に加熱するようにしてあるから、加熱効率を高め、高速でクリーンな雰囲気中で加熱物全体を加熱できる。
【0023】
さらに、本発明では、上記真空チャンバー内に、上記透明円板に固着して透明円柱を設けてあるものであるから、赤外線ランプから直接照射される斜照射光あるいは円筒状反射ミラーで反射される斜反射光を透明円柱の外壁内面で全反射し、赤外線ランプからの赤外線を加熱物の外側に放射せず、直進光と共に加熱物を照射し、加熱物全体の加熱を均一化し、加熱効率を高めて、高速で均一な温度分布で昇温し、クリーンな雰囲気中で加熱処理できる。
【0024】
また、本発明では、上記請求項1〜5の何れかに記載の面加熱型赤外線放射加熱装置を上記真空チャンバーの上部及び下部の両方に取り付け、加熱物の上面及び下面の両面から赤外線を照射し加熱物全体を均一な温度分布に昇温加熱するようにしてあるから、きわめて高速にかつ高効率にしかもクリーンな雰囲気中で加熱処理できる。
【図面の簡単な説明】
【図1】本発明面加熱型赤外線放射加熱装置の実施例を示す断面正面図。
【図2】本発明加熱装置の赤外線照射の強度分布を示す図。
【図3】本発明面加熱型赤外線放射加熱装置の外観図。
【符号の説明】
1 複合型反射ミラー
2 円錐状反射ミラー
3 円筒状反射ミラー
4 赤外線ランプ
5 真空チャンバー
6 上部蓋
7 透孔窓
8 透明円板
9 円板状均熱機構
10 透明支持板
11 均熱円板
12 透明円柱
13 押えリング
14 加熱物載置台
15 底板
16 加熱物
17 透孔
18 冷却水入口
19 冷却水出口
20 支持架台
21 上部水平台
22 螺子軸
23 螺子
24 ベベルギヤー
25 軸支台
26 水平軸
27 操作ハンドル
28 エンドレスチェーン
29 雌螺子
30 連結支持板
31 Oリング
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface heating type infrared radiation heating apparatus that heat-treats a medium-area disc-shaped material at a high speed with a uniform temperature distribution.
[0002]
[Prior art]
A conventional surface heating type infrared radiation heating apparatus is composed of a composite type reflection mirror and an infrared lamp, and the composite type reflection mirror is a combination of a hollow parabolic reflection mirror and a cylindrical reflection mirror, An infrared lamp is installed at the focal point of the parabolic reflection mirror, the infrared ray is irradiated from the infrared lamp to the heated object, and the infrared ray irradiated from the infrared lamp is reflected by the straight light and the parabolic reflection mirror. It is possible to heat the heated object including the reflected light that is reflected and the oblique reflected light that is reflected by the cylindrical reflecting mirror (see, for example, Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-82589
[Problems to be solved by the invention]
In developing high-quality semiconductor materials such as silicon and silicon carbide, it is extremely important to heat-treat the semiconductor material at a high temperature and a uniform temperature distribution in a clean atmosphere. Even with the above known conventional apparatus, the semiconductor material can be heat-treated at a high temperature and with a uniform temperature distribution, but there is a problem that only the disk-like material having a small area of about 10φ can be heat-treated.
In view of this problem, the present invention provides a novel surface heating infrared radiation heating apparatus capable of heat-treating a disk-shaped material having a medium area of about 50φ at a high temperature and a uniform temperature distribution.
[0005]
[Means for solving the problems]
Therefore, the surface heating type infrared radiation heating device of the present invention is composed of a composite type reflection mirror and an infrared lamp, and the composite type reflection mirror is a combination of a hollow conical reflection mirror and a cylindrical reflection mirror. The infrared rays radiated from the lamp include straight light, reflected light reflected by the conical reflecting mirror, and oblique reflected light reflected by the cylindrical reflecting mirror, and irradiates and heats the heated object.
According to the present invention, a combination of the composite reflection mirror and the hollow conical reflection mirror and the cylindrical reflection mirror, the infrared light radiated from the infrared lamp goes straight and the straight light reflected by the conical reflection mirror. The disk-shaped material having a medium area of about 50φ can be heated at a high speed and heated by the reflected light parallel to the light and the oblique reflected light reflected by the cylindrical reflecting mirror.
