[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4065766B2 - Dielectric constant measurement method - Google Patents

Dielectric constant measurement method Download PDF

Info

Publication number
JP4065766B2
JP4065766B2 JP2002343008A JP2002343008A JP4065766B2 JP 4065766 B2 JP4065766 B2 JP 4065766B2 JP 2002343008 A JP2002343008 A JP 2002343008A JP 2002343008 A JP2002343008 A JP 2002343008A JP 4065766 B2 JP4065766 B2 JP 4065766B2
Authority
JP
Japan
Prior art keywords
dielectric constant
measurement
measurement sample
resonator
circular inner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002343008A
Other languages
Japanese (ja)
Other versions
JP2004177234A (en
Inventor
明 中山
博道 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002343008A priority Critical patent/JP4065766B2/en
Publication of JP2004177234A publication Critical patent/JP2004177234A/en
Application granted granted Critical
Publication of JP4065766B2 publication Critical patent/JP4065766B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は誘電定数測定法に関し、特に高周波数領域で電子部品として使用する誘電体基板の誘電定数測定法に関するものである。
【0002】
【従来技術】
近年においては、移動体通信技術の発展、普及に伴い、マイクロ波回路構成用の誘電体基板の誘電定数測定法が強く求められている。誘電体基板のマイクロ波における誘電定数測定法は種々提案されているが、その中でも空洞共振器法は高精度測定法として認知されている。この空洞共振器法では基板の面内方向の誘電定数が測定されるが、測定試料単体で自立できないような薄い、あるいは脆い試料や、基板上に形成された誘電体層の測定が困難である。
【0003】
一方、基板に垂直方向の誘電定数測定法としては平衡形円板共振器法が知られている。平衡形円板共振器法の励振はストリップラインにより円板状の内部導体の側面から行われることが多い。この平衡形円板共振器法では、測定系との整合性を得るためにストリップラインの特性インピーダンスを50Ωにする必要があるが、薄い誘電体基板では50Ωのインピーダンスを実現するためにストリップライン線路を極めて細くする必要がある。
【0004】
例えば同時焼成で、50Ωのインピーダンスを持つストリップライン線路を実現するためには、厚みが200μmの誘電体層が限界である。もし、50Ωから外れたインピーダンスのストリップラインで共振器を励振した場合、コネクタ等で反射が起こり、共振特性の測定精度、従って誘電特性の測定精度が劣化するという問題があった。
【0005】
このような問題点を解決するため、近年においては、平衡形円板共振器の上下面の中心から、同軸ケーブルにより共振器を励振する方法が提案されている。図7は、この誘電定数測定法を示すもので、円形内部導体31を有機樹脂からなる測定試料33で挟持し、これらの測定試料33の表面にそれぞれ外部導体35を形成し、円板共振器Aを形成し、円形内部導体31の中心に該当する外部導体35に励振口をそれぞれ形成し、これらの励振口に同軸ケーブル37を挿入し、電界により共振器Aを励振させ、共振器Aの共振周波数と無負荷Qの測定値から、測定試料33の比誘電率及び誘電正接を求めていた(非特許文献1参照)。
【0006】
【非特許文献1】
「電子情報通信学技術研究報告、信学技法vol.91―17、No.52」社団法人電子情報通信学会、1991年5月23日、p.17−22
【0007】
【発明が解決しようとする課題】
しかしながら、図7に示す誘電定数測定法では、平衡形円板共振器Aの両側の励振口に同軸ケーブル37を挿入し、測定する必要があったため、支持基板の上に平衡形円板共振器Aを作製することができず、極めて薄い誘電体層でかつ導体層と同時焼成されたセラミック試料、又は極めて薄い誘電体層でかつ一体成形された誘電体試料の測定においては、試料の反りが生じたり、破壊が起こったりするため、実質的に薄層の試料作製が困難になるという問題があった。
【0008】
又、セラミックスからなる配線基板では、焼成時に基板の厚さ方向に空隙率等の分布が起こり、誘電定数が厚さ方向に変化する場合があることが知られているが、図7に示す誘電定数測定法では、構造上、誘電体基板の平均的な誘電定数を測定することになり、誘電体基板の厚さ方向の誘電定数の変化を測定することはできなかった。
【0009】
本発明は、薄層の測定試料の誘電定数をも測定できるとともに、測定試料の任意深さにある任意厚さの誘電体層の誘電定数を測定できる誘電定数測定法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の誘電定数測定法は、円形内部導体を異なる厚みの第1測定試料及び第2測定試料で挟持し、該第1、第2測定試料の表面にそれぞれ第1、第2外部導体を形成してなり、前記第1測定試料の厚みが200μm以上である円板共振器を、前記円形内部導体の中心位置に対応する前記第1外部導体の位置に設けられた励振口と、前記円形内部導体の端の位置に対応する前記第1外部導体の位置に設けられた励振口とに同軸ケーブルを挿入し、電界によりTM0m0モード(m=1、2・・・)を励振させ、その共振周波数と無負荷Qを測定し、該円板共振器の共振周波数と無負荷Qの測定値、及び予め測定されていた前記第1測定試料の比誘電率及び/又は誘電正接から、前記第2測定試料の誘電定数を求めることを特徴とする。
また、円形内部導体を異なる厚みの第1測定試料及び第2測定試料で挟持し、該第1、第2測定試料の表面にそれぞれ第1、第2外部導体を形成してなり、前記第1測定試料の厚みが200μm以上である円板共振器を、前記円形内部導体の同心円に対応する前記第1外部導体の位置に設けられた少なくとも2個の励振口にループアンテナを挿入し、磁界によりTM 0m0 モード(m=1、2・・・)を励振させ、その共振周波数と無負荷Qを測定し、該円板共振器の共振周波数と無負荷Qの測定値、及び予め測定されていた前記第1測定試料の比誘電率及び/又は誘電正接から、前記第2測定試料の誘電定数を求めることを特徴とする。
【0011】
このような誘電定数測定法では、円板共振器を構成する一方の外部導体に磁界や電界の入力用、出力用の励振口を形成するため、支持基板の上に導体層と同時焼成あるいは一体成形した円板共振器の誘電定数を測定でき、従来測定が困難であった導体層と同時焼成あるいは一体成形された薄層の測定試料の比誘電率及び/又は誘電正接等の誘電定数を容易に求めることができる。
【0012】
また、本発明では、円板共振器の片面側から磁界や電界を印加して円板共振器を励振させ、測定試料の誘電定数を測定できるため、例えば、円板共振器を平坦な部分に載置して誘電定数を測定でき、従来のように、円板共振器を立てて測定する等、円板共振器の両側から電界を印加するための保持に注意する必要がなく、また、円板共振器が薄くなったとしても円板共振器を支持基板上に形成することにより、取り扱いも容易となる。
【0013】
さらに、本発明の誘電定数測定法では、円板共振器の円形内部導体の上下の測定試料の厚さを同一厚みとすることなく、自由に異なる厚みに設定できるため、例えば、異なる誘電体層を有し、誘電体層間に内部配線を有する配線基板等の電子部品において、任意の誘電体層における誘電定数を測定することができる。
【0014】
即ち、実際の配線基板等の電子部品は、セラミックス又はガラスセラミックスからなる誘電体層と内部配線が同時焼成されており、誘電体層はその厚みや内部配線材料等の影響を受け、積層位置(形成深さ)により、誘電体層がそれぞれ異なる誘電定数を有するようになることが知られているが、内部配線間に異なる厚みの誘電体層を有する部分の前記誘電体層の誘電定数を測定したい場合には、その部分をモデル化した円板共振器を作製し、各誘電体層の誘電定数を測定できる。従って、より現実に近い配線基板等の電子部品の設計を行うことができる。
【0015】
また、電界強度がゼロ、あるいは小さい位置に設けた励振口を用いて、磁界により円板共振器を励振させることにより、測定試料が薄い場合でも励振口の影響を受けずに、高い精度で測定できる。
【0016】
本発明の誘電定数測定法は、支持基板上に形成された円板共振器の第2測定試料の厚みが0.2mm以下であることを特徴とする。また、第1、第2測定試料がセラミックス又はガラスセラミックスからなり、支持基板及び円板共振器が同時焼成され、一体化されていることを特徴とする。
【0017】
