[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4467418B2 - Dielectric constant measurement method - Google Patents

Dielectric constant measurement method Download PDF

Info

Publication number
JP4467418B2
JP4467418B2 JP2004373170A JP2004373170A JP4467418B2 JP 4467418 B2 JP4467418 B2 JP 4467418B2 JP 2004373170 A JP2004373170 A JP 2004373170A JP 2004373170 A JP2004373170 A JP 2004373170A JP 4467418 B2 JP4467418 B2 JP 4467418B2
Authority
JP
Japan
Prior art keywords
dielectric
conductor
sample
resonator
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004373170A
Other languages
Japanese (ja)
Other versions
JP2006177866A (en
Inventor
吉宏 中尾
明 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004373170A priority Critical patent/JP4467418B2/en
Publication of JP2006177866A publication Critical patent/JP2006177866A/en
Application granted granted Critical
Publication of JP4467418B2 publication Critical patent/JP4467418B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

本発明は誘電定数測定方法に関するものであり、特に厚みが1×10−8m(10nm)以上の誘電体試料の比誘電率と誘電正接を測定する方法に関するものである。 The present invention relates to a dielectric constant measurement method, and more particularly to a method for measuring a relative dielectric constant and a dielectric loss tangent of a dielectric sample having a thickness of 1 × 10 −8 m (10 nm) or more.

現在、マイクロ波帯、ミリ波帯において誘電体薄膜や誘電体多層基板を用いたデバイスの開発が盛んに行われており、その誘電定数を正確に測定する方法が求められている。   Currently, devices using dielectric thin films and dielectric multilayer substrates are actively developed in the microwave band and the millimeter wave band, and a method for accurately measuring the dielectric constant is required.

従来、導体上に形成された誘電体薄膜や同時焼成されたメタライズ配線基板等の、マイクロ波帯、ミリ波帯における誘電定数測定方法としては大きく分けて2通りの方法が知られている。一つは誘電体試料上にストリップ線路等を構成して、その伝送特性を測定することにより誘電定数を求める方法であり、もう一つは誘電体試料上にリング導体からなるリング共振器等を構成して、その共振特性より求める方法がある。
特開平11−298213号公報
2. Description of the Related Art Conventionally, two methods are generally known as dielectric constant measurement methods in the microwave band and the millimeter wave band, such as a dielectric thin film formed on a conductor and a co-fired metallized wiring board. One is a method of obtaining a dielectric constant by configuring a strip line or the like on a dielectric sample and measuring its transmission characteristics, and the other is a ring resonator or the like made of a ring conductor on the dielectric sample. There is a method of configuring and obtaining from the resonance characteristics.
Japanese Patent Laid-Open No. 11-298213

しかしながら、上記方法では、比誘電率、誘電正接を一つの共振器の伝送特性から求めていたため、比誘電率に最適な共振器とした場合には、誘電正接には適さず、逆に、誘電正接に最適な共振器とした場合には、比誘電率には適さず、比誘電率及び誘電正接を一つの共振器により正確に求めることは困難であるという問題があった。   However, in the above method, since the relative permittivity and dielectric loss tangent are obtained from the transmission characteristics of one resonator, when the resonator is optimal for the relative dielectric constant, it is not suitable for the dielectric loss tangent. When the resonator is optimal for the tangent, there is a problem that it is not suitable for the relative dielectric constant, and it is difficult to accurately obtain the relative dielectric constant and the dielectric loss tangent with one resonator.

即ち、ストリップ線路等の伝送特性から求める場合には、ストリップ線路を構成する導体の導体損を分離して、誘電体試料の誘電定数、特に誘電正接を正確に得ることが困難であるという問題があった。   That is, when obtaining from the transmission characteristics of a strip line or the like, there is a problem that it is difficult to accurately obtain the dielectric constant of the dielectric sample, particularly the dielectric loss tangent, by separating the conductor loss of the conductor constituting the strip line. there were.

また、リング共振器等を用いた場合でも、導体損が大きく、共振器のQ値が大幅に劣化することから、誘電定数、特に誘電正接の測定が困難であるという問題があった。   Further, even when a ring resonator or the like is used, there is a problem that it is difficult to measure a dielectric constant, particularly a dielectric loss tangent, because the conductor loss is large and the Q value of the resonator is greatly deteriorated.

従って、本発明は、マイクロ波帯やミリ波帯、特に1GHz以上の周波数帯において、誘電体薄膜や誘電体多層基板等の比誘電率と誘電正接を高精度で測定できる誘電定数測定方法を提供することを目的とするものである。   Therefore, the present invention provides a dielectric constant measurement method capable of measuring the relative dielectric constant and dielectric loss tangent of a dielectric thin film, a dielectric multilayer substrate, etc. with high accuracy in the microwave band and millimeter wave band, particularly in the frequency band of 1 GHz or higher. It is intended to do.

本発明の誘電定数測定方法は、両面に電極が形成された誘電体試料の前記電極に、導体をそれぞれ接触させてなる第1共振器と、一面にのみ電極が形成された前記誘電体試料の前記電極、および該電極が形成されていない前記誘電体試料の非電極部に、導体をそれぞれ接触させてなる第2共振器とを用い、前記1共振器の共振周波数から前記誘電体試料の比誘電率を求め、前記2共振器の共振周波数と無負荷Qから前記誘電体試料の誘電正接を求めることを特徴とする。また、本発明の誘電定数測定方法は、両面に電極が形成された誘電体試料の前記電極に、導体をそれぞれ接触させてなる第1共振器と、電極が形成されていない前記誘電体試料の非電極部に、導体をそれぞれ接触させてなる第2共振器とを用い、前記第1共振器の共振周波数から前記誘電体試料の比誘電率を求め、前記第2共振器の共振周波数と無負荷Qから前記誘電体試料の誘電正接を求めることを特徴とする。このような誘電定数測定方法では、誘電体試料の比誘電率の測定に適した第1共振器を用いて比誘電率を求めるため、誘電体試料と中心導体との接触面積を高精度で決定することができ、誘電体薄膜や誘電体多層基板等の比誘電率を高精度で求めることができ、また誘電体試料の誘電正接の測定に適した第2共振器を用いて誘電正接を求めるため、電極と中心導体との接触抵抗を小さく、もしくは全くなくすことができ、誘電体薄膜や誘電体多層基板等の誘電正接を高精度で求めることができる。 The dielectric constant measuring method of the present invention includes a first resonator in which a conductor is brought into contact with the electrode of the dielectric sample having electrodes formed on both sides, and the dielectric sample having an electrode formed only on one surface. the non-electrode portion of the dielectric sample the electrodes, and the electrodes are not formed, with a second resonator comprising contacting the conductors, respectively, the dielectric sample from the resonance frequency of the first co-vibrator It obtains the relative dielectric constant of, and obtains the dielectric loss tangent of the dielectric sample from the resonance frequency and the unloaded Q of the second co-vibrator. The dielectric constant measuring method of the present invention includes a first resonator in which a conductor is brought into contact with each electrode of a dielectric sample having electrodes formed on both sides, and a dielectric sample having no electrode formed thereon. Using a second resonator in which a conductor is in contact with each non-electrode portion, the relative permittivity of the dielectric sample is obtained from the resonance frequency of the first resonator, and the resonance frequency of the second resonator The dielectric loss tangent of the dielectric sample is obtained from the load Q. In such a dielectric constant measuring method, because determine the specific dielectric constant with a first co-vibrator suitable for measuring the dielectric constant of the dielectric specimen, highly accurately the contact area between the dielectric sample and the center conductor in can be determined, it is possible to determine the dielectric constant of such dielectric thin film or a dielectric multi-layer substrate with high accuracy, and using the second co-oscillator suitable for measuring the dielectric loss tangent of the dielectric sample dielectric to determine the tangent, reduce the contact resistance between the electrode and the center conductor, or can be eliminated entirely, it can be determined Yuden tangent such as dielectric thin film or a dielectric multi-layer substrate with high accuracy.

また、本発明の誘電定数測定方法は、共振周波数(f0B)から非電極部の誘電体試料と導体との実効的な接触面積を求め、該実効的な接触面積と第2共振器の無負荷Qを用いて、前記誘電体試料の誘電正接を求めることを特徴とする。このような誘電定数測定方法では、誘電体試料内に蓄積される電界エネルギーの比率を高精度で決定することができるため、誘電体薄膜や誘電体多層基板等の誘電正接を高精度で求めることができる。 The dielectric constant measurement method of the present invention obtains an effective contact area between the dielectric sample of the non-electrode part and the conductor from the resonance frequency (f 0B ), and determines the effective contact area and the second resonator. A dielectric loss tangent of the dielectric sample is obtained using a load Q. In such a dielectric constant measurement method, since the ratio of the electric field energy accumulated in the dielectric sample can be determined with high accuracy, the dielectric loss tangent of the dielectric thin film or dielectric multilayer substrate can be obtained with high accuracy. Can do.

また、本発明の誘電定数測定方法は、対向する一方の前記体から他方の前記導体に向けて電界を発生する共振モードの共振周波数と無負荷Qを用いて、前記誘電体試料の比誘電率と誘電正接を求めることを特徴とする。このような誘電定数測定方法では、誘電体薄膜や誘電体多層基板等の比誘電率を高精度で求める上で、特に誘電体試料と中心導体との接触面積を高精度で決定することが重要となるため、上記測定法を用いることによって誘電体薄膜や誘電体多層基板等の比誘電率と誘電正接を高精度で求めることができる。
Further, the dielectric constant measuring method of the present invention, by using the resonant frequency and the unloaded Q of the resonance mode generated an electric field toward one said conductors or al the other of said conductor opposing the ratio of the dielectric sample It is characterized by obtaining a dielectric constant and a dielectric loss tangent. In such a dielectric constant measurement method, it is particularly important to determine the contact area between the dielectric sample and the central conductor with high accuracy, in order to obtain the relative dielectric constant of the dielectric thin film, dielectric multilayer substrate, etc. with high accuracy. Therefore, the relative permittivity and dielectric loss tangent of the dielectric thin film, the dielectric multilayer substrate, etc. can be obtained with high accuracy by using the above measurement method.

また、本発明の誘電定数測定方法は、第1、第2共振器が軸対称構造を有することを特徴とする。このような誘電定数測定法では電磁波の乱れを抑制することができ、誘電体薄膜や誘電体多層基板等の比誘電率と誘電正接をさらに高精度で求めることができる。   The dielectric constant measuring method of the present invention is characterized in that the first and second resonators have an axisymmetric structure. Such a dielectric constant measurement method can suppress disturbance of electromagnetic waves, and can determine the relative dielectric constant and dielectric loss tangent of a dielectric thin film, a dielectric multilayer substrate, etc. with higher accuracy.

さらに、本発明の誘電定数測定方法は、第1、第2共振器が、筒状導体と、該筒状導体内に軸長方向に設けられた中心導体と、前記筒状導体の両側開口部にそれぞれ設けられた短絡導体とを具備するとともに、前記中心導体と一方の前記短絡導体との間に誘電体試料を介装してなる半同軸共振器であることを特徴とする。このような誘電定数測定方法では、共振器全体に対する誘電体試料内に蓄積される電界エネルギーの比率とQ値を高くすることができ、誘電体薄膜や誘電体多層基板等の比誘電率と誘電正接をさらに高精度で求めることができる。   Furthermore, in the dielectric constant measuring method of the present invention, the first and second resonators include a cylindrical conductor, a central conductor provided in the axial direction in the cylindrical conductor, and openings on both sides of the cylindrical conductor. A semi-coaxial resonator comprising a dielectric sample interposed between the central conductor and one of the short-circuit conductors. In such a dielectric constant measurement method, the ratio of the electric field energy accumulated in the dielectric sample to the entire resonator and the Q value can be increased, and the relative dielectric constant and dielectric constant of the dielectric thin film, dielectric multilayer substrate, etc. can be increased. The tangent can be obtained with higher accuracy.

また、本発明の誘電定数測定方法は、半同軸共振器が、中心導体と一方の短絡導体との間に挟まれた誘電体試料と、筒状導体と一方又は両方の短絡導体との間に挟まれた第二の誘電体とを具備することを特徴とする。このような誘電定数測定方法では、共振器内に等価的に形成されるキャパシタンスを低減することができるため、マイクロ波帯、ミリ波帯において、誘電体薄膜や誘電体多層基板等の比誘電率と誘電正接をさらに高精度で求めることができる。ここで、誘電体試料と第二の誘電体とが直列接続として動作する共振モードの共振周波数と無負荷Qから比誘電率と誘電正接を測定することが望ましい。   Further, the dielectric constant measuring method of the present invention includes a semi-coaxial resonator between a dielectric sample sandwiched between a center conductor and one short-circuit conductor, and a cylindrical conductor and one or both short-circuit conductors. And a sandwiched second dielectric. In such a dielectric constant measurement method, the capacitance formed equivalently in the resonator can be reduced. Therefore, in the microwave band and the millimeter wave band, the relative dielectric constant of a dielectric thin film, a dielectric multilayer substrate, etc. And the dielectric loss tangent can be obtained with higher accuracy. Here, it is desirable to measure the relative dielectric constant and the dielectric loss tangent from the resonance frequency and the no-load Q in the resonance mode in which the dielectric sample and the second dielectric operate in series connection.

また、本発明の誘電定数測定方法では、半同軸共振器が、中心導体と一方の短絡導体との間に挟まれた誘電体試料を具備し、前記中心導体の先端が先細形状であることが望ましい。このような誘電定数測定方法では、共振器内に等価的に形成されるキャパシタンスを低減することができるため、マイクロ波帯、ミリ波帯において、誘電体薄膜や誘電体多層基板等の比誘電率と誘電正接をさらに高精度で求めることができる。ここで、中心導体の先端が球の一部を構成し、球の先端が誘電体試料に接触していてもよい。   In the dielectric constant measurement method of the present invention, the semi-coaxial resonator includes a dielectric sample sandwiched between the center conductor and one short-circuit conductor, and the tip of the center conductor has a tapered shape. desirable. In such a dielectric constant measurement method, the capacitance formed equivalently in the resonator can be reduced. Therefore, in the microwave band and the millimeter wave band, the relative dielectric constant of a dielectric thin film, a dielectric multilayer substrate, etc. And the dielectric loss tangent can be obtained with higher accuracy. Here, the tip of the central conductor may constitute a part of a sphere, and the tip of the sphere may be in contact with the dielectric sample.

また、本発明の誘電定数測定方法では、中心導体と一方の短絡導体との間に挟まれた誘電体試料と、筒状導体と一方又は両方の短絡導体との間に挟まれた第二の誘電体とを具備することを特徴とする第1の半同軸共振器から誘電体試料の比誘電率を測定し、中心導体と一方の短絡導体との間に挟まれた誘電体試料を具備し、前記中心導体の先端が先細形状であることを特徴とする第2の半同軸共振器から誘電体試料の誘電正接を測定することが望ましい。   In the dielectric constant measuring method of the present invention, the dielectric sample sandwiched between the center conductor and one short-circuit conductor, and the second sample sandwiched between the cylindrical conductor and one or both short-circuit conductors. A dielectric sample is measured from the first semi-coaxial resonator characterized by comprising a dielectric, and a dielectric sample sandwiched between a center conductor and one short-circuited conductor is provided. It is desirable to measure the dielectric loss tangent of the dielectric sample from the second semi-coaxial resonator, wherein the tip of the central conductor has a tapered shape.

第1の半同軸共振器では、第二の誘電体の存在により、誘電体試料に形成された電極面積を比較的大きくしても1GHz以上での測定ができる反面、電極面積を大きくする分、共振空間を小さくするか、第二の誘電体の厚みを薄く、面積を広くしないと共振器全体に対する誘電体試料内に蓄積される電界エネルギーの比率が小さくなるため、Q値を高くする点で不利である。   In the first semi-coaxial resonator, the presence of the second dielectric allows measurement at 1 GHz or more even if the electrode area formed on the dielectric sample is relatively large. If the resonance space is reduced or the thickness of the second dielectric is thin and the area is not widened, the ratio of the electric field energy accumulated in the dielectric sample to the entire resonator is reduced. It is disadvantageous.

一方、第2の半同軸共振器では、共振空間を大きくしても、共振器全体に対する誘電体試料内に蓄積される電界エネルギーの比率が大きいために、Q値を高くする点で有利な反面、誘電体試料に形成された電極面積を比較的小さくしなければ1GHz以上での測定が困難となる。   On the other hand, the second semi-coaxial resonator is advantageous in that the Q value is increased because the ratio of the electric field energy accumulated in the dielectric sample to the entire resonator is large even if the resonance space is increased. If the area of the electrode formed on the dielectric sample is not made relatively small, measurement at 1 GHz or more becomes difficult.

そのため、本発明の誘電定数測定方法においては、第1の半同軸共振器から両面に電極の形成された誘電体試料の比誘電率を測定し、第2の半同軸共振器から誘電体試料の誘電正接を測定することが望ましい。   Therefore, in the dielectric constant measurement method of the present invention, the relative permittivity of a dielectric sample having electrodes formed on both surfaces is measured from the first semi-coaxial resonator, and the dielectric sample is measured from the second semi-coaxial resonator. It is desirable to measure the dielectric loss tangent.

また、本発明の誘電定数測定方法では、共振周波数f0A、f0Bが1GHz以上であることが望ましい。共振周波数f0Aは、共振周波数f0Bの0.5倍〜1.5倍であることを特徴とする。第1の共振器を用いて求めた誘電体試料の比誘電率から、第2の共振器を用いて誘電体試料の誘電正接を求めるため、第2の共振器における誘電体試料の比誘電率が第1の共振器における比誘電率と同じであるという仮定がある。一般に、1GHz以上の周波数帯において誘電正接を高精度で測定する必要のある誘電体薄膜や誘電体多層基板等の比誘電率の周波数依存性は小さいため、共振周波数f0Aを共振周波数f0Bの0.5〜1.5倍とすることにより、第2の共振器における誘電体試料の比誘電率が第1の共振器における比誘電率と同じであると仮定できる。 In the dielectric constant measuring method of the present invention, it is desirable that the resonance frequencies f 0A and f 0B are 1 GHz or more. The resonance frequency f 0A is 0.5 to 1.5 times the resonance frequency f 0B . In order to obtain the dielectric loss tangent of the dielectric sample using the second resonator from the relative dielectric constant of the dielectric sample obtained using the first resonator, the relative dielectric constant of the dielectric sample in the second resonator is used. Is the same as the dielectric constant of the first resonator. In general, since the frequency dependence of the relative permittivity of a dielectric thin film, a dielectric multilayer substrate, or the like that needs to measure the dielectric loss tangent with high accuracy in a frequency band of 1 GHz or higher is small, the resonance frequency f 0A is set to the resonance frequency f 0B . By setting 0.5 to 1.5 times, it can be assumed that the dielectric constant of the dielectric sample in the second resonator is the same as the dielectric constant of the first resonator.

また、本発明の誘電定数測定方法は、誘電体試料の厚みが10−8m以上であることが望ましい。これは、誘電体試料の厚みを10−8m以上とすることにより、共振器全体に対する誘電体試料内に蓄積される電界エネルギーの比率を高めつつ共振周波数f0Aとf0Bを1GHz以上とすることが可能となる。 In the dielectric constant measuring method of the present invention, the thickness of the dielectric sample is preferably 10 −8 m or more. This is because by setting the thickness of the dielectric sample to 10 −8 m or more, the resonance frequency f 0A and f 0B is set to 1 GHz or more while increasing the ratio of the electric field energy accumulated in the dielectric sample to the entire resonator. It becomes possible.

以下、本発明の誘電定数測定方法について説明する。誘電体試料は、例えば、導体上に形成された厚みが10−8m以上の誘電体薄膜や同時焼成されたメタライズ配線基板等を想定する。 Hereinafter, the dielectric constant measuring method of the present invention will be described. As the dielectric sample, for example, a dielectric thin film formed on a conductor and having a thickness of 10 −8 m or more, a simultaneously fired metallized wiring board, or the like is assumed.

図1は、本発明の誘電定数測定方法における比誘電率測定工程を説明するための断面図である。   FIG. 1 is a cross-sectional view for explaining a relative dielectric constant measuring step in the dielectric constant measuring method of the present invention.

図1に示す第1の共振器では、誘電体試料A1の下面に下部電極3が同時焼成によって形成され(同時焼成されたメタライズ配線基板)、上面に上部電極(導体バンプ)2が形成されており、これが円筒外部導体6によって連結された上部導体(中心導体)4と下部導体5とに挟まれた構造となっている。   In the first resonator shown in FIG. 1, the lower electrode 3 is formed by simultaneous firing on the lower surface of the dielectric sample A1 (co-fired metallized wiring board), and the upper electrode (conductor bump) 2 is formed on the upper surface. This structure is sandwiched between an upper conductor (center conductor) 4 and a lower conductor 5 connected by a cylindrical outer conductor 6.

誘電体試料A1に接合される導体バンプ2の形成方法としては、メタライズ配線基板の同時焼成温度以下で形成できるものであれば何でもよい。例えば、めっき、蒸着、印刷、エッチング、リフローなどがあげられる。また、これらを組み合わせた方法でもよい。さらに、導体バンプ2の材質は、金、銀、銅、はんだなど何でもよい。特には、電気抵抗が低いという点から金、銀、銅などが望ましく、また、融点が低いという点から、はんだなどが望ましい。   As a method for forming the conductor bump 2 bonded to the dielectric sample A1, any method can be used as long as it can be formed at a temperature equal to or lower than the simultaneous firing temperature of the metallized wiring board. For example, plating, vapor deposition, printing, etching, reflow and the like can be mentioned. Moreover, the method which combined these may be used. Furthermore, the material of the conductor bump 2 may be anything such as gold, silver, copper, or solder. In particular, gold, silver, copper, and the like are desirable from the viewpoint of low electrical resistance, and solder is desirable from the viewpoint of a low melting point.

図2は、本発明の誘電定数測定方法における誘電正接測定工程を説明するための断面図である。   FIG. 2 is a cross-sectional view for explaining a dielectric loss tangent measurement step in the dielectric constant measurement method of the present invention.

図2に示す第2の共振器では、誘電体試料B1の下面に下部電極3が同時焼成によって形成されており(同時焼成されたメタライズ配線基板)、これが円筒外部導体6によって連結された上部導体(中心導体)4と下部導体5とに挟まれた構造となっている。   In the second resonator shown in FIG. 2, the lower electrode 3 is formed by simultaneous firing on the lower surface of the dielectric sample B1 (co-fired metallized wiring board), and the upper conductor connected by the cylindrical outer conductor 6 The structure is sandwiched between the (center conductor) 4 and the lower conductor 5.

これらの第1、第2の共振器では、上部電極(導体バンプ)2の面積あるいは誘電体試料B1と上部導体(中心導体)4との接触面積を小さくすることによって、共振器内に等価的に形成されるキャパシタンスを低減し、共振周波数の低下を防ぐことができる。   In these first and second resonators, the area of the upper electrode (conductor bump) 2 or the contact area between the dielectric sample B1 and the upper conductor (center conductor) 4 is reduced to make it equivalent in the resonator. Thus, the capacitance formed in the capacitor can be reduced, and the resonance frequency can be prevented from lowering.

このような場合、第1の共振器においては、上部電極(導体バンプ)2と上部導体(中心導体)4との接触抵抗の増大、あるいは誘電体試料B1と上部導体(中心導体)4との間の空隙による実効的な接触面積の再現性の確保が問題となる。これに対して、本測定方法では、上部電極(導体バンプ)2と上部導体(中心導体)4との接触抵抗の増大が問題とならない比誘電率測定を図1に示す第1の共振器によって行い、この結果から、図2に示す第2の共振器によって誘電体試料B1と上部導体(中心導体)4との実効的な接触面積と誘電正接を測定するため、比誘電率と誘電正接をより高精度で求めることができる。   In such a case, in the first resonator, the contact resistance between the upper electrode (conductor bump) 2 and the upper conductor (center conductor) 4 is increased, or the dielectric sample B1 and the upper conductor (center conductor) 4 Ensuring the reproducibility of the effective contact area due to the gaps between them is a problem. In contrast, in this measurement method, the first resonator shown in FIG. 1 performs relative permittivity measurement in which an increase in contact resistance between the upper electrode (conductor bump) 2 and the upper conductor (center conductor) 4 is not a problem. From this result, in order to measure the effective contact area and the dielectric loss tangent between the dielectric sample B1 and the upper conductor (center conductor) 4 by the second resonator shown in FIG. It can be obtained with higher accuracy.

また、上部電極(導体バンプ)2と誘電体試料A1との接合面積と、誘電体試料B1と上部導体(中心導体)4との実効的な接触面積を同程度の大きさにしておくことによって、共振周波数f0Aとf0Bとを50%の範囲内(0.5f0B≦f0A≦1.5f0B)で一致させることができる。 Further, by setting the bonding area between the upper electrode (conductor bump) 2 and the dielectric sample A1 and the effective contact area between the dielectric sample B1 and the upper conductor (center conductor) 4 to the same size. The resonance frequencies f 0A and f 0B can be matched within a range of 50% (0.5f 0B ≦ f 0A ≦ 1.5f 0B ).

図1の第1の共振器を用いて比誘電率を求め、図2の第2の共振器を用いて誘電正接を求める計算方法としては、モードマッチング法、有限要素法、集中定数等価回路法などが挙げられる。   The calculation method for obtaining the relative permittivity using the first resonator of FIG. 1 and obtaining the dielectric loss tangent using the second resonator of FIG. 2 includes a mode matching method, a finite element method, a lumped constant equivalent circuit method. Etc.

図3は、本発明の他の誘電定数測定方法における比誘電率測定工程を説明するための第1の共振器の断面図である。   FIG. 3 is a cross-sectional view of a first resonator for explaining a relative dielectric constant measurement step in another dielectric constant measurement method of the present invention.

図3に示す第1の共振器では、誘電体試料A1の上下面に上部電極2と下部電極3が同時焼成によって形成されており(同時焼成されたメタライズ配線基板)、これが連結された上部導体4と下部導体5とに挟まれた構造となっている。   In the first resonator shown in FIG. 3, the upper electrode 2 and the lower electrode 3 are formed by simultaneous firing on the upper and lower surfaces of the dielectric sample A1 (simultaneously fired metallized wiring board), and the upper conductor connected thereto 4 and the lower conductor 5.

図4は、誘電正接測定工程を説明するための第2の共振器の断面図である。図4に示す第2の共振器では、誘電体試料B1の上下面は、同時焼成によって形成されたメタライズ配線基板の電極が剥離されており、これが連結された上部導体4と下部導体5とに挟まれた構造となっている。即ち、誘電体試料B1の面に上部導体4と下部導体5が当接している。   FIG. 4 is a cross-sectional view of the second resonator for explaining the dielectric loss tangent measurement step. In the second resonator shown in FIG. 4, the electrodes of the metallized wiring board formed by simultaneous firing are peeled off from the upper and lower surfaces of the dielectric sample B1, and the upper conductor 4 and the lower conductor 5 to which the electrodes are connected are separated. It has a sandwiched structure. That is, the upper conductor 4 and the lower conductor 5 are in contact with the surface of the dielectric sample B1.

これらの共振器においても、上部電極2と上部導体4との接触抵抗と下部電極3と下部導体5との接触抵抗の増大が問題とならない比誘電率測定を図3に示す第1の共振器によって行い、この結果から、図4に示す第2の共振器によって誘電体試料B1と上部導体4及び誘電体試料B1と下部導体5との実効的な接触面積と誘電正接を測定するため、比誘電率と誘電正接をより高精度で測定することができる。また、上部電極2の面積と、誘電体試料B1と上部導体4との実効的な接触面積、及び下部電極3の面積と、誘電体試料B1と下部導体5との実効的な接触面積をそれぞれ同程度の大きさにしておくことによって、共振周波数f0Aとf0Bとを50%の範囲内で一致させることができる。 Also in these resonators, the first resonator shown in FIG. 3 performs relative permittivity measurement in which an increase in contact resistance between the upper electrode 2 and the upper conductor 4 and an increase in contact resistance between the lower electrode 3 and the lower conductor 5 is not a problem. In order to measure the effective contact area and dielectric loss tangent between the dielectric sample B1 and the upper conductor 4 and the dielectric sample B1 and the lower conductor 5 by the second resonator shown in FIG. The dielectric constant and dielectric loss tangent can be measured with higher accuracy. Further, the area of the upper electrode 2, the effective contact area between the dielectric sample B1 and the upper conductor 4, the area of the lower electrode 3, and the effective contact area between the dielectric sample B1 and the lower conductor 5, respectively. By setting the same size, the resonance frequencies f 0A and f 0B can be matched within a range of 50%.

図3の第1の共振器を用いて比誘電率を求め、図4の第2の共振器を用いて誘電正接を求める計算方法としては、モードマッチング法、有限要素法、集中定数等価回路法などが挙げられる。   As a calculation method for obtaining a relative dielectric constant using the first resonator of FIG. 3 and obtaining a dielectric loss tangent using the second resonator of FIG. 4, a mode matching method, a finite element method, a lumped constant equivalent circuit method are available. Etc.

図5は、その他の共振器(半同軸共振器)を用いた本発明の誘電定数測定方法における比誘電率測定工程を説明するための第1の共振器の断面図である。   FIG. 5 is a cross-sectional view of the first resonator for explaining the relative dielectric constant measurement step in the dielectric constant measurement method of the present invention using another resonator (semi-coaxial resonator).

図5に示す半同軸共振器(第1の共振器)では、下部導体5としても機能する下部電極3上に形成された誘電体薄膜試料A1の上面に上部電極2が形成されており(導体上に形成された誘電体薄膜)、誘電体薄膜試料A1が、円柱外部導体6と第二の誘電体としての空気層7を介して連結された中心導体4と下部導体5とに挟まれた構造となっている。なお、下部導体5は支持基板8上に形成されており、その支持基板8の材質は、金属、半導体、誘電体など何でもよいが、特に、平坦度が要求されるという点からシリコン、サファイア、ガラスなどが望ましい。   In the semi-coaxial resonator (first resonator) shown in FIG. 5, the upper electrode 2 is formed on the upper surface of the dielectric thin film sample A1 formed on the lower electrode 3 that also functions as the lower conductor 5 (conductor). Dielectric thin film sample A1) is sandwiched between a central conductor 4 and a lower conductor 5 connected via a cylindrical outer conductor 6 and an air layer 7 as a second dielectric. It has a structure. The lower conductor 5 is formed on the support substrate 8. The support substrate 8 may be made of any material such as metal, semiconductor, dielectric, etc. In particular, silicon, sapphire, Glass or the like is desirable.

また、この半同軸共振器では、空気層7からの電磁波の放射が僅かに共振周波数f0Aに影響を及ぼすため、これを遮蔽導体9によって防止している。この遮蔽導体9と中心導体4に2つの貫通孔が形成され、外部から内部に向けて一対の同軸ケーブル10が挿通されており、その内部の先端に励振及び検波のための一対のループアンテナ11が設けられている。ループアンテナ11の共振器への挿入深さは、目的の共振モードの共振周波数f0Aにおける挿入損失が40dB程度になるように調整される。この共振モードにおける電界の向きを矢印で示した。 Further, in this semi-coaxial resonator, the radiation of the electromagnetic wave from the air layer 7 slightly affects the resonance frequency f0A , which is prevented by the shielding conductor 9. Two through holes are formed in the shield conductor 9 and the central conductor 4, and a pair of coaxial cables 10 are inserted from the outside to the inside. A pair of loop antennas 11 for excitation and detection are provided at the inner ends of the through holes. Is provided. The insertion depth of the loop antenna 11 into the resonator is adjusted so that the insertion loss at the resonance frequency f 0A of the target resonance mode is about 40 dB. The direction of the electric field in this resonance mode is indicated by an arrow.

発振器、例えばシンセサイズドスイーパーから、周波数が掃引された信号を片方の同軸ケーブルからループアンテナを通して共振器に注入することで、目的の共振モードの電磁界が励振される。他方のループアンテナから同軸ケーブルを通して、共振器の透過信号がネットワークアナライザー等の測定機器に入力することで、この半同軸共振器の共振周波数f0Aを測定する。 By injecting a frequency-swept signal from an oscillator, for example, a synthesized sweeper, from one coaxial cable through a loop antenna to a resonator, an electromagnetic field of a target resonance mode is excited. Through the coaxial cable from the other loop antenna, transmission signal of the resonator by input to the measuring instrument such as a network analyzer to measure the resonance frequency f 0A of the semi-coaxial resonator.

図6は、その他の共振器(半同軸共振器)を用いた本発明の誘電定数測定方法における誘電正接測定工程を説明するための断面図である。   FIG. 6 is a cross-sectional view for explaining a dielectric loss tangent measurement step in the dielectric constant measurement method of the present invention using another resonator (semi-coaxial resonator).

図6に示す半同軸共振器(第2の共振器)では、下部導体5としても機能する下部電極3上に形成された誘電体薄膜試料B1(導体上に形成された誘電体薄膜)が、円筒外部導体6によって連結された先端先細形状の中心導体4と下部導体5とに挟まれた構造となっている。なお、下部導体5は支持基板8上に形成されており、その支持基板8の材質は、金属、半導体、誘電体など何でもよいが、特に、平坦度が要求されるという点からシリコン、サファイア、ガラスなどが望ましい。   In the semi-coaxial resonator (second resonator) shown in FIG. 6, the dielectric thin film sample B1 (dielectric thin film formed on the conductor) formed on the lower electrode 3 that also functions as the lower conductor 5 is The structure is sandwiched between a center conductor 4 and a lower conductor 5 having a tapered tip connected by a cylindrical outer conductor 6. The lower conductor 5 is formed on the support substrate 8. The support substrate 8 may be made of any material such as metal, semiconductor, dielectric, etc. In particular, silicon, sapphire, Glass or the like is desirable.

また、この半同軸共振器では、下部導体5からの表皮効果による電磁波の放射が僅かに無負荷Qに影響を及ぼすため、これを遮蔽導体9によって防止している。この遮蔽導体9と円筒外部導体6に2つの貫通孔が形成され、外部から内部に向けて一対の同軸ケーブル10が挿通されており、その先端に励振及び検波のための一対のループアンテナ11が形成されている。ループアンテナ11の共振器への挿入深さは目的の共振モードの共振周波数f0Bにおける挿入損失が40dB程度になるように調整される。この共振モードにおける電界の向きを矢印で示した。 Further, in this semi-coaxial resonator, the radiation of the electromagnetic wave due to the skin effect from the lower conductor 5 slightly affects the no-load Q, which is prevented by the shielding conductor 9. Two through holes are formed in the shielding conductor 9 and the cylindrical outer conductor 6, and a pair of coaxial cables 10 are inserted from the outside to the inside, and a pair of loop antennas 11 for excitation and detection are provided at the tips. Is formed. The insertion depth of the loop antenna 11 into the resonator is adjusted so that the insertion loss at the resonance frequency f 0B of the target resonance mode is about 40 dB. The direction of the electric field in this resonance mode is indicated by an arrow.

発振器、例えばシンセサイズドスイーパーから、周波数が掃引された信号を片方の同軸ケーブルからループアンテナを通して共振器に注入することで、目的の共振モードの電磁界が励振される。他方のループアンテナから同軸ケーブルを通して、共振器の透過信号がネットワークアナライザー等の測定機器に入力することで、この半同軸共振器の共振周波数f0Bと無負荷Qを測定する。 By injecting a frequency-swept signal from an oscillator, for example, a synthesized sweeper, from one coaxial cable through a loop antenna to a resonator, an electromagnetic field of a target resonance mode is excited. The resonance signal f 0B and the no-load Q of this semi-coaxial resonator are measured by inputting the transmitted signal of the resonator from the other loop antenna through the coaxial cable to a measuring device such as a network analyzer.

誘電体試料として導体上に形成された誘電体薄膜を用いる場合には、共振器内に等価的に形成されるキャパシタンスが特に高くなりやすいため、共振周波数の低下が問題となる。図5に示す第1の共振器では、誘電体試料A1と直列に空気層7を挿入することによって共振周波数の低下を防いでおり、図6に示す第2の共振器では、中心導体4を先端先細形状にすることによって共振周波数の低下を防いでいる。また、図5に示す第1の共振器では、円筒外部導体6と下部導体5との間に形成された空気層7の厚みを変化させることによって共振周波数を制御することができ、図6に示す第2の共振器では、円筒外部導体6によって決まる共振空間の大きさを変化させることによって共振周波数を制御することができるため、共振周波数f0Aとf0Bとを50%の範囲内で一致させることができる。 When a dielectric thin film formed on a conductor is used as the dielectric sample, the capacitance formed equivalently in the resonator tends to be particularly high, so that the resonance frequency is lowered. In the first resonator shown in FIG. 5, a decrease in the resonance frequency is prevented by inserting an air layer 7 in series with the dielectric sample A1, and in the second resonator shown in FIG. Reduction of the resonance frequency is prevented by using a tapered tip. Further, in the first resonator shown in FIG. 5, the resonance frequency can be controlled by changing the thickness of the air layer 7 formed between the cylindrical outer conductor 6 and the lower conductor 5, and FIG. In the second resonator shown, since the resonance frequency can be controlled by changing the size of the resonance space determined by the cylindrical outer conductor 6, the resonance frequencies f 0A and f 0B are matched within a range of 50%. Can be made.

また、これらの共振器においても、上部電極2と中心導体4との接触抵抗の増大が問題とならない比誘電率測定を図5に示す第1の共振器によって行い、この結果から、図6に示す第2の共振器によって誘電体試料B1と中心導体4との実効的な接触面積と誘電正接を測定するため、比誘電率と誘電正接をより高精度で測定することができる。   Further, in these resonators, the relative dielectric constant measurement in which the increase in contact resistance between the upper electrode 2 and the central conductor 4 does not become a problem is performed by the first resonator shown in FIG. Since the effective contact area and dielectric loss tangent between the dielectric sample B1 and the central conductor 4 are measured by the second resonator shown, the relative permittivity and dielectric loss tangent can be measured with higher accuracy.

さらに、図5に示す第1の共振器による比誘電率測定を正確に行うためには、予め円筒外部導体6と下部導体5との間に形成された空気層7の厚みGを正確に測定しておく必要がある(空気層の厚み測定工程)。これを誘電体薄膜試料A1の存在しない下部導体5面に中心導体4を直接接触させたときの共振周波数f0Sから測定する。 Furthermore, in order to accurately measure the relative permittivity by the first resonator shown in FIG. 5, the thickness G of the air layer 7 formed in advance between the cylindrical outer conductor 6 and the lower conductor 5 is accurately measured. (Air layer thickness measurement step). This is measured from the resonance frequency f 0S when the center conductor 4 is brought into direct contact with the surface of the lower conductor 5 where the dielectric thin film sample A1 does not exist.

一方、図6に示す第2の共振器による誘電正接測定を正確に行うためには、予め電流の集中する中心導体4の比導電率σrを正確に測定しておく必要がある(中心導体の比導電率測定工程)。これを誘電体薄膜試料B1の代わりに標準試料を挿入したときの共振周波数f0Sと無負荷Qから標準試料と中心導体4との実効的な接触面積Sと共に測定する。この標準試料は、標準試料の測定時における共振器全体に対する標準試料内に蓄積される電界エネルギーの比率と誘電体薄膜試料B1の測定時における共振器全体に対する誘電体薄膜試料B1内に蓄積される電界エネルギーの比率とが同等の大きさになるよう選択される。これによって、標準試料の測定時と誘電体薄膜試料B1の測定時との電流分布の違いによって生じる誘電体薄膜試料測定時における実効的な導電率の系統誤差を抑制できる。 On the other hand, in order to accurately perform the dielectric loss tangent measurement by the second resonator shown in FIG. 6, it is necessary to accurately measure in advance the specific conductivity σr of the central conductor 4 where the current is concentrated (the central conductor of the central conductor 4). Specific conductivity measurement step). This is measured together with the effective contact area S S between the standard sample and the central conductor 4 from the resonance frequency f 0S and no load Q when the standard sample is inserted instead of the dielectric thin film sample B 1. This standard sample is accumulated in the dielectric thin film sample B1 with respect to the entire resonator during measurement of the dielectric thin film sample B1 and the ratio of the electric field energy accumulated in the standard sample with respect to the entire resonator during measurement of the standard sample. The ratio of the electric field energy is selected to be equal. Thereby, the systematic error of the effective conductivity at the time of measuring the dielectric thin film sample caused by the difference in current distribution between the measurement of the standard sample and the measurement of the dielectric thin film sample B1 can be suppressed.

図5の第1の共振器を用いて比誘電率を求め、図6の第2の共振器を用いて誘電正接を求める計算方法としては、有限要素法、集中定数等価回路法などが挙げられる。特に、図5と図6に示した軸対称形状の半同軸共振器に対しては、軸対称の有限要素法を用いることができるため、寸法、比誘電率、誘電正接等から共振電磁界分布、共振周波数、無負荷Q等を高精度、かつ短時間で計算できる。従って、これを応用すれば共振周波数や無負荷Qに基づいて、導体上に形成された厚みが10−8m以上の誘電体薄膜や同時焼成されたメタライズ配線基板等の比誘電率や誘電正接を求めることができる。 As a calculation method for obtaining the relative dielectric constant using the first resonator of FIG. 5 and obtaining the dielectric loss tangent using the second resonator of FIG. 6, there are a finite element method, a lumped constant equivalent circuit method, and the like. . In particular, since the axially symmetric finite element method can be used for the axially symmetric semi-coaxial resonators shown in FIGS. 5 and 6, the resonant electromagnetic field distribution is determined from the dimensions, relative permittivity, dielectric loss tangent, and the like. The resonance frequency, no-load Q, etc. can be calculated with high accuracy and in a short time. Therefore, if this is applied, based on the resonance frequency and no-load Q, the dielectric constant and dielectric loss tangent of a dielectric thin film having a thickness of 10 −8 m or more formed on the conductor or a co-fired metallized wiring board, etc. Can be requested.

より具体的な計算方法として、以下のような方法があげられる。まず、比誘電率測定工程における誘電体試料A1の比誘電率ε’を少なくとも3点以上変化させたときの共振周波数fを、軸対称の有限要素法により計算しておく。このとき得られる共振周波数fの計算値は共振周波数の測定値とそのバラツキの程度であることが望ましい。次に、線形最小二乗法により共振周波数fと比誘電率ε’の線形近似式、f=a×ε’+bの係数a、bを求める。これによって、共振周波数fの測定値f0Aから比誘電率ε’が計算できる。 More specific calculation methods include the following methods. First, the resonance frequency f 0 when the relative permittivity ε ′ of the dielectric sample A1 in the relative permittivity measurement step is changed by at least three points is calculated by the axially symmetric finite element method. Calculated value of the resonance frequency f 0 obtained at this time is preferably a degree of variation between the measured value of the resonance frequency. Next, a linear approximation formula of resonance frequency f 0 and relative permittivity ε ′, coefficients a and b of f 0 = a × ε ′ + b are obtained by the linear least square method. Thereby, the relative dielectric constant ε ′ can be calculated from the measured value f 0A of the resonance frequency f 0 .

続いて、誘電正接測定工程における誘電体試料B1と導体との接触面積Sを少なくとも3点以上変化させたときの共振周波数fを、軸対称の有限要素法により計算しておく。このとき得られる共振周波数fの計算値は共振周波数の測定値とそのバラツキの程度であることが望ましい。次に、線形最小二乗法により共振周波数fと接触面積Sの線形近似式、f=c×S+dの係数c、dを求める。これによって、共振周波数fの測定値f0Bから接触面積Sが計算できる。 Subsequently, the resonance frequency f 0 when the contact area S between the dielectric sample B1 and the conductor in the dielectric loss tangent measurement step is changed by at least three points is calculated by the axially symmetric finite element method. Calculated value of the resonance frequency f 0 obtained at this time is preferably a degree of variation between the measured value of the resonance frequency. Next, a linear approximation formula of resonance frequency f 0 and contact area S, coefficients c and d of f 0 = c × S + d are obtained by the linear least square method. Thereby, the contact area S can be calculated from the measured value f 0B of the resonance frequency f 0 .

また、この接触面積Sの計算値を用いることで導体Q(Qc)、誘電体試料内に蓄積される電界エネルギーの比率(Pe)を軸対称の有限要素法により計算する。このとき得られるQc、Peの計算値と、無負荷Q(Qu)、誘電正接tanδとにはQu−1=Qc−1+Pe×tanδという関係式が成り立つ。従って、この式に無負荷Qの測定値を代入することによって、誘電正接が計算できる。 Further, by using the calculated value of the contact area S, the conductor Q (Qc) and the electric field energy ratio (Pe) accumulated in the dielectric sample are calculated by the axially symmetric finite element method. A relational expression of Qu −1 = Qc −1 + Pe × tan δ is established between the calculated values of Qc and Pe obtained at this time, the unloaded Q (Qu), and the dielectric loss tangent tan δ. Therefore, the dielectric loss tangent can be calculated by substituting the measured value of no-load Q into this equation.

本発明は、前記の形態に限定されるものではなく、本発明の範囲内で種々の変更を施すことが可能である。   The present invention is not limited to the above embodiment, and various modifications can be made within the scope of the present invention.

図5に示す本発明の比誘電率測定工程における測定治具と、上部電極2の形成された厚み3×10−7mの三種類の高誘電率誘電体薄膜試料A1(HQ、MQ、LQ)を作製し、これらの高誘電率誘電体薄膜試料A1を測定治具の下部電極3上にセットし、第1の共振器を構成し、高誘電率誘電体薄膜試料A1の2GHzと5GHzでの比誘電率を評価した。尚、下部電極3はPtにて形成し、支持基板8はサファイアにて形成した。 Three kinds of high dielectric constant dielectric thin film samples A1 (HQ, MQ, LQ) having a thickness of 3 × 10 −7 m on which the measurement jig in the relative dielectric constant measurement step of the present invention shown in FIG. ), These high dielectric constant dielectric thin film samples A1 are set on the lower electrode 3 of the measurement jig to form a first resonator, and the high dielectric constant dielectric thin film samples A1 are 2 GHz and 5 GHz. The relative dielectric constant of was evaluated. The lower electrode 3 was made of Pt, and the support substrate 8 was made of sapphire.

比誘電率の評価にあたり、まず、形状測定顕微鏡、マイクロメーターを用いて、測定治具の寸法をそれぞれ10回ずつ評価した。高誘電率誘電体薄膜試料A1と上部電極2の厚みは走査型電子顕微鏡(SEM)のデータに基づいて管理された設計値であり、予想される測定不確かさの変動係数5%を考慮した。その結果を表1に示す。   In evaluating the relative dielectric constant, first, the dimensions of the measurement jig were evaluated 10 times each using a shape measuring microscope and a micrometer. The thicknesses of the high dielectric constant dielectric thin film sample A1 and the upper electrode 2 are design values managed based on the data of a scanning electron microscope (SEM), and the expected variation coefficient of measurement uncertainty is 5%. The results are shown in Table 1.

次に、高誘電率誘電体薄膜試料A1の存在しない下部導体5面に中心導体4を直接接触させたときの共振周波数f0Sを5回測定し、円筒外部導体6と下部導体5との間に形成された空気層7の厚みGを軸対称の有限要素法により求めた。その結果を表2に示す。 Next, the resonance frequency f 0S when the center conductor 4 is brought into direct contact with the surface of the lower conductor 5 where the high dielectric constant dielectric thin film sample A1 does not exist is measured five times, and between the cylindrical outer conductor 6 and the lower conductor 5 is measured. The thickness G of the air layer 7 formed in the above was obtained by an axially symmetric finite element method. The results are shown in Table 2.

最後に、共振周波数f0Aを5回測定し、高誘電率誘電体薄膜試料A1のε’を軸対称の有限要素法により求めた。その結果を表3に示す。 Finally, the resonance frequency f 0A was measured five times, and ε ′ of the high dielectric constant dielectric thin film sample A1 was obtained by the axially symmetric finite element method. The results are shown in Table 3.

ε’の不確かさは下記(1)式によって計算した。尚、不確かさは、繰り返し測定による測定バラツキ(標準偏差)で表される。但し、fは共振周波数、mは測定治具等の各寸法を表している。

Figure 0004467418
The uncertainty of ε ′ was calculated by the following equation (1). Uncertainty is represented by measurement variation (standard deviation) by repeated measurement. However, f 0 is the resonant frequency, m i denotes the dimensions of such measurement jig.
Figure 0004467418

Figure 0004467418
Figure 0004467418

Figure 0004467418
Figure 0004467418

Figure 0004467418
Figure 0004467418

表3より、何れの試料、周波数においても不確かさの変動係数(標準偏差/比誘電率の平均値)が10%を下回っていることがわかった。なお、このときの不確かさの支配要因として、高誘電率誘電体薄膜試料A1の厚みの不確かさ(5%)、上部電極の半径の測定不確かさ、上部電極の厚みの不確かさ(5%)、の順に大きいという結果が得られた。   From Table 3, it was found that the uncertainty coefficient of variation (standard deviation / average value of relative dielectric constant) was less than 10% for any sample and frequency. In addition, as the controlling factors of the uncertainty at this time, the thickness uncertainty of the high dielectric constant dielectric thin film sample A1 (5%), the measurement uncertainty of the radius of the upper electrode, the uncertainty of the thickness of the upper electrode (5%) The result that it was large in order of was obtained.

図6に示す本発明の誘電正接測定工程における測定治具と上部電極の形成されていない三種類の3×10−7mの高誘電率誘電体薄膜試料B1(HQ、MQ、LQ)を作製し、これらの高誘電率誘電体薄膜試料B1を測定治具の下部電極3上にセットし、第2の共振器を構成し、高誘電率誘電体薄膜試料B1の2GHzと5GHzでの誘電正接を評価した。尚、支持基板8をサファイアで形成し、遮断導体9を無酸素Cuで形成した。 Three types of 3 × 10 −7 m high dielectric constant dielectric thin film samples B1 (HQ, MQ, LQ) in which the measurement jig and the upper electrode are not formed in the dielectric loss tangent measurement process of the present invention shown in FIG. Then, these high dielectric constant dielectric thin film samples B1 are set on the lower electrode 3 of the measuring jig to constitute a second resonator, and the dielectric loss tangent of the high dielectric constant dielectric thin film samples B1 at 2 GHz and 5 GHz. Evaluated. The support substrate 8 was made of sapphire, and the blocking conductor 9 was made of oxygen-free Cu.

誘電正接の評価にあたり、まず、形状測定顕微鏡、マイクロメーターを用いて、測定治具の寸法をそれぞれ10回ずつ評価した。高誘電率誘電体薄膜試料B1と下部電極3の厚みはSEMのデータに基づいて管理された設計値であり、予想される測定不確かさの変動係数5%を考慮した。その結果を表4に示す。   In evaluating the dielectric loss tangent, first, the dimensions of the measuring jig were evaluated 10 times each using a shape measuring microscope and a micrometer. The thicknesses of the high dielectric constant dielectric thin film sample B1 and the lower electrode 3 are designed values managed based on SEM data, and the expected variation coefficient of measurement uncertainty is 5%. The results are shown in Table 4.

次に、高誘電率誘電体薄膜試料B1の代わりに表4に示した標準試料(ε’=313、Qf=10GHz)を挿入したときの共振周波数f0Sと無負荷Qを5回ずつ測定し、標準試料と中心導体4との実効的な接触面積Sと中心導体4の比導電率σrを軸対称の有限要素法により求めた。なお、下部電極3の比導電率は共振周波数f(GHz)と下部電極3の厚みt(mm)を用いて、61379.56×π×f×t%とし、円筒外部導体6の比導電率は64.65375%とした。その結果を表5に示す。 Next, the resonance frequency f 0S and the no-load Q when the standard sample (ε ′ = 313, Qf = 10 4 GHz) shown in Table 4 is inserted instead of the high dielectric constant dielectric thin film sample B1 are measured five times. measured, and the specific conductivity σr of the effective contact area S S and the central conductor 4 of the standard sample and the central conductor 4 calculated by the finite element method axisymmetric. The specific conductivity of the lower electrode 3 is 61379.56 × π 2 × f 0 × t 2 % using the resonance frequency f 0 (GHz) and the thickness t (mm) of the lower electrode 3, and the cylindrical outer conductor 6 The specific conductivity of was 6.4.6375%. The results are shown in Table 5.

最後に、共振周波数f0Bと無負荷Qを5回ずつ測定し、高誘電率誘電体薄膜試料B1と中心導体4との実効的な接触面積Sと高誘電率誘電体薄膜試料B1のtanδを軸対称の有限要素法により求めた。下部電極3と円筒外部導体6の比導電率は前記の通りである。中心導体4の比導電率は、2GHz測定では1.7GHzと3.3GHzの結果(重み付き平均値)を、5GHz測定では3.3GHzと8GHzの結果(重み付き平均値)を用いた。また、高誘電率誘電体薄膜試料B1のε’データとして、上記の高誘電率誘電体薄膜試料A1の測定結果を用いた。その結果を表6に示す。 Finally, the resonance frequency f 0B and the no-load Q are measured five times, and the effective contact area S between the high dielectric constant dielectric thin film sample B1 and the central conductor 4 and the tan δ of the high dielectric constant dielectric thin film sample B1 are calculated. Obtained by axisymmetric finite element method. The specific conductivity of the lower electrode 3 and the cylindrical outer conductor 6 is as described above. As the specific conductivity of the center conductor 4, results of 1.7 GHz and 3.3 GHz (weighted average value) were used for 2 GHz measurement, and results of 3.3 GHz and 8 GHz (weighted average value) were used for 5 GHz measurement. Further, as the ε ′ data of the high dielectric constant dielectric thin film sample B1, the measurement result of the high dielectric constant dielectric thin film sample A1 was used. The results are shown in Table 6.

tanδの不確かさは(2)式によって計算した。但し、Quは無負荷Q、Qdは誘電体Q、σrは下部電極3、中心導体4、円筒外部導体6の各導体の比導電率を表している。

Figure 0004467418
The uncertainty of tan δ was calculated by equation (2). However, Qu is unloaded Q, Qd is the dielectric Q, .sigma.r i the lower electrode 3, the central conductor 4, represents the specific conductivity of the conductor of the cylindrical outer conductor 6.
Figure 0004467418

Figure 0004467418
Figure 0004467418

Figure 0004467418
Figure 0004467418

Figure 0004467418
Figure 0004467418

Figure 0004467418
Figure 0004467418

表6より、何れの試料、周波数においても不確かさの変動係数が10%を下回っていることがわかった。なお、このときの不確かさの支配要因として、無負荷Qの測定不確かさ、下部導体の比導電率の不確かさ、中心導体の比導電率の不確かさ、の順に大きいという結果が得られた。   From Table 6, it was found that the coefficient of uncertainty fluctuation was less than 10% for any sample and frequency. In addition, as a controlling factor of uncertainties at this time, it was found that the measurement uncertainties of the unloaded Q, the uncertainties of the specific conductivity of the lower conductor, and the uncertainties of the specific conductivity of the center conductor increase in this order.

上記(3)式によって与えられる標準試料内に蓄積される電界エネルギーの比率Peは54%〜87%であり、高誘電率誘電体薄膜試料B1内に蓄積される電界エネルギーの比率Peの87%〜94%と近い数値であった。このため、標準試料の測定時と高誘電率誘電体薄膜試料B1の測定時との電流分布の違いによって生じる実効的な導電率の系統誤差は小さいと考えられる。   The electric field energy ratio Pe stored in the standard sample given by the above equation (3) is 54% to 87%, and 87% of the electric field energy ratio Pe stored in the high dielectric constant dielectric thin film sample B1. It was a value close to ~ 94%. For this reason, it is considered that the systematic error of the effective conductivity caused by the difference in current distribution between the measurement of the standard sample and the measurement of the high dielectric constant dielectric thin film sample B1 is small.

本発明の誘電定数測定方法における比誘電率測定工程を説明するための第1の共振器の断面図である。It is sectional drawing of the 1st resonator for demonstrating the dielectric constant measurement process in the dielectric constant measuring method of this invention. 本発明の誘電定数測定方法における誘電正接測定工程を説明するための第2の共振器の断面図である。It is sectional drawing of the 2nd resonator for demonstrating the dielectric loss tangent measurement process in the dielectric constant measuring method of this invention. 本発明の他の誘電定数測定方法における比誘電率測定工程を説明するための第1の共振器の断面図である。It is sectional drawing of the 1st resonator for demonstrating the dielectric constant measurement process in the other dielectric constant measuring method of this invention. 本発明の他の誘電定数測定方法における誘電正接測定工程を説明するための第2の共振器の断面図である。It is sectional drawing of the 2nd resonator for demonstrating the dielectric loss tangent measurement process in the other dielectric constant measuring method of this invention. 本発明のさらに他の誘電定数測定方法における比誘電率測定工程を説明するための第1の共振器の断面図である。It is sectional drawing of the 1st resonator for demonstrating the dielectric constant measurement process in the further another dielectric constant measuring method of this invention. 本発明のさらに他の誘電定数測定方法における誘電正接測定工程を説明するための第2の共振器の断面図である。It is sectional drawing of the 2nd resonator for demonstrating the dielectric loss tangent measurement process in the further another dielectric constant measuring method of this invention.

符号の説明Explanation of symbols

A1、B1 誘電体試料
2 上部電極(導体バンプ)
3 下部電極
4 上部導体(中心導体)
5 下部導体
6 円筒外部導体
7 空気層(第2の誘電体)
8 支持基板
9 遮蔽導体
10 同軸ケーブル
11 ループアンテナ
A1, B1 Dielectric sample 2 Upper electrode (conductor bump)
3 Lower electrode 4 Upper conductor (center conductor)
5 Lower conductor 6 Cylindrical outer conductor 7 Air layer (second dielectric)
8 Support substrate 9 Shielding conductor 10 Coaxial cable 11 Loop antenna

Claims (8)

両面に電極が形成された誘電体試料の前記電極に、導体をそれぞれ接触させてなる第1共振器と、一面にのみ電極が形成された前記誘電体試料の前記電極、および該電極が形成されていない前記誘電体試料の非電極部に、導体をそれぞれ接触させてなる第2共振器とを用い、前記1共振器の共振周波数から前記誘電体試料の比誘電率を求め、前記2共振器の共振周波数と無負荷Qから前記誘電体試料の誘電正接を求めることを特徴とする誘電定数測定方法。 A first resonator in which a conductor is brought into contact with each electrode of a dielectric sample having electrodes formed on both surfaces, the electrode of the dielectric sample having electrodes formed only on one surface, and the electrodes are formed. the non-electrode portion of the dielectric specimen not using a second resonator comprising contacting the conductors, respectively, determine the dielectric constant of the dielectric sample from the resonance frequency of the first co-vibrator, wherein said dielectric constant measuring method according to claim from the resonant frequency and the unloaded Q of 2 co-oscillator to determine the dielectric loss tangent of the dielectric sample. 両面に電極が形成された誘電体試料の前記電極に、導体をそれぞれ接触させてなる第1共振器と、電極が形成されていない前記誘電体試料の非電極部に、導体をそれぞれ接触させてなる第2共振器とを用い、前記第1共振器の共振周波数から前記誘電体試料の比誘電率を求め、前記第2共振器の共振周波数と無負荷Qから前記誘電体試料の誘電正接を求めることを特徴とする誘電定数測定方法。  A conductor is brought into contact with a first resonator in which a conductor is brought into contact with the electrode of the dielectric sample having electrodes formed on both surfaces, and a non-electrode portion of the dielectric sample with no electrode formed therein. The dielectric constant of the dielectric sample is obtained from the resonance frequency of the first resonator, and the dielectric loss tangent of the dielectric sample is determined from the resonance frequency of the second resonator and the unloaded Q. A method for measuring a dielectric constant, characterized in that: 共振周波数(f0B)から前記非電極部の前記誘電体試料と前記導体との実効的な接触面積を求め、該実効的な接触面積と前記第2共振器の無負荷Qを用いて、前記誘電体試料の誘電正接を求めることを特徴とする請求項又は記載の誘電定数測定方法。 Seeking an effective contact area between the conductor and the dielectric sample of the non-electrode portions from the resonance frequency (f 0B), with no-load Q of the effective contact area and the second resonator, wherein dielectric constant measuring method according to claim 1, wherein the determination of the dielectric loss tangent of the dielectric sample. 対向する一方の前記体から他方の前記導体に向けて電界を発生する共振モードの共振周波数と無負荷Qを用いて、前記誘電体試料の比誘電率と誘電正接を求めることを特徴とする請求項1乃至のうちいずれかに記載の誘電定数測定方法。 Using the resonance frequency and the unloaded Q of the resonance mode generated an electric field towards the opposite one the conductors or al the other of said conductors, and wherein the determination of the dielectric constant and dielectric loss tangent of the dielectric sample The dielectric constant measuring method according to any one of claims 1 to 3 . 前記第1、第2共振器が軸対称構造を有することを特徴とする請求項1乃至のうちのいずれかに記載の誘電定数測定方法。 The first, the dielectric constant measuring method according to any one of claims 1 to 4 second resonator and having an axisymmetric structure. 前記第1、第2共振器が、筒状導体と、該筒状導体内に軸長方向に設けられた中心導体と、前記筒状導体の両側開口部にそれぞれ設けられた短絡導体とを具備するとともに、前記中心導体と一方の前記短絡導体との間に前記誘電体試料を介装してなる半同軸共振器であることを特徴とする請求項記載の誘電定数測定方法。 It said first, second resonator, comprising: a cylindrical conductor, a central conductor disposed in the axial direction within the tubular conductor, and a short-circuit conductor provided on both sides openings of the tubular conductor as well as, the center conductor and the dielectric constant measuring method according to claim 5, wherein the dielectric sample formed by interposing a is a semi-coaxial resonator between one of the shorting conductors. 前記半同軸共振器が、前記中心導体と一方の前記短絡導体との間に挟まれた前記誘電体試料と、前記筒状導体と一方又は両方の前記短絡導体との間に挟まれた第二の誘電体とを具備することを特徴とする請求項記載の誘電定数測定方法。 The semi-coaxial resonators, the center conductor and one and of the short-circuit conductor the dielectric sample sandwiched between the second sandwiched between said tubular conductor and one or both of the shorting conductors The dielectric constant measuring method according to claim 6 , further comprising: 前記誘電体試料と前記第二の誘電体とが直列接続として動作する共振モードの共振周波数と無負荷Qから、前記誘電体試料の比誘電率と誘電正接を測定することを特徴とする請求項記載の誘電定数測定方法。 Claims, characterized in that the and the dielectric sample and the second dielectric from the resonance frequency and the unloaded Q of the resonance mode which operates as a serial connection, to measure the dielectric constant and dielectric loss tangent of the dielectric sample 8. The dielectric constant measuring method according to 7 .
JP2004373170A 2004-12-24 2004-12-24 Dielectric constant measurement method Expired - Lifetime JP4467418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004373170A JP4467418B2 (en) 2004-12-24 2004-12-24 Dielectric constant measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004373170A JP4467418B2 (en) 2004-12-24 2004-12-24 Dielectric constant measurement method

Publications (2)

Publication Number Publication Date
JP2006177866A JP2006177866A (en) 2006-07-06
JP4467418B2 true JP4467418B2 (en) 2010-05-26

Family

ID=36732105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004373170A Expired - Lifetime JP4467418B2 (en) 2004-12-24 2004-12-24 Dielectric constant measurement method

Country Status (1)

Country Link
JP (1) JP4467418B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102539934A (en) * 2010-12-30 2012-07-04 上海无线电设备研究所 Method for testing dielectric constant and loss angle tangent parameter of antenna cap material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111398370B (en) * 2020-04-01 2021-04-06 苏州大学 Dielectric test system and method for micro-nano size patterned thin film array
RU2750845C1 (en) * 2020-10-28 2021-07-05 Акционерное общество «Обнинское научно-производственное предприятие «Технология» им. А.Г.Ромашина» Method for determining permittivity of layers of multilayer materials
CN114252751B (en) * 2021-12-21 2023-10-13 无锡江南计算技术研究所 Strip line resonator test system for complex dielectric constant of high-frequency printed board substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102539934A (en) * 2010-12-30 2012-07-04 上海无线电设备研究所 Method for testing dielectric constant and loss angle tangent parameter of antenna cap material

Also Published As

Publication number Publication date
JP2006177866A (en) 2006-07-06

Similar Documents

Publication Publication Date Title
US6700789B2 (en) High-frequency wiring board
EP1110267B1 (en) Multilayer dielectric evanescent mode waveguide filter
US6726488B2 (en) High-frequency wiring board
JP4467418B2 (en) Dielectric constant measurement method
JP4247992B2 (en) Semi-coaxial resonator type measuring jig and method for measuring electrical properties of dielectric thin film
JP6510263B2 (en) Complex permittivity measurement method
JP4436724B2 (en) Dielectric constant measurement method and coaxial resonator
JP4628116B2 (en) Conductivity measurement method
JP4726395B2 (en) Electrical property value measurement method
JP4530907B2 (en) Method for measuring dielectric properties of dielectric thin films
Nakayama et al. Conductivity measurements at the interface between the sintered conductor and dielectric substrate at microwave frequencies
JP2010540904A (en) Cryogenic NMR probe capacitor with dielectric heat sink
JP2004117220A (en) Dielectric constant measurement method
JP4373902B2 (en) Method for measuring electromagnetic properties
Andreev et al. Investigation of the dielectric permittivity of anodic aluminum oxide substrates for multi-chip modules
JP4157387B2 (en) Electrical property measurement method
JP4540596B2 (en) Ring resonator and dielectric property measurement method of dielectric thin film using the same
JP4373857B2 (en) Electrical property measurement method
JP4776382B2 (en) Dielectric constant measurement method
JP2004177234A (en) Dielectric constant measurement method
JP4530951B2 (en) Dielectric constant measurement method and open-ended half-wavelength coplanar line resonator
JP4216739B2 (en) Electrical property value measuring method and measuring jig
JP4698244B2 (en) Method for measuring electromagnetic properties
JP5451509B2 (en) Thickness measurement method
JP4417736B2 (en) Method for measuring electrical property value of dielectric substrate and jig for measurement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3