[0006]
In addition, the present invention provides a disc-shaped heat equalizing mechanism at the bottom of the composite reflection mirror, and the infrared radiation intensity radiated in the horizontal direction and reflected from the cone-shaped reflection mirror is radiated straight from the infrared lamp. It is made uniform to irradiate the heated object, and the entire heated object is heated substantially uniformly.
According to the present invention, a disc-shaped heat equalizing mechanism is installed at the lower part of the composite reflection mirror, and the infrared rays radiated straight from the infrared lamp and the infrared rays radiated from the infrared lamp in the horizontal direction and reflected by the conical reflection mirror are reflected. Since the radiation intensity is made uniform, the heated object is irradiated, and the entire heated object is heated substantially uniformly, a medium-area disk-like material of about 50φ is raised at a high speed and with a substantially uniform temperature distribution. Can be heated and heat treated.
[0007]
Further, in the present invention, the disk-shaped heat equalization mechanism is a transparent support plate having a thin periphery, and is composed of a central heat equalizing disk thicker than the transparent support plate supported by the transparent support plate. It is.
According to the present invention, the disc-shaped soaking mechanism is a transparent support plate having a thin periphery, and is supported by the transparent support plate, and is configured by a central soaking disc thicker than the transparent support plate. Therefore, the irradiation intensity of infrared rays transmitted through the central soaking disk is weakened to make the irradiation intensity of infrared rays transmitted through the surrounding thin transparent support plate substantially uniform, the heating of the whole heated object is made substantially uniform, and about 50φ A medium-area disk-shaped material can be heated at a high speed with a substantially uniform temperature distribution and heat-treated.
[0008]
Further, in the present invention, a vacuum chamber having a transparent disk provided thereon is disposed below the composite reflection mirror, and a heated object is placed in the vacuum chamber so that infrared rays radiated from the infrared lamp are emitted from the transparent circle. The whole heated product is heated to a substantially uniform temperature distribution through the plate and irradiated with the heated product.
In the present invention, a heated object is placed in a vacuum chamber, and the heated object is irradiated in the vacuum chamber to heat the entire heated object to a substantially uniform temperature distribution. The entire heated object can be heated.
[0009]
Furthermore, in the present invention, a transparent cylinder is provided in the vacuum chamber so as to be fixed to the transparent disk.
In the present invention, since the transparent cylinder is provided in the vacuum chamber so as to be fixed to the transparent disk, the oblique irradiation light radiated from the infrared lamp or the oblique reflection light reflected by the cylindrical reflecting mirror is transmitted to the transparent cylinder. Totally reflects on the inner surface of the outer wall, does not radiate infrared rays from the infrared lamp to the outside of the heated object, irradiates the heated object with straight light, uniformizes the heating of the entire heated object, improves the heating efficiency, and is uniform at high speed The temperature is raised with a temperature distribution, and heat treatment can be performed in a clean atmosphere.
[0010]
In the present invention, the surface heating type infrared radiation heating device according to any one of claims 1 to 5 is attached to both the upper and lower portions of the vacuum chamber, and infrared rays are irradiated from both the upper and lower surfaces of the heated object. The entire heated product is heated to a uniform temperature distribution.
In the present invention, infrared rays are irradiated from both the upper surface and the lower surface of the heated object, and the entire heated object is heated to a uniform temperature distribution, so that heat treatment can be performed very quickly and with high efficiency.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described based on examples shown in the drawings. In the figure, reference numeral 1 denotes a composite reflection mirror, which is configured by combining a hollow conical reflection mirror 2 located at the upper part and a hollow cylindrical reflection mirror 3 provided continuously to the conical reflection mirror 2. . An infrared lamp 4 is provided at the center of the conical reflecting mirror 2.
The composite reflection mirror 1 is fixed on an upper lid 6 of a cylindrical vacuum chamber 5 described later. A through-hole window 7 is provided in the upper lid 6 of the cylindrical vacuum chamber 5, and a transparent disk 8 is vacuum-sealed by an O-ring 31 and fixed by a presser ring 13 at the position of the through-hole window 7. The diameter of the through-hole window 7 in which the transparent disk 8 is vacuum-sealed by the O-ring 31 and fixed by the holding ring 13 is equal to the inner diameter of the cylindrical reflection mirror 3 of the composite reflection mirror 1, and an infrared lamp Infrared rays from 4 pass through the transparent disk of the through-hole window 7 and irradiate a heated object to be described later.
[0012]
The infrared rays radiated from the infrared lamp 4 are a straight light directly irradiated from the infrared lamp 4, an oblique irradiation light directly irradiated from the infrared lamp 4, a reflected light reflected by the conical reflection mirror 2, and a cylindrical shape. And obliquely reflected light reflected by the reflecting mirror 3. Most of the reflected light reflected by the conical reflection mirror 2 becomes a straight light parallel to the straight light directly irradiated from the infrared lamp 4, and irradiates a heated object made of a medium-area disk-shaped material.
As described above, the composite reflection mirror 1 is fixed to the upper lid 6 of the vacuum chamber 5, but a disk-shaped heat equalizing mechanism 9 is provided between the composite reflection mirror 1 and the upper lid 6 of the vacuum chamber 5. It is. The disc-shaped soaking mechanism 9 is a transparent support plate 10 with a thin periphery, and is composed of a central soaking disc 11 that is thicker than the transparent support plate 10 supported by the transparent support plate 10. The disc-shaped heat equalization mechanism is supported by sandwiching the periphery of the thin transparent support plate 10 between the lower part of the cylindrical reflection mirror 2 of the composite reflection mirror 1 and the upper cover 6 of the vacuum chamber 5.
[0013]
As described above, the upper lid 6 is transparent to sandwich the periphery of the thin transparent support plate 10 of the disk-shaped heat equalizing mechanism 9 between the lower portion of the cylindrical reflecting mirror 2 and the upper lid 6 of the vacuum chamber 5. A presser ring 13 for pressing and fixing the disc 8 is provided, and the periphery of the thin transparent support plate 10 is sandwiched on the presser ring 13.
The upper lid 6 of the vacuum chamber 5 is detachable from the vacuum chamber 5. The upper lid 6 is detached from the vacuum chamber 5 while the composite reflection mirror 1 is fixed on the upper lid 6. The heated part 16 to be described later can be taken in and out from the open part.
[0014]
A transparent cylinder 12 positioned in the vacuum chamber 5 is fixed to a transparent disc 8 which is vacuum-sealed by an O-ring 31 and fixed by a presser ring 13 to the upper lid 6 of the vacuum chamber 5.
Below the vacuum chamber 5, the lower composite reflection mirror 1, the infrared lamp 4, and the disc-shaped heat equalization mechanism 9 are symmetrically located below the upper composite reflection mirror 1, the infrared lamp 4, and the disk-shaped heat equalization mechanism 9. Is provided. For this purpose, a through hole window 7 is provided in the bottom plate 15 of the vacuum chamber 5 in the same manner as the lid 6, and a transparent disk 8 is fixed by a press ring 13, and the transparent disk 8 is placed in the vacuum chamber 5. The transparent cylinder 12 to be positioned is fixed.
A heated object mounting table 14 on which the heated object 16 is mounted is provided in the vacuum chamber 5. The heated object mounting table 14 is provided with a through hole 17 in the center, and the heated object 16 is mounted on the edge of the through hole 17.
Further, cooling water for cooling the composite reflection mirror 1 is allowed to flow through the composite reflection mirror 1. Cooling water is sent from the cooling water inlet 18 and the cooling water exits from the cooling water outlet 19. It is like that.
[0015]
FIG. 3 is an external view of the surface heating type infrared radiation heating apparatus of the present invention. As shown in the figure, the surface heating type infrared radiation heating apparatus of the present invention is supported by a support frame 20. Specifically, the vacuum chamber 5 is supported at the center of the upper horizontal base 21 of the support frame 20, and the lower composite reflection mirror 1 is supported downward.
At least two screw shafts 22 and 22 are erected on the upper horizontal base 21 so that the screw shafts 22 and 22 are rotatable. Screws 23 and 23 are formed on the respective screw shafts 22 and 22, a bevel gear 24 is fixed to the lower end of any screw shaft 22, and a shaft support 25 is provided on the upper horizontal table 21. A bevel gear 24 is provided on a horizontal shaft 26 rotatably supported by 25, and the screw shaft 22 is rotated by meshing these bevel gears 24 and 24 and rotating an operation handle 27 provided on the horizontal shaft 26. . The two screw shafts 22 and 22 are connected to each other by an endless chain 28 at their upper ends so as to operate synchronously.
[0016]
Female screws 29, 29 are screwed into the screws 23, 23 of the respective screw shafts 22, and the female screws 29 are connected to a connection support plate 30 fixed to the upper cover 6 of the vacuum chamber 5. is there. With this configuration, the screw shafts 22, 22 are rotated to move the female screws 29, 29 up and down, the upper cover 6 of the vacuum chamber 5 and the upper composite reflection mirror 1 are moved up and down, and the upper cover 6 of the vacuum chamber 5. Open and close.
[0017]
When the heated object 16 is heated by the surface heating type infrared radiation heating apparatus of the present invention configured as described above, the upper lid 6 of the vacuum chamber 5 is opened as described above, and the heated object 16 is placed on the heated object mounting table 14. Is placed. Thereafter, the upper lid 6 is lowered and closed, and the air in the vacuum chamber 5 is evacuated by a vacuum pump so that the vacuum chamber 5 is evacuated. Thereafter, the infrared lamp 4 is turned on to emit infrared rays. The infrared rays radiated from the infrared lamp 4 are reflected by the conical reflection mirror 2 and the straight traveling light that travels straight from the infrared lamp 4 to the heating object 16, the oblique irradiation light that is directly irradiated from the infrared lamp 4 to the heating object 16, and the like. In this case, the straightly traveling light and the oblique irradiation light applied to the heated object 16 and the oblique reflection light reflected by the cylindrical reflection mirror 3 are included.
[0018]
The radiant intensity distribution of the infrared irradiation light as described above has a strong central portion and a weak outer peripheral portion, as shown in FIG. Therefore, in the apparatus of the present invention, the infrared ray at the center is absorbed by the disc-shaped heat equalizing mechanism 9 provided between the composite reflection mirror 1 and the transparent disc 8 provided on the upper lid 6 of the vacuum chamber 5, thereby The infrared intensity distribution of FIG. 2 has an approximate trapezoidal shape as shown in FIG. Further, in the apparatus of the present invention, the periphery of the heated object 16 is heated by the transparent cylinder 12 in the vacuum chamber 5 by the irradiation light totally reflected on the inner surface of the outer wall of the transparent cylinder 12, and the infrared intensity distribution to the heated object is shown in FIG. It becomes a trapezoidal shape like c, and a disk-shaped heated object with a medium area can be heated equally over the entire surface.
[0019]
【The invention's effect】
The surface heating type infrared radiation heating apparatus of the present invention is composed of a composite type reflection mirror and an infrared lamp, and the composite type reflection mirror is a combination of a hollow conical reflection mirror and a cylindrical reflection mirror. Infrared lamps that are used to irradiate and heat a heated object include straight light, reflected light reflected by a conical reflecting mirror, and oblique reflected light reflected by a cylindrical reflecting mirror. A circular plate having a medium area of about 50φ by linearly traveling infrared light, reflected light parallel to the straight light reflected by the conical reflecting mirror, and oblique reflected light reflected by the cylindrical reflecting mirror. The material can be heated at high speed and heat-treated.
[0020]
Further, in the present invention, a disc-shaped heat equalizing mechanism is installed at the lower portion of the composite type reflection mirror, and the infrared rays radiated straight from the composite type reflection mirror and the infrared lamp are emitted in the horizontal direction and reflected by the conical reflection mirror. Irradiation intensity of infrared rays is made uniform to irradiate a heated object, and the entire heated object is heated substantially uniformly. Therefore, a disk-shaped material having a medium area of about 50φ has a high speed and a substantially uniform temperature distribution. The temperature can be raised and heat treatment can be performed.
[0021]
Further, in the present invention, the disk-shaped heat equalization mechanism is a transparent support plate having a thin periphery, and is formed of a central transparent disc having a thickness greater than that of the transparent support plate supported by the transparent support plate. Therefore, the intensity of infrared light transmitted through the central transparent disk is weakened to make it substantially uniform with the intensity of infrared light transmitted through the surrounding thin transparent support plate, and the heating of the whole heated object is made substantially uniform. A disk-shaped material having an area can be heated at a high speed with a substantially uniform temperature distribution and heat-treated.
[0022]
Further, in the present invention, a vacuum chamber having a transparent disk provided thereon is disposed below the composite reflection mirror, and a heated object is placed in the vacuum chamber so that infrared rays radiated from the infrared lamp are emitted from the transparent circle. Since the entire heated product is heated to a substantially uniform temperature distribution through the plate and irradiated with the heated product, the heating efficiency can be improved and the entire heated product can be heated in a clean atmosphere at high speed.
[0023]
Further, in the present invention, since the transparent chamber is provided with a transparent cylinder fixed to the transparent disk, the oblique irradiation light directly irradiated from the infrared lamp or the cylindrical reflection mirror is reflected in the vacuum chamber. The oblique reflected light is totally reflected on the inner surface of the outer wall of the transparent cylinder, and the infrared rays from the infrared lamp are not radiated to the outside of the heated object. The temperature can be increased with a uniform temperature distribution at high speed, and heat treatment can be performed in a clean atmosphere.
[0024]
In the present invention, the surface heating type infrared radiation heating device according to any one of claims 1 to 5 is attached to both the upper and lower portions of the vacuum chamber, and infrared rays are irradiated from both the upper and lower surfaces of the heated object. Since the entire heated product is heated to a uniform temperature distribution, the heat treatment can be performed in a clean atmosphere with extremely high speed and high efficiency.
[Brief description of the drawings]
FIG. 1 is a cross-sectional front view showing an embodiment of a surface heating type infrared radiation heating apparatus of the present invention.
FIG. 2 is a diagram showing an intensity distribution of infrared irradiation of the heating device of the present invention.
FIG. 3 is an external view of a surface heating type infrared radiation heating apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Composite type reflection mirror 2 Cone-shaped reflection mirror 3 Cylindrical reflection mirror 4 Infrared lamp 5 Vacuum chamber 6 Upper lid 7 Through-hole window 8 Transparent disk 9 Disk-shaped heat equalization mechanism 10 Transparent support plate 11 Temperature equalization disk 12 Transparent Cylinder 13 Presser ring 14 Heated object mounting base 15 Bottom plate 16 Heated object 17 Through hole 18 Cooling water inlet 19 Cooling water outlet 20 Supporting base 21 Upper horizontal base 22 Screw shaft 23 Screw 24 Bevel gear 25 Shaft support 26 Horizontal shaft 27 Operation handle 28 Endless chain 29 Female screw 30 Connection support plate 31 O-ring

Claims (4)

複合型反射ミラー及び赤外線ランプから構成され、複合型反射ミラーは中空の円錐状反射ミラーと円筒状反射ミラーとを組み合わせてなっており、赤外線ランプから放射される赤外線が、直進光と、円錐状反射ミラーで反射される反射光と、円筒状反射ミラーで反射される斜反射光とを含み、加熱物を照射加熱するようにしてあり、上記複合型反射ミラーの下部に円板状均熱機構を設置し、上記円板状均熱機構が、周囲が薄い透明支持板であり、この透明支持板に支持された透明支持板より厚みのある中央部均熱円板からなっており、赤外線ランプより直進放射された赤外線と水平方向に放射し円錐状反射ミラーで反射した赤外線の放射強度を均一化して加熱物を照射し、加熱物全体を略均一に加熱するようにしてある面加熱型赤外線放射加熱装置。It is composed of a composite reflection mirror and an infrared lamp. The composite reflection mirror is a combination of a hollow conical reflection mirror and a cylindrical reflection mirror. The infrared radiation emitted from the infrared lamp is a straight beam and a conical shape. It includes reflected light reflected by the reflecting mirror and oblique reflected light reflected by the cylindrical reflecting mirror, and is designed to irradiate and heat a heated object. The disc-shaped soaking mechanism is a transparent support plate with a thin periphery, and is composed of a central soaking disc thicker than the transparent support plate supported by this transparent support plate, and an infrared lamp Surface heating type infrared rays that are designed to irradiate the heated object by uniformizing the radiation intensity of the infrared ray radiated more straight and the infrared ray radiated in the horizontal direction and reflected by the conical reflection mirror, and heating the entire heated item substantially uniformly. Radiation Apparatus. 上記複合型反射ミラーの下方に、上部に透明円板を設けた真空チャンバーを配置し、この真空チャンバー中に加熱物を入れ、上記赤外線ランプから放射した赤外線が上記透明円板を透過し加熱物を照射して加熱物全体を略均一な温度分布に加熱するようにしてある上記請求項1に記載の面加熱型赤外線放射加熱装置。A vacuum chamber provided with a transparent disk on the top is disposed below the composite reflection mirror. A heated object is placed in the vacuum chamber, and infrared rays emitted from the infrared lamp pass through the transparent disk and are heated. The surface heating infrared radiation heating apparatus according to claim 1 , wherein the entire heated product is heated to a substantially uniform temperature distribution by irradiating with heat. 上記真空チャンバー内に、上記透明円板に固着して透明円柱を設けてある上記請求項2に記載の面加熱型赤外線放射加熱装置。The surface heating infrared radiation heating apparatus according to claim 2 , wherein a transparent cylinder is provided in the vacuum chamber so as to be fixed to the transparent disk. 上記請求項1〜3の何れかに記載の面加熱型赤外線放射加熱装置を上記真空チャンバーの上部及び下部の両方に取り付け、加熱物の上面及び下面の両面から赤外線を照射し加熱物全体を均一な温度分布に昇温加熱するようにしてある面加熱型赤外線放射加熱装置。 The surface heating type infrared radiation heating device according to any one of claims 1 to 3 is attached to both the upper and lower portions of the vacuum chamber, and infrared rays are irradiated from both the upper and lower surfaces of the heated object so that the entire heated object is uniform. A surface heating type infrared radiation heating device that heats and heats to a proper temperature distribution.
JP2003097532A 2003-04-01 2003-04-01 Surface heating type infrared radiation heating device Expired - Fee Related JP4093897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003097532A JP4093897B2 (en) 2003-04-01 2003-04-01 Surface heating type infrared radiation heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003097532A JP4093897B2 (en) 2003-04-01 2003-04-01 Surface heating type infrared radiation heating device

Publications (2)

Publication Number Publication Date
JP2004303672A JP2004303672A (en) 2004-10-28
JP4093897B2 true JP4093897B2 (en) 2008-06-04

Family

ID=33409286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003097532A Expired - Fee Related JP4093897B2 (en) 2003-04-01 2003-04-01 Surface heating type infrared radiation heating device

Country Status (1)

Country Link
JP (1) JP4093897B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6732235B2 (en) * 2014-12-02 2020-07-29 国立研究開発法人産業技術総合研究所 Condensing mirror type heating furnace
US11791176B2 (en) * 2018-10-28 2023-10-17 Applied Materials, Inc. Processing chamber with annealing mini-environment

Also Published As

Publication number Publication date
JP2004303672A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
TWI567861B (en) Apparatus for thermal processing a substrate and method for processing a substrate
JP3659863B2 (en) Heat treatment equipment
JP2009164525A (en) Heat treatment apparatus
US8005352B2 (en) Heat treating device
JP2001272046A (en) Rapid cooking device utlizing infrared ray
JP4093897B2 (en) Surface heating type infrared radiation heating device
JPH06349813A (en) Apparatus for heating of substrate
JPH07245274A (en) Heat treatment device
JP2008117892A (en) Semiconductor manufacturing device and manufacturing method of semiconductor device
JPH10223549A (en) Lamp-annealing device
US7098157B2 (en) Method and apparatus for thermally treating disk-shaped substrates
JPH1082589A (en) Plane heating type infrared radiation heater
JP2002289548A (en) Heat treatment device
JP2009085796A (en) Measuring device of reflectivity or transmittance of electromagnetic wave at high temperature
JP2003031517A (en) Heat treatment apparatus for substrate
JP2001015248A (en) Infrared radiation heating device
JPH0729844A (en) Infrared heating method and equipment for semiconductor substrate
JP2006216237A (en) Infrared-uniform temperature heat treatment device
JP2003323971A (en) Ultra high temperature and ultra high speed uniformly heating device
JP2006252784A (en) Infrared uniform heating device
JP6732235B2 (en) Condensing mirror type heating furnace
KR100553256B1 (en) Device for Heat Treatment of Semicondu ctor Wafer with Localized Focusing
JP2009085795A (en) Measuring method of reflectivity or transmittance of electromagnetic wave at high temperature
US7043148B1 (en) Wafer heating using edge-on illumination
JPH05144406A (en) Processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees