[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4077190B2 - Two-stage solenoid valve for water pressure - Google Patents

Two-stage solenoid valve for water pressure Download PDF

Info

Publication number
JP4077190B2
JP4077190B2 JP2001356951A JP2001356951A JP4077190B2 JP 4077190 B2 JP4077190 B2 JP 4077190B2 JP 2001356951 A JP2001356951 A JP 2001356951A JP 2001356951 A JP2001356951 A JP 2001356951A JP 4077190 B2 JP4077190 B2 JP 4077190B2
Authority
JP
Japan
Prior art keywords
valve
working fluid
main valve
space region
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001356951A
Other languages
Japanese (ja)
Other versions
JP2003156170A (en
Inventor
能 北川
聖煥 朴
正人 川島
平東 呉
タム チェンウィスワット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Steel Co Ltd
Original Assignee
Tohoku Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Steel Co Ltd filed Critical Tohoku Steel Co Ltd
Priority to JP2001356951A priority Critical patent/JP4077190B2/en
Publication of JP2003156170A publication Critical patent/JP2003156170A/en
Application granted granted Critical
Publication of JP4077190B2 publication Critical patent/JP4077190B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fluid-Driven Valves (AREA)
  • Magnetically Actuated Valves (AREA)

Description

【0001】
【発明の属する技術分野】
駆動システムを作動させるための作動流体(圧力媒体)としては従来、鉱物油等の油が使用されてきたが、近年では、システムの安全性や環境保護に対する要求や規制がより厳しくなる傾向にあり、油漏れによる環境汚染や火災等の危険性を回避すべく、水を作動流体とする水圧システムの開発が望まれている。
【0002】
水は鉱物油とは物性が大きく異なるため、機器の性能や耐久性に関し解決すべき問題を多々含んでいるが、最新の材料技術や加工技術、設計等の工夫により水圧ポンプ、水圧用アクチュエータ、水圧サーボ弁の如き水圧機器への適用が可能であると考えられており、水圧システムの実用化への取り組みが積極的に進められている。
【0003】
本発明は、作動流体として水を使用できる二段式水圧用電磁弁に関するものである。
【0004】
【従来の技術】
作動流体として油を使用する電磁弁としては、低電力化のためにバランスピストンを配置した図7に示すような構成のものが知られている。かかる構造のものは、供給側経路とつながるPポートと送給側経路につながるAポートを有する二方向油圧電磁弁であって、高速で作動させることができるとともに内部漏れも非常に少ない利点があり、油圧システムの制御において幅広く使用されている。
【0005】
ところで、かかる構造になる電磁弁を、作動流体を水とする水圧システムに適用した場合、弁体が閉塞位置にあるにもかかわらず供給圧力が一定の値(2MPa程度)を超えるとAポートから相当量の水が漏れ出てしまうのが避けられない不具合があった。
【0006】
これは、バランスピストンにはシール部材としてのOリングが配置されておらず、水は油に比較して粘度が低いためであると考えられるが、上記の電磁弁は、このような内部漏れの回避は勿論のこと、高速作動性や錆び、潤滑、キャビテーション壊食などの問題をも考慮することが不可欠であって、従来の電磁弁を単に水圧用として使用することは今のところ不可能であった。
【0007】
この点に関しては、バランスピストンに換えてポペット式の弁を使用する図8に示すような構造の適用も試みられてはいるものの、この場合、弁のオフ状態(閉塞状態)を維持するためには強力なスプリングが必要であり、同時に大出力のソレノイドが不可欠であって、未だ改善の余地が残されている。
【0008】
【発明が解決しようとする課題】
本発明の課題は、作動流体として水を使用する場合であっても内部漏れがなく、しかも、高速作動、省電力化を可能とする二段式水圧用電磁弁を提案するところにある。
【0009】
【課題を解決するための手段】
本発明は、ソレノイド、コア及びヨークとの組み合わせからなる駆動系にて、ボディ内に配置した弁体を作動させてアクチュエータへつながる経路を開閉制御する電磁弁であって、
ボディ内に、作動流体供給経路とアクチュエータへつながる作動流体送給経路とを合流させる第1の空間領域と、この第1の空間領域及び作動流体供給経路につながる通路を備える仕切り壁を介して第2の空間領域をそれぞれ設け、
前記作動流体送給経路と第2の空間領域とをバイパス経路を介して連結し、
前記第1の空間領域に、その内壁面に沿いシール部材で液密状態に保持した弁座、スリーブを配置するとともにスプリングを介して弾性支持され作動流体送給経路を該弁座と協働して閉塞状態に維持する主弁を配置し、
前記第2の空間領域に、スプリングを介して弾性支持され仕切り壁の通路を閉塞状態に維持するが、該通路におけるパイロット流量の制御により前記主弁の胴部とスリーブとの隙間において作動流体としての水に流れを生じさせ、主弁の先端、後端の圧力均衡を崩して該主弁を弁座から浮き上がらせて作動流体送給経路を開放状態とする補助弁を設けたことを特徴とする二段式水圧用電磁弁である。
【0010】
上記の構成になる二段式水圧用電磁弁において主弁をポペット形式の弁体とし、補助弁をボール形式あるいは主弁と同様のポペット形式の弁体とすることができる。
【0011】
また、主弁は、主弁の胴部と第1の空間領域壁面との相互間にて隙間を形成して作動流体供給経路と仕切り壁の通路をつなぐ径を有するものがとくに有利に適合する。
【0012】
【発明の実施の形態】
以下、図面を用いて本発明をより具体的に説明する。
図1は本発明に従う二段式水圧用電磁弁の構成を示したものである。
【0013】
図において1は電磁弁のボディである。ボディ1はその内部に作動流体供給経路Pとアクチュエータへつながる作動流体送給経路Aとを合流させる第1の空間領域Kと、この第1の空間領域及び作動流体供給経路Pにつながる通路cを有する仕切り壁(弁座を兼ねる)Wを介して第2の空間領域Kが設けられている。
【0014】
第1の空間領域Kには、その内壁面に沿いOリング等のシール部材で液密状態に保持した弁座2、スリーブ3が配置されるとともにスプリングSを介して弾性支持され作動流体送給経路Aを弁座2と協働して閉塞状態に維持するポペット型の主弁4が配置される。この主弁4とスリーブ3との間には30μm 程度の隙間rが形成されており、先端(図中下側)と後端(図中上側)の受圧面積はほぼ等しいか後端のほうが少し大きいものとなっている。
【0015】
また、第2の空間領域Kには、その後端領域を第2の空間領域Kから突出させた非磁性材からなるスリーブ5とこのスリーブ5にスプリングSを介して弾性支持され仕切り壁Wの通路cを閉塞状態に保持する補助弁6が配置されている。
【0016】
補助弁6は通路cにおけるパイロット流量を制御するためボール形式の例で示した弁体(パイロット弁)6aと、この弁体6aに一体的に成形されスリーブ5内でスプリングSの弾性力に抗してスライド可能でその後端領域をスリーブ5とともに第2の空間領域Kから突出させたプランジャー6bからなっていて、該補助弁6にはその周りに作用する圧力が常に一定になるように貫通孔6cが設けられている。
【0017】
また、7は第2の空間領域Kから突出したスリーブ5を取り囲む磁性材からなるスペーサであって、スペーサ7の末端には非磁性材よりなるリング7aが装着されている。
【0018】
8はスリーブ5をスペーサ7とともにボディ1に強固にねじ止め保持する固定リング、9はプランジャー6bの端面で隙間hを隔ててリング7aに配置されるコア、10はコア9に連結して磁路を形成するヨーク、11はコア9とプランジャー6bの端面で形成された隙間hを取り囲むように巻回されたソレノイド、そして12は第2の空間領域Kと作動流体送給経路Aをつなぐバイパス経路であり、補助弁6を通過する作動流体はこのバイパス経路12を通って作動流体送給経路Aへと送り込まれる。
【0019】
コア9、ヨーク10、ソレノイド11は電磁弁の駆動系を構成するものであって、これによってプランジヤー6bを弁体6aとともにコア9側に適宜に吸引して通路cを開閉してパイロット流量の制御を行なう。
【0020】
駆動系にて補助弁6を作動させると、主弁4とスリーブ3の隙間rにおいて図中矢印の如き水の流れが生じ、該隙間rを通過する際に水の圧力が降下する。そうすると、主弁4の後端の圧力が先端の圧力に比べて低くなり、これによって主弁4の先端、後端の圧力均衡が崩れ主弁4が弁座2から浮き上がって開放状態となり作動流体としての水がアクチュエータにつながる作動流体送給経路Aへと流れる。
【0021】
上記の構成になる電磁弁において、パイロット流量を制御する補助弁6は小形のソレノイドを用いて低電力で高速で作動させることができるものであり、主弁4が配置される第1の空間領域Kは補助弁6を作動させない限り主弁4が弁座2に確実に合致しているためその部位における漏れは全くない。
【0022】
図2は上掲図1に示した構成になる電磁弁を使用した水圧回路であって、この水圧回路を用い、駆動系のソレノイド10に過励磁電圧及び消磁電圧を印加するパルス幅変調方式(PWM)になる高速駆動専用電気回路にて流量制御を行い、補助弁6の作動遅れ特性について調査をおこなった。
【0023】
図3にその結果を示す。この調査は、補助弁6の弁体6aあるいはプランジャー6bが仕切り壁Wまたはコア9に接触する瞬間に大きな衝撃が発生することに着目し、かかる衝撃を衝撃センサーを用いて測定したものであり、図3より明らかな如く、オンオフ入力信号から衝撃信号が発生するまでの約1msの時間が弁(補助弁6)の開閉作動遅れ時間となっており、高速で作動させることが可能であることがわかる。
【0024】
また、図4はデューティー(入力信号におけるON時間の全時間(オンオフの時間)に対する割合)とパイロット流量の関係を示したグラフである。
【0025】
図4より補助弁6におけるパイロット流量は全般的にデューティーとともに直線的に増加する傾向にある。
【0026】
図5は、デューティーとメイン流量(主弁4の流量)との関係を調査した結果を示したものである。本発明の電磁弁は二段式の電磁弁であり、パイロット流量に比較しメイン流量は多いが、パイロット流量の特性がそのまま反映され、同じ傾向にあることがわかる。
【0027】
図6は、図2に示した水圧回路において作動流体送給経路Aに配置されたバルブの開度を調整して0〜6MPaの範囲で負荷圧力を与えたときの主弁4の流量変動を示したグラフである。全般的に負荷圧力が大きいほど流量は少ないが、負荷圧力が1MPaの場合にはデューティー70以下では無負荷時より多くなっていて、これは、主弁4の先端(下部)に負荷圧力が働き主弁4がより開くためと想定される。
【0028】
本発明に従う水圧用電磁弁は、その構成部材は全てステンレス鋼にて構成することができるものであり、とくに主弁4とその弁座2及び補助弁6の弁体6aとその弁座は熱処理したステンレス鋼を適用するのが好ましいが、めっき等の表面処理を施したものであれば炭素鋼の如き通常の鋼材でも適用可能であり、ステンレス鋼に限定されるものではない。
【0029】
主弁4の流量は、基本的には補助弁6のパイロット流量を制御することによって制御できるが、主弁4の胴部とスリーブ3との間に形成する隙間(クリアランス)rについてはパイロット流量の制御範囲に大きく影響を与えるものであって、電磁弁のサイズや作動流体の送給条件に応じて適宜に変更されるものであり、隙間rの代わりに主弁4の胴部にそれ専用の通路を設けるようにしてもよい。
【0030】
【発明の効果】
本発明によれば、作動流体として水を用いた場合であっても内部漏れが全くなく、しかも高速で作動させることができるので、水圧システムの構築が容易になる。
【0031】
また、本発明によれば、電気駆動や油圧駆動の電磁弁と異なり耐火性、耐熱性に優れ、とくに油圧駆動式のものにおいて懸念された環境汚染を効果的に回避することが可能であり、食品加工産業、防災産業、半導体産業はもとより、農業機械や水中機械を扱う産業などにおいて幅広く適用できる。
【図面の簡単な説明】
【図1】 本発明に従う二段式水圧用電磁弁の構成を示した図である。
【図2】 本発明に従う電磁弁を適用した水圧回路を模式的に示した図である。
【図3】 作動遅れ特性を調査した結果を示したグラフである。
【図4】 流量とデューティーの関係を示したグラフである。
【図5】 流量とデューティーの関係を示したグラフである。
【図6】 流量とデューティーの関係を示したグラフである。
【図7】 従来形式になる電磁弁の構成を示した図である。
【図8】 ポペット形式の電磁弁の構成を示した図である。
【符号の説明】
1 電磁弁のボディ
2 弁座
3 スリーブ
4 主弁
5 スリーブ
6 補助弁
6a 弁体
6b プランジャー
7 スペーサー
7a リング
8 固定リング
9 コア
10 ヨーク
11 ソレノイド
12 バイパス経路
13 バランスピストン
14 スプリング
15 ソレノイド
16 コア
17 ピポット弁
18 スプリング
19 ソレノイド
20 コア
P 作動流体供給路
A 作動流体送給路
第1の空間領域
第2の空間領域
W 仕切り壁
c 通路
スプリング
スプリング
r 隙間
h 隙間
[0001]
BACKGROUND OF THE INVENTION
Conventionally, oil such as mineral oil has been used as a working fluid (pressure medium) for operating a drive system. However, in recent years, demands and regulations for system safety and environmental protection tend to be stricter. In order to avoid dangers such as environmental pollution and fire due to oil leakage, development of a hydraulic system using water as a working fluid is desired.
[0002]
Since water has significantly different physical properties from mineral oil, it contains many problems to be solved regarding the performance and durability of the equipment, but with the latest material technology, processing technology, design, etc., hydraulic pumps, hydraulic actuators, It is considered that it can be applied to water pressure equipment such as a water pressure servo valve, and efforts to put the water pressure system into practical use are being actively promoted.
[0003]
The present invention relates to a two-stage hydraulic solenoid valve that can use water as a working fluid.
[0004]
[Prior art]
As a solenoid valve that uses oil as a working fluid, a solenoid valve having a configuration as shown in FIG. 7 in which a balance piston is arranged to reduce power is known. Such a structure is a two-way hydraulic solenoid valve having a P port connected to the supply side route and an A port connected to the supply side route, and has an advantage that it can be operated at a high speed and has very little internal leakage. Widely used in hydraulic system control.
[0005]
By the way, when an electromagnetic valve having such a structure is applied to a hydraulic system using water as a working fluid, if the supply pressure exceeds a certain value (about 2 MPa) despite the valve body being in the closed position, the A port There was an inevitable problem that a considerable amount of water leaked out.
[0006]
This is probably because the balance piston does not have an O-ring as a seal member, and water has a lower viscosity than oil. In addition to avoidance, it is essential to consider problems such as high-speed operation, rust, lubrication, and cavitation erosion, and it is impossible to use conventional solenoid valves for water pressure. there were.
[0007]
In this regard, although an attempt has been made to apply a structure as shown in FIG. 8 using a poppet type valve in place of the balance piston, in this case, in order to maintain the off state (closed state) of the valve. Requires a strong spring and at the same time a high-power solenoid is essential, and there is still room for improvement.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to propose a two-stage water pressure electromagnetic valve that is free from internal leakage even when water is used as a working fluid, and that enables high-speed operation and power saving.
[0009]
[Means for Solving the Problems]
The present invention is an electromagnetic valve that controls opening and closing of a path connected to an actuator by operating a valve body arranged in a body in a drive system composed of a combination of a solenoid, a core and a yoke,
A first space region in the body joins the working fluid supply path and the working fluid feed path connected to the actuator, and a partition wall having a passage connected to the first space region and the working fluid supply path. Two space areas are provided,
Connecting the working fluid feed path and the second space region via a bypass path;
In the first space region, a valve seat and a sleeve, which are held in a liquid-tight state by a sealing member along the inner wall surface, are disposed and elastically supported via a spring, and a working fluid supply path cooperates with the valve seat. the main valve to maintain the closed state Te arranged,
In the second space region, the passage of the partition wall is elastically supported via a spring and is maintained in a closed state, but as a working fluid in the gap between the main valve body and the sleeve by controlling the pilot flow rate in the passage. An auxiliary valve is provided that causes a flow in the water of the main valve, breaks the pressure balance at the front and rear ends of the main valve, and lifts the main valve from the valve seat to open the working fluid supply path. This is a two-stage water pressure solenoid valve.
[0010]
In the two-stage water pressure electromagnetic valve configured as described above, the main valve can be a poppet type valve element, and the auxiliary valve can be a ball type or a poppet type valve element similar to the main valve.
[0011]
Further, the main valve having a diameter connecting the working fluid supply path and the partition wall passage with a gap formed between the main valve body and the first space region wall surface is particularly advantageously adapted. .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described more specifically with reference to the drawings.
FIG. 1 shows the structure of a two-stage hydraulic solenoid valve according to the present invention.
[0013]
In the figure, 1 is the body of the solenoid valve. Body 1 and the first spatial region K 1 for combining the hydraulic fluid delivery path A leading to the working fluid supply path P and the actuator therein, passages c leading to the first spatial region and working fluid supply path P partition wall (also serving as a valve seat) second spatial region via the W K 2 is provided with.
[0014]
In the first space region K 1 , a valve seat 2 and a sleeve 3 that are held in a liquid-tight state by a sealing member such as an O-ring are disposed along the inner wall surface, and are elastically supported via the spring S 1 and are actuated. A poppet-type main valve 4 that maintains the feeding path A in a closed state in cooperation with the valve seat 2 is disposed. A gap r of about 30 μm is formed between the main valve 4 and the sleeve 3, and the pressure receiving areas of the front end (lower side in the figure) and the rear end (upper side in the figure) are almost equal or slightly at the rear end. It has become big.
[0015]
Further, the second spatial region K 2, the rear end region a second sleeve 5 and the sleeve 5 made of non-magnetic material which projects from the spatial domain K 2 via a spring S 2 elastically supported by the partition wall An auxiliary valve 6 is disposed to keep the W passage c closed.
[0016]
A valve body (pilot valve) 6a shown in the example of the ball type for the auxiliary valve 6 for controlling the pilot flow rate in the passage c, the elastic force of the spring S 2 in the 5 sleeve is molded integrally with the valve body 6a the slidable its rear region by anti consist second spatial region K plunger 6b which projects from 2 together with the sleeve 5, the said auxiliary valve 6 so that pressure acting around its is always constant Is provided with a through hole 6c.
[0017]
Further, 7 is a spacer made of a magnetic material surrounding the sleeve 5 projecting from the second spatial region K 2, the end of the spacer 7 ring 7a made of a nonmagnetic material is attached.
[0018]
8 is a fixing ring that firmly holds the sleeve 5 together with the spacer 7 to the body 1, and 9 is a core disposed on the ring 7a with a gap h at the end face of the plunger 6b. yokes for forming a tract, 11 wound solenoid to surround the gap h formed at an end surface of the core 9 and the plunger 6b, and 12 a second spatial region K 2 and the working fluid feed path a The working fluid passing through the auxiliary valve 6 is sent to the working fluid feeding route A through the bypass route 12.
[0019]
The core 9, the yoke 10 and the solenoid 11 constitute a drive system for the solenoid valve. By this, the plunger 6b is appropriately sucked together with the valve body 6a toward the core 9 to open and close the passage c to control the pilot flow rate. To do.
[0020]
When the auxiliary valve 6 is operated in the drive system, a water flow as indicated by an arrow in the figure occurs in the gap r between the main valve 4 and the sleeve 3, and the pressure of the water drops when passing through the gap r. Then, the pressure at the rear end of the main valve 4 becomes lower than the pressure at the front end. As a result, the pressure balance between the front end and the rear end of the main valve 4 is lost, and the main valve 4 is lifted from the valve seat 2 to be in an open state. As a result, the water flows to the working fluid feed path A connected to the actuator.
[0021]
In the electromagnetic valve configured as described above, the auxiliary valve 6 that controls the pilot flow rate can be operated at high speed with low power using a small solenoid, and the first space region in which the main valve 4 is disposed. K 1 is the leakage is no at that site since the main valve 4 unless actuate the auxiliary valve 6 is reliably meet the valve seat 2.
[0022]
FIG. 2 shows a water pressure circuit using the solenoid valve having the structure shown in FIG. 1, and a pulse width modulation system (using a water pressure circuit for applying an overexcitation voltage and a demagnetization voltage to the solenoid 10 of the drive system). The flow rate was controlled by an electric circuit dedicated to high-speed driving (PWM), and the operation delay characteristics of the auxiliary valve 6 were investigated.
[0023]
The result is shown in FIG. This investigation pays attention to the fact that a large impact is generated at the moment when the valve body 6a or the plunger 6b of the auxiliary valve 6 contacts the partition wall W or the core 9, and the impact is measured using an impact sensor. As is apparent from FIG. 3, the time of about 1 ms from when the on / off input signal is generated to when the impact signal is generated is the open / close operation delay time of the valve (auxiliary valve 6), and can be operated at high speed. I understand.
[0024]
FIG. 4 is a graph showing the relationship between the duty (the ratio of the ON time in the input signal to the total time (ON / OFF time)) and the pilot flow rate.
[0025]
From FIG. 4, the pilot flow rate in the auxiliary valve 6 generally tends to increase linearly with the duty.
[0026]
FIG. 5 shows the result of investigating the relationship between the duty and the main flow rate (flow rate of the main valve 4). The solenoid valve of the present invention is a two-stage solenoid valve, and the main flow rate is larger than the pilot flow rate, but the characteristics of the pilot flow rate are reflected as they are, and it can be seen that they have the same tendency.
[0027]
6 shows the flow rate fluctuation of the main valve 4 when the load pressure is applied in the range of 0 to 6 MPa by adjusting the opening degree of the valve arranged in the working fluid feed path A in the hydraulic circuit shown in FIG. It is the shown graph. In general, the larger the load pressure is, the smaller the flow rate is. However, when the load pressure is 1 MPa, the duty pressure is 70 or less, which is higher than that when there is no load. This is because the load pressure acts on the tip (lower part) of the main valve 4. It is assumed that the main valve 4 is more open.
[0028]
The hydraulic solenoid valve according to the present invention can be composed of all stainless steel components. In particular, the main valve 4 and its valve seat 2 and the valve body 6a of the auxiliary valve 6 and its valve seat are heat treated. It is preferable to use stainless steel, but any steel material such as carbon steel can be used as long as it is subjected to surface treatment such as plating, and is not limited to stainless steel.
[0029]
The flow rate of the main valve 4 can be basically controlled by controlling the pilot flow rate of the auxiliary valve 6, but the clearance (clearance) r formed between the body of the main valve 4 and the sleeve 3 is the pilot flow rate. The control range of the main valve 4 is significantly changed in accordance with the size of the solenoid valve and the working fluid supply conditions, and is used in the body of the main valve 4 instead of the gap r. The passage may be provided.
[0030]
【The invention's effect】
According to the present invention, even when water is used as the working fluid, there is no internal leakage at all, and it can be operated at a high speed, so that it is easy to construct a hydraulic system.
[0031]
In addition, according to the present invention, unlike an electrically driven or hydraulically driven solenoid valve, it is excellent in fire resistance and heat resistance, and it is possible to effectively avoid environmental pollution that is particularly concerned in hydraulically driven types. It can be widely applied not only to the food processing industry, disaster prevention industry, and semiconductor industry, but also to industries that handle agricultural machinery and underwater machinery.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a two-stage hydraulic solenoid valve according to the present invention.
FIG. 2 is a diagram schematically showing a hydraulic circuit to which an electromagnetic valve according to the present invention is applied.
FIG. 3 is a graph showing a result of investigating an operation delay characteristic.
FIG. 4 is a graph showing the relationship between flow rate and duty.
FIG. 5 is a graph showing the relationship between flow rate and duty.
FIG. 6 is a graph showing the relationship between flow rate and duty.
FIG. 7 is a diagram showing a configuration of a conventional electromagnetic valve.
FIG. 8 is a diagram showing a configuration of a poppet type solenoid valve.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electromagnetic valve body 2 Valve seat 3 Sleeve 4 Main valve 5 Sleeve 6 Auxiliary valve 6a Valve body 6b Plunger 7 Spacer 7a Ring 8 Fixing ring 9 Core
10 York
11 Solenoid
12 Bypass path
13 Balance piston
14 Spring
15 Solenoid
16 core
17 Pivot valve
18 Spring
19 Solenoid
20 Core P Working fluid supply path A Working fluid feed path K 1 First space region K 2 Second space region W Partition wall c Passage s 1 Spring s 2 Spring r Clearance h Clearance

Claims (2)

ソレノイド、コア及びヨークとの組み合わせからなる駆動系にて、ボディ内に配置した弁体を作動させてアクチュエータへつながる経路を開閉制御する電磁弁であって、
ボディ内に、作動流体供給経路とアクチュエータへつながる作動流体送給経路とを合流させる第1の空間領域と、この第1の空間領域及び作動流体供給経路につながる通路を備える仕切り壁を介して第2の空間領域をそれぞれ設け、
前記作動流体送給経路と第2の空間領域とをバイパス経路を介して連結し、
前記第1の空間領域に、その内壁面に沿いシール部材で液密状態に保持した弁座、スリーブを配置するとともにスプリングを介して弾性支持され作動流体送給経路を該弁座と協働して閉塞状態に維持する主弁を配置し、
前記第2の空間領域に、スプリングを介して弾性支持され仕切り壁の通路を閉塞状態に維持するが、該通路におけるパイロット流量の制御により前記主弁の胴部とスリーブとの隙間において作動流体としての水に流れを生じさせ、主弁の先端、後端の圧力均衡を崩して該主弁を弁座から浮き上がらせて作動流体送給経路を開放状態とする補助弁を配置したことを特徴とする二段式水圧用電磁弁。
An electromagnetic valve that controls the opening and closing of a path connected to an actuator by operating a valve body arranged in the body in a drive system comprising a combination of a solenoid, a core and a yoke,
A first space region that joins the working fluid supply path and the working fluid feed path connected to the actuator in the body, and a partition wall that includes a passage connected to the first space region and the working fluid supply path. Two space areas are provided,
Connecting the working fluid feed path and the second space region via a bypass path;
In the first space region, a valve seat and a sleeve, which are held in a liquid-tight state by a sealing member along the inner wall surface thereof, are arranged and elastically supported via a spring to cooperate with the valve seat. A main valve to keep it closed
The second spatial region, but to keep the passage closed state of the elastic supported partition wall via a spring, as a working fluid in the gap between the barrel and the sleeve of the main valve by controlling the pilot flow rate in the passage The auxiliary valve is arranged to cause a flow in the water of the main valve, disengage the pressure balance at the front and rear ends of the main valve, and lift the main valve from the valve seat to open the working fluid supply path. Two-stage water pressure solenoid valve.
主弁が、主弁の胴部と第1の空間領域壁面との相互間にて隙間を形成して作動流体供給経路と仕切り壁の通路をつなぐ外径を有するものである、請求項1記載の二段式水圧用電磁弁。  The main valve has an outer diameter that forms a gap between the body portion of the main valve and the wall surface of the first space region to connect the working fluid supply path and the passage of the partition wall. Two-stage solenoid valve for water pressure.
JP2001356951A 2001-11-22 2001-11-22 Two-stage solenoid valve for water pressure Expired - Fee Related JP4077190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001356951A JP4077190B2 (en) 2001-11-22 2001-11-22 Two-stage solenoid valve for water pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001356951A JP4077190B2 (en) 2001-11-22 2001-11-22 Two-stage solenoid valve for water pressure

Publications (2)

Publication Number Publication Date
JP2003156170A JP2003156170A (en) 2003-05-30
JP4077190B2 true JP4077190B2 (en) 2008-04-16

Family

ID=19168370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001356951A Expired - Fee Related JP4077190B2 (en) 2001-11-22 2001-11-22 Two-stage solenoid valve for water pressure

Country Status (1)

Country Link
JP (1) JP4077190B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107949736A (en) * 2015-09-07 2018-04-20 Kyb株式会社 Combination valve and the solenoid valve using the combination valve

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4683467B2 (en) * 2005-03-18 2011-05-18 国立大学法人東京工業大学 Seat type two-stage solenoid valve
JP4673832B2 (en) * 2006-12-28 2011-04-20 日信工業株式会社 solenoid valve
US8192172B2 (en) 2009-04-06 2012-06-05 Woodward, Inc. Flow sensing shutoff valve
JP5704629B2 (en) * 2010-05-18 2015-04-22 国立大学法人東京工業大学 Proportional poppet type two-stage high-speed solenoid valve with vibration absorber
US10544770B2 (en) 2017-06-29 2020-01-28 Woodward, Inc. Mecha-hydraulic actuated inlet control valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107949736A (en) * 2015-09-07 2018-04-20 Kyb株式会社 Combination valve and the solenoid valve using the combination valve

Also Published As

Publication number Publication date
JP2003156170A (en) 2003-05-30

Similar Documents

Publication Publication Date Title
EP1281854B1 (en) Dual solenoid latching actuator and method of using same
US8256739B2 (en) Poppet valve operated by an electrohydraulic poppet pilot valve
CA2942531C (en) Dual/variable gain oil pump control valve
JP3136429B2 (en) Double-seat valve operated by electromagnet
US4799645A (en) Pilot operated hydraulic control valve
US6092784A (en) Coil assembly useful in solenoid valves
US8056576B2 (en) Dual setpoint pressure controlled hydraulic valve
WO2010106361A1 (en) Electronically controlled valves
US6237550B1 (en) Solenoid-operated valve for internal combustion engine
JPH094747A (en) Electromagnetic proportional type pressure valve
US20070157980A1 (en) Pilot operated control valve having a two stage poppet
JP4077190B2 (en) Two-stage solenoid valve for water pressure
JP2004069069A (en) Solenoid operating pressure control valve
JPH0259348B2 (en)
US20160123461A1 (en) Normally high acting linear force solenoid
KR100476246B1 (en) Proportional pressure control valve
JP5704629B2 (en) Proportional poppet type two-stage high-speed solenoid valve with vibration absorber
US7669831B2 (en) Electrically controllable valve
JP4683467B2 (en) Seat type two-stage solenoid valve
CN112393005B (en) Electromagnetic valve
JP4218510B2 (en) Linear actuator
CN210423909U (en) Electromagnetic valve
CN111306333B (en) Safety valve
JP7394825B2 (en) In particular, an electromagnetic actuator for opening and closing a valve arrangement, a valve arrangement with such an electromagnetic actuator, an adjustable vibration damper with such an electromagnetic actuator, and a motor vehicle with such a vibration damper.
JP5747744B2 (en) Normally open type spool valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080131

R150 Certificate of patent or registration of utility model

Ref document number: 4077190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees