[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4047075B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP4047075B2
JP4047075B2 JP2002163983A JP2002163983A JP4047075B2 JP 4047075 B2 JP4047075 B2 JP 4047075B2 JP 2002163983 A JP2002163983 A JP 2002163983A JP 2002163983 A JP2002163983 A JP 2002163983A JP 4047075 B2 JP4047075 B2 JP 4047075B2
Authority
JP
Japan
Prior art keywords
dielectric constant
semiconductor device
layer
insulating film
high dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002163983A
Other languages
Japanese (ja)
Other versions
JP2003059926A (en
Inventor
佳尚 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Publication of JP2003059926A publication Critical patent/JP2003059926A/en
Application granted granted Critical
Publication of JP4047075B2 publication Critical patent/JP4047075B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Formation Of Insulating Films (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高誘電体からなるゲート絶縁膜を有する半導体装置に関する。
【0002】
【従来の技術】
近年の半導体装置における高集積化及び高速化に対する技術進展に伴い、MOSFETの微細化が進められている。微細化に伴いゲート絶縁膜の薄膜化を進めると、トンネル電流によるゲートリーク電流の増大等の問題が顕在化してくる。この問題を抑制するために、HfO2 、ZrO2 、La23、TiO2 又はTa25等の高誘電率材料を用いたゲート絶縁膜(以下、high-kゲート絶縁膜と称する)により、小さいSiO2 換算膜厚(以下、EOT(Equivalent Oxide Thickness)と称する)を実現しながら物理的膜厚を厚くするという手法が研究されている。
【0003】
また、昨今のシステムLSIにおいては、演算処理を行なう内部回路、入出力を受け持つ周辺回路、及びDRAM等の複数の機能を持つ回路を1つのチップに集積することが一般的になっている。このようなシステムLSIを構成するMOSFETに対しては、高駆動力と低リーク電流とが求められる。
【0004】
従来のhigh-kゲート絶縁膜の形成方法として、特開2000-058832号公報(United States Patent 6,013,553 )に記載された方法が知られている。
【0005】
図5は、前記公報に開示された従来の半導体装置、具体的には、オキシ窒化ジルコニウム又はオキシ窒化ハフニウムよりなるhigh-kゲート絶縁膜を有するMOSFETの断面構成を示している。
【0006】
図5に示すように、Si基板1の上にエピタキシャルSi層2が形成されている。エピタキシャルSi層2の上部には不純物がドーピングされており、該上部は電圧印加時にチャネル領域3となる。チャネル領域3の上にはhigh-kゲート絶縁膜4を介して導電性のゲート電極5が形成されている。
【0007】
high-kゲート絶縁膜4の形成方法は次の通りである。すなわち、Si基板1の上に、チャネル領域3となる部分を含むエピタキシャルSi層2を形成した後、圧力1.33×10-1Pa程度の酸素雰囲気内で、Si基板1に対して600〜700℃程度の加熱処理を30秒間程度行なうことによって、厚さ1nm未満の酸化物層を形成する。その後、この酸化物層に対して、そのまま残存させるか、希釈HFにより取り除いてSi表面を水素終端させるか、又は、クラスターツールを用いた超高真空状態(1.33×10-6Pa程度)での780℃程度の加熱処理により昇華して原子的に平滑なSi表面を形成するかのいずれかの処理が行なわれる。酸化物層つまりシリコン酸化膜を残存させる代わりに、オキシ窒化シリコン膜の超薄膜よりなる保護障壁層を形成してもよい。
【0008】
以上のようにクリーンなSi表面、酸化物層又は保護障壁層のいずれかを持つSi基板1を準備した後、Si基板1の上に、スパッタ法、蒸着法、化学的気相成長(CVD)法又はプラズマCVD法等により、ジルコニウム又はハフニウムよりなる金属層を堆積する。その後、該金属層に対して、NO若しくはN2 O等の酸素及び窒素を含むガスを用いた酸窒化処理、N2 及びO2 を用いた低温下での遠隔プラズマ処理(基板処理チャンバーとプラズマ生成チャンバーとが異なっている)、又は、NH3 を用いた遠隔プラズマ窒化処理及びそれに引き続く酸化処理を行なうこと等により、オキシ窒化ジルコニウム又はオキシ窒化ハフニウムよりなるhigh-kゲート絶縁膜4を形成する。
【0009】
その後、Ar等の不活性ガス雰囲気中又は還元性ガス雰囲気中で、high-kゲート絶縁膜4に対して750℃程度のアニールを20秒間行なうことにより、high-kゲート絶縁膜4を緻密化する。このように形成されたhigh-kゲート絶縁膜4は非晶質又は多結晶であり、SiO2 の比誘電率と比べて著しく高い比誘電率を有する。
【0010】
【発明が解決しようとする課題】
しかしながら、前述の従来のMOSFETにおいては、high-kゲート絶縁膜の信頼性寿命が短くなるという問題がある。
【0011】
前記に鑑み、本発明は、長い信頼性寿命を持つhigh-kゲート絶縁膜を実現することを目的とする。
【0012】
【課題を解決するための手段】
前記の目的を達成するため、本願発明者は、従来のhigh-kゲート絶縁膜の信頼性寿命が短くなる原因を検討した結果、次のような知見を得た。すなわち、前述の従来の方法を用いてシリコン基板上にhigh-kゲート絶縁膜を形成した場合、シリコン基板界面に、SiO2 の組成に近いシリケート(high-k材料(ジルコニウム酸化物等の金属酸化物)とシリコンとの3元系化合物)が形成される。一般的に、シリケートは、シリコンを含まない元のhigh-k材料よりも比誘電率が低い。また、high-kゲート絶縁膜堆積後のアニール(ゲート絶縁膜を緻密化するためのPDA(Post Deposition Anneal))によって、ゲート絶縁膜を構成するhigh-k材料の結晶化が進む結果、該high-k材料から結晶粒界を介して酸素がシリコン基板まで拡散し、それによりシリコン基板界面にSiO2 が形成されてしまう。すなわち、high-kゲート絶縁膜は、比誘電率の低いSiO2 又はSiO2 の組成に近いシリケートよりなる界面層と、比誘電率の高いhigh-k材料又はhigh-k材料の組成に近いシリケートよりなるhigh-k層との積層構造を持つ。ところが、このような積層構造においては、ゲート電極を介して電圧が印加されると低誘電率の界面層に電界集中が起こり、その結果、絶縁破壊が生じやすくなって、high-kゲート絶縁膜の重要な特性である信頼性が劣化してしまうと考えられる。
【0013】
そこで、本願発明者は、high-kゲート絶縁膜の信頼性寿命の長さと、界面層厚さのhigh-kゲート絶縁膜全体の厚さに対する比T1/(T1+T2)(但しT1は界面層の物理的厚さ、T2はhigh-k層の物理的厚さ)との相関をシミュレーションを用いて調べてみた。その結果を図1に示す。シミュレーションは、trap generation model(J.H.Stathis, Technical Digest of International Electron Device and Material (1998), p167.)をhigh-kゲート絶縁膜に応用することによって行なった。具体的には、high-kゲート絶縁膜について、リーク電流Jg 、ストレス印加直後のリーク電流J0 、注入電荷当たりの欠陥生成率Pg (=絶縁破壊時の電流増加比ΔJg/J0)、及び絶縁破壊に至るときの臨界欠陥密度Nbdのそれぞれの値を求め、これらの値に基づいて、high-kゲート絶縁膜における絶縁破壊寿命Tbd(=Nbd/Pg )を求めた。また、シュミュレーションにおいては、high-kゲート絶縁膜のEOTが常に1.5nmを保つように各物理的厚さT1及びT2を調整しながら比T1/(T1+T2)を変化させていった場合における、印加電圧1Vのストレス下(温度は室温)でのhigh-kゲート絶縁膜の信頼性寿命を算出した。但し、シュミュレーションにおいては、界面層の比誘電率ε1を3.9の一定値に固定したのに対して、high-k層の比誘電率ε2を8.0、12.0、18.0及び24.0の複数の値に変化させた。ここで、EOT=T1+(ε1/ε2)×T2の関係が成り立つ。
【0014】
図1に示すように、比T1/(T1+T2)、つまりhigh-kゲート絶縁膜全体の厚さに対する界面層厚さの比が0.2以下である場合、high-kゲート絶縁膜の信頼性を高く維持できる。また、比T1/(T1+T2)が増加するに従い、high-kゲート絶縁膜の信頼性が劣化する傾向がある。さらに、図1の縦軸に対数目盛りを用いていることを考慮すると、比T1/(T1+T2)を0.2以下に設定することは、high-kゲート絶縁膜の信頼性を飛躍的に向上させる効果を持っていることが分かる。具体的には、比T1/(T1+T2)を0.2以下に設定することによって、例えば比T1/(T1+T2)が0.5程度である場合と比べて、信頼性寿命を3桁以上も長くすることができる。
【0015】
また、図1に示すように、比T1/(T1+T2)が0.0〜0.2である構造を持つゲート絶縁膜においては、high-k層の比誘電率ε2が8.0から12.0へ増加するに従って信頼性寿命の長さも増加し、ε2が12.0から18.0までの範囲で信頼性寿命の長さがほぼ飽和して最大値を示す。一方、ε2が18.0から24.0へ増加すると、信頼性寿命の長さは逆に減少してしまう。ところで、一般的に、high-k層における比誘電率ε2の値は厚さ方向に変化している。従って、high-k層における比誘電率ε2の平均値をε2avとしたときには、ε2avは12.0以上で且つ18.0以下であることが好ましい。また、high-k層として、一の金属とシリコンと酸素とを含むシリケート膜を用いた場合、high-k層の組成をMXSiYO(但しMは一の金属を表し、X>0、Y>0である)とすると、前述の12.0≦ε2av≦18.0の条件は、0.20≦Y/(X+Y)≦0.30の条件と等価である。すなわち、high-kゲート絶縁膜の信頼性の観点からは、high-k層の材料としてシリコンを含まない完全な金属酸化物を用いるよりも、0.20≦Y/(X+Y)≦0.30の関係を満たす、シリコン含有のシリケートMXSiYOを用いた方が好ましい。その理由は、high-k層と界面層との間の比誘電率の差を小さくすることによって、界面層への電界集中が緩和されるためと考えられる。尚、界面層もMXSiYOで表せるシリケートを含むことがあるが、このシリケートにおけるY/(X+Y)は0.90以上であって、組成的にはSiO2 とほぼ同等である。
【0016】
さらに、本願発明者は、high-kゲート絶縁膜の信頼性寿命の長さと、界面層厚さT1のhigh-kゲート絶縁膜全体の厚さ(T1+T2)(但しT2はhigh-k層の物理的厚さ)に対する比との相関を実験により調べてみた。その結果を図2に示す。尚、実験に用いた界面層は、組成がSiO2 に近いSiON膜(比誘電率ε1=3.9)であり、実験に用いたhigh-k層はCVD(chemical vapor deposition )法により形成されたSi34膜(比誘電率ε2=7.5)である。また、実験においては、high-kゲート絶縁膜のEOTが常に3.0nmを保つように各物理的厚さT1及びT2を調整しながら比T1/(T1+T2)を変化させていった場合における、印加電圧3.5Vのストレス下(温度は100℃)で絶縁破壊が生じるまでに絶縁膜に注入された総電荷量(絶縁破壊総電荷量Qbd)を測定した。ここで、絶縁破壊総電荷量Qbdの大きさがhigh-kゲート絶縁膜の信頼性寿命の長さと対応する。
【0017】
図2に示すように、比T1/(T1+T2)が0.2以下である場合、high-kゲート絶縁膜の信頼性を高く維持できる一方、該比が0.3を越えると信頼性が急激に劣化することが実験的に実証された。また、図2の縦軸に対数目盛りを用いていることを考慮すると、比T1/(T1+T2)を0.2以下に設定することは、high-kゲート絶縁膜の信頼性を飛躍的に向上させる効果を持っていることが分かる。
【0018】
以上のように、図1及び図2に示す結果から、high-kゲート絶縁膜の信頼性の観点からは、界面層厚さT1の全体厚さ(T1+T2)に対する比を0.3以下にすることが必須であり、また、比T1/(T1+T2)を0.2以下にすることがより好ましい。
【0019】
本発明は、以上の知見に基づきなされたものであって、具体的には、本発明に係る半導体装置は、半導体基板上に形成された高誘電率絶縁膜を有する半導体装置を前提とし、高誘電率絶縁膜は、半導体基板との界面に形成された界面層と、界面層の上に形成され、界面層よりも比誘電率が高い高誘電率層とを有し、界面層の厚さT1及び高誘電率層の厚さT2は、T1/(T1+T2)≦0.3の関係を満たす。
【0020】
本発明の半導体装置によると、高誘電率絶縁膜における界面層厚さT1の全体厚さ(T1+T2)に対する比を0.3以下にするため、高誘電率絶縁膜に電圧が印加された場合にも界面層への電界集中を抑制できる。従って、このような高誘電率絶縁膜を用いることによって、長い信頼性寿命を持つhigh-kゲート絶縁膜を実現することができる。また、このとき、比誘電率の低い界面層が薄く且つ比誘電率の高い高誘電率層が厚いので、high-kゲート絶縁膜のEOTを小さくすることができる。
【0021】
本発明の半導体装置において、T1及びT2は、T1/(T1+T2)≦0.2の関係を満たすことが好ましい。
【0022】
このようにすると、高誘電率絶縁膜の信頼性をより向上させることができる。
【0023】
本発明の半導体装置において、界面層の比誘電率ε1は3.9以上で且つ7.0以下であると共に高誘電率層の比誘電率ε2は7.0よりも大きく、高誘電率層における比誘電率ε2の平均値ε2avは12.0以上で且つ18.0以下であることが好ましい。
【0024】
このようにすると、高誘電率層と界面層との間の比誘電率の差が所定の範囲内に制限されるため、電圧印加時の界面層への電界集中がより緩和され、高誘電率絶縁膜の信頼性をより向上させることができる。
【0025】
本発明の半導体装置において、界面層の比誘電率ε1は3.9以上で且つ7.0以下であると共に高誘電率層の比誘電率ε2は7.0よりも大きく、高誘電率層は、一の金属とシリコンと酸素とを含むシリケートよりなり、高誘電率層の組成をMXSiYO(但し、Mは一の金属を表し、X>0、Y>0である)としたときに、X及びYは、0.20≦Y/(X+Y)≦0.30の関係を満たすことが好ましい。
【0026】
このようにすると、高誘電率層の材料としてシリコンを含まない完全な金属酸化物を用いた場合と比べて、高誘電率層と界面層との間の比誘電率の差が小さくなるため、電圧印加時の界面層への電界集中がより緩和され、その結果、高誘電率絶縁膜の信頼性をより向上させることができる。
【0027】
本発明の半導体装置において、高誘電率層は、ハフニウム又はジルコニウムとシリコンと酸素とを含むシリケートよりなることが好ましい。
【0028】
このようにすると、長い信頼性寿命を持つhigh-kゲート絶縁膜を確実に実現することができる。
【0029】
【発明の実施の形態】
以下、本発明の一実施形態に係る半導体装置及びその製造方法について図面を参照しながら説明する。
【0030】
図3(a)〜(e)は本実施形態に係る半導体装置の製造方法の各工程を示す断面図である。
【0031】
図3(a)に示すように、例えばSi(100)基板11上に素子分離用絶縁膜12を形成し、それによってデバイス領域RD を規定する。
【0032】
次に、Si基板11に対して、標準RCA洗浄及び希釈HF洗浄を順次行なった後、例えばNH3 ガス中でSi基板11に対して600〜700℃程度の熱処理を行なう。これにより、図3(b)に示すように、デバイス領域RD のSi基板11上にシリコン窒化膜(Si34膜)13が形成される。
【0033】
次に、図3(c)に示すように、例えばCVD法を用いて、Si34膜13の上にHfO2 膜14を形成する。具体的には、液体HfソースであるHf t-butoxide (C1636HfO4 )中にN2 等のキャリアガスを吹き込んでバブリングを行なう。これにより、液体Hfソースを気体状態にして該ソースガスをキャリアガスと共に反応炉内に導入し、500℃程度の温度下でRT−CVD(Rapid Thermal CVD )処理を使用してHfO2 膜14を形成する。このとき、HfO2 膜14の成長速度又は膜質の向上のために乾燥O2 ガスを反応炉内に導入する。このように形成されたHfO2 膜14に対して組成分析を行なったところ、Hfソース中にHf、O、C及びHが含まれているため、HfO2 膜14の内部に1〜2原子%程度以下の微量なC及びHが含有されていた。尚、反応炉内にはN2 ガスも導入されるが、500℃程度の温度下ではN2 ガスは非常に不活性であるため、N2 ガスの寄与は非常に小さい。
【0034】
次に、例えばN2 ガス中で、HfO2 膜14に対して600〜800℃程度のPDA処理を30秒間程度行なう。これにより、Si基板11の酸化、HfO2 膜14からの水素の脱離、HfO2 膜14の緻密化及び微結晶化、並びに、Si基板11又はSi34膜13とHfO2 膜14との間におけるSi及びHfの相互拡散等の反応が生じる。その結果、HfO2 膜14の堆積当初(図3(c)参照)における、Si基板11上にSi34膜13が形成され且つSi34膜13上にHfO2 膜14が形成された構造は、最終的に、図3(d)に示すように、Si基板11上に比誘電率の低い界面層15が形成され且つ界面層15上に比誘電率の高いhigh-k層16が形成された構造に変化する。ここで、界面層15はSiO2 又はSiO2 の組成に近いシリケートよりなり、high-k層16はHfO2 又はHfO2 の組成に近いシリケートよりなる。また、界面層15及びhigh-k層16にはそれぞれ微量のNが含まれる。
【0035】
次に、図3(e)に示すように、界面層15とhigh-k層16との積層構造を有するhigh-kゲート絶縁膜の上に、例えばポリシリコンよりなるゲート電極17を形成する。具体的には、SiH4 を用いて540℃程度の蒸着温度でポリシリコン膜を形成した後、該ポリシリコン膜に対して例えば5×1015cmー2のドーズ量でPイオンを注入し、その後、イオン注入されたポリシリコン膜をパターン化することによりゲート電極17を形成する。これにより、nMOSFET構造が完成する。尚、ゲート電極17に注入された不純物に対する活性化アニールは、乾燥N2 ガス中における900℃、30秒間のRTP(Rapid Thermal Process )により行なった。
【0036】
本実施形態の特徴は、例えばHfO2 膜14の形成前にSi基板11上にSi34膜13を形成することにより、又は例えばHfO2 膜14に対するPDAの処理温度を低めに設定したり若しくは該PDAの処理時間を短めに設定すること等により、high-kゲート絶縁膜全体の厚さに対する界面層15の厚さの比を所定の範囲内に設定することである。具体的には、high-kゲート絶縁膜全体の厚さ、つまり界面層15の厚さT1とhigh-k層16の厚さT2との合計厚さ(T1+T2)に対する界面層15の厚さT1の比を0.3以下、より好ましくは0.2以下に設定することである。これにより、本実施形態においては、ゲート電圧印加時にも界面層15への電界集中を抑制できるので、長い信頼性寿命を持つhigh-kゲート絶縁膜を実現することができる。また、界面層15とhigh-k層16とが積層されてなるゲート絶縁膜を有するMOSキャパシタに対して、LCR(inductance - capacitance - resistance )メータを用いてCV(capacitance - voltage )測定を行ない、その測定結果に基づいて、ゲート電極の空乏化又は基板の量子化効果等を考慮して、シミュレーションプログラムによりゲート絶縁膜のEOTを算出したところ、十分に小さなEOTが得られた。すなわち、本実施形態においては、比誘電率の低い界面層15が薄く且つ比誘電率の高いhigh-k層16が厚いので、high-kゲート絶縁膜のEOTを小さくすることができる。
【0037】
図4(a)は、本実施形態の半導体装置、つまりHfプレカーサーを用いて形成されたHfO2 誘電体をhigh-k材料とするゲート絶縁膜を備えたMOSFETの高分解能断面TEM(transmission electron microscope)像を示している。図4(a)に示すように、本実施形態の半導体装置におけるhigh-kゲート絶縁膜の全体厚さ(界面層15の厚さT1とhigh-k層16の厚さT2との合計(T1+T2))は3.0〜3.3nm程度である。また、界面層15の厚さT1は0.4〜0.5nm程度である。すなわち、high-kゲート絶縁膜全体の厚さに対する界面層15の厚さの比T1/(T1+T2)は0.12〜0.17程度であり、本発明で推奨する関係:T1/(T1+T2)≦0.3(より好ましくはT1/(T1+T2)≦0.2)を十分に満たしている。
【0038】
図4(b)は、比較例としての半導体装置、つまり本実施形態と同様の方法により形成されたHfO2 誘電体をhigh-k材料とするゲート絶縁膜を備えた他のMOSFETの高分解能断面TEM像を示している。図4(b)に示すように、比較例の半導体装置においては、図4(a)に示す本実施形態のMOSキャパシタ構造と対応するように、Si基板21上に、界面層25とhigh-k層26との積層構造からなるゲート絶縁膜を介して、Poly−Siよりなるゲート電極27が形成されている。また、比較例の半導体装置においては、high-kゲート絶縁膜の全体厚さ(界面層25の厚さT1’とhigh-k層26の厚さT2’との合計(T1’+T2’))は3.0〜3.3nm程度である。また、界面層25の厚さT1’は1.0nm程度である。すなわち、high-kゲート絶縁膜全体の厚さに対する界面層25の厚さの比T1’/(T1’+T2’)は0.30〜0.33程度であり、前述の本発明で推奨する関係を満たしていない。
【0039】
図4(a)に示す本実施形態のMOSキャパシタ構造、及び、図4(b)に示す比較例のMOSキャパシタ構造のそれぞれについて、ゲート面積を5000μm2 として、印加電圧3.0V(ゲート電極側が低電位)のストレス下(温度は室温)でのゲート絶縁膜の信頼性寿命を算出した。その結果、界面層の相対厚さが小さい本実施形態のゲート絶縁膜の信頼性寿命は1×104 秒程度であり、界面層の相対厚さが大きい比較例のゲート絶縁膜の信頼性寿命は1×102 秒程度であった。すなわち、high-kゲート絶縁膜全体の厚さに対する界面層の厚さの比T1/(T1+T2)が0.2以下であると、high-kゲート絶縁膜の信頼性寿命が劇的に向上する。これは、Si基板表面に形成される低誘電率の界面層を薄くできると、該界面層に集中する強い電界強度に起因して信頼性劣化が生じる事態を回避できるためと考えられる。
【0040】
ところで、図4(a)及び(b)に示すように、high-kゲート絶縁膜の高分解能断面TEM像においては、界面層の像はhigh-k層の像と比べて明らかに白くなる。ここで、high-kゲート絶縁膜の組成をHfXSiYO(但しX>0、Y>0)とすると、Y/(X+Y)=0.90が界面層とhigh-k層との境界に対応する。尚、high-kゲート絶縁膜の組成は、Si基板側から次第にSi組成が減少するように、言い換えると、Y/(X+Y)の値が1.0から次第に減少するように変化する。すなわち、0.90≦Y/(X+Y)≦1.0の関係を満たす範囲が界面層であり、Y/(X+Y)<0.90の関係を満たす範囲がhigh-k層である。このとき、界面層の比誘電率ε1は3.9以上で且つ7.0以下であると共にhigh-k層の比誘電率ε2は7.0よりも大きい。
【0041】
尚、本実施形態において、Si基板11上にSi34膜13を介してHfO2 膜14を形成した後、HfO2 膜14に対してPDA処理を行ない、それにより、界面層15とhigh-k層16との積層構造を有するhigh-kゲート絶縁膜を形成したが、このとき、窒素原子がゲート絶縁膜のいずれかの部分(基板近傍、電極近傍、膜中央部等)に含まれていてもよい。また、PDA処理条件は特に限定されるものではないが、PDA処理温度は800℃程度以下であり、PDA処理温度は30秒程度以下であることが好ましい。
【0042】
また、本実施形態において、液体HfソースであるHf t-butoxide を用いてHfO2 膜14を形成したが、HfO2 膜14の形成方法は特に限定されるものではない。具体的には、例えば固体原料であるHf nitrato(Hf(NO34)を加熱して液体状態にすると共に該液状の原料中にAr等のキャリアガスを吹き込んでバブリングを行なった後、気化した原料をキャリアガスと共に、基板ヒーターとコールドウォールとを有するCVD装置の反応炉内に導入し、その後、200℃程度の温度下でRT−CVD処理を使用してHfO2 膜14を形成してもよい。このとき、HfO2 膜14の成長速度又は膜質の向上のために乾燥O2 ガスを反応炉内に導入する。このように形成されたHfO2 膜14に対して組成分析を行なった場合、Hfソース中にHf、O、及びNが含まれているため、HfO2 膜14の内部に1〜2原子%程度以下の微量なNが含有される。尚、反応炉内にはArガスも導入されるが、200℃程度の温度下ではArガスは非常に不活性であるため、Arガスの寄与は非常に小さい。
【0043】
また、本実施形態において、high-kゲート絶縁膜(つまりその中のhigh-k層16)の材料としてHfO2 を用いた。しかし、これに代えて、他の金属酸化物、具体的には、Hfと同様の性質を持つZrの酸化物(ZrO2 )、TiO2 、Ta25、La23又はAl23等を用いた場合にも、界面層15の厚さT1及びhigh-k層16の厚さT2がT1/(T1+T2)≦0.3の関係(より好ましくはT1/(T1+T2)≦0.2の関係)を満たす限り、high-kゲート絶縁膜の信頼性寿命について本実施形態と同様の劇的な向上効果が生じる。特に、界面層の比誘電率ε1が3.9以上で且つ7.0以下であると共にhigh-k層16の比誘電率ε2が7.0よりも大きく、さらに、high-k層16における比誘電率ε2の平均値ε2avが12.0以上で且つ18.0以下である場合には、次のような特別な効果が得られる。すなわち、high-k層16と界面層15との間の比誘電率の差が所定の範囲内に制限されるため、電圧印加時の界面層15への電界集中がより緩和され、high-kゲート絶縁膜の信頼性をより向上させることができる。
【0044】
また、本実施形態において、high-kゲート絶縁膜(つまりその中のhigh-k層16)の材料として、組成がMXSiYO(但しMは一の金属を表し、X>0、Y>0である)で表される金属シリケート(金属、シリコン及び酸素以外の元素を含んでいてもよい)、例えばHfシリケート(HfXSiY2 )又はZrシリケート(ZrXSiY2 )等を用いた場合にも、比T1/(T1+T2)≦0.3の関係(好ましくはT1/(T1+T2)≦0.2の関係)を満たす限り、high-kゲート絶縁膜の信頼性寿命について本実施形態と同様の劇的な向上効果が生じる。特に、界面層の比誘電率ε1が3.9以上で且つ7.0以下であると共にhigh-k層16の比誘電率ε2が7.0よりも大きく、さらに、high-k層16が0.20≦Y/(X+Y)≦0.30の関係を満たす金属シリケートMXSiYOである場合には、次のような特別な効果が得られる。すなわち、シリコンを含まない完全な金属酸化物を用いた場合と比べて、high-k層16と界面層15との間の比誘電率の差が小さくなるため、電圧印加時の界面層15への電界集中がより緩和され、その結果、high-kゲート絶縁膜の信頼性をより向上させることができる。
【0045】
ところで、本実施形態のHfO2 膜14に代えて例えばHfシリケート膜を形成する場合、次のような方法を用いることができる。すなわち、液体HfソースであるHf t-butoxide (C1636HfO4 )及びSiソースであるTDEAS(Tetrakis Diethyl Amino Silicon:Si[N(C2H5)2]4 )を気化して、キャリアガスであるN2 ガスと共に反応炉内に導入した後、300〜500℃程度の温度下でCVD処理を行なうことにより、Hfシリケート膜を形成できる。このとき、HfソースとSiソースとの混合比、又はCVD処理の温度を調節することによって、Hfシリケート膜の組成を変化させることができる。また、Hfシリケート膜の成長速度又は膜質の向上のために、乾燥O2 ガスを反応炉内に導入してもよい。
【0046】
また、本実施形態において、基板としてSi基板11を用いたが、これに代えて、他の半導体基板、例えばSiGe基板又はSiC基板等を用いてもよい。
【0047】
また、本実施形態において、ゲート電極17としてPoly−Siゲート電極を用いたが、これに代えて、メタルゲート電極を用いてもよい。具体的には、例えばArスパッタによるPVD(physical vapor deposition )法を用いて、TiN膜とAl膜との積層構造、又はTaN膜の単層構造を有するメタルゲート電極を形成してもよい。
【0048】
【発明の効果】
本発明によると、high-kゲート絶縁膜における界面層厚さT1の全体厚さ(T1+T2)に対する比を0.3以下、より好ましくは0.2以下にするため、ゲート電圧印加時における界面層への電界集中を抑制できるので、high-kゲート絶縁膜の信頼性寿命を向上させることができる。
【図面の簡単な説明】
【図1】 high-kゲート絶縁膜の信頼性寿命の長さと、界面層厚さT1のhigh-kゲート絶縁膜全体の厚さ(T1+T2)(但しT2はhigh-k層の物理的厚さ)に対する比との相関をシミュレーションを用いて調べた結果を示す図である。
【図2】 high-kゲート絶縁膜の信頼性寿命の長さと、界面層厚さT1のhigh-kゲート絶縁膜全体の厚さ(T1+T2)(但しT2はhigh-k層の物理的厚さ)に対する比との相関を実験により調べた結果を示す図である。
【図3】(a)〜(e)は本発明の一実施形態に係る半導体装置の製造方法の各工程を示す断面図である。
【図4】(a)は本発明の一実施形態に係る半導体装置の高分解能断面TEM像を示す図であり、(b)は比較例に係る半導体装置の高分解能断面TEM像を示す図である。
【図5】従来の半導体装置の断面図である。
【符号の説明】
11 Si基板
12 素子分離用絶縁膜
13 Si34
14 HfO2
15 界面層
16 high-k層
17 ゲート電極
21 Si基板
25 界面層
26 high-k層
27 ゲート電極
D デバイス領域
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device having a gate insulating film made of a high dielectric material.
[0002]
[Prior art]
With the recent progress in technology for higher integration and higher speed in semiconductor devices, MOSFETs have been miniaturized. As the gate insulating film is made thinner with miniaturization, problems such as an increase in gate leakage current due to tunneling current become obvious. In order to suppress this problem, HfO 2 , ZrO 2 , La 2 O Three TiO 2 Or Ta 2 O Five By using a gate insulating film (hereinafter referred to as a high-k gate insulating film) using a high dielectric constant material such as 2 A method of increasing the physical film thickness while realizing the equivalent film thickness (hereinafter referred to as EOT (Equivalent Oxide Thickness)) has been studied.
[0003]
In recent system LSIs, it is common to integrate an internal circuit that performs arithmetic processing, a peripheral circuit that handles input and output, and a circuit having a plurality of functions such as a DRAM on a single chip. For a MOSFET constituting such a system LSI, high driving force and low leakage current are required.
[0004]
As a conventional method for forming a high-k gate insulating film, a method described in JP 2000-058832 A (United States Patent 6,013,553) is known.
[0005]
FIG. 5 shows a cross-sectional structure of a conventional semiconductor device disclosed in the above publication, specifically, a MOSFET having a high-k gate insulating film made of zirconium oxynitride or hafnium oxynitride.
[0006]
As shown in FIG. 5, an epitaxial Si layer 2 is formed on the Si substrate 1. The upper portion of the epitaxial Si layer 2 is doped with impurities, and the upper portion becomes the channel region 3 when a voltage is applied. A conductive gate electrode 5 is formed on the channel region 3 via a high-k gate insulating film 4.
[0007]
The formation method of the high-k gate insulating film 4 is as follows. That is, after forming the epitaxial Si layer 2 including the portion to become the channel region 3 on the Si substrate 1, the pressure is 1.33 × 10 × 10. -1 An oxide layer having a thickness of less than 1 nm is formed by performing a heat treatment at about 600 to 700 ° C. for about 30 seconds on the Si substrate 1 in an oxygen atmosphere of about Pa. Thereafter, the oxide layer is left as it is, or is removed by dilute HF, and the Si surface is terminated with hydrogen, or an ultrahigh vacuum state (1.33 × 10 6 using a cluster tool) is used. -6 Either a sublimation by a heat treatment at about 780 ° C. at about Pa) to form an atomically smooth Si surface is performed. Instead of leaving the oxide layer, that is, the silicon oxide film, a protective barrier layer made of an ultrathin silicon oxynitride film may be formed.
[0008]
After preparing the Si substrate 1 having either a clean Si surface, an oxide layer, or a protective barrier layer as described above, a sputtering method, vapor deposition method, chemical vapor deposition (CVD) is performed on the Si substrate 1. A metal layer made of zirconium or hafnium is deposited by a method or a plasma CVD method. Then, NO or N against the metal layer 2 Oxynitriding treatment using a gas containing oxygen and nitrogen such as O, N 2 And O 2 Remote plasma processing at low temperature using a substrate (the substrate processing chamber and the plasma generation chamber are different), or NH Three A high-k gate insulating film 4 made of zirconium oxynitride or hafnium oxynitride is formed by performing a remote plasma nitridation process using silicon and a subsequent oxidation process.
[0009]
Thereafter, the high-k gate insulating film 4 is densified by annealing the high-k gate insulating film 4 at about 750 ° C. for 20 seconds in an inert gas atmosphere such as Ar or a reducing gas atmosphere. To do. The high-k gate insulating film 4 thus formed is amorphous or polycrystalline, and SiO 2 The dielectric constant is significantly higher than the relative dielectric constant.
[0010]
[Problems to be solved by the invention]
However, the above-described conventional MOSFET has a problem that the reliability life of the high-k gate insulating film is shortened.
[0011]
In view of the above, an object of the present invention is to realize a high-k gate insulating film having a long reliability life.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present inventor has studied the cause of shortening of the reliability life of the conventional high-k gate insulating film, and as a result, has obtained the following knowledge. That is, when a high-k gate insulating film is formed on a silicon substrate by using the above-described conventional method, SiO interface is formed on the silicon substrate interface. 2 A silicate (a ternary compound of high-k material (metal oxide such as zirconium oxide) and silicon) is formed. In general, silicates have a lower dielectric constant than the original high-k material that does not contain silicon. Further, as a result of the crystallization of the high-k material constituting the gate insulating film being advanced by annealing (PDA (Post Deposition Anneal) for densifying the gate insulating film) after the deposition of the high-k gate insulating film, oxygen diffuses from the -k material through the grain boundaries to the silicon substrate, which causes SiO at the silicon substrate interface 2 Will be formed. That is, the high-k gate insulating film is made of SiO having a low relative dielectric constant. 2 Or SiO 2 And a high-k layer having a high relative dielectric constant or a high-k layer having a silicate close to the composition of the high-k material. However, in such a laminated structure, when a voltage is applied through the gate electrode, electric field concentration occurs in the interface layer having a low dielectric constant, and as a result, dielectric breakdown is likely to occur, resulting in a high-k gate insulating film. It is considered that the reliability, which is an important characteristic of, deteriorates.
[0013]
Accordingly, the inventor of the present application has determined that the reliability lifetime of the high-k gate insulating film and the ratio of the interface layer thickness to the total thickness of the high-k gate insulating film are T1 / (T1 + T2) (where T1 is the interface layer thickness). The correlation with the physical thickness (T2 is the physical thickness of the high-k layer) was examined using simulation. The result is shown in FIG. The simulation was performed by applying a trap generation model (JHStathis, Technical Digest of International Electron Device and Material (1998), p167.) To a high-k gate insulating film. Specifically, for the high-k gate insulating film, the leakage current J g Leakage current J immediately after stress application 0 , Defect generation rate per injected charge P g (= Current increase ratio ΔJ at dielectric breakdown) g / J 0 ), And critical defect density N when it leads to dielectric breakdown bd , And based on these values, the dielectric breakdown lifetime T in the high-k gate insulating film is obtained. bd (= N bd / P g ) In the simulation, the ratio T1 / (T1 + T2) is changed while adjusting the physical thicknesses T1 and T2 so that the EOT of the high-k gate insulating film is always kept at 1.5 nm. The reliability lifetime of the high-k gate insulating film under a stress of 1 V applied voltage (temperature is room temperature) was calculated. However, in the simulation, the relative dielectric constant ε1 of the interface layer is fixed to a constant value of 3.9, whereas the relative dielectric constant ε2 of the high-k layer is 8.0, 12.0, 18.0. And multiple values of 24.0. Here, the relationship EOT = T1 + (ε1 / ε2) × T2 holds.
[0014]
As shown in FIG. 1, when the ratio T1 / (T1 + T2), that is, the ratio of the interface layer thickness to the total thickness of the high-k gate insulating film is 0.2 or less, the reliability of the high-k gate insulating film Can be kept high. Further, as the ratio T1 / (T1 + T2) increases, the reliability of the high-k gate insulating film tends to deteriorate. Furthermore, considering that the logarithmic scale is used for the vertical axis in FIG. 1, setting the ratio T1 / (T1 + T2) to 0.2 or less dramatically improves the reliability of the high-k gate insulating film. It turns out that it has the effect to make it. Specifically, by setting the ratio T1 / (T1 + T2) to 0.2 or less, for example, the reliability life is increased by three orders of magnitude or more compared to the case where the ratio T1 / (T1 + T2) is about 0.5. can do.
[0015]
Further, as shown in FIG. 1, in a gate insulating film having a structure where the ratio T1 / (T1 + T2) is 0.0 to 0.2, the high-k layer has a relative dielectric constant ε2 of 8.0 to 12.2. As the value increases to 0, the length of the reliability life increases, and in the range of ε2 from 12.0 to 18.0, the length of the reliability life is almost saturated and shows the maximum value. On the other hand, when ε2 increases from 18.0 to 24.0, the length of the reliability life decreases. Incidentally, in general, the value of the relative dielectric constant ε2 in the high-k layer changes in the thickness direction. Therefore, the average value of the relative dielectric constant ε2 in the high-k layer is ε2 av Ε2 av Is preferably 12.0 or more and 18.0 or less. When a silicate film containing one metal, silicon and oxygen is used as the high-k layer, the composition of the high-k layer is M X Si Y Assuming O (where M represents one metal and X> 0 and Y> 0), 12.0 ≦ ε2 described above av The condition of ≦ 18.0 is equivalent to the condition of 0.20 ≦ Y / (X + Y) ≦ 0.30. That is, from the viewpoint of the reliability of the high-k gate insulating film, 0.20 ≦ Y / (X + Y) ≦ 0.30 rather than using a complete metal oxide containing no silicon as the material of the high-k layer. Silicon-containing silicate M satisfying the relationship X Si Y It is preferable to use O. The reason is considered to be that the electric field concentration on the interface layer is reduced by reducing the difference in relative dielectric constant between the high-k layer and the interface layer. The interface layer is also M X Si Y In some cases, silicate represented by O may be included, but Y / (X + Y) in this silicate is 0.90 or more, and compositionally SiO 2 2 Is almost equivalent.
[0016]
Further, the inventor of the present application has determined the reliability lifetime of the high-k gate insulating film and the total thickness (T1 + T2) of the high-k gate insulating film having the interface layer thickness T1 (where T2 is the physicality of the high-k layer). The correlation with the ratio to the thickness was determined experimentally. The result is shown in FIG. The interface layer used in the experiment has a composition of SiO. 2 SiON film (relative permittivity ε1 = 3.9) close to, and the high-k layer used in the experiment is Si formed by CVD (chemical vapor deposition) method. Three N Four It is a film (relative dielectric constant ε2 = 7.5). In the experiment, the ratio T1 / (T1 + T2) was changed while adjusting the physical thicknesses T1 and T2 so that the EOT of the high-k gate insulating film always kept 3.0 nm. The total amount of charge injected into the insulating film before breakdown occurs under a stress of applied voltage 3.5 V (temperature is 100 ° C.) (total breakdown charge Q bd ) Was measured. Here, the total dielectric breakdown Q bd Corresponds to the reliability lifetime of the high-k gate insulating film.
[0017]
As shown in FIG. 2, when the ratio T1 / (T1 + T2) is 0.2 or less, the reliability of the high-k gate insulating film can be maintained high. On the other hand, when the ratio exceeds 0.3, the reliability increases rapidly. It was experimentally proved to deteriorate. In addition, considering that the logarithmic scale is used on the vertical axis in FIG. 2, setting the ratio T1 / (T1 + T2) to 0.2 or less dramatically improves the reliability of the high-k gate insulating film. It turns out that it has the effect to make it.
[0018]
As described above, from the results shown in FIGS. 1 and 2, from the viewpoint of the reliability of the high-k gate insulating film, the ratio of the interface layer thickness T1 to the total thickness (T1 + T2) is set to 0.3 or less. It is essential that the ratio T1 / (T1 + T2) is 0.2 or less.
[0019]
The present invention has been made based on the above knowledge. Specifically, the semiconductor device according to the present invention is premised on a semiconductor device having a high dielectric constant insulating film formed on a semiconductor substrate. The dielectric constant insulating film has an interface layer formed at the interface with the semiconductor substrate, and a high dielectric constant layer formed on the interface layer and having a higher relative dielectric constant than the interface layer, and the thickness of the interface layer T1 and the thickness T2 of the high dielectric constant layer satisfy the relationship of T1 / (T1 + T2) ≦ 0.3.
[0020]
According to the semiconductor device of the present invention, when the ratio of the interface layer thickness T1 to the total thickness (T1 + T2) in the high dielectric constant insulating film is set to 0.3 or less, the voltage is applied to the high dielectric constant insulating film. Also, the electric field concentration on the interface layer can be suppressed. Therefore, a high-k gate insulating film having a long reliability life can be realized by using such a high dielectric constant insulating film. At this time, since the interface layer having a low relative dielectric constant is thin and the high dielectric constant layer having a high relative dielectric constant is thick, the EOT of the high-k gate insulating film can be reduced.
[0021]
In the semiconductor device of the present invention, T1 and T2 preferably satisfy the relationship of T1 / (T1 + T2) ≦ 0.2.
[0022]
In this way, the reliability of the high dielectric constant insulating film can be further improved.
[0023]
In the semiconductor device of the present invention, the relative dielectric constant ε1 of the interface layer is 3.9 or more and 7.0 or less, and the relative dielectric constant ε2 of the high dielectric layer is larger than 7.0. Average value ε2 of relative permittivity ε2 av Is preferably 12.0 or more and 18.0 or less.
[0024]
In this way, since the difference in relative dielectric constant between the high dielectric constant layer and the interface layer is limited within a predetermined range, the electric field concentration on the interface layer during voltage application is further relaxed, and the high dielectric constant The reliability of the insulating film can be further improved.
[0025]
In the semiconductor device of the present invention, the relative dielectric constant ε1 of the interface layer is 3.9 or more and 7.0 or less, and the relative dielectric constant ε2 of the high dielectric layer is larger than 7.0. , Which consists of a silicate containing one metal, silicon and oxygen, and the composition of the high dielectric constant layer is M X Si Y When O (where M represents one metal and X> 0 and Y> 0), X and Y satisfy the relationship of 0.20 ≦ Y / (X + Y) ≦ 0.30. Is preferred.
[0026]
In this way, the relative dielectric constant difference between the high dielectric constant layer and the interface layer is reduced compared to the case where a complete metal oxide not containing silicon is used as the material of the high dielectric constant layer. Electric field concentration on the interface layer during voltage application is further relaxed, and as a result, the reliability of the high dielectric constant insulating film can be further improved.
[0027]
In the semiconductor device of the present invention, the high dielectric constant layer is preferably made of silicate containing hafnium or zirconium, silicon, and oxygen.
[0028]
In this way, a high-k gate insulating film having a long reliability life can be reliably realized.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a semiconductor device and a manufacturing method thereof according to an embodiment of the present invention will be described with reference to the drawings.
[0030]
3A to 3E are cross-sectional views showing respective steps of the semiconductor device manufacturing method according to the present embodiment.
[0031]
As shown in FIG. 3A, for example, an element isolation insulating film 12 is formed on a Si (100) substrate 11, thereby forming a device region R. D Is specified.
[0032]
Next, after sequentially performing standard RCA cleaning and diluted HF cleaning on the Si substrate 11, for example, NH Three A heat treatment at about 600 to 700 ° C. is performed on the Si substrate 11 in a gas. As a result, as shown in FIG. D A silicon nitride film (Si Three N Four Film) 13 is formed.
[0033]
Next, as shown in FIG. 3C, for example, the CVD method is used to form Si. Three N Four HfO on the film 13 2 A film 14 is formed. Specifically, Hf t-butoxide (C 16 H 36 HfO Four ) N inside 2 Bubbling is performed by blowing a carrier gas such as. As a result, the liquid Hf source is made into a gaseous state, the source gas is introduced into the reaction furnace together with the carrier gas, and HfO is used by using RT-CVD (Rapid Thermal CVD) treatment at a temperature of about 500 ° C. 2 A film 14 is formed. At this time, HfO 2 In order to improve the growth rate or film quality of the film 14, the dry O 2 Gas is introduced into the reactor. HfO formed in this way 2 When the composition analysis was performed on the film 14, Hf, O, C, and H were contained in the Hf source. 2 The film 14 contained trace amounts of C and H of about 1 to 2 atomic% or less. In the reactor, N 2 Gas is also introduced, but at temperatures around 500 ° C, N 2 Since the gas is very inert, N 2 The contribution of gas is very small.
[0034]
Next, for example, N 2 In gas, HfO 2 The film 14 is subjected to PDA treatment at about 600 to 800 ° C. for about 30 seconds. As a result, oxidation of the Si substrate 11 and HfO 2 Desorption of hydrogen from the film 14, HfO 2 Densification and microcrystallization of the film 14, and Si substrate 11 or Si Three N Four Film 13 and HfO 2 Reaction such as interdiffusion of Si and Hf with the film 14 occurs. As a result, HfO 2 Si is deposited on the Si substrate 11 at the beginning of deposition of the film 14 (see FIG. 3C). Three N Four A film 13 is formed and Si Three N Four HfO on the film 13 2 The structure in which the film 14 is formed finally has an interface layer 15 having a low relative dielectric constant formed on the Si substrate 11 and a high relative dielectric constant on the interface layer 15 as shown in FIG. The structure changes to the structure in which the high-k layer 16 is formed. Here, the interface layer 15 is made of SiO. 2 Or SiO 2 The high-k layer 16 is made of silicate close to the composition of HfO. 2 Or HfO 2 It consists of a silicate close to the composition. Further, the interface layer 15 and the high-k layer 16 each contain a small amount of N.
[0035]
Next, as shown in FIG. 3E, a gate electrode 17 made of, for example, polysilicon is formed on the high-k gate insulating film having a laminated structure of the interface layer 15 and the high-k layer 16. Specifically, SiH Four After forming a polysilicon film at a deposition temperature of about 540 ° C. using, for example, 5 × 10 5 with respect to the polysilicon film 15 The gate electrode 17 is formed by implanting P ions at a dose of cm −2 and then patterning the ion-implanted polysilicon film. Thereby, the nMOSFET structure is completed. The activation annealing for the impurities implanted into the gate electrode 17 is performed by dry N 2 This was performed by RTP (Rapid Thermal Process) in gas at 900 ° C. for 30 seconds.
[0036]
The feature of this embodiment is, for example, HfO 2 Before the film 14 is formed, Si is deposited on the Si substrate 11. Three N Four By forming the film 13, or for example HfO 2 The ratio of the thickness of the interface layer 15 to the total thickness of the high-k gate insulating film is set to a predetermined value by setting the PDA processing temperature for the film 14 lower or by setting the PDA processing time shorter. It is to set within the range. Specifically, the thickness T1 of the interface layer 15 with respect to the total thickness of the high-k gate insulating film, that is, the total thickness (T1 + T2) of the thickness T1 of the interface layer 15 and the thickness T2 of the high-k layer 16 Is set to 0.3 or less, more preferably 0.2 or less. Thereby, in this embodiment, since electric field concentration on the interface layer 15 can be suppressed even when a gate voltage is applied, a high-k gate insulating film having a long reliability life can be realized. Further, CV (capacitance-voltage) measurement is performed using a LCR (inductance-capacitance-resistance) meter for a MOS capacitor having a gate insulating film in which the interface layer 15 and the high-k layer 16 are laminated, When the EOT of the gate insulating film was calculated by a simulation program in consideration of the depletion of the gate electrode or the quantization effect of the substrate based on the measurement result, a sufficiently small EOT was obtained. That is, in the present embodiment, since the interface layer 15 having a low relative dielectric constant is thin and the high-k layer 16 having a high relative dielectric constant is thick, the EOT of the high-k gate insulating film can be reduced.
[0037]
FIG. 4A shows the semiconductor device of this embodiment, that is, HfO formed using an Hf precursor. 2 3 shows a high-resolution cross-sectional TEM (transmission electron microscope) image of a MOSFET provided with a gate insulating film whose dielectric is a high-k material. As shown in FIG. 4A, the total thickness of the high-k gate insulating film in the semiconductor device of this embodiment (the sum of the thickness T1 of the interface layer 15 and the thickness T2 of the high-k layer 16 (T1 + T2 )) Is about 3.0 to 3.3 nm. Further, the thickness T1 of the interface layer 15 is about 0.4 to 0.5 nm. That is, the ratio T1 / (T1 + T2) of the thickness of the interface layer 15 to the total thickness of the high-k gate insulating film is about 0.12 to 0.17, and the relationship recommended in the present invention: T1 / (T1 + T2) ≦ 0.3 (more preferably T1 / (T1 + T2) ≦ 0.2) is sufficiently satisfied.
[0038]
FIG. 4B shows a semiconductor device as a comparative example, that is, HfO formed by the same method as in this embodiment. 2 The high-resolution cross-sectional TEM image of the other MOSFET provided with the gate insulating film which uses a dielectric as a high-k material is shown. As shown in FIG. 4B, in the semiconductor device of the comparative example, the interface layer 25 and the high-layer are formed on the Si substrate 21 so as to correspond to the MOS capacitor structure of this embodiment shown in FIG. A gate electrode 27 made of Poly-Si is formed through a gate insulating film having a laminated structure with the k layer 26. In the semiconductor device of the comparative example, the total thickness of the high-k gate insulating film (the total of the thickness T1 ′ of the interface layer 25 and the thickness T2 ′ of the high-k layer 26 (T1 ′ + T2 ′)) Is about 3.0 to 3.3 nm. Further, the thickness T1 ′ of the interface layer 25 is about 1.0 nm. That is, the ratio T1 ′ / (T1 ′ + T2 ′) of the thickness of the interface layer 25 to the total thickness of the high-k gate insulating film is about 0.30 to 0.33, and is the relationship recommended in the present invention. Does not meet.
[0039]
The gate area is 5000 μm for each of the MOS capacitor structure of the present embodiment shown in FIG. 4A and the MOS capacitor structure of the comparative example shown in FIG. 2 As a result, the reliability life of the gate insulating film under a stress (temperature is room temperature) under an applied voltage of 3.0 V (the gate electrode side is low potential) was calculated. As a result, the reliability lifetime of the gate insulating film of this embodiment in which the relative thickness of the interface layer is small is 1 × 10. Four The reliability life of the gate insulating film of the comparative example in which the relative thickness of the interface layer is large is about 1 × 10 seconds. 2 It was about a second. That is, when the ratio T1 / (T1 + T2) of the interface layer thickness to the total thickness of the high-k gate insulating film is 0.2 or less, the reliability life of the high-k gate insulating film is dramatically improved. . This is presumably because if the low dielectric constant interface layer formed on the surface of the Si substrate can be made thin, it is possible to avoid the occurrence of reliability degradation due to the strong electric field strength concentrated on the interface layer.
[0040]
Incidentally, as shown in FIGS. 4A and 4B, in the high-resolution cross-sectional TEM image of the high-k gate insulating film, the image of the interface layer is clearly white compared to the image of the high-k layer. Here, the composition of the high-k gate insulating film is Hf X Si Y If O (where X> 0, Y> 0), Y / (X + Y) = 0.90 corresponds to the boundary between the interface layer and the high-k layer. Note that the composition of the high-k gate insulating film changes so that the Si composition gradually decreases from the Si substrate side, in other words, the value of Y / (X + Y) gradually decreases from 1.0. That is, the range satisfying the relationship of 0.90 ≦ Y / (X + Y) ≦ 1.0 is the interface layer, and the range satisfying the relationship of Y / (X + Y) <0.90 is the high-k layer. At this time, the relative dielectric constant ε1 of the interface layer is not less than 3.9 and not more than 7.0, and the relative dielectric constant ε2 of the high-k layer is larger than 7.0.
[0041]
In the present embodiment, Si on the Si substrate 11 Three N Four HfO through membrane 13 2 After forming the film 14, HfO 2 PDA treatment was performed on the film 14, thereby forming a high-k gate insulating film having a stacked structure of the interface layer 15 and the high-k layer 16. Such a portion (near the substrate, near the electrode, the center of the film, etc.) may be included. PDA processing conditions are not particularly limited, but the PDA processing temperature is preferably about 800 ° C. or lower, and the PDA processing temperature is preferably about 30 seconds or lower.
[0042]
In the present embodiment, HfO is used by using Hf t-butoxide which is a liquid Hf source. 2 A film 14 was formed, but HfO 2 The formation method of the film | membrane 14 is not specifically limited. Specifically, for example, Hf nitrato (Hf (NO Three ) Four ) Is heated to a liquid state and a carrier gas such as Ar is blown into the liquid raw material to perform bubbling, and then the reaction of a CVD apparatus having a substrate heater and a cold wall with the vaporized raw material together with the carrier gas. Introduced into the furnace and then HfO using RT-CVD process at a temperature of about 200 ° C 2 The film 14 may be formed. At this time, HfO 2 In order to improve the growth rate or film quality of the film 14, the dry O 2 Gas is introduced into the reactor. HfO formed in this way 2 When composition analysis is performed on the film 14, Hf, O, and N are contained in the Hf source. 2 The film 14 contains a trace amount of N of about 1 to 2 atomic% or less. Ar gas is also introduced into the reactor, but Ar gas is very inactive at a temperature of about 200 ° C., so the contribution of Ar gas is very small.
[0043]
In this embodiment, HfO is used as a material for the high-k gate insulating film (that is, the high-k layer 16 therein). 2 Was used. However, instead of this, other metal oxides, specifically, Zr oxide having the same properties as Hf (ZrO 2 ), TiO 2 , Ta 2 O Five , La 2 O Three Or Al 2 O Three Also, when the thickness T1 of the interface layer 15 and the thickness T2 of the high-k layer 16 are T1 / (T1 + T2) ≦ 0.3 (more preferably T1 / (T1 + T2) ≦ 0.2). As long as the relationship (1) is satisfied, the dramatic improvement effect similar to that of the present embodiment occurs in the reliability lifetime of the high-k gate insulating film. In particular, the relative dielectric constant ε1 of the interface layer is 3.9 or more and 7.0 or less, and the relative dielectric constant ε2 of the high-k layer 16 is larger than 7.0. Average value of dielectric constant ε2 ε2 av Is 12.0 or more and 18.0 or less, the following special effects can be obtained. That is, since the relative dielectric constant difference between the high-k layer 16 and the interface layer 15 is limited within a predetermined range, the electric field concentration on the interface layer 15 during voltage application is further relaxed, and the high-k layer The reliability of the gate insulating film can be further improved.
[0044]
In the present embodiment, the composition of the high-k gate insulating film (that is, the high-k layer 16 therein) is M. X Si Y A metal silicate represented by O (where M represents one metal and X> 0 and Y> 0) (may contain elements other than metal, silicon and oxygen), for example, Hf silicate (Hf X Si Y O 2 ) Or Zr silicate (Zr X Si Y O 2 ), Etc., as long as the relationship of ratio T1 / (T1 + T2) ≦ 0.3 (preferably the relationship of T1 / (T1 + T2) ≦ 0.2) is satisfied, the reliability lifetime of the high-k gate insulating film The same dramatic improvement effect as in the present embodiment occurs. In particular, the relative dielectric constant ε1 of the interface layer is 3.9 or more and 7.0 or less, the relative dielectric constant ε2 of the high-k layer 16 is larger than 7.0, and the high-k layer 16 is 0. Metal silicate M satisfying the relationship of 20 ≦ Y / (X + Y) ≦ 0.30 X Si Y When it is O, the following special effects are obtained. That is, the relative dielectric constant difference between the high-k layer 16 and the interface layer 15 is smaller than when a complete metal oxide not containing silicon is used. As a result, the reliability of the high-k gate insulating film can be further improved.
[0045]
By the way, HfO of this embodiment 2 When, for example, an Hf silicate film is formed instead of the film 14, the following method can be used. That is, Hf t-butoxide (C 16 H 36 HfO Four ) And Si source TDEAS (Tetrakis Diethyl Amino Silicon: Si [N (C 2 H Five ) 2 ] Four ) And N as the carrier gas 2 After being introduced into the reaction furnace together with the gas, a Hf silicate film can be formed by performing a CVD process at a temperature of about 300 to 500 ° C. At this time, the composition of the Hf silicate film can be changed by adjusting the mixing ratio of the Hf source and the Si source or the temperature of the CVD process. Further, in order to improve the growth rate or film quality of the Hf silicate film, dry O 2 Gas may be introduced into the reactor.
[0046]
In the present embodiment, the Si substrate 11 is used as the substrate, but instead of this, another semiconductor substrate such as a SiGe substrate or a SiC substrate may be used.
[0047]
In the present embodiment, a Poly-Si gate electrode is used as the gate electrode 17, but a metal gate electrode may be used instead. Specifically, a metal gate electrode having a laminated structure of a TiN film and an Al film or a single layer structure of a TaN film may be formed by using, for example, PVD (physical vapor deposition) by Ar sputtering.
[0048]
【The invention's effect】
According to the present invention, the ratio of the interface layer thickness T1 to the total thickness (T1 + T2) in the high-k gate insulating film is 0.3 or less, more preferably 0.2 or less. Therefore, the reliability life of the high-k gate insulating film can be improved.
[Brief description of the drawings]
FIG. 1 shows the reliability lifetime of a high-k gate insulating film and the total thickness of the high-k gate insulating film having an interface layer thickness T1 (T1 + T2) (where T2 is the physical thickness of the high-k layer) It is a figure which shows the result of having investigated the correlation with the ratio with respect to) using simulation.
FIG. 2 shows the reliability lifetime of the high-k gate insulating film and the total thickness of the high-k gate insulating film having the interface layer thickness T1 (T1 + T2) (where T2 is the physical thickness of the high-k layer) It is a figure which shows the result of having investigated the correlation with ratio to) by experiment.
FIGS. 3A to 3E are cross-sectional views illustrating steps of a method for manufacturing a semiconductor device according to an embodiment of the present invention. FIGS.
4A is a diagram showing a high-resolution cross-sectional TEM image of a semiconductor device according to an embodiment of the present invention, and FIG. 4B is a diagram showing a high-resolution cross-sectional TEM image of a semiconductor device according to a comparative example. is there.
FIG. 5 is a cross-sectional view of a conventional semiconductor device.
[Explanation of symbols]
11 Si substrate
12 Insulating film for element isolation
13 Si Three N Four film
14 HfO 2 film
15 Interface layer
16 high-k layers
17 Gate electrode
21 Si substrate
25 Interface layer
26 high-k layer
27 Gate electrode
R D Device area

Claims (28)

半導体基板上に形成された高誘電率絶縁膜を有する半導体装置であって、
前記高誘電率絶縁膜は、
前記半導体基板との界面に形成された界面層と、
前記界面層の上に形成され、前記界面層よりも比誘電率が高い高誘電率層とを有し、
前記界面層の厚さT1及び前記高誘電率層の厚さT2は、
T1/(T1+T2)≦0.3の関係を満たし、
前記界面層の比誘電率ε1は3.9以上で且つ7.0以下であると共に前記高誘電率層の比誘電率ε2は7.0よりも大きく、
前記高誘電率層は、第1の金属とシリコンと酸素とを含むシリケートよりなり、
前記高誘電率層の組成をM X Si Y O(但し、Mは前記第1の金属を表し、X>0、Y>0である)としたときに、
X及びYは、
0.20≦Y/(X+Y)≦0.30の関係を満たすことを特徴とする半導体装置。
A semiconductor device having a high dielectric constant insulating film formed on a semiconductor substrate,
The high dielectric constant insulating film is
An interface layer formed at the interface with the semiconductor substrate;
A high dielectric constant layer formed on the interface layer and having a relative dielectric constant higher than that of the interface layer;
The interface layer thickness T1 and the high dielectric constant layer thickness T2 are:
Meet the relationship of T1 / (T1 + T2) ≦ 0.3,
The relative dielectric constant ε1 of the interface layer is 3.9 or more and 7.0 or less, and the relative dielectric constant ε2 of the high dielectric layer is larger than 7.0.
The high dielectric constant layer is made of a silicate containing a first metal, silicon, and oxygen,
When the composition of the high dielectric constant layer is M X Si Y O (where M represents the first metal and X> 0, Y> 0),
X and Y are
A semiconductor device characterized by satisfying a relationship of 0.20 ≦ Y / (X + Y) ≦ 0.30 .
前記高誘電率層の比誘電率ε2は7.0よりも大きく且つ18.0以下であることを特徴とする請求項1に記載の半導体装置。2. The semiconductor device according to claim 1, wherein a relative dielectric constant ε <b> 2 of the high dielectric constant layer is greater than 7.0 and 18.0 or less. 前記高誘電率層の比誘電率ε2は12.0以上で且つ18.0以下であることを特徴とする請求項2に記載の半導体装置。The semiconductor device according to claim 2, wherein a relative dielectric constant ε2 of the high dielectric constant layer is 12.0 or more and 18.0 or less. 前記第1の金属はHf又はZrであることを特徴とする請求項1〜3のいずれか1項に記載の半導体装置。The semiconductor device according to claim 1, wherein the first metal is Hf or Zr. 前記第1の金属はTi、Ta、La又はAlであることを特徴とする請求項1〜3のいずれか1項に記載の半導体装置。The semiconductor device according to claim 1, wherein the first metal is Ti, Ta, La, or Al. T1及びT2は、
T1/(T1+T2)≦0.2の関係を満たすことを特徴とする請求項1〜5のいずれか1項に記載の半導体装置。
T1 and T2 are
T1 / (T1 + T2) The semiconductor device according to any one of claims 1-5 characterized by satisfying the relation of ≦ 0.2.
前記界面層は窒素を含むことを特徴とする請求項1〜6のいずれか1項に記載の半導体装置。The semiconductor device according to claim 1, wherein the interface layer contains nitrogen. 前記界面層の窒素濃度は原子数比で4/7以下であることを特徴とする請求項7に記載の半導体装置。The semiconductor device according to claim 7, wherein the nitrogen concentration in the interface layer is 4/7 or less in terms of atomic ratio. 前記高誘電率層は炭素及び水素を含むことを特徴とする請求項1〜8のいずれか1項に記載の半導体装置。The semiconductor device according to claim 1, wherein the high dielectric constant layer contains carbon and hydrogen. 前記高誘電率層における炭素及び水素のそれぞれの濃度は2原子%以下であることを特徴とする請求項9に記載の半導体装置。The semiconductor device according to claim 9, wherein the carbon and hydrogen concentrations in the high dielectric constant layer are 2 atomic% or less. 前記高誘電率層のSiOSiO of the high dielectric constant layer 2 2 換算膜厚は3.0nm程度であることを特徴とする請求項1〜10のいずれか1項に記載の半導体装置。11. The semiconductor device according to claim 1, wherein the converted film thickness is about 3.0 nm. 前記高誘電率層のSiOSiO of the high dielectric constant layer 2 2 換算膜厚は3.0nm以下であることを特徴とする請求項1〜10のいずれかに記載の半導体装置。11. The semiconductor device according to claim 1, wherein the converted film thickness is 3.0 nm or less. 前記高誘電率層のSiOSiO of the high dielectric constant layer 2 2 換算膜厚は1.5nm以上で且つ3.0nm以下であることを特徴とする請求項12に記載の半導体装置。The semiconductor device according to claim 12, wherein the converted film thickness is 1.5 nm or more and 3.0 nm or less. 前記高誘電率層のSiOSiO of the high dielectric constant layer 2 2 換算膜厚は1.5nm程度であることを特徴とする請求項12に記載の半導体装置。13. The semiconductor device according to claim 12, wherein the converted film thickness is about 1.5 nm. 前記高誘電率層のSiOSiO of the high dielectric constant layer 2 2 換算膜厚は1.5nm未満であることを特徴とする請求項12に記載の半導体装置。13. The semiconductor device according to claim 12, wherein the converted film thickness is less than 1.5 nm. 前記高誘電率絶縁膜の厚さは3.3nm以下であることを特徴とする請求項1〜15のいずれか1項に記載の半導体装置。The semiconductor device according to claim 1, wherein the high dielectric constant insulating film has a thickness of 3.3 nm or less. 前記高誘電率絶縁膜の厚さは3.0nm以上で且つ3.3nm以下であることを特徴とする請求項16に記載の半導体装置。The semiconductor device according to claim 16, wherein a thickness of the high dielectric constant insulating film is not less than 3.0 nm and not more than 3.3 nm. 前記高誘電率絶縁膜の厚さは3.0nm以下であることを特徴とする請求項16に記載の半導体装置。The semiconductor device according to claim 16, wherein a thickness of the high dielectric constant insulating film is 3.0 nm or less. 前記高誘電率絶縁膜の上にポリシリコンを含むゲート電極をさらに備えていることを特徴とする請求項1〜18のいずれか1項に記載の半導体装置。The semiconductor device according to claim 1, further comprising a gate electrode containing polysilicon on the high dielectric constant insulating film. 前記高誘電率絶縁膜の上にメタルゲート電極をさらに備えていることを特徴とする請求項1〜18のいずれか1項に記載の半導体装置。The semiconductor device according to claim 1, further comprising a metal gate electrode on the high dielectric constant insulating film. 前記メタルゲート電極はTi、Al又はTaの少なくとも1つを含むことを特徴とする請求項20に記載の半導体装置。21. The semiconductor device according to claim 20, wherein the metal gate electrode includes at least one of Ti, Al, or Ta. 前記メタルゲート電極はTiNを含むことを特徴とする請求項20に記載の半導体装置。21. The semiconductor device according to claim 20, wherein the metal gate electrode includes TiN. 前記メタルゲート電極はTaNを含むことを特徴とする請求項20に記載の半導体装置。21. The semiconductor device according to claim 20, wherein the metal gate electrode contains TaN. 前記半導体基板はSi基板であることを特徴とする請求項1〜23のいずれか1項に記載の半導体装置。The semiconductor device according to claim 1, wherein the semiconductor substrate is a Si substrate. 前記半導体基板はSiC基板であることを特徴とする請求項1〜23のいずれか1項に記載の半導体装置。The semiconductor device according to claim 1, wherein the semiconductor substrate is a SiC substrate. 前記半導体基板はGeを含むことを特徴とする請求項1〜23のいずれか1項に記載の半導体装置。The semiconductor device according to claim 1, wherein the semiconductor substrate contains Ge. 前記半導体基板はSiGe基板であることを特徴とする請求項26に記載の半導体装置。27. The semiconductor device according to claim 26, wherein the semiconductor substrate is a SiGe substrate. 前記高誘電率層は、結晶化した部分と結晶粒界とを有することを特徴とする請求項1〜26のいずれか1項に記載の半導体装置。27. The semiconductor device according to claim 1, wherein the high dielectric constant layer has a crystallized portion and a crystal grain boundary.
JP2002163983A 2001-06-21 2002-06-05 Semiconductor device Expired - Lifetime JP4047075B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US29947801P 2001-06-21 2001-06-21
US60/299,478 2001-06-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007045149A Division JP4713518B2 (en) 2001-06-21 2007-02-26 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2003059926A JP2003059926A (en) 2003-02-28
JP4047075B2 true JP4047075B2 (en) 2008-02-13

Family

ID=23154975

Family Applications (7)

Application Number Title Priority Date Filing Date
JP2001395734A Expired - Lifetime JP3773448B2 (en) 2001-06-21 2001-12-27 Semiconductor device
JP2002015066A Expired - Lifetime JP4165076B2 (en) 2001-06-21 2002-01-24 Semiconductor device having high dielectric constant insulating film
JP2002163983A Expired - Lifetime JP4047075B2 (en) 2001-06-21 2002-06-05 Semiconductor device
JP2006001334A Expired - Lifetime JP4712560B2 (en) 2001-06-21 2006-01-06 Manufacturing method of semiconductor device
JP2007045149A Expired - Fee Related JP4713518B2 (en) 2001-06-21 2007-02-26 Semiconductor device
JP2007271175A Pending JP2008078675A (en) 2001-06-21 2007-10-18 Semiconductor device having high permittivity insulating film
JP2010198973A Pending JP2011018926A (en) 2001-06-21 2010-09-06 Semiconductor device manufacturing method

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2001395734A Expired - Lifetime JP3773448B2 (en) 2001-06-21 2001-12-27 Semiconductor device
JP2002015066A Expired - Lifetime JP4165076B2 (en) 2001-06-21 2002-01-24 Semiconductor device having high dielectric constant insulating film

Family Applications After (4)

Application Number Title Priority Date Filing Date
JP2006001334A Expired - Lifetime JP4712560B2 (en) 2001-06-21 2006-01-06 Manufacturing method of semiconductor device
JP2007045149A Expired - Fee Related JP4713518B2 (en) 2001-06-21 2007-02-26 Semiconductor device
JP2007271175A Pending JP2008078675A (en) 2001-06-21 2007-10-18 Semiconductor device having high permittivity insulating film
JP2010198973A Pending JP2011018926A (en) 2001-06-21 2010-09-06 Semiconductor device manufacturing method

Country Status (1)

Country Link
JP (7) JP3773448B2 (en)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3773448B2 (en) * 2001-06-21 2006-05-10 松下電器産業株式会社 Semiconductor device
JP3688631B2 (en) * 2001-11-22 2005-08-31 株式会社東芝 Manufacturing method of semiconductor device
JP4090346B2 (en) * 2002-02-28 2008-05-28 株式会社日立国際電気 Semiconductor device manufacturing method and substrate processing apparatus
JP4643884B2 (en) 2002-06-27 2011-03-02 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
CN100565916C (en) 2002-07-16 2009-12-02 日本电气株式会社 Semiconductor device and manufacture method thereof
WO2004073072A1 (en) * 2003-02-17 2004-08-26 National Institute Of Advanced Industrial Science And Technology Mis semiconductor device and method for manufacturing mis semiconductor device
AU2003221382A1 (en) 2003-03-13 2004-09-30 Fujitsu Limited Semiconductor device and method for manufacturing semiconductor device
AU2003213420A1 (en) 2003-03-17 2004-10-11 Fujitsu Limited Semiconductor device and method for manufacturing semiconductor device
JP4748927B2 (en) 2003-03-25 2011-08-17 ローム株式会社 Semiconductor device
JP2004311782A (en) * 2003-04-08 2004-11-04 Tokyo Electron Ltd Method and device for forming film
TW200506093A (en) * 2003-04-21 2005-02-16 Aviza Tech Inc System and method for forming multi-component films
JP4140768B2 (en) * 2003-04-24 2008-08-27 株式会社日立国際電気 Semiconductor raw materials
JP4499374B2 (en) * 2003-05-14 2010-07-07 富士通株式会社 Semiconductor device and manufacturing method thereof
JP4742867B2 (en) * 2003-05-29 2011-08-10 日本電気株式会社 Semiconductor device provided with MIS field effect transistor
JP2005079223A (en) 2003-08-29 2005-03-24 Toshiba Corp Semiconductor device and its manufacturing method
JPWO2005038929A1 (en) * 2003-10-15 2007-02-08 日本電気株式会社 Manufacturing method of semiconductor device
TW200526804A (en) 2003-10-30 2005-08-16 Tokyo Electron Ltd Method of manufacturing semiconductor device, film-forming apparatus, and storage medium
US20050101147A1 (en) * 2003-11-08 2005-05-12 Advanced Micro Devices, Inc. Method for integrating a high-k gate dielectric in a transistor fabrication process
JP2005191482A (en) 2003-12-26 2005-07-14 Semiconductor Leading Edge Technologies Inc Semiconductor device and its manufacturing method
JP5235260B2 (en) * 2004-04-12 2013-07-10 三星電子株式会社 Method for manufacturing metal-insulator-metal capacitor with seed layer containing nitrogen
JP4919586B2 (en) 2004-06-14 2012-04-18 富士通セミコンダクター株式会社 Semiconductor device and manufacturing method thereof
KR100539213B1 (en) * 2004-07-10 2005-12-27 삼성전자주식회사 Method of forming a composite dielectric layer and method of manufacturing a semiconductor device using the same
JPWO2006009025A1 (en) * 2004-07-20 2008-05-01 日本電気株式会社 Semiconductor device and manufacturing method of semiconductor device
WO2006022175A1 (en) * 2004-08-23 2006-03-02 Nec Corporation Semiconductor device and method for manufacturing the same
JP4966490B2 (en) * 2004-11-15 2012-07-04 富士通セミコンダクター株式会社 Manufacturing method of semiconductor device
JP4185057B2 (en) 2005-01-28 2008-11-19 富士通株式会社 Manufacturing method of semiconductor device
KR100702027B1 (en) * 2005-03-21 2007-03-30 후지쯔 가부시끼가이샤 Semiconductor device and method for manufacturing semiconductor device
JP2006269520A (en) * 2005-03-22 2006-10-05 Renesas Technology Corp Semiconductor device and its manufacturing method
JP2006319091A (en) * 2005-05-12 2006-11-24 Renesas Technology Corp Manufacturing method of semiconductor device
KR100644724B1 (en) * 2005-07-26 2006-11-14 삼성전자주식회사 Semiconductor device and method of manufacturing the same
JP2008010801A (en) * 2005-08-17 2008-01-17 Kobe Steel Ltd Source/drain electrode, thin-film transistor substrate and manufacture method thereof, and display device
US7655994B2 (en) * 2005-10-26 2010-02-02 International Business Machines Corporation Low threshold voltage semiconductor device with dual threshold voltage control means
US8053849B2 (en) * 2005-11-09 2011-11-08 Advanced Micro Devices, Inc. Replacement metal gate transistors with reduced gate oxide leakage
JP2006140514A (en) * 2005-12-19 2006-06-01 Fujitsu Ltd Semiconductor device and its manufacturing method
US7436034B2 (en) * 2005-12-19 2008-10-14 International Business Machines Corporation Metal oxynitride as a pFET material
US8524617B2 (en) 2009-02-27 2013-09-03 Canon Anelva Corporation Methods for manufacturing dielectric films
KR101393265B1 (en) 2009-12-25 2014-05-08 가부시키가이샤 리코 Field-effect transistor, semiconductor memory, display element, image display device, and system
JP5149936B2 (en) * 2010-04-28 2013-02-20 パナソニック株式会社 SEMICONDUCTOR DEVICE HAVING FIELD EFFECT TRANSISTOR HAVING HIGH DIELECTRIC GATE INSULATION FILM AND METHOD FOR MANUFACTURING SAME
US9396946B2 (en) * 2011-06-27 2016-07-19 Cree, Inc. Wet chemistry processes for fabricating a semiconductor device with increased channel mobility
JP5816539B2 (en) 2011-12-05 2015-11-18 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
DE102012205977B4 (en) 2012-04-12 2017-08-17 Globalfoundries Inc. Semiconductor device with ferroelectric elements and fast transistors with metal gates with large ε and manufacturing method
JP2014053571A (en) 2012-09-10 2014-03-20 Toshiba Corp Ferroelectric memory and method of manufacturing the same
JP2014187238A (en) * 2013-03-25 2014-10-02 Toyoda Gosei Co Ltd Mis semiconductor device manufacturing method
JP2015069989A (en) * 2013-09-26 2015-04-13 三菱電機株式会社 Method of manufacturing silicon carbide semiconductor device
JP6341077B2 (en) * 2014-12-09 2018-06-13 豊田合成株式会社 Manufacturing method of semiconductor device
JP2017092191A (en) * 2015-11-06 2017-05-25 株式会社デンソー Silicon carbide semiconductor device
KR20220157302A (en) 2021-05-20 2022-11-29 캐논 가부시끼가이샤 Film, element, and equipment

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04286356A (en) * 1991-03-15 1992-10-12 Fujitsu Ltd Semiconductor device and manufacture thereof
JPH0677402A (en) * 1992-07-02 1994-03-18 Natl Semiconductor Corp <Ns> Dielectric structure for semiconductor device and its manufacture
JPH06291041A (en) * 1993-03-31 1994-10-18 Toshiba Corp Thin-film formation method and device
JPH07211902A (en) * 1994-01-19 1995-08-11 Sony Corp Mis type transistor and its manufacture
TW466615B (en) * 1996-12-23 2001-12-01 Lucent Technologies Inc A gate structure for integrated circuit fabrication
JP4160167B2 (en) * 1997-06-30 2008-10-01 株式会社東芝 Manufacturing method of semiconductor device
US6020024A (en) * 1997-08-04 2000-02-01 Motorola, Inc. Method for forming high dielectric constant metal oxides
JP3523093B2 (en) * 1997-11-28 2004-04-26 株式会社東芝 Semiconductor device and manufacturing method thereof
JP3357861B2 (en) * 1998-06-04 2002-12-16 株式会社東芝 MIS semiconductor device and nonvolatile semiconductor memory device
JP2000058832A (en) * 1998-07-15 2000-02-25 Texas Instr Inc <Ti> Oxyzirconium nitride and/or hafnium gate dielectrics
JP2000106432A (en) * 1998-09-29 2000-04-11 Nec Corp Manufacture of gate insulating film and semiconductor device using that
JP2000208508A (en) * 1999-01-13 2000-07-28 Texas Instr Inc <Ti> Vacuum deposition of high-dielectric material made of silicate
KR100854555B1 (en) * 1999-07-08 2008-08-26 가부시키가이샤 히타치세이사쿠쇼 Semiconductor device and method for producing the same
US6337289B1 (en) * 1999-09-24 2002-01-08 Applied Materials. Inc Method and apparatus for integrating a metal nitride film in a semiconductor device
US6291319B1 (en) * 1999-12-17 2001-09-18 Motorola, Inc. Method for fabricating a semiconductor structure having a stable crystalline interface with silicon
JP2001185548A (en) * 1999-12-22 2001-07-06 Fujitsu Ltd Semiconductor device and manufacturing method thereof
US6287897B1 (en) * 2000-02-29 2001-09-11 International Business Machines Corporation Gate dielectric with self forming diffusion barrier
WO2002023614A1 (en) * 2000-09-18 2002-03-21 Tokyo Electron Limited Method for film formation of gate insulator, apparatus for film formation of gate insulator, and cluster tool
JP2002134739A (en) * 2000-10-19 2002-05-10 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
JP2002314072A (en) * 2001-04-19 2002-10-25 Nec Corp Semiconductor device with high dielectric thin film and manufacturing method therefor, and film-forming method for dielectric film
JP3773448B2 (en) * 2001-06-21 2006-05-10 松下電器産業株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP2003008005A (en) 2003-01-10
JP2008078675A (en) 2008-04-03
JP2006165589A (en) 2006-06-22
JP2003059926A (en) 2003-02-28
JP4712560B2 (en) 2011-06-29
JP2007194652A (en) 2007-08-02
JP4165076B2 (en) 2008-10-15
JP3773448B2 (en) 2006-05-10
JP4713518B2 (en) 2011-06-29
JP2003008011A (en) 2003-01-10
JP2011018926A (en) 2011-01-27

Similar Documents

Publication Publication Date Title
JP4047075B2 (en) Semiconductor device
US6642131B2 (en) Method of forming a silicon-containing metal-oxide gate dielectric by depositing a high dielectric constant film on a silicon substrate and diffusing silicon from the substrate into the high dielectric constant film
US7473994B2 (en) Method of producing insulator thin film, insulator thin film, method of manufacturing semiconductor device, and semiconductor device
CN100367513C (en) Semiconductor device and its manufacturing method
US8198184B2 (en) Method to maximize nitrogen concentration at the top surface of gate dielectrics
JP4681886B2 (en) Semiconductor device
JP2001257208A (en) Method for forming gate insulating film of semiconductor device
JP2003179049A (en) Insulating film-forming method, and semiconductor device and manufacturing method thereof
WO2011101931A1 (en) Semiconductor device and method for manufacturing same
EP1363333B1 (en) Semiconductor device
WO2005038929A1 (en) Method for manufacturing semiconductor device
WO2004107451A1 (en) Semiconductor device fitted with mis type field-effect transistor, process for producing the same and method of forming metal oxide film
KR100729354B1 (en) Methods of manufacturing semiconductor device in order to improve the electrical characteristics of a dielectric
US20050142715A1 (en) Semiconductor device with high dielectric constant insulator and its manufacture
EP1608007A1 (en) Method for forming insulating film in semiconductor device
KR100621542B1 (en) Dielectric multilayer of microelectronic device and fabricating method the same
JP2005064052A (en) Method of manufacturing semiconductor device
WO2004086484A1 (en) Semiconductor device and method for fabricating the same
JP5039396B2 (en) Manufacturing method of semiconductor device
JPWO2005074037A1 (en) Manufacturing method of semiconductor device
KR100791197B1 (en) Dielectric film forming method, semiconductor device and manufacturing method therefor
JPWO2004073072A1 (en) MIS type semiconductor device and method for manufacturing MIS type semiconductor device
US7838439B2 (en) Method of manufacturing an insulating film containing hafnium
JP2004296876A (en) Manufacturing method of semiconductor device, semiconductor device and semiconductor manufacturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4047075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term