一般に、マイクロ波領域で使用される配線基板の絶縁層の誘電定数を確認できれば、配線基板の設計に活かすことができる。ところで、セラミックスやガラスセラミックスからなる絶縁層と内部配線を同時焼成して形成される配線基板では、焼成時に内部配線を形成する金属材料が絶縁層に拡散して絶縁層の誘電定数が変化する可能性が指摘されている。このような実際の絶縁層の誘電定数を確認することにより、回路設計に最大限に活かすことができる。
【0018】
しかしながら、近年においては、配線基板の薄層化が進み、現実の絶縁層の厚みが0.2mm以下、特には0.05mm以下と薄くなり、このような配線基板の絶縁層の誘電定数を測定するため、現実の厚みを反映した、従来の図7に示すような共振器を作製しようとすると、測定試料が薄いため作製が困難であり、測定することができなかった。
【0019】
本発明では、第1、第2測定試料がセラミックス又はガラスセラミックスからなり、支持基板及び円板共振器が同時焼成されて一体化され、支持基板上に円板共振器が形成されているため、共振器の測定試料を薄くしても、支持基板により共振器の強度を向上できるため、共振器を容易に形成でき、しかも、第1外部導体の励振口を用いて誘電定数を測定できるため、測定試料の厚みが0.2mm以下と薄い場合であっても誘電定数を容易に測定できる。
【0021】
【発明の実施の形態】
本発明の誘電定数測定法を、図1を用いて説明する。先ず、測定に用いる円板共振器Aを作製する。
【0022】
円板共振器Aは、厚さの異なる第1測定試料(上側誘電体層)1と、被測定部位である第2測定試料(下側誘電体層)2の間に、これらの第1、第2測定試料1、2よりも面積の小さい円形内部導体3を配置し、かつ、第1、第2測定試料1、2の外側に、円形内部導体3よりも面積の大きい第1、第2外部導体4、5をそれぞれ配置して構成されている。即ち、円板共振器Aは、円形内部導体3を厚さの異なる第1、第2測定試料1、2で挟持し、これらの第1、第2測定試料1、2の表面にそれぞれ第1、第2外部導体4、5を形成して構成されている。
【0023】
円形内部導体3、外部導体4、5は導体材料から形成すればよいが、特に、2層の第1、第2測定試料1、2間で電磁界が透過しないように、又電磁界の放射を防ぐ点から、円形内部導体3、外部導体4、5の厚みは少なくとも5μm以上、特に10μm以上であることが望ましい。
【0024】
第1、第2測定試料1、2は、セラミックス、ガラスセラミックス、有機樹脂等の絶縁材料からなるものであるが、特に第1、第2測定試料1、2の形成が容易という点から、第1、第2測定試料1、2の厚みは200μm以上であることが望ましい
【0025】
第1、第2測定試料1、2がセラミックス、ガラスセラミックスの場合には、円板共振器Aは第1、第2測定試料1、2、円形内部導体3、第1、第2外部導体4、5を同時焼成して形成されており、また、第1、第2測定試料1、2が有機樹脂の場合には、円板共振器Aは第1、第2測定試料1、2、円形内部導体3、第1、第2外部導体4、5が接合、または圧着されて形成されている。
【0026】
また、円形内部導体3の中心に対応する第1外部導体4の位置には1個の励振口7が形成され、円形内部導体3の端に対応する第1外部導体4の位置には1個の励振口8が形成されている。これらの励振口7、8には同軸ケーブル9、10が挿入され、TM0m0共振モード(m=1、2・・・)が励振されるようになっている。励振口7、8間の距離Rは、円形内部導体3の直径Dの1/2とされている。
【0027】
以上のように構成された共振器Aの励振口7から同軸ケーブル9により電界を印加し電界励振すると、共振器Aが電界により励振され、TM0m0共振モード(m=1、2・・・)、特にTM010共振モードを片面から効率的に励振できる。このTM010共振モードの電界は、図2に示すように、円形内部導体3の中心と、円形内部導体3の端の円周部で強く分布する。そして、励振口8から同軸ケーブル10を介して電界が取り出され、これにより円板共振器Aの共振周波数と無負荷Qが測定される。尚、励振口8から電界を印加し、励振口7から取り出しても良い。また、図2では、電界分布を明確にするため、第1、第2測定試料1、2については断面を示す斜線を省略した。
【0028】
次に、第1測定試料1の比誘電率及び/又は誘電正接を、例えば特願2002−151665号や特願2002−281908号の誘電定数測定法により予め求める。尚、第1測定試料1の比誘電率及び/又は誘電正接はその他の測定法で求めても良い。また第1測定試料1の比誘電率及び/又は誘電正接は、円板共振器Aの共振周波数と無負荷Qを測定する前に行ってもよいことは勿論である。
【0029】
第1測定試料1の比誘電率及び/又は誘電正接は、特願2002−151665号で測定する場合には、例えば、図1の第1、第2測定試料1、2の厚みを第1測定試料1の厚みにして、即ち、円形内部導体3を第1測定試料1により挟持して、共振器Aの励振口7から同軸ケーブル9により電界を印加し電界励振し、円板共振器Aの共振周波数と無負荷Qを測定する。円形内部導体3の半径Rと測定試料1、2の厚さdの比が10以上、すなわち、R/d>10の時、この平衡形円板共振器AのTM0m0モードの共振周波数f0と無負荷Q(Qu)から、次式により測定試料1、2の比誘電率ε’と誘電正接tanδを算出することができる。
【0030】
【数1】

Figure 0004065766
【0031】
ただし、x’0mはJ’0(x’)=0のm番目の解で、特にm=1の時、x’01=3.8317である。J’0(x’)は0次の第一種ベッセル関数の微分である。ω=2πf0は角共振周波数、μ0=4π×10-7は真空の透磁率である。αは、小林らによるマイクロ波研究会技術報告書MW75−76「平衡形円板共振器による複素誘電率測定法」で開示されているように、S=R/d>10のとき、αはほぼ1となる。また、cは光速であり、△Rは内部円形導体の端での電磁界の外側への広がりを、内部円形導体径の増加として考慮したものである。lnは自然対数を表す。
【0032】
なお、誘電正接の決定に必要な導体の実効導電率σは、小林らによるマイクロ波研究会技術報告書MW75−76「平衡形円板共振器による複素誘電率測定法」で開示されているように、比誘電率と誘電正接が同じで厚さが異なる誘電体シートにより構成された2種類の平衡形円板共振器のQuの差から決定される。あるいは同時焼成導体の実効導電率σは特開2000−46756号公報に開示された界面導電率の測定法により決定される。
【0033】
このようにして、第1測定試料1の比誘電率及び/又は誘電正接が予め求められる。尚、特願2002−281908号の誘電定数測定法により、第1測定試料1の比誘電率及び/又は誘電正接を求める場合には、表面円形導体と下部導体層で第1測定試料1が挟持された円板共振器と、該円板共振器からの電磁界の漏洩を防ぐシールド体とを設け、該シールド体に設けられた入力用、出力用の励振口を介してTM0m0モード(m=1、2・・・)を励振させ、その共振周波数と無負荷Qの測定値から、第1測定試料1の比誘電率及び/又は誘電正接が求められる。
【0034】
このようにして求められた第1測定試料1の比誘電率及び/又は誘電正接と、図1の円板共振器Aの共振周波数と無負荷Qの測定値から、被測定部位である第2測定試料2の比誘電率ε’2、誘電正接tanδ2を計算する。この計算は有限要素法やモードマッチング法等の数値解析によって行う必要がある。
【0035】
ここでは有限要素法による計算法について述べる。まず共振周波数f0のε’2依存性、即ちf0−ε’2曲線を軸対称有限要素法による解析で求め、次にf0の測定値から、このf0−ε’2曲線を用いて比誘電率を決定する。
【0036】
誘電正接tanδ2は下記式2を用いて算出される。
【0037】
【数2】
Figure 0004065766
【0038】
この式は無負荷Qの逆数を、第1測定試料1の誘電正接tanδ1と被測定部位である第2測定試料2の誘電正接tanδ2と導体3、4、5の表皮抵抗Rsの項によって表現したものである。Pe1は第1測定試料1に貯えられる電界エネルギーの集中率、Pe2は第2測定試料2に貯えられる電界エネルギーの集中率、Gは形状因子であり、有限要素法により求められる。
【0039】
図3は、本発明の他の誘電定数測定法を説明するためのものである。図3の円板共振器Aは支持基板6上に形成されている。即ち、支持基板6上に、第2外部導体5、被測定部位である第2測定試料2、円形内部導体3、第1測定試料1、第1外部導体4を順次積層して構成されており、これらが支持基板6と同時に焼成され、一体となっている。第1、第2測定試料1、2はセラミックス又はガラスセラミックスから構成され、異なる厚みとされている。
【0040】
共振器Aの第1、第2測定試料1、2、支持基板6は、配線基板の絶縁層材料と同一で、円形内部導体3、第1、第2外部導体4、5は配線基板の内部配線材料と同一で、同一厚みとされ、焼成などの製法も同一とされている。従って、第1、第2測定試料1、2への円形内部導体3、第1、第2外部導体4、5材料の拡散状態やセラミックス又はガラスセラミックス内の空隙の分布状態は、配線基板と同一と見なすことができる。
【0041】
このような共振器Aは、厚い支持基板6上に一体に形成されているため、共振器Aの第2測定試料2の厚みを200μm以下、特には50μm以下と薄くしても共振器Aを容易に形成することができ、しかも、支持基板6が形成されていない第1外部導体4に形成された励振口7、8を介して電界により励振することができ、これにより円板共振器Aの共振周波数と無負荷Qを測定でき、上記したように、第1測定試料1の比誘電率と誘電正接、及び円板共振器Aの共振周波数と無負荷Qから、第2測定試料2の比誘電率と誘電正接を算出することができる。
【0042】
又、支持基板6とその上部を一体基板とみなせるので、基板内の任意深さの位置での比誘電率と誘電正接を測定することができる。
【0043】
図4は、本発明のさらに他の誘電定数測定法を説明するためのもので、図4の円板共振器Aは、図3に示した円板共振器Aと同様に、支持基板6上に、第2外部導体5、被測定部位である第2測定試料2、円形内部導体3、第1測定試料1、第1外部導体4を順次積層して構成されており、これらが支持基板6と同時に焼成され、一体となっている。第1、第2測定試料1、2はセラミックス又はガラスセラミックスから構成され、異なる厚みとされている。
【0044】
そして、円形内部導体3の半径Rに対して、0.4〜0.6倍の半径を有する同心円上の第1外部導体4の位置に2個の励振口7、8を設け、これらの励振口7、8にループアンテナ19、20を挿入し、磁界励振によってTM010共振モードを励振する。
【0045】
TM010共振モードの磁界は、図5に示すように、円形内部導体3に対して半径が約1/2の同心円周の位置で強く分布する。これにより、励振口7、8を介して同軸ケーブル9、10先端のループアンテナ19、20で磁界励振すると、TM010共振モードを片面から効率的に励振できる。これを用い、円板共振器Aの共振周波数と無負荷Qを測定し、第2測定試料2の比誘電率と誘電正接を算出することができる。尚、図5では、磁界分布を説明するため、第1、第2測定試料1、2の断面を示す斜線を省略した。
【0046】
尚、円形内部導体3の半径Rに対して、0.25倍、又は0.75倍の半径を有する同心円上の第1外部導体4の位置に2個の励振口7、8を設け、これらの励振口7、8にループアンテナ19、20を挿入し、磁界励振によってTM020共振モードを励振させても良い。
【0047】
また、円形内部導体3の半径Rに対して、1/6倍、又は1/2倍、或いは5/6倍の半径を有する同心円上の第1外部導体4の位置に2個の励振口7、8を設け、これらの励振口7、8にループアンテナ19、20を挿入し、磁界励振によってTM030共振モードを励振させても良い。
【0048】
尚、磁界を印可して円板共振器Aを励振する図4の場合に、図1に示したように支持基板6を形成しなくても、図1に示した場合と同様にして、第2測定試料2の比誘電率と誘電正接を測定することができる。
【0049】
【実施例】
本発明の誘電定数測定法により、アルミナ質基板の内部の比誘電率を測定した。測定基板の構造は図4に示すものであり、アルミナ材料からなるグリーンシートにCu−W系の導電性ペーストを塗布し、これを複数積層して積層成形体を作製し、この積層成形体を同時焼成し、円板共振器Aと支持基板6を一体化した。
【0050】
ここで、支持基板6の厚みを200μm、円形内部導体3、第1、第2外部導体4、5の厚みを10μmとし、円形内部導体3の直径を23.3mmとした。第1、第2測定試料1、2の厚みを変化させた円板共振器Aを作製した。
【0051】
又、図4に示す磁界結合を行うため、励振口7、8を1.5mm径とし、1.2mm径の同軸ケーブル9、10先端に作製した約1.5mm径のループアンテナ19、20を挿入し、円板共振器Aを励振し、円板共振器Aの共振周波数、無負荷Qを求めた。
【0052】
この後、第1測定試料1の比誘電率を特願2002−151665号に記載された方法で測定した。
【0053】
即ち、円形内部導体を両側から第1測定試料により挟持し、これを第1、第2外部導体で挟持し、第1外部導体の励振口から同軸ケーブルにより電界を印加し電界励振し、円板共振器の共振周波数と無負荷Qを測定し、上記式1から第1測定試料1の比誘電率を算出した。
【0054】
さらに図4の円板共振器Aの共振周波数を測定し、及び第1測定試料1の誘電率から、第2測定試料の比誘電率を計算した。結果を表1に示す。図6に、試料基板No.2の共振波形を示す。
【0055】
【表1】
Figure 0004065766
【0056】
この表1によれば、第2測定試料2の比誘電率は異なった値として測定されている。この違いは円形内部導体、第1、第2外部導体から第2測定試料2への拡散効果、及び基板全体の中での第2測定試料2の深さ(上下方向への位置)に依存したものと考えられる。
【0057】
【発明の効果】
以上、詳述した通り、本発明の誘電定数測定法によれば、円板共振器を構成する第1外部導体に磁界や電界の入力用、出力用の励振口を形成するため、支持基板の上に導体層と同時焼成あるいは一体成形した円板共振器の誘電定数を測定でき、従来測定が困難であった導体層と同時焼成あるいは一体成形された薄層の測定試料の比誘電率及び/又は誘電正接を容易に求めることができるとともに、異なる誘電体層を有し、誘電体層間に内部配線を有する配線基板等の電子部品において、任意の誘電体層における誘電定数を測定することができ、これにより、現実に近い配線基板等の電子部品の設計を行うことができ、マイクロ波用途の同時焼成用、或いは一体成形用の誘電体材料の開発が容易になるとともに、これらの材料を用いた回路基板や、半導体パッケージの設計がより高精度に行えるようになる。
【図面の簡単な説明】
【図1】本発明の誘電定数測定法に用いられる円板共振器の一例を示すもので、(a)は平面図、(b)は概略断面図である。
【図2】図1の円板共振器におけるTM010モードの電界分布を説明するもので、(a)は平面図、(b)は概略断面図である。
【図3】本発明の誘電定数測定法に用いられる円板共振器の他の例を示すもので、(a)は平面図、(b)は概略断面図である。
【図4】本発明の誘電定数測定法に用いられる円板共振器のさらに他の例を示すもので、(a)は平面図、(b)は概略断面図である。
【図5】図4の円板共振器におけるTM010モードの磁界分布を説明するもので、(a)は平面図、(b)は概略断面図である。
【図6】表1の試料基板No.2の誘電定数測定に用いられる共振波形を示す図である。
【図7】従来の誘電定数測定法に用いられる平衡形円板共振器を示すもので、(a)は平面図、(b)は概略断面図である。
【符号の説明】
1・・・第1測定試料
2・・・第2測定試料
3・・・円形内部導体
4・・・第1外部導体
5・・・第2外部導体
6・・・支持基板
7、8・・・励振口
9、10・・・同軸ケーブル
19、20・・・ループアンテナ
A・・・円板共振器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dielectric constant measurement method, and more particularly to a dielectric constant measurement method for a dielectric substrate used as an electronic component in a high frequency region.
[0002]
[Prior art]
In recent years, with the development and popularization of mobile communication technology, there is a strong demand for a dielectric constant measurement method for dielectric substrates for microwave circuit configuration. Various methods for measuring dielectric constants of microwaves on dielectric substrates have been proposed. Among them, the cavity resonator method is recognized as a high-precision measurement method. This cavity resonator method measures the dielectric constant in the in-plane direction of the substrate, but it is difficult to measure a thin or fragile sample that cannot be self-supported by a measurement sample alone or a dielectric layer formed on the substrate. .
[0003]
On the other hand, a balanced disk resonator method is known as a dielectric constant measuring method perpendicular to the substrate. In many cases, the excitation of the balanced disk resonator method is performed from the side surface of the disk-shaped inner conductor by a strip line. In this balanced disk resonator method, it is necessary to set the characteristic impedance of the stripline to 50Ω in order to obtain consistency with the measurement system, but in order to realize the impedance of 50Ω on the thin dielectric substrate, the stripline line is required. Needs to be extremely thin.
[0004]
For example, in order to realize a stripline line having an impedance of 50Ω by simultaneous firing, a dielectric layer having a thickness of 200 μm is the limit. If the resonator is excited by a strip line having an impedance deviating from 50Ω, reflection occurs at the connector or the like, and there is a problem that the measurement accuracy of the resonance characteristics, and hence the measurement accuracy of the dielectric characteristics, deteriorates.
[0005]
In order to solve such problems, in recent years, a method has been proposed in which the resonator is excited by a coaxial cable from the center of the upper and lower surfaces of the balanced disk resonator. FIG. 7 shows this dielectric constant measurement method. A circular inner conductor 31 is sandwiched between measurement samples 33 made of an organic resin, and outer conductors 35 are formed on the surfaces of these measurement samples 33, respectively. A is formed, excitation ports are respectively formed in the outer conductors 35 corresponding to the center of the circular inner conductor 31, coaxial cables 37 are inserted into these excitation ports, and the resonator A is excited by an electric field. The relative dielectric constant and dielectric loss tangent of the measurement sample 33 were obtained from the measured values of the resonance frequency and the no-load Q (see Non-Patent Document 1).
[0006]
[Non-Patent Document 1]
“Electronic Information and Communication Technology Research Report, Science Technology Vol. 91-17, No. 52” The Institute of Electronics, Information and Communication Engineers, May 23, 1991, p. 17-22
[0007]
[Problems to be solved by the invention]
However, in the dielectric constant measurement method shown in FIG. 7, it is necessary to insert the coaxial cable 37 into the excitation ports on both sides of the balanced disk resonator A and perform measurement. Therefore, the balanced disk resonator is placed on the support substrate. In the measurement of a ceramic sample that cannot be manufactured A and is a very thin dielectric layer and co-fired with a conductor layer, or a dielectric sample that is a very thin dielectric layer and is integrally molded, there is no warping of the sample. Since it occurs or breaks, there is a problem that it is substantially difficult to prepare a thin layer sample.
[0008]
In addition, it is known that a wiring board made of ceramics has a distribution such as porosity in the thickness direction of the substrate during firing, and the dielectric constant may change in the thickness direction. In the constant measurement method, the average dielectric constant of the dielectric substrate is measured due to the structure, and the change of the dielectric constant in the thickness direction of the dielectric substrate cannot be measured.
[0009]
An object of the present invention is to provide a dielectric constant measurement method capable of measuring a dielectric constant of a thin layer measurement sample and measuring a dielectric constant of a dielectric layer having an arbitrary thickness at an arbitrary depth of the measurement sample. To do.
[0010]
[Means for Solving the Problems]
In the dielectric constant measurement method of the present invention, a circular inner conductor is sandwiched between a first measurement sample and a second measurement sample having different thicknesses, and first and second outer conductors are formed on the surfaces of the first and second measurement samples, respectively. Ri greens and, said first disc resonator Ru der than 200μm thickness of the measurement sample, and excitation Fukuchi provided at a position of the first outer conductor corresponding to the center position of the circular inner conductor, A coaxial cable is inserted into the excitation port provided at the position of the first outer conductor corresponding to the position of the end of the circular inner conductor, and the TM 0m0 mode (m = 1, 2,...) Is excited by an electric field. , Measuring the resonance frequency and no-load Q, and from the measured values of the resonance frequency and no-load Q of the disc resonator, and the relative dielectric constant and / or dielectric loss tangent of the first measurement sample measured in advance, A dielectric constant of the second measurement sample is obtained.
Further, the circular inner conductor is sandwiched between the first measurement sample and the second measurement sample having different thicknesses, and the first and second outer conductors are formed on the surfaces of the first and second measurement samples, respectively. A disk resonator having a measurement sample thickness of 200 μm or more is inserted in a loop antenna into at least two excitation openings provided at positions of the first outer conductor corresponding to concentric circles of the circular inner conductor, and a magnetic field is applied. The TM 0m0 mode (m = 1, 2,...) Was excited, its resonance frequency and unloaded Q were measured, and the measured values of the resonance frequency and unloaded Q of the disk resonator were measured in advance. A dielectric constant of the second measurement sample is obtained from a relative dielectric constant and / or a dielectric loss tangent of the first measurement sample.
[0011]
In such a dielectric constant measurement method, an excitation port for input and output of a magnetic field and an electric field is formed on one outer conductor constituting a disk resonator, so that it is simultaneously fired or integrated with a conductor layer on a support substrate. Dielectric constant of molded disk resonator can be measured, and dielectric constants such as relative permittivity and / or dielectric loss tangent of thin layer measurement sample co-fired or integrally formed with conductor layer, which was difficult to measure conventionally, are easy Can be requested.
[0012]
Further, in the present invention, since the disk resonator can be excited by applying a magnetic field or an electric field from one side of the disk resonator and the dielectric constant of the measurement sample can be measured, for example, the disk resonator is placed on a flat part. It is possible to measure the dielectric constant by placing it, and it is not necessary to pay attention to holding for applying an electric field from both sides of the disk resonator, such as measuring with a disk resonator standing up like before, Even if the plate resonator is thinned, it is easy to handle by forming the disc resonator on the support substrate.
[0013]
Furthermore, in the dielectric constant measurement method of the present invention, the thicknesses of the measurement samples above and below the circular inner conductor of the disk resonator can be set to different thicknesses without being the same thickness. In an electronic component such as a wiring board having internal wiring between dielectric layers, the dielectric constant in an arbitrary dielectric layer can be measured.
[0014]
That is, in an actual electronic component such as a wiring board, a dielectric layer made of ceramics or glass ceramics and internal wiring are fired at the same time, and the dielectric layer is affected by its thickness, internal wiring material, etc. It is known that the dielectric layers have different dielectric constants depending on the formation depth), but the dielectric constants of the dielectric layers in the portions having different dielectric layers between the internal wirings are measured. If this is desired, a disk resonator modeled on that part can be produced, and the dielectric constant of each dielectric layer can be measured. Therefore, it is possible to design an electronic component such as a wiring board that is more realistic.
[0015]
In addition, by using the excitation port provided at a position where the electric field strength is zero or small, the disk resonator is excited by a magnetic field, so that even if the measurement sample is thin, it is not affected by the excitation port and is measured with high accuracy. it can.
[0016]
The dielectric constant measurement method of the present invention is characterized in that the thickness of the second measurement sample of the disk resonator formed on the support substrate is 0.2 mm or less. Further, the first and second measurement samples are made of ceramics or glass ceramics, and the support substrate and the disk resonator are simultaneously fired and integrated.
[0017]
In general, if the dielectric constant of the insulating layer of the wiring board used in the microwave region can be confirmed, it can be utilized for the design of the wiring board. By the way, in a wiring board formed by simultaneously firing an insulating layer made of ceramics or glass ceramics and internal wiring, the metal material forming the internal wiring can diffuse into the insulating layer during firing and the dielectric constant of the insulating layer can change. Sex is pointed out. By confirming the dielectric constant of such an actual insulating layer, it is possible to make the most of the circuit design.
[0018]
However, in recent years, the thickness of the wiring board has been reduced, and the actual thickness of the insulating layer has been reduced to 0.2 mm or less, particularly 0.05 mm or less. The dielectric constant of the insulating layer of such a wiring board has been measured. Therefore, when an attempt is made to produce a resonator as shown in FIG. 7 that reflects the actual thickness, the measurement sample is thin, making it difficult to measure.
[0019]
In the present invention, the first and second measurement samples are made of ceramics or glass ceramics, and the support substrate and the disk resonator are simultaneously fired and integrated, and the disk resonator is formed on the support substrate. Even if the measurement sample of the resonator is thinned, the strength of the resonator can be improved by the support substrate, so that the resonator can be easily formed, and the dielectric constant can be measured using the excitation port of the first outer conductor. Even when the thickness of the measurement sample is as thin as 0.2 mm or less, the dielectric constant can be easily measured.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
The dielectric constant measurement method of the present invention will be described with reference to FIG. First, the disk resonator A used for measurement is produced.
[0022]
The disk resonator A includes a first measurement sample (upper dielectric layer) 1 having a different thickness and a second measurement sample (lower dielectric layer) 2 that is a part to be measured. The first and second circular inner conductors 3 having a smaller area than the second measurement samples 1 and 2 are disposed outside the first and second measurement samples 1 and 2. The outer conductors 4 and 5 are respectively arranged. That is, the disc resonator A sandwiches the circular inner conductor 3 between the first and second measurement samples 1 and 2 having different thicknesses, and the first and second measurement samples 1 and 2 have first and second surfaces respectively. The second outer conductors 4 and 5 are formed.
[0023]
The circular inner conductor 3 and the outer conductors 4 and 5 may be formed of a conductor material. In particular, the electromagnetic field is not transmitted between the two first and second measurement samples 1 and 2 and the electromagnetic field is radiated. From the viewpoint of preventing this, it is desirable that the thickness of the circular inner conductor 3 and the outer conductors 4 and 5 is at least 5 μm or more, particularly 10 μm or more.
[0024]
The first and second measurement samples 1 and 2 are made of an insulating material such as ceramics, glass ceramics, or organic resin. In particular, the first and second measurement samples 1 and 2 are easy to form. 1. The thickness of the second measurement samples 1 and 2 is desirably 200 μm or more .
[0025]
When the first and second measurement samples 1 and 2 are ceramics and glass ceramics, the disk resonator A has the first and second measurement samples 1 and 2, the circular inner conductor 3, and the first and second outer conductors 4. When the first and second measurement samples 1 and 2 are organic resins, the disc resonator A has the first and second measurement samples 1 and 2 and a circular shape. The inner conductor 3 and the first and second outer conductors 4 and 5 are formed by bonding or pressure bonding.
[0026]
One excitation port 7 is formed at the position of the first outer conductor 4 corresponding to the center of the circular inner conductor 3, and one is provided at the position of the first outer conductor 4 corresponding to the end of the circular inner conductor 3. The excitation opening 8 is formed. Coaxial cables 9 and 10 are inserted into the excitation ports 7 and 8 so that the TM 0m0 resonance mode (m = 1, 2,...) Is excited. The distance R between the excitation ports 7 and 8 is ½ of the diameter D of the circular inner conductor 3.
[0027]
When an electric field is applied through the coaxial cable 9 from the excitation port 7 of the resonator A configured as described above, the resonator A is excited by the electric field, and the TM 0m0 resonance mode (m = 1, 2,...) In particular, the TM 010 resonance mode can be excited efficiently from one side. The electric field of the TM 010 resonance mode is strongly distributed at the center of the circular inner conductor 3 and the circumferential portion at the end of the circular inner conductor 3 as shown in FIG. Then, an electric field is taken out from the excitation port 8 through the coaxial cable 10, whereby the resonance frequency and the no-load Q of the disk resonator A are measured. An electric field may be applied from the excitation port 8 and taken out from the excitation port 7. In FIG. 2, the hatched lines indicating the cross sections of the first and second measurement samples 1 and 2 are omitted in order to clarify the electric field distribution.
[0028]
Next, the relative dielectric constant and / or the dielectric loss tangent of the first measurement sample 1 are obtained in advance by, for example, the dielectric constant measurement method described in Japanese Patent Application Nos. 2002-151665 and 2002-281908. The relative dielectric constant and / or dielectric loss tangent of the first measurement sample 1 may be obtained by other measurement methods. Of course, the relative dielectric constant and / or the dielectric loss tangent of the first measurement sample 1 may be performed before measuring the resonance frequency and no-load Q of the disk resonator A.
[0029]
When the relative permittivity and / or dielectric loss tangent of the first measurement sample 1 is measured in Japanese Patent Application No. 2002-151665, for example, the thicknesses of the first and second measurement samples 1 and 2 in FIG. The thickness of the sample 1 is set, that is, the circular inner conductor 3 is sandwiched by the first measurement sample 1, and an electric field is applied from the excitation port 7 of the resonator A by the coaxial cable 9 to excite the electric field. Measure the resonance frequency and no-load Q. When the ratio of the radius R of the circular inner conductor 3 to the thickness d of the measurement samples 1 and 2 is 10 or more, that is, R / d> 10, the resonance frequency f 0 of the TM 0m0 mode of this balanced disk resonator A is obtained. From the unloaded Q (Qu), the relative dielectric constant ε ′ and the dielectric loss tangent tan δ of the measurement samples 1 and 2 can be calculated by the following equations.
[0030]
[Expression 1]
Figure 0004065766
[0031]
However, x ′ 0m is the m-th solution of J ′ 0 (x ′) = 0, and particularly when m = 1, x ′ 01 = 3.8317. J ′ 0 (x ′) is the derivative of the zeroth-order first-order Bessel function. ω = 2πf 0 is the angular resonance frequency, and μ 0 = 4π × 10 −7 is the vacuum permeability. α is disclosed by Kobayashi et al. in the microwave research group technical report MW 75-76 “Measuring complex permittivity using balanced disk resonator”, when S = R / d> 10, α is It becomes almost 1. In addition, c is the speed of light, and ΔR is a consideration of the outward spread of the electromagnetic field at the end of the inner circular conductor as an increase in the inner circular conductor diameter. In represents a natural logarithm.
[0032]
Note that the effective conductivity σ of the conductor necessary for determining the dielectric loss tangent is disclosed in Kobayashi et al., Microwave Study Group Technical Report MW 75-76, “Complex Dielectric Constant Measurement Method Using Balanced Disk Resonator”. In addition, it is determined from the difference in Qu of two types of balanced disk resonators composed of dielectric sheets having the same relative dielectric constant and dielectric loss tangent and different thicknesses. Alternatively, the effective conductivity σ of the co-fired conductor is determined by the interface conductivity measurement method disclosed in Japanese Patent Application Laid-Open No. 2000-46756.
[0033]
In this way, the relative dielectric constant and / or the dielectric loss tangent of the first measurement sample 1 is obtained in advance. When the relative dielectric constant and / or dielectric loss tangent of the first measurement sample 1 is obtained by the dielectric constant measurement method of Japanese Patent Application No. 2002-281908, the first measurement sample 1 is sandwiched between the surface circular conductor and the lower conductor layer. A disc resonator and a shield body that prevents leakage of an electromagnetic field from the disc resonator, and a TM 0m0 mode (m) via an input / output excitation port provided in the shield body. = 1, 2,...), And the relative dielectric constant and / or dielectric loss tangent of the first measurement sample 1 is obtained from the measured values of the resonance frequency and the unloaded Q.
[0034]
From the relative dielectric constant and / or dielectric loss tangent of the first measurement sample 1 thus obtained, and the measured values of the resonance frequency and no-load Q of the disk resonator A in FIG. The relative dielectric constant ε ′ 2 and the dielectric loss tangent tan δ 2 of the measurement sample 2 are calculated. This calculation must be performed by numerical analysis such as a finite element method or a mode matching method.
[0035]
Here, the calculation method by the finite element method is described. First epsilon '2 dependent, i.e. f 0-epsilon' of the resonance frequency f 0 determined two curves analysis by axisymmetric finite element method, and then the measured value of f 0, using the f 0-epsilon '2 curve To determine the dielectric constant.
[0036]
The dielectric loss tangent tan δ 2 is calculated using the following equation 2.
[0037]
[Expression 2]
Figure 0004065766
[0038]
Term of this equation free the reciprocal of the load Q, skin resistance R s of the first measurement specimen 1 of the dielectric loss tangent tan [delta 1 and the second measurement sample 2 is a measurement site dielectric loss tangent tan [delta 2 and conductors 3, 4 and 5 It is expressed by. Pe1 is the concentration ratio of the electric field energy stored in the first measurement sample 1, Pe2 is the concentration ratio of the electric field energy stored in the second measurement sample 2, and G is a shape factor, which is obtained by the finite element method.
[0039]
FIG. 3 is a view for explaining another dielectric constant measuring method of the present invention. The disc resonator A in FIG. 3 is formed on the support substrate 6. That is, the second outer conductor 5, the second measurement sample 2, the circular inner conductor 3, the first measurement sample 1, and the first outer conductor 4 are sequentially stacked on the support substrate 6. These are fired at the same time as the support substrate 6 and are integrated. The first and second measurement samples 1 and 2 are made of ceramics or glass ceramics and have different thicknesses.
[0040]
The first and second measurement samples 1 and 2 and the support substrate 6 of the resonator A are the same as the insulating layer material of the wiring board, and the circular inner conductor 3, the first and second outer conductors 4 and 5 are the inner parts of the wiring board. It is the same as the wiring material, has the same thickness, and has the same manufacturing method such as firing. Accordingly, the diffusion state of the circular inner conductor 3, the first and second outer conductors 4, 5 and the distribution of the voids in the ceramic or glass ceramic to the first and second measurement samples 1 and 2 are the same as the wiring board. Can be considered.
[0041]
Since such a resonator A is integrally formed on the thick support substrate 6, even if the thickness of the second measurement sample 2 of the resonator A is reduced to 200 μm or less, particularly 50 μm or less, the resonator A is formed. It can be easily formed, and can be excited by an electric field through the excitation ports 7 and 8 formed in the first outer conductor 4 on which the support substrate 6 is not formed. The resonance frequency and no-load Q of the second measurement sample 2 can be measured from the relative permittivity and dielectric loss tangent of the first measurement sample 1 and the resonance frequency and no-load Q of the disk resonator A as described above. The relative dielectric constant and dielectric loss tangent can be calculated.
[0042]
Further, since the support substrate 6 and the upper part thereof can be regarded as an integrated substrate, the relative dielectric constant and the dielectric loss tangent at an arbitrary depth in the substrate can be measured.
[0043]
FIG. 4 is a view for explaining still another dielectric constant measuring method of the present invention. The disk resonator A of FIG. 4 is formed on the support substrate 6 in the same manner as the disk resonator A shown in FIG. In addition, a second outer conductor 5, a second measurement sample 2, which is a part to be measured, a circular inner conductor 3, a first measurement sample 1, and a first outer conductor 4 are sequentially stacked, and these are configured as a support substrate 6. At the same time, it is fired and integrated. The first and second measurement samples 1 and 2 are made of ceramics or glass ceramics and have different thicknesses.
[0044]
Then, two excitation ports 7 and 8 are provided at the position of the first outer conductor 4 on a concentric circle having a radius 0.4 to 0.6 times the radius R of the circular inner conductor 3, and these excitations are provided. Loop antennas 19 and 20 are inserted into the mouths 7 and 8, and the TM 010 resonance mode is excited by magnetic field excitation.
[0045]
As shown in FIG. 5, the magnetic field of the TM 010 resonance mode is strongly distributed at a position of a concentric circumference having a radius of about ½ with respect to the circular inner conductor 3. Thus, when the magnetic field excitation is performed by the loop antennas 19 and 20 at the tips of the coaxial cables 9 and 10 through the excitation ports 7 and 8, the TM 010 resonance mode can be efficiently excited from one side. Using this, the resonance frequency and the no-load Q of the disk resonator A can be measured, and the relative dielectric constant and dielectric loss tangent of the second measurement sample 2 can be calculated. In FIG. 5, the oblique lines indicating the cross sections of the first and second measurement samples 1 and 2 are omitted in order to explain the magnetic field distribution.
[0046]
Two excitation ports 7 and 8 are provided at the position of the first outer conductor 4 on a concentric circle having a radius 0.25 or 0.75 times the radius R of the circular inner conductor 3. The loop antennas 19 and 20 may be inserted into the excitation ports 7 and 8 to excite the TM 020 resonance mode by magnetic field excitation.
[0047]
In addition, two excitation ports 7 are arranged at the position of the first outer conductor 4 on a concentric circle having a radius of 1/6, 1/2, or 5/6 times the radius R of the circular inner conductor 3. 8 may be provided, and loop antennas 19 and 20 may be inserted into the excitation ports 7 and 8 to excite the TM030 resonance mode by magnetic field excitation.
[0048]
In the case of FIG. 4 in which the magnetic field is applied to excite the disk resonator A, the first support substrate 6 is not formed as shown in FIG. 2 The relative dielectric constant and dielectric loss tangent of the measurement sample 2 can be measured.
[0049]
【Example】
The dielectric constant inside the alumina substrate was measured by the dielectric constant measurement method of the present invention. The structure of the measurement substrate is as shown in FIG. 4. A Cu-W conductive paste is applied to a green sheet made of an alumina material, and a plurality of these are laminated to produce a laminated molded body. At the same time, the disk resonator A and the support substrate 6 were integrated.
[0050]
Here, the thickness of the support substrate 6 is 200 μm, the thickness of the circular inner conductor 3, the first and second outer conductors 4 and 5 is 10 μm, and the diameter of the circular inner conductor 3 is 23.3 mm. Disk resonators A in which the thicknesses of the first and second measurement samples 1 and 2 were changed were produced.
[0051]
Further, in order to perform the magnetic field coupling shown in FIG. 4, the excitation openings 7 and 8 have a diameter of 1.5 mm, and the coaxial cables 9 and 10 having a diameter of 1.2 mm have loop antennas 19 and 20 having a diameter of about 1.5 mm. The disk resonator A was inserted, and the resonance frequency and no-load Q of the disk resonator A were determined.
[0052]
Thereafter, the relative dielectric constant of the first measurement sample 1 was measured by the method described in Japanese Patent Application No. 2002-151665.
[0053]
That is, the circular inner conductor is sandwiched between the first measurement samples from both sides, and is sandwiched between the first and second outer conductors, and an electric field is applied through a coaxial cable from the excitation port of the first outer conductor to excite the electric field. The resonance frequency and no-load Q of the resonator were measured, and the relative dielectric constant of the first measurement sample 1 was calculated from the above equation 1.
[0054]
Further, the resonance frequency of the disk resonator A in FIG. 4 was measured, and the relative dielectric constant of the second measurement sample was calculated from the dielectric constant of the first measurement sample 1. The results are shown in Table 1. In FIG. 2 shows a resonance waveform.
[0055]
[Table 1]
Figure 0004065766
[0056]
According to Table 1, the relative permittivity of the second measurement sample 2 is measured as a different value. This difference depends on the diffusion effect from the circular inner conductor, the first and second outer conductors to the second measurement sample 2, and the depth (position in the vertical direction) of the second measurement sample 2 in the entire substrate. It is considered a thing.
[0057]
【The invention's effect】
As described above in detail, according to the dielectric constant measurement method of the present invention, in order to form excitation ports for input and output of magnetic field and electric field in the first outer conductor constituting the disk resonator, The dielectric constant of a disk resonator that is simultaneously fired or integrally molded with a conductor layer can be measured. Alternatively, the dielectric loss tangent can be easily determined, and the dielectric constant of an arbitrary dielectric layer can be measured in an electronic component such as a wiring board having different dielectric layers and having internal wiring between the dielectric layers. This makes it possible to design electronic parts such as wiring boards that are close to reality, and facilitates the development of dielectric materials for simultaneous firing or integral molding for microwave applications. Circuit board , The design of the semiconductor package is allow more accurately.
[Brief description of the drawings]
1A and 1B show an example of a disk resonator used in a dielectric constant measurement method of the present invention, in which FIG. 1A is a plan view and FIG. 1B is a schematic cross-sectional view.
FIGS. 2A and 2B are diagrams for explaining the electric field distribution of the TM 010 mode in the disk resonator of FIG. 1, wherein FIG. 2A is a plan view and FIG. 2B is a schematic cross-sectional view.
3A and 3B show another example of a disk resonator used in the dielectric constant measurement method of the present invention, where FIG. 3A is a plan view and FIG. 3B is a schematic cross-sectional view.
4A and 4B show still another example of a disk resonator used in the dielectric constant measurement method of the present invention, in which FIG. 4A is a plan view and FIG. 4B is a schematic cross-sectional view.
FIGS. 5A and 5B are diagrams for explaining the magnetic field distribution of the TM 010 mode in the disk resonator of FIG. 4, wherein FIG. 5A is a plan view and FIG. 5B is a schematic cross-sectional view.
6 is a sample substrate No. in Table 1. It is a figure which shows the resonance waveform used for the dielectric constant measurement of 2. FIG.
7A and 7B show a balanced disk resonator used in a conventional dielectric constant measurement method, in which FIG. 7A is a plan view and FIG. 7B is a schematic cross-sectional view.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... 1st measurement sample 2 ... 2nd measurement sample 3 ... Circular inner conductor 4 ... First outer conductor 5 ... Second outer conductor 6 ... Support substrate 7, 8, ... Excitation ports 9, 10 ... Coaxial cables 19, 20 ... Loop antenna A ... Disc resonator

Claims (5)

円形内部導体を異なる厚みの第1測定試料及び第2測定試料で挟持し、該第1、第2測定試料の表面にそれぞれ第1、第2外部導体を形成してなり、前記第1測定試料の厚みが200μm以上である円板共振器を、前記円形内部導体の中心位置に対応する前記第1外部導体の位置に設けられた励振口と、前記円形内部導体の端の位置に対応する前記第1外部導体の位置に設けられた励振口とに同軸ケーブルを挿入し、電界によりTM0m0モード(m=1、2・・・)を励振させ、その共振周波数と無負荷Qを測定し、該円板共振器の共振周波数と無負荷Qの測定値、及び予め測定されていた前記第1測定試料の比誘電率及び/又は誘電正接から、前記第2測定試料の誘電定数を求めることを特徴とする誘電定数測定法。Sandwiching a circular inner conductor in the first measurement specimen and the second measurement sample different thicknesses, the first, first each surface of the second measurement sample, Ri Na to form a second outer conductor, the first measurement samples of the thickness of the disc resonator Ru der least 200 [mu] m, and excitation Fukuchi provided at a position of the first outer conductor corresponding to the center position of the circular inner conductor, the position of the edge of the circular inner conductor A coaxial cable is inserted into the corresponding excitation port provided at the position of the first outer conductor, and the TM 0m0 mode (m = 1, 2,...) Is excited by an electric field. The dielectric constant of the second measurement sample is determined from the measured values of the resonance frequency and no-load Q of the disk resonator, and the relative dielectric constant and / or dielectric loss tangent of the first measurement sample measured in advance. A dielectric constant measurement method characterized by being obtained. 円形内部導体を異なる厚みの第1測定試料及び第2測定試料で挟持し、該第1、第2測定試料の表面にそれぞれ第1、第2外部導体を形成してなり、前記第1測定試料の厚みが200μm以上である円板共振器を、前記円形内部導体の同心円に対応する前記第1外部導体の位置に設けられた少なくとも2個の励振口にループアンテナを挿入し、磁界によりTMA circular inner conductor is sandwiched between a first measurement sample and a second measurement sample having different thicknesses, and first and second outer conductors are formed on the surfaces of the first and second measurement samples, respectively. A disc resonator having a thickness of 200 μm or more is inserted into a loop antenna into at least two excitation openings provided at positions of the first outer conductor corresponding to concentric circles of the circular inner conductor, and TM is applied by a magnetic field. 0m00m0 モード(m=1、2・・・)を励振させ、その共振周波数と無負荷Qを測定し、該円板共振器の共振周波数と無負荷Qの測定値、及び予め測定されていた前記第1測定試料の比誘電率及び/又は誘電正接から、前記第2測定試料の誘電定数を求めることを特徴とする誘電定数測定法。The mode (m = 1, 2,...) Is excited, the resonance frequency and the no-load Q are measured, the measured values of the resonance frequency and the no-load Q of the disc resonator, and the previously measured first A dielectric constant measurement method, wherein a dielectric constant of the second measurement sample is obtained from a relative dielectric constant and / or a dielectric loss tangent of the measurement sample. 支持基板上に前記円板共振器が形成されていることを特徴とする請求項1又は2記載の誘電定数測定法。 3. The dielectric constant measuring method according to claim 1, wherein the disk resonator is formed on a support substrate. 前記第2測定試料の厚みが0.2mm以下であることを特徴とする請求項記載の誘電定数測定法。The dielectric constant measurement method according to claim 3, wherein the thickness of the second measurement sample is 0.2 mm or less. 前記第1、第2測定試料がセラミックス又はガラスセラミックスからなり、前記支持基板及び前記円板共振器が同時焼成され、一体化されていることを特徴とする請求項又は記載の誘電定数測定法。 It said first, second measurement sample is made of ceramic or glass ceramic, the support substrate and the disc resonator is co-fired dielectric constant measurement according to claim 3 or 4, wherein that are integrated Law.
JP2002343008A 2002-11-26 2002-11-26 Dielectric constant measurement method Expired - Fee Related JP4065766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002343008A JP4065766B2 (en) 2002-11-26 2002-11-26 Dielectric constant measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002343008A JP4065766B2 (en) 2002-11-26 2002-11-26 Dielectric constant measurement method

Publications (2)

Publication Number Publication Date
JP2004177234A JP2004177234A (en) 2004-06-24
JP4065766B2 true JP4065766B2 (en) 2008-03-26

Family

ID=32704915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002343008A Expired - Fee Related JP4065766B2 (en) 2002-11-26 2002-11-26 Dielectric constant measurement method

Country Status (1)

Country Link
JP (1) JP4065766B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4941293B2 (en) * 2005-03-23 2012-05-30 日本電気株式会社 Resonator, printed circuit board, and method of measuring complex dielectric constant
JP6510263B2 (en) * 2015-02-20 2019-05-08 京セラ株式会社 Complex permittivity measurement method
JP6941482B2 (en) * 2017-06-01 2021-09-29 住ベリサーチ株式会社 Dielectric property measuring jig, dielectric property measuring device and dielectric property measuring method
JP7054610B2 (en) * 2017-06-01 2022-04-14 住ベリサーチ株式会社 Dielectric property measuring jig, dielectric property measuring device and dielectric property measuring method
JP7172479B2 (en) * 2018-11-14 2022-11-16 富士通株式会社 disk resonator
CN111474411A (en) * 2020-04-24 2020-07-31 京信通信技术(广州)有限公司 Relative dielectric constant test system, method, device and storage medium

Also Published As

Publication number Publication date
JP2004177234A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
JP4941293B2 (en) Resonator, printed circuit board, and method of measuring complex dielectric constant
CN1173430C (en) Method for creating waveguides in multilayer ceramic structure and waveguide
Jung et al. Stretchable twisted‐pair transmission lines for microwave frequency wearable electronics
Bao et al. Modeling of coplanar interdigital capacitor for microwave microfluidic application
JP3974814B2 (en) Dielectric constant measurement method
CN110133376B (en) Microwave sensor for measuring dielectric constant and magnetic permeability of magnetic medium material
Ebrahimi et al. High-sensitivity detection of solid and liquid dielectrics using a branch line coupler sensor
JP4065766B2 (en) Dielectric constant measurement method
JP4035024B2 (en) Dielectric constant measurement method
JP6510263B2 (en) Complex permittivity measurement method
US7782066B2 (en) Sensor, method for sensing, measuring device, method for measuring, filter component, method for adapting a transfer behavior of a filter component, actuator system and method for controlling an actuator using a sensor
JP4628116B2 (en) Conductivity measurement method
Karami et al. A modified rectangular resonant cavity utilizing frequency selective coupled end‐plate for dielectric constant measurement by perturbation technique
JP4373902B2 (en) Method for measuring electromagnetic properties
Houzet et al. In-situ characterization up to 100​ GHz of insulators used in new 3D “System in Package on board”(SiPoB) technologies
CN210572106U (en) Flexible microwave sensor
Kato D-band material characterization using a balanced-type circular disk resonator with waveguide interfaces and a modified full-wave modal analysis
CN103633403B (en) Transmission line and method for manufacturing it
JP2001183311A (en) Method for measuring conductivity of metal layer
JP3210769B2 (en) Apparatus and method for measuring dielectric constant
JP4423180B2 (en) Electromagnetic property measurement method
Kopyt et al. Measurements of the complex anisotropic permittivity of microwave laminates
Baras et al. Design and manufacturing reliability of passive components for LTCC millimeterwave hybrid circuits
JP4467418B2 (en) Dielectric constant measurement method
Dong et al. Electrical conductivity measurement on metallic materials with a cylindrical resonator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees