[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3921171B2 - CERAMIC ELECTRONIC COMPONENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE - Google Patents

CERAMIC ELECTRONIC COMPONENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE Download PDF

Info

Publication number
JP3921171B2
JP3921171B2 JP2002377489A JP2002377489A JP3921171B2 JP 3921171 B2 JP3921171 B2 JP 3921171B2 JP 2002377489 A JP2002377489 A JP 2002377489A JP 2002377489 A JP2002377489 A JP 2002377489A JP 3921171 B2 JP3921171 B2 JP 3921171B2
Authority
JP
Japan
Prior art keywords
electronic component
internal electrode
shrinkage
ceramic electronic
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002377489A
Other languages
Japanese (ja)
Other versions
JP2004207632A (en
Inventor
成信 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002377489A priority Critical patent/JP3921171B2/en
Publication of JP2004207632A publication Critical patent/JP2004207632A/en
Application granted granted Critical
Publication of JP3921171B2 publication Critical patent/JP3921171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、セラミック電子部品及びその製法並びに噴射装置に関し、例えば、自動車用燃料噴射装置、光学装置等の精密位置決め装置や振動防止用の駆動素子等に用いられるセラミック電子部品及びその製法並びに噴射装置に関するものである。
【0002】
【従来技術】
従来、積層型圧電素子として、圧電体と内部電極を交互に積層した積層型圧電アクチュエータが知られている。積層型圧電アクチュエータには、同時焼成タイプと、圧電磁器と内部電極板を交互に積層したスタックタイプとの2種類に分類されており、低電圧化、製造コスト低減の面から考慮すると、同時焼成タイプの積層型圧電アクチュエータが薄層化に対して有利であるために、その優位性を示しつつある。
【0003】
図6は、従来の積層型圧電アクチュエータを示すもので、このアクチュエータでは、圧電体51と内部電極52が交互に積層されているが、内部電極52は圧電体51主面全体には形成されておらず、いわゆる部分電極構造となっている。この部分電極構造の内部電極52を左右互い違いに積層することで、柱状積層体78の側面に形成された外部電極70に内部電極52を一層おきに交互に接続することができる。尚、図6において、符号76はリード線であり、77は半田である。
【0004】
このような積層型圧電アクチュエータでは、従来、セラミックグリーンシートに内部電極ペーストを所定の部分電極構造となるパターンで印刷し、この内部電極ペーストが塗布されたグリーンシートを複数積層して積層成形体を作製し、これを焼成して柱状積層体を作製していた(例えば、特許文献1参照。)。
【0005】
【特許文献1】
特開平11−68182号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記積層型圧電アクチュエータでは、グリーンシートに内部電極ペーストを印刷した部分と、印刷していない部分では圧電体の焼成時の収縮挙動が異なるため、焼成時にデラミネーションやクラックが発生しやすいといった問題があった。
【0007】
即ち、内部電極ペーストが印刷されたグリーンシート部分は、内部電極ペースト中の銀やパラジウム等の貴金属の触媒作用により焼結が促進され、内部電極ペーストが印刷されていないグリーンシート部分よりも低温域から焼成収縮が開始され、また、焼成時の収縮量が大きくなり、結果、絶縁層と導体の積層界面においてデラミネーションやクラックが発生するといった問題が生じていた。また、デラミネーションやクラック等が発生しないまでも、内部に残留応力が生じ、アクチュエータを駆動させた際の破損の原因になるという問題があった。
【0008】
本発明は、絶縁層と導体の積層界面における破損を抑制できるセラミック電子部品及びその製法並びに噴射装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明のセラミック電子部品は、複数の絶縁層が積層されるとともに、該絶縁層間における一部領域に導体が介装され、前記絶縁層及び前記導体が同時焼成された電子部品本体を具備するセラミック電子部品であって、前記絶縁層間に埋設された前記導体の端部と前記電子部品本体の側面との間の導体非形成領域に、50〜95体積%の絶縁材料と5〜50体積%の金属材料とを含有し絶縁性を有する収縮調整層が形成されていることを特徴とする。
【0010】
このようなセラミック電子部品では、導体非形成領域の絶縁体の一部又は全部に、50〜95体積%の絶縁材料と5〜50体積%の金属材料とを含有し、絶縁性を有する収縮調整層が形成されているので、この収縮調整層における金属材料の存在により導体非形成領域近傍の絶縁層の焼結性を向上させることができる。これにより、導体形成領域と導体非形成領域の絶縁体の収縮率を実質的に同一にすることができ、デラミネーション等の不具合が発生するのを防ぐことができる。しかも、収縮調整層は絶縁性を有しているので、導体非形成領域における絶縁性を低下させることがない。特に、前記収縮調整層は前記金属材料を10〜50体積%含んでいるのが好ましい。
【0013】
また、本発明のセラミック電子部品では、収縮調整層のシート抵抗値が106Ω/□以上であることを特徴とする。これにより、導体非形成領域の高い絶縁性を維持することができ、例えば電子部品本体の側面に設けられる外部電極との絶縁を確保できる。また、導体と収縮調整層を接触させて形成することができる。
【0016】
また、本発明では、収縮調整層の厚みは、導体厚みとほぼ同一であることを特徴とする。このようなセラミック電子部品では、導体厚みによる段差を防止でき、セラミック電子部品の積層方向変形を抑制できるとともに、デラミネーションをさらに抑制できる。
【0017】
本発明のセラミック電子部品の製法は、複数の絶縁層成形体が積層されるとともに、該絶縁層成形体間における一部領域に導体パターンが介装された積層成形体を作製する工程と、該積層成形体を焼成して電子部品本体を作製する工程とを具備するセラミック電子部品の製法であって、前記積層成形体は、該積層成形体の側面と前記絶縁層成形体間に埋設された導体パターン端との間の導体パターン非形成領域に、50〜95体積%の絶縁材料と5〜50体積%の金属材料を含有する収縮調整用パターンが形成されていることを特徴とする。
【0018】
このような製法によれば、導体パターン非形成領域における絶縁層成形体の一部又は全部に、絶縁層材料と金属材料とを含有する収縮調整層パターンが形成されるため、導体形成領域と導体非形成領域における絶縁体の焼成時の収縮率を近似させることができるため、焼成時に導体形成領域と導体非形成領域における絶縁体の収縮率の不一致に起因するデラミネーションやクラック等の問題が発生するのを防ぐことができる。尚、収縮調整層に含有する金属材料は銀−パラジウムや銀−白金などの複数の金属の合金粒子であっても良い。
【0019】
また、本発明のセラミック電子部品の製法は、複数の絶縁層成形体が積層されるとともに、該絶縁層成形体間における一部領域に導体パターンが介装された積層成形体を作製する工程と、該積層成形体を焼成し、該焼成体の側面を形状調整加工して電子部品本体を作製する工程とを具備するセラミック電子部品の製法であって、前記積層成形体は、該積層成形体の側面と前記絶縁層成形体間に埋設された導体パターン端との間の導体パターン非形成領域に、金属材料、又は絶縁材料と金属材料を含有する収縮調整用パターンを形成して構成され、該収縮調整用パターンは焼成後に前記形状調整加工で除去されることを特徴とする。
【0020】
このような製法であっても、導体形成領域と導体非形成領域における絶縁体の焼成時の収縮率を近似させることができるため、焼成時に導体形成領域と導体非形成領域における絶縁体の収縮率の不一致に起因するデラミネーションやクラック等の問題が発生するのを防ぐことができる。
【0021】
本発明の噴射装置は、上記セラミック電子部品は積層型圧電素子であり、該積層型圧電素子が収容され、噴射孔を有する収納容器と、前記積層型圧電素子の駆動により前記噴射孔から液体を噴出させるバルブとを具備してなることを特徴とする。
【0022】
このような噴射装置では、上記したように、積層型圧電素子自体において積層界面に生じる焼成時の残留応力をなくし、耐久性を大幅に向上できるため、噴射装置の耐久性をも向上できる。
【0023】
【発明の実施の形態】
図1は本発明の電子部品である積層型圧電素子の一形態を示すもので、(a)は斜視図、(b)は積層構造を拡大して示す分解斜視図、(c)は(a)のA−A’線に、(d)は(a)のB−B’線にそれぞれ沿った縦断面図である。また、図2(a)は図1(c)のC部、(b)は図1(d)のD部のそれぞれ拡大図である。
【0024】
本発明の積層型圧電素子は、図1に示すように、柱状の電子部品本体1aと、この電子部品本体1aの対向する側面に設けられた外部電極4とから構成されており、電子部品本体1aは、複数の積層された圧電体1(絶縁体)と、圧電体1間に形成されたいわゆる部分電極パターンの内部電極2(導体)とを、内部電極2が左右交互になるように複数枚積層された構造となっている。
【0025】
即ち、内部電極2は矩形状をしており、その1つの端は電子部品本体1aの側面に露出し、他の3つの端は電子部品本体1a内に埋設されている。電子部品本体1aの対向する側面には、内部電極2の端部が一層おきに互い違いに露出しており、この端部に正極及び負極の外部電極4が形成されている。具体的に説明すると、内部電極2はその端部が電子部品本体1aの外部電極4形成面に一層おきに露出しており、それぞれの内部電極2が一層おきに正極又は負極の外部電極4に電気的に接合されている。一方、外部電極4と接続されていない内部電極2の一端は電子部品本体1aの側面には露出していない。さらに、外部電極4にはリード線6が半田等で接続固定されている。
【0026】
圧電体1は、例えば、チタン酸ジルコン酸鉛Pb(Zr,Ti)O3(以下PZTと略す)、或いはチタン酸バリウムBaTiO3を主成分とする圧電セラミック材料等で形成されている。この圧電セラミックスは、その圧電特性を示す圧電歪み定数d33が高いものが望ましい。
【0027】
また、圧電体1の厚み、つまり内部電極2間の距離は50〜250μmが望ましい。これは、積層型圧電素子は電圧を印加してより大きな変位量を得るために、積層数を増加させる方法がとられるが、積層数を増加させた場合に圧電体1の厚みが厚すぎると積層型圧電素子の小型化、低背化ができなくなり、一方、圧電体1の厚みが薄すぎると絶縁破壊しやすいからである。
【0028】
電子部品本体1aは、変位量を発生させるため、圧電体1と内部電極2とが交互に積層された活性部8と、活性部8の上下端に形成された不活性部9とから構成されており、活性部8中の圧電体1の間には厚み0.5〜10μmの内部電極2が配されているが、この内部電極2は銀−パラジウム等の金属材料で形成されており、活性部8中の各圧電体1に所定の電圧を印加し、圧電体1に逆圧電効果による変位を起こさせる作用をなす。
【0029】
さらに、外部電極4にはリード線6が半田により接続固定されているが、このリード線6は外部電極4を外部の電圧供給部に接続する作用をなす。
【0030】
そして、本発明では、図2に示すように、内部電極2が形成された導体形成領域Xの圧電体1bと、内部電極2が形成されていない導体非形成領域Yの圧電体1cの密度が全域にわたって実質的に同一とされている。
【0031】
即ち、圧電体1間に埋設された内部電極2の端2aと、電子部品本体1aの側面との間の導体非形成領域Yにおける圧電体1の密度が、その他(導体形成領域X)の圧電体1の密度と実質的に同一とされている。
【0032】
ここで、導体形成領域X(内部電極2形成部近傍ということもある)の圧電体1bとは、内部電極2から、圧電体1の厚みの1/2以内、即ち内部電極2間の距離の1/2以内の距離にある部分の圧電体1の領域を指す。逆に、導体非形成領域Y(内部電極2非形成部近傍ということもある)の圧電体1cとは、内部電極2から、圧電体1の厚みの1/2、即ち内部電極2間の距離の1/2より離れた部分の圧電体1の領域を指す。
【0033】
また、密度が実質的に同一とは、内部電極2形成部近傍の圧電体1bと内部電極2非形成部近傍の圧電体1cの密度差が5%以内、言い換えれば、圧電体1bと圧電体1cの密度差を圧電体1bの密度で割った商が5%以内であることである。密度差は、特には1%以内であることが望ましい。内部電極2形成部近傍の圧電体1bと内部電極2非形成部近傍の圧電体1cの密度差は、焼成時の残留応力を減少させるという点から2%以内が好ましい。
【0034】
即ち、内部電極2形成部近傍の圧電体1bと内部電極2非形成部近傍の圧電体1cの密度が実質的に等しいため、焼成時の内部電極2形成部近傍の圧電体1bと内部電極2非形成部近傍の圧電体1cの収縮率が実質的に等しくなり、焼成時に積層界面でデラミネーションやクラック等の発生を防ぐことができる。
【0035】
また、内部電極2形成部近傍の圧電体1bと内部電極2非形成部近傍の圧電体1cの収縮率が実質的に等しいため、残留応力が発生するのを防ぐことができ、積層型圧電素子を駆動させた場合においても、積層界面及びその近傍で破損することがなく、高い信頼性を得ることができる。
【0036】
このように、内部電極2形成部近傍の圧電体1bと内部電極2非形成部近傍の圧電体1cの密度を実質的に等しくするためには、例えば、内部電極2非形成部分の圧電体1の全部に、圧電体材料と金属材料を含有する収縮調整層13を形成する。これにより、収縮調整層13中の金属材料が、焼成時に内部電極2非形成部分近傍の圧電体1cの焼結性を向上させるため、圧電体1bと圧電体1cの収縮率を実質的に等しくすることができ、焼成時にデラミネーション等が発生するのを防ぐことができる。
【0037】
なお、収縮調整層13中の金属材料は、銀などの金属粒子や、銀−パラジウム及び銀−白金などの複数の合金とされている。
【0038】
また、収縮調整層13のシート抵抗値は106Ω/□以上とされている。これにより、外部電極4と接続しない内部電極2の端2aと、外部電極4とは高い絶縁性が維持されている。尚、シート抵抗値とは、被測定体の抵抗値に被測定体の幅を乗じ、長さで割ったものである。換言すれば、被測定体の体積固有抵抗を被測定体の厚みで割ったものである。このような収縮調整層13では、図2に示すように内部電極2と接触することもできる。尚、収縮調整層13のシート抵抗値が106Ω/□よりも小さい場合には、収縮調整層13を内部電極2と離間して形成する必要がある。
【0039】
さらに、本発明では、外部電極4と接続しない内部電極2の端2aと、外部電極4との高い絶縁性を維持し、内部電極2形成部近傍の圧電体1bと内部電極2非形成部近傍の圧電体1cの焼成収縮率を実質的に等しくするため、収縮調整層13は金属材料5〜50体積%と残部が圧電体材料50〜95%とで形成されていることが望ましい。これにより、収縮調整層13のシート抵抗値を106Ω/□以上とすることもできる。
【0040】
また、本発明では、収縮調整層13を構成する金属材料を、内部電極2を構成する金属材料と同一とすることが望ましい。収縮調整層13の金属材料が内部電極2を構成する金属材料と同一であることにより、圧電体1cの焼成時の収縮挙動を圧電体1bの収縮挙動に合わせることができ、焼成時に積層界面及びその近傍でのデラミネーションやクラックの発生等をさらに防止することができる。
【0041】
また、収縮調整層13の厚みは、内部電極2の厚みと同一とすることが望ましい。これにより、内部電極2厚みによる段差を防止でき、セラミック電子部品の積層方向変形を抑制できるとともに、デラミネーションをさらに抑制できる。
【0042】
尚、上記例では、内部電極2非形成部分の圧電体1表面全部に、圧電体材料と金属材料を含有する収縮調整層13を形成した例について説明したが、例えば、図2(a)又は(b)に示す部分の一方のみに形成してもよいが、特に収縮差が大きくなる図2(b)で示される部分に形成することが望ましい。
【0043】
また、上記例では、内部導体2と、収縮調整層13とを連続して形成した例について説明したが、内部導体2と離間して収縮調整層13を形成しても良い。この場合には、内部導体2と収縮調整層13との絶縁性をさらに確保できる。一方、離間しているため、収縮調整層13の金属含有率を高めることができ、収縮挙動をさらに近づけることができる。
【0044】
本発明の積層型圧電素子の製法について説明する。
【0045】
まず、PZT等の圧電セラミックスの仮焼粉末と、アクリル系、ブチラール系等の有機高分子から成るバインダーと、DBP(フタル酸ジオチル)、DOP(フタル酸ジブチル)等の可塑剤とを混合してスラリーを作製し、該スラリーを周知のドクターブレード法やカレンダーロール法等のテープ成型法により圧電体1となるセラミックグリーンシートを作製する。
【0046】
次に、銀−パラジウムからなる金属粉末に、共材としてPZT等のセラミック粉末、バインダー、可塑剤等を添加混合して内部電極ペーストを作製し、これを各セラミックグリーンシートの上面にスクリーン印刷等によって1〜40μmの厚みに印刷し、グリーンシート上に内部電極パターンを形成する。
【0047】
これとは別に、銀−パラジウムからなる金属粉末5〜50体積%と、残部が圧電体1と同一のセラミック仮焼粉末50〜95体積%からなる混合物に、バインダー、可塑剤等を添加混合して収縮調整用ペーストを作製し、これを、前記内部電極パターンを印刷したセラミックグリーンシート上の内部電極パターン非印刷領域の一部又は全部にスクリーン印刷等によって1〜40μmの厚みに印刷し、収縮調整用パターンを形成する。
【0048】
収縮調整用ペースト中に含まれる金属材料を5〜50体積%とすることにより、内部電極2非形成部の絶縁性を低下させることなく、内部電極2非形成部近傍の圧電体1cの焼成時の収縮率を内部電極2形成部近傍の圧電体1bの収縮率に合わせることができる。
【0049】
さらには、焼成時の圧電体1bと圧電体1cの収縮挙動を一致させることにより、焼成時の残留応力をなくし、また、高温における絶縁性の低下を防ぐという点から、好ましくは収縮調整用ペーストに含まれる金属材料は10〜30体積%の範囲が良い。
【0050】
なお、収縮調整用ペースト中に含まれる金属材料は、複数の金属成分からなる合金粒子であっても良い。また、圧電体1bと圧電体1cとの焼成時の収縮挙動を効果的に合わせるために、収縮調整用ペースト中に含まれる金属材料は、内部電極ペースト中に含まれる金属材料と同一であることが望ましい。
【0051】
そして、上面に内部電極パターンと収縮調整層パターンが形成されたセラミックグリーンシートを複数枚積層して柱状の積層成形体を作製し、この柱状の積層成形体について所定の温度で脱バインダーを行った後、900〜1200℃で焼成し、焼成体を所定形状に形状調整加工を行い、電子部品本体を得る。
【0052】
その後、内部電極2が一層おきに互い違いに露出した電子部品本体の対向する側面に、銀粉末とガラス粉末からなる外部電極ペーストを塗布し、550〜900℃で焼き付けを行うことにより外部電極4を形成する。その後、リード線6を外部電極4に接続し、リード線6を介して一対の外部電極4に0.1〜3kV/mmの直流電圧を印加し、電子部品本体1aを分極処理することによって、製品としての積層型圧電素子が完成する。
【0053】
次に、本発明の積層型圧電素子の他の製法について説明する。前述同様、まず、セラミックグリーンシートを作製する。
【0054】
次に、内部電極ペーストをセラミックグリーンシート上にスクリーン印刷等で1〜40μmの厚みに印刷し、グリーンシート上に内部電極パターンを印刷する。
【0055】
これとは別に、銀−パラジウムからなる金属粉末5〜50体積%と、残部が圧電体1と同一のセラミック仮焼粉末50〜95体積%からなる混合物に、バインダー、可塑剤等を添加混合して収縮調整用ペーストを作製し、これを焼成後の形状加工工程において除去される部分となるセラミックグリーンシート上面の一部又は全部に、スクリーン印刷等によって1〜40μmの厚みに印刷し、収縮調整用パターンを形成する。なお、前記形状調整加工において除去される部分に対応するセラミックグリーンシートの一部又は全部に印刷される収縮調整用ペーストは、形状調整加工において除去され製品には残らないため、内部電極パターンと接触して内部電極ペーストを用いて形成しても構わない。
【0056】
次に、前記上面に内部電極パターンと収縮調整用パターンが形成されたセラミックグリーンシートを複数枚積層して積層成形体を作製し、この積層成形体について所定の温度で脱バインダーを行った後、900〜1200℃で焼成する。
【0057】
その後、焼成体を所定の形状に形状調整加工を、焼成体の側面を研削、研磨することにより行い。このとき、収縮調整層は形状調整加工工程によって除去される。
【0058】
尚、形状調整加工で除去される部分だけでなく、内部電極非形成領域Yに対応する位置に、収縮調整用ペーストを塗布しても良く、この場合にはさらに密度を近づけることができる。
【0059】
この後、内部電極2が一層おきに互い違いに露出した側面に、銀粉末とガラス粉末からなる外部電極ペーストを塗布し、550〜900℃で焼き付けを行うことにより外部電極4を形成する。その後、リード線6を外部電極4に接続し、リード線6を介して一対の外部電極4に0.1〜3kV/mmの直流電圧を印加し、電子部品本体1aを分極処理することによって、製品としての積層型圧電素子が完成する。
【0060】
以上のように作製された積層型圧電素子のリード線6を外部の電圧供給部に接続し、リード線6及び外部電極4を介して内部電極2に電圧を印加させれば、各圧電体1は逆圧電効果によって大きく変位し、これによって例えばエンジンに燃料を噴射供給する自動車用燃料噴射弁として機能する。
【0061】
以上のように構成された積層型圧電素子は、内部電極2形成部近傍の圧電体1bと内部電極2非形成部近傍の圧電体1cの密度が実質的に等しいため、焼成時の圧電体1bと圧電体1cの収縮率が実質的に等しく、焼成時に積層界面でデラミネーションが発生したり、積層界面近傍でクラックが発生したりするといった問題が生じるのを防ぐことができる。
【0062】
特に積層型圧電素子では、焼成時に積層界面でデラミネーションやクラック等が発生しない場合においても、焼成時に積層界面に残留応力が存在すると、使用時に圧電素子自体が歪む(伸縮する)ため積層界面やその近傍で破損する可能性があるが、本発明の積層型圧電素子を用いれば、焼成時に積層界面に応力が残留しないため、駆動時に積層界面やその近傍で破損するといった問題が生じるのを防ぐことができる。
【0063】
また、積層型圧電素子を駆動させた場合においても積層界面及びその近傍で破損することがなく、耐久性を大きく向上させることができる。
【0064】
図3は、本発明の噴射装置を示すもので、図において符号31は収納容器を示している。この収納容器31の一端には噴射孔33が設けられ、また収納容器31内には、噴射孔33を開閉することができるニードルバルブ35が収容されている。
【0065】
噴射孔33には燃料通路37が連通可能に設けられ、この燃料通路37は外部の燃料供給源に連結され、燃料通路37に常時一定の高圧で燃料が供給されている。従って、ニードルバルブ35が噴射孔33を開放すると、燃料通路37に供給されていた燃料が一定の高圧で内燃機関の図示しない燃料室内に噴出されるように形成されている。
【0066】
また、ニードルバルブ35の上端部は直径が大きくなっており、収納容器31に形成されたシリンダ39と摺動可能なピストン41となっている。そして、収納容器31内には、上記した積層型圧電素子43が収納されている。
【0067】
このような噴射装置では、積層型圧電素子43が電圧を印加されて伸長すると、ピストン41が押圧され、ニードルバルブ35が噴射孔33を閉塞し、燃料の供給が停止される。また、電圧の印加が停止されると積層型圧電素子43が収縮し、皿バネ45がピストン41を押し返し、噴射孔33が燃料通路37と連通して燃料の噴射が行われるようになっている。
【0068】
【実施例】
実施例1
まず、PZT粉末を含むセラミックグリーンシートの上面に、銀−パラジウム合金と、PZT粉末と、バインダーからなる内部電極ペーストを、スクリーン印刷によって図1(b)に示すような内部電極パターンを形成し、前記セラミックグリーンシートの内部電極パターンが形成されていない部分全面に、収縮調整用ペーストを印刷して収縮調整用パターンを形成した。次に、前記内部電極パターンと収縮調整層パターンが形成されたセラミックグリーンシートを300層積層し、柱状の積層成形体を作製した。
【0069】
なお、収縮調整用ペーストは、内部電極を形成する銀−パラジウム合金粉末20体積%と、前記セラミックグリーンシートに含まれるPZT粉末と同一のもの80体積%とからなる固形分に、バインダーを加えて作製したものである。
【0070】
その後、積層成形体を400℃で脱バインダー処理を行い、大気中1050℃で焼成して焼成体を得た。さらに焼成体の側面を平面研削盤にて形状加工を施し、電子部品本体を作製した。その後、銀粉末とガラス粉末からなる外部電極ペーストを電子部品本体の外部電極形成面に塗布し、800℃で焼き付けを行うことにより外部電極4を形成する。その後、リード線6を外部電極4に接続した。
【0071】
その後、正極及び負極の外部電極にリード線を介して3kV/mmの直流電界を15分間印加して分極処理を行い、図1に示すような積層型圧電素子を作製した。
【0072】
なお、活性部中の圧電体の厚みは150μm、内部電極の厚みは3μm、収縮調整層の厚みは3μmであった。
【0073】
得られた積層型圧電素子では、内部電極形成部近傍の圧電体の密度は7.90g/cm3であり、内部電極非形成部近傍の圧電体の密度は7.85g/cm3であり、密度差は0.6%であり、実質的に同一であった。また、収縮調整層のシート抵抗を絶縁抵抗計で測定したところ、8×108Ω/□であった。また、積層界面でのデラミネーションやクラック等の異常は見られなかった。
実施例2
次に、収縮調整層を構成する銀−パラジウム合金と圧電体(PZT仮焼体)の体積比率を変化させた以外は、実施例1と同様の電子部品本体を作製した。得られた電子部品本体について、内部電極形成部近傍の圧電体と、内部電極非形成部近傍の圧電体の嵩密度をアルキメデス法により測定し、内部電極形成部近傍の圧電体と、内部電極非形成部近傍の圧電体の嵩密度差を算出した。また、積層界面及びその近傍でのデラミネーションとクラックの発生状況について調べた。さらに、収縮調整層のシート抵抗を測定した。
【0074】
図4に内部電極形成部近傍の圧電体と内部電極非形成部近傍の圧電体の嵩密度差と、積層界面でのデラミネーションおよびクラックの不良率の関係を示す。内部電極形成部近傍の圧電体と内部電極非形成部近傍の圧電体の嵩密度差は、内部電極形成部近傍の圧電体と内部電極非形成部近傍の圧電体の嵩密度の差を、内部電極形成部近傍の圧電体の嵩密度で割った商を百分率で表したものである。図4から内部電極形成部近傍の圧電体と内部電極非形成部近傍の圧電体の嵩密度差が大きくなるほど、デラミネーションやクラックによる不良が多くなることが判る。
【0075】
尚、収縮調整層を形成しない比較例の試料は、嵩密度差が11.5%の場合であり、不良率は15%であった。
【0076】
また、収縮調整層中の銀−パラジウム合金の体積%と、嵩密度差及び収縮調整層のシート抵抗の関係を図5に示す。収縮調整層中の金属成分が5体積%より小さい場合には、嵩密度差が5%より大きくなり、デラミネーションやクラック等の不良が多発することが判る。また、収縮調整層中の金属成分が50体積%より大きい場合には、収縮調整層のシート抵抗値が小さくなり、内部電極非形成部の絶縁性が低下してしまう。
【0077】
即ち、収縮調整層中の金属成分量が本発明で規定した範囲の5〜50体積%の場合には、実質的に内部電極形成部近傍の圧電体と内部電極非形成部近傍の圧電体の密度が等しくなり、積層界面やその近傍でのデラミネーションやクラック等の不良が発生するのを防ぐことができ、かつ、内部電極非形成部の絶縁性の低下がないことが判る。
【0078】
【発明の効果】
本発明のセラミック電子部品によれば、絶縁層間に埋設された導体端と電子部品本体の側面との間の導体非形成領域に、50〜95体積%の絶縁材料と5〜50体積%の金属材料とを含有し、絶縁性を有する収縮調整層が形成されているので、金属材料を含有する収縮調整層の存在により導体非形成領域の絶縁体の焼結性が向上する。これにより、導体形成領域と導体非形成領域の絶縁体の収縮率を実質的に同一にすることができ、デラミネーション等の不具合が発生するのを防ぐことができる。しかも収縮調整層は絶縁性を有しているので、導体非形成領域の絶縁性を低下させることがない。その結果、焼成時に積層界面及びその近傍でのデラミネーションやクラック等の発生をなくし、また、積層型圧電素子を駆動させた場合においても積層界面及びその近傍で破損することがない高信頼性を備えたセラミック電子部品を提供することができる。
【図面の簡単な説明】
【図1】本発明の積層型圧電素子を示すもので、(a)は斜視図、(b)は積層構造を拡大して示す分解斜視図、(c)は(a)のA−A’線に、(d)は(a)のB−B’線にそれぞれ沿った縦断面図である。
【図2】(a)は図1(c)のC部、(b)は図1(d)のD部のそれぞれ拡大図である。
【図3】本発明の噴射装置を示す説明図である。
【図4】内部電極形成部近傍の圧電体と内部電極非形成部近傍の圧電体の嵩密度差と、不良率の関係を示すグラフである。
【図5】収縮調整層中の金属成分の割合と、内部電極形成部近傍の圧電体と内部電極非形成部近傍の圧電体の嵩密度差及び収縮調整層のシート抵抗の関係を示すグラフである。
【図6】従来の積層型圧電素子を示すもので、(a)は斜視図、(b)は積層構造を拡大して示す分解斜視図である。
【符号の説明】
1・・・圧電体(絶縁体)
1a・・・電子部品本体
2・・・内部電極
13・・・収縮調整層
31・・・収納容器
33・・・噴射孔
35・・・バルブ
43・・・積層型圧電素子
[0001]
BACKGROUND OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic electronic component, a method for manufacturing the same, and an injection device, for example, a ceramic electronic component used for a precision positioning device such as a fuel injection device for an automobile and an optical device, a driving element for preventing vibrations, and the like It is about.
[0002]
[Prior art]
Conventionally, as a multilayer piezoelectric element, a multilayer piezoelectric actuator in which piezoelectric bodies and internal electrodes are alternately stacked is known. Multilayer piezoelectric actuators are classified into two types: the simultaneous firing type and the stack type in which piezoelectric ceramics and internal electrode plates are alternately laminated. Since the multilayer piezoelectric actuator of the type is advantageous for thinning, its superiority is being shown.
[0003]
FIG. 6 shows a conventional multilayer piezoelectric actuator. In this actuator, piezoelectric bodies 51 and internal electrodes 52 are alternately stacked. The internal electrodes 52 are formed on the entire main surface of the piezoelectric body 51. It has a so-called partial electrode structure. By laminating the internal electrodes 52 of this partial electrode structure alternately left and right, the internal electrodes 52 can be alternately connected to the external electrodes 70 formed on the side surfaces of the columnar laminated body 78. In FIG. 6, reference numeral 76 denotes a lead wire and 77 denotes solder.
[0004]
In such a multilayer piezoelectric actuator, conventionally, an internal electrode paste is printed on a ceramic green sheet in a pattern having a predetermined partial electrode structure, and a plurality of green sheets coated with the internal electrode paste are stacked to form a laminated molded body. It was produced and fired to produce a columnar laminate (see, for example, Patent Document 1).
[0005]
[Patent Document 1]
JP-A-11-68182
[0006]
[Problems to be solved by the invention]
However, in the multilayer piezoelectric actuator, the shrinkage behavior when the piezoelectric body is fired is different between the portion where the internal electrode paste is printed on the green sheet and the portion where the green electrode is not printed, so that delamination and cracks are likely to occur during firing. There was a problem.
[0007]
That is, the green sheet portion on which the internal electrode paste is printed is promoted by the catalytic action of a noble metal such as silver or palladium in the internal electrode paste, and the temperature is lower than the green sheet portion on which the internal electrode paste is not printed. From this, firing shrinkage started, and the shrinkage amount during firing increased, resulting in problems such as delamination and cracks occurring at the interface between the insulating layer and the conductor. In addition, even if delamination or cracks do not occur, there is a problem that residual stress is generated inside, causing damage when the actuator is driven.
[0008]
An object of this invention is to provide the ceramic electronic component which can suppress the failure | damage in the laminated interface of an insulating layer and a conductor, its manufacturing method, and an injection apparatus.
[0009]
[Means for Solving the Problems]
The ceramic electronic component of the present invention is a ceramic comprising an electronic component body in which a plurality of insulating layers are laminated, a conductor is interposed in a partial region between the insulating layers, and the insulating layer and the conductor are simultaneously fired. In an electronic component, in a conductor non-formation region between an end portion of the conductor embedded between the insulating layers and a side surface of the electronic component main body,50-95% by volumeWith insulation material5-50% by volumeA shrinkage adjustment layer containing a metal material and having an insulating property is formed.
[0010]
In such a ceramic electronic component, a part or all of the insulator in the conductor non-formation region,50-95% by volumeWith insulation material5-50% by volumeSince the shrinkage adjustment layer containing a metal material and having insulating properties is formed, the presence of the metal material in the shrinkage adjustment layer can improve the sinterability of the insulation layer in the vicinity of the conductor non-forming region. Thereby, the contraction rate of the insulator in the conductor formation region and the conductor non-formation region can be made substantially the same, and the occurrence of problems such as delamination can be prevented. In addition, since the shrinkage adjustment layer has an insulating property, the insulating property in the conductor non-forming region is not lowered.In particular, the shrinkage adjustment layer preferably contains 10 to 50% by volume of the metal material.
[0013]
In the ceramic electronic component of the present invention, the sheet resistance value of the shrinkage adjustment layer is 106It is characterized by being Ω / □ or more. Thereby, the high insulation of a conductor non-formation area | region can be maintained, and insulation with the external electrode provided in the side surface of an electronic component main body can be ensured, for example. Moreover, it can form by making a conductor and a shrinkage | contraction adjustment layer contact.
[0016]
In the present invention, the thickness of the shrinkage adjustment layer is substantially the same as the conductor thickness. In such a ceramic electronic component, a step due to the conductor thickness can be prevented, deformation in the stacking direction of the ceramic electronic component can be suppressed, and delamination can be further suppressed.
[0017]
  The method for producing a ceramic electronic component of the present invention comprises a step of producing a laminated molded body in which a plurality of insulating layer molded bodies are laminated and a conductor pattern is interposed in a partial region between the insulating layer molded bodies, A method for producing a ceramic electronic component comprising a step of firing a multilayer molded body to produce an electronic component body, wherein the multilayer molded body is embedded between a side surface of the multilayer molded body and the insulating layer molded body. In the conductor pattern non-formation area between the conductor pattern ends,50-95% by volumeWith insulating material5-50% by volumeA shrinkage adjustment pattern containing a metal material is formed.
[0018]
According to such a manufacturing method, since the shrinkage adjustment layer pattern containing the insulating layer material and the metal material is formed on a part or all of the insulating layer molded body in the conductor pattern non-formation region, the conductor formation region and the conductor Since the shrinkage rate during firing of the insulator in the non-formed region can be approximated, problems such as delamination and cracks due to mismatch of the shrinkage rate of the insulator in the conductor forming region and the non-conductor formed region occur during firing Can be prevented. The metal material contained in the shrinkage adjusting layer may be a plurality of metal alloy particles such as silver-palladium and silver-platinum.
[0019]
The method for producing a ceramic electronic component of the present invention includes a step of producing a laminated molded body in which a plurality of insulating layer molded bodies are laminated and a conductor pattern is interposed in a partial region between the insulating layer molded bodies. A method for producing a ceramic electronic component comprising: firing the laminated molded body, and adjusting the shape of the side surface of the fired body to produce an electronic component main body, wherein the laminated molded body comprises the laminated molded body In a conductive pattern non-formation region between the side surface of the conductive layer and the conductive pattern end embedded between the insulating layer molded bodies, a metal material, or a shrinkage adjustment pattern containing an insulating material and a metal material is formed, and is configured. The shrinkage adjustment pattern is removed by the shape adjustment process after firing.
[0020]
Even in such a manufacturing method, the shrinkage rate during firing of the insulator in the conductor formation region and the conductor non-formation region can be approximated, so the shrinkage rate of the insulator in the conductor formation region and the conductor non-formation region during firing It is possible to prevent problems such as delamination and cracks due to the mismatch.
[0021]
In the ejection device according to the present invention, the ceramic electronic component is a multilayer piezoelectric element, the multilayer piezoelectric element is accommodated therein, a container having an ejection hole, and a liquid from the ejection hole by driving the multilayer piezoelectric element. And a valve for jetting.
[0022]
In such an injection device, as described above, the residual stress at the time of firing that occurs at the laminated interface in the multilayer piezoelectric element itself can be eliminated and the durability can be greatly improved, so that the durability of the injection device can also be improved.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
1A and 1B show one embodiment of a multilayer piezoelectric element that is an electronic component of the present invention. FIG. 1A is a perspective view, FIG. 1B is an exploded perspective view showing an enlarged multilayer structure, and FIG. (D) is a longitudinal sectional view taken along line BB ′ in (a). 2A is an enlarged view of a portion C in FIG. 1C, and FIG. 2B is an enlarged view of a portion D in FIG.
[0024]
As shown in FIG. 1, the multilayer piezoelectric element of the present invention is composed of a columnar electronic component body 1a and external electrodes 4 provided on opposite sides of the electronic component body 1a. Reference numeral 1a denotes a plurality of stacked piezoelectric bodies 1 (insulators) and internal electrodes 2 (conductors) of so-called partial electrode patterns formed between the piezoelectric bodies 1 so that the internal electrodes 2 are alternately left and right. It has a laminated structure.
[0025]
That is, the internal electrode 2 has a rectangular shape, one end of which is exposed on the side surface of the electronic component main body 1a, and the other three ends are embedded in the electronic component main body 1a. On opposite side surfaces of the electronic component main body 1a, the end portions of the internal electrodes 2 are alternately exposed, and positive and negative external electrodes 4 are formed at the end portions. More specifically, the end portions of the internal electrodes 2 are exposed on the surface of the electronic component main body 1a where the external electrodes 4 are formed, and each internal electrode 2 is exposed to the positive or negative external electrode 4 every other layer. Electrically joined. On the other hand, one end of the internal electrode 2 not connected to the external electrode 4 is not exposed on the side surface of the electronic component main body 1a. Furthermore, a lead wire 6 is connected and fixed to the external electrode 4 with solder or the like.
[0026]
The piezoelectric body 1 is made of, for example, lead zirconate titanate Pb (Zr, Ti) O.Three(Hereinafter abbreviated as PZT) or barium titanate BaTiOThreeIt is formed with the piezoelectric ceramic material etc. which have as a main component. This piezoelectric ceramic has a piezoelectric strain constant d indicating its piezoelectric characteristics.33A high value is desirable.
[0027]
The thickness of the piezoelectric body 1, that is, the distance between the internal electrodes 2 is preferably 50 to 250 μm. In order to obtain a larger amount of displacement by applying a voltage to the multilayer piezoelectric element, a method of increasing the number of layers is taken, but when the number of layers is increased, the piezoelectric body 1 is too thick. This is because the multilayer piezoelectric element cannot be reduced in size and height, and if the thickness of the piezoelectric body 1 is too thin, dielectric breakdown tends to occur.
[0028]
The electronic component main body 1a includes an active portion 8 in which the piezoelectric bodies 1 and the internal electrodes 2 are alternately stacked and an inactive portion 9 formed on the upper and lower ends of the active portion 8 in order to generate a displacement amount. An internal electrode 2 having a thickness of 0.5 to 10 μm is disposed between the piezoelectric bodies 1 in the active portion 8, and the internal electrode 2 is made of a metal material such as silver-palladium, A predetermined voltage is applied to each piezoelectric body 1 in the active portion 8 to cause the piezoelectric body 1 to be displaced by the reverse piezoelectric effect.
[0029]
Further, the lead wire 6 is connected and fixed to the external electrode 4 by soldering. The lead wire 6 serves to connect the external electrode 4 to an external voltage supply unit.
[0030]
In the present invention, as shown in FIG. 2, the density of the piezoelectric body 1b in the conductor forming region X in which the internal electrode 2 is formed and the density of the piezoelectric body 1c in the conductor non-forming region Y in which the internal electrode 2 is not formed are It is substantially the same throughout the entire area.
[0031]
That is, the density of the piezoelectric body 1 in the conductor non-formation region Y between the end 2a of the internal electrode 2 embedded between the piezoelectric bodies 1 and the side surface of the electronic component main body 1a is other (conductor formation region X). The density of the body 1 is substantially the same.
[0032]
Here, the piezoelectric body 1b in the conductor forming region X (sometimes referred to as the vicinity of the internal electrode 2 forming portion) is within a half of the thickness of the piezoelectric body 1 from the internal electrode 2, that is, a distance between the internal electrodes 2. It refers to the region of the piezoelectric body 1 at a portion within a distance of 1/2. Conversely, the piezoelectric body 1c in the conductor non-formation region Y (sometimes referred to as the vicinity of the internal electrode 2 non-formation portion) is half the thickness of the piezoelectric body 1 from the internal electrode 2, that is, the distance between the internal electrodes 2. The area of the piezoelectric body 1 at a part farther than ½ of.
[0033]
Further, the density is substantially the same, the difference in density between the piezoelectric body 1b in the vicinity of the internal electrode 2 forming portion and the piezoelectric body 1c in the vicinity of the internal electrode 2 non-forming portion is within 5%, in other words, the piezoelectric body 1b and the piezoelectric body. The quotient obtained by dividing the density difference of 1c by the density of the piezoelectric body 1b is within 5%. The density difference is preferably within 1%. The density difference between the piezoelectric body 1b in the vicinity of the internal electrode 2 forming portion and the piezoelectric body 1c in the vicinity of the internal electrode 2 non-forming portion is preferably within 2% from the viewpoint of reducing the residual stress during firing.
[0034]
That is, since the density of the piezoelectric body 1b in the vicinity of the internal electrode 2 formation portion and the density of the piezoelectric body 1c in the vicinity of the internal electrode 2 non-formation portion are substantially equal, the piezoelectric body 1b and the internal electrode 2 in the vicinity of the internal electrode 2 formation portion during firing. The contraction rate of the piezoelectric body 1c in the vicinity of the non-formed part becomes substantially equal, and delamination, cracks, and the like can be prevented from occurring at the lamination interface during firing.
[0035]
In addition, since the contraction rate of the piezoelectric body 1b in the vicinity of the internal electrode 2 forming portion and the piezoelectric body 1c in the vicinity of the internal electrode 2 non-forming portion are substantially equal, it is possible to prevent the occurrence of residual stress, and the multilayer piezoelectric element Even in the case of driving, it is possible to obtain high reliability without being damaged at and near the laminated interface.
[0036]
As described above, in order to make the density of the piezoelectric body 1b in the vicinity of the internal electrode 2 formation portion and the density of the piezoelectric body 1c in the vicinity of the internal electrode 2 non-formation portion substantially equal, for example, the piezoelectric body 1 in the internal electrode 2 non-formation portion. A shrinkage adjustment layer 13 containing a piezoelectric material and a metal material is formed on all of them. As a result, the metal material in the shrinkage adjustment layer 13 improves the sinterability of the piezoelectric body 1c in the vicinity of the portion where the internal electrode 2 is not formed during firing, so that the shrinkage rates of the piezoelectric body 1b and the piezoelectric body 1c are substantially equal. It is possible to prevent delamination and the like from occurring during firing.
[0037]
The metal material in the shrinkage adjusting layer 13 is made of metal particles such as silver or a plurality of alloys such as silver-palladium and silver-platinum.
[0038]
The sheet resistance value of the shrinkage adjustment layer 13 is 106Ω / □ or more. Thereby, the end 2a of the internal electrode 2 that is not connected to the external electrode 4 and the external electrode 4 maintain high insulation. The sheet resistance value is obtained by multiplying the resistance value of the measured object by the width of the measured object and dividing the result by the length. In other words, the volume resistivity of the measured object is divided by the thickness of the measured object. Such a shrinkage adjustment layer 13 can also be in contact with the internal electrode 2 as shown in FIG. The sheet resistance value of the shrinkage adjustment layer 13 is 106When it is smaller than Ω / □, it is necessary to form the shrinkage adjustment layer 13 separately from the internal electrode 2.
[0039]
Furthermore, in the present invention, high insulation between the end 2a of the internal electrode 2 that is not connected to the external electrode 4 and the external electrode 4 is maintained, and the piezoelectric body 1b in the vicinity of the internal electrode 2 formation portion and the vicinity of the non-internal electrode 2 formation portion. In order to make the firing shrinkage rate of the piezoelectric body 1c substantially equal, it is desirable that the shrinkage adjustment layer 13 be formed of 5 to 50% by volume of the metal material and the balance of the piezoelectric material 50 to 95%. As a result, the sheet resistance value of the shrinkage adjustment layer 13 is 10.6It can also be set to Ω / □ or more.
[0040]
In the present invention, it is desirable that the metal material constituting the shrinkage adjustment layer 13 is the same as the metal material constituting the internal electrode 2. Since the metal material of the shrinkage adjustment layer 13 is the same as the metal material constituting the internal electrode 2, the shrinkage behavior when the piezoelectric body 1c is fired can be matched with the shrinkage behavior of the piezoelectric body 1b. It is possible to further prevent the occurrence of delamination and cracks in the vicinity thereof.
[0041]
The thickness of the shrinkage adjustment layer 13 is preferably the same as the thickness of the internal electrode 2. Thereby, a step due to the thickness of the internal electrode 2 can be prevented, deformation in the stacking direction of the ceramic electronic component can be suppressed, and delamination can be further suppressed.
[0042]
In the above example, the example in which the shrinkage adjustment layer 13 containing the piezoelectric material and the metal material is formed on the entire surface of the piezoelectric body 1 where the internal electrode 2 is not formed has been described. For example, FIG. Although it may be formed only on one of the parts shown in (b), it is desirable to form it on the part shown in FIG.
[0043]
In the above example, the example in which the inner conductor 2 and the shrinkage adjustment layer 13 are continuously formed has been described. However, the shrinkage adjustment layer 13 may be formed apart from the inner conductor 2. In this case, the insulation between the inner conductor 2 and the shrinkage adjustment layer 13 can be further ensured. On the other hand, since it is spaced apart, the metal content of the shrinkage adjustment layer 13 can be increased, and the shrinkage behavior can be further approximated.
[0044]
A method for producing the multilayer piezoelectric element of the present invention will be described.
[0045]
First, a calcined powder of piezoelectric ceramics such as PZT, a binder made of an organic polymer such as acrylic or butyral, and a plasticizer such as DBP (diethyl phthalate) or DOP (dibutyl phthalate) are mixed. A slurry is prepared, and a ceramic green sheet to be the piezoelectric body 1 is prepared from the slurry by a tape molding method such as a well-known doctor blade method or calendar roll method.
[0046]
Next, a metal powder composed of silver-palladium is mixed with ceramic powder such as PZT, binder, plasticizer, etc. as a co-material to produce an internal electrode paste, which is screen printed on the upper surface of each ceramic green sheet, etc. To a thickness of 1 to 40 μm to form an internal electrode pattern on the green sheet.
[0047]
Separately, a binder, a plasticizer, and the like are added to and mixed with a mixture of 5 to 50% by volume of metal powder made of silver-palladium and 50 to 95% by volume of the same ceramic calcined powder as the piezoelectric body 1. A shrinkage adjusting paste is prepared, and this is printed on a part or all of the internal electrode pattern non-printing area on the ceramic green sheet printed with the internal electrode pattern to a thickness of 1 to 40 μm by screen printing or the like. An adjustment pattern is formed.
[0048]
When the metal material contained in the shrinkage adjustment paste is 5 to 50% by volume, the piezoelectric body 1c in the vicinity of the internal electrode 2 non-formed portion is fired without reducing the insulating property of the internal electrode 2 non-formed portion. Can be matched to the contraction rate of the piezoelectric body 1b in the vicinity of the internal electrode 2 forming portion.
[0049]
Furthermore, it is preferable that the shrinkage behavior of the piezoelectric body 1b and the piezoelectric body 1c at the time of firing is matched to eliminate residual stress at the time of firing and to prevent deterioration of insulation at high temperatures. The metal material contained in is preferably in the range of 10 to 30% by volume.
[0050]
In addition, the metal material contained in the paste for shrinkage adjustment may be alloy particles composed of a plurality of metal components. Further, in order to effectively match the shrinkage behavior during firing of the piezoelectric body 1b and the piezoelectric body 1c, the metal material contained in the shrinkage adjustment paste is the same as the metal material contained in the internal electrode paste. Is desirable.
[0051]
Then, a plurality of ceramic green sheets each having an internal electrode pattern and a shrinkage adjustment layer pattern formed on the upper surface were laminated to produce a columnar laminated molded body, and the binder was removed from the columnar laminated molded body at a predetermined temperature. Thereafter, firing is performed at 900 to 1200 ° C., and the shape of the fired body is adjusted to a predetermined shape to obtain an electronic component main body.
[0052]
Thereafter, an external electrode paste made of silver powder and glass powder is applied to the opposing side surfaces of the electronic component body where the internal electrodes 2 are alternately exposed, and the external electrodes 4 are baked at 550 to 900 ° C. Form. Thereafter, the lead wire 6 is connected to the external electrode 4, a direct current voltage of 0.1 to 3 kV / mm is applied to the pair of external electrodes 4 via the lead wire 6, and the electronic component body 1 a is polarized, A laminated piezoelectric element as a product is completed.
[0053]
Next, another method for producing the multilayer piezoelectric element of the present invention will be described. As before, first, a ceramic green sheet is produced.
[0054]
Next, the internal electrode paste is printed on the ceramic green sheet to a thickness of 1 to 40 μm by screen printing or the like, and the internal electrode pattern is printed on the green sheet.
[0055]
Separately, a binder, a plasticizer, and the like are added to and mixed with a mixture of 5 to 50% by volume of metal powder made of silver-palladium and 50 to 95% by volume of the same ceramic calcined powder as the piezoelectric body 1. The paste for shrinkage adjustment is prepared, and this is printed to a thickness of 1 to 40 μm by screen printing or the like on part or all of the upper surface of the ceramic green sheet, which is to be removed in the shape processing step after firing. A pattern is formed. Note that the shrinkage adjustment paste printed on a part or all of the ceramic green sheet corresponding to the portion removed in the shape adjustment processing is removed in the shape adjustment processing and does not remain in the product. Then, it may be formed using an internal electrode paste.
[0056]
Next, a plurality of ceramic green sheets having internal electrode patterns and shrinkage adjustment patterns formed on the upper surface are laminated to produce a laminated molded body, and after debinding at a predetermined temperature for the laminated molded body, Bake at 900-1200 ° C.
[0057]
Then, shape adjustment processing of the fired body is performed by grinding and polishing the side surface of the fired body. At this time, the shrinkage adjustment layer is removed by the shape adjustment processing step.
[0058]
Note that the shrinkage adjustment paste may be applied not only to the portion removed by the shape adjustment processing but also to a position corresponding to the internal electrode non-formation region Y. In this case, the density can be further reduced.
[0059]
Thereafter, an external electrode paste made of silver powder and glass powder is applied to the side surfaces where the internal electrodes 2 are alternately exposed, and the external electrodes 4 are formed by baking at 550 to 900 ° C. Thereafter, the lead wire 6 is connected to the external electrode 4, a direct current voltage of 0.1 to 3 kV / mm is applied to the pair of external electrodes 4 via the lead wire 6, and the electronic component body 1 a is polarized, A laminated piezoelectric element as a product is completed.
[0060]
If the lead wire 6 of the multilayer piezoelectric element manufactured as described above is connected to an external voltage supply unit and a voltage is applied to the internal electrode 2 via the lead wire 6 and the external electrode 4, each piezoelectric body 1. Is largely displaced by the inverse piezoelectric effect, and functions as a fuel injection valve for an automobile for supplying fuel to the engine, for example.
[0061]
In the multilayer piezoelectric element configured as described above, the density of the piezoelectric body 1b in the vicinity of the internal electrode 2 forming portion and the density of the piezoelectric body 1c in the vicinity of the internal electrode 2 non-forming portion are substantially equal. And the piezoelectric body 1c have substantially the same shrinkage rate, and it is possible to prevent the occurrence of problems such as delamination occurring at the lamination interface at the time of firing and cracks occurring near the lamination interface.
[0062]
In particular, in a laminated piezoelectric element, even when delamination or cracks do not occur at the lamination interface during firing, if residual stress is present at the lamination interface during firing, the piezoelectric element itself is distorted (stretched) during use. Although there is a possibility of breakage in the vicinity thereof, if the multilayer piezoelectric element of the present invention is used, stress does not remain at the lamination interface at the time of firing, so that the problem of damage at or near the lamination interface during driving is prevented. be able to.
[0063]
Further, even when the laminated piezoelectric element is driven, the durability can be greatly improved without being damaged at and near the laminated interface.
[0064]
FIG. 3 shows an injection device according to the present invention. In the figure, reference numeral 31 denotes a storage container. An injection hole 33 is provided at one end of the storage container 31, and a needle valve 35 that can open and close the injection hole 33 is stored in the storage container 31.
[0065]
A fuel passage 37 is provided in the injection hole 33 so as to be able to communicate. The fuel passage 37 is connected to an external fuel supply source, and fuel is always supplied to the fuel passage 37 at a constant high pressure. Therefore, when the needle valve 35 opens the injection hole 33, the fuel supplied to the fuel passage 37 is formed to be injected into a fuel chamber (not shown) of the internal combustion engine at a constant high pressure.
[0066]
Further, the upper end portion of the needle valve 35 has a large diameter, and serves as a piston 41 slidable with a cylinder 39 formed in the storage container 31. In the storage container 31, the laminated piezoelectric element 43 described above is stored.
[0067]
In such an injection device, when the laminated piezoelectric element 43 is extended by applying a voltage, the piston 41 is pressed, the needle valve 35 closes the injection hole 33, and the fuel supply is stopped. When the voltage application is stopped, the laminated piezoelectric element 43 contracts, the disc spring 45 pushes back the piston 41, and the injection hole 33 communicates with the fuel passage 37 so that fuel is injected. .
[0068]
【Example】
Example 1
First, on the upper surface of the ceramic green sheet containing the PZT powder, an internal electrode pattern made of silver-palladium alloy, PZT powder, and a binder is formed by screen printing as shown in FIG. A shrinkage adjustment paste was printed on the entire surface of the ceramic green sheet where the internal electrode pattern was not formed to form a shrinkage adjustment pattern. Next, 300 ceramic green sheets on which the internal electrode pattern and the shrinkage adjustment layer pattern were formed were laminated to prepare a columnar laminated molded body.
[0069]
In addition, the paste for shrinkage | contraction adjustment adds a binder to solid content which consists of 20 volume% of silver-palladium alloy powder which forms an internal electrode, and 80 volume% of the same PZT powder contained in the said ceramic green sheet. It was produced.
[0070]
Thereafter, the laminated molded body was subjected to binder removal treatment at 400 ° C. and fired at 1050 ° C. in the air to obtain a fired body. Further, the side surface of the fired body was processed with a surface grinder to produce an electronic component body. Thereafter, an external electrode paste made of silver powder and glass powder is applied to the external electrode forming surface of the electronic component body, and baking is performed at 800 ° C. to form the external electrode 4. Thereafter, the lead wire 6 was connected to the external electrode 4.
[0071]
Thereafter, a 3 kV / mm direct current electric field was applied to the positive and negative external electrodes via lead wires for 15 minutes to carry out a polarization treatment, thereby producing a multilayer piezoelectric element as shown in FIG.
[0072]
The thickness of the piezoelectric body in the active part was 150 μm, the thickness of the internal electrode was 3 μm, and the thickness of the shrinkage adjusting layer was 3 μm.
[0073]
In the obtained multilayer piezoelectric element, the density of the piezoelectric body in the vicinity of the internal electrode forming portion is 7.90 g / cm.ThreeThe density of the piezoelectric body in the vicinity of the internal electrode non-formation portion is 7.85 g / cm.ThreeThe density difference was 0.6%, which was substantially the same. Further, when the sheet resistance of the shrinkage adjusting layer was measured with an insulation resistance meter, 8 × 108It was Ω / □. Also, no abnormalities such as delamination and cracks were observed at the laminated interface.
Example 2
Next, an electronic component body similar to that of Example 1 was produced except that the volume ratio of the silver-palladium alloy and the piezoelectric body (PZT calcined body) constituting the shrinkage adjustment layer was changed. For the obtained electronic component main body, the bulk density of the piezoelectric body in the vicinity of the internal electrode forming portion and the piezoelectric body in the vicinity of the internal electrode non-forming portion was measured by the Archimedes method. The difference in bulk density of the piezoelectric body in the vicinity of the forming portion was calculated. In addition, the delamination and crack generation at the laminated interface and its vicinity were investigated. Furthermore, the sheet resistance of the shrinkage adjustment layer was measured.
[0074]
FIG. 4 shows the relationship between the bulk density difference between the piezoelectric body in the vicinity of the internal electrode forming portion and the piezoelectric body in the vicinity of the internal electrode non-forming portion, and the defect rate of delamination and cracks at the laminated interface. The difference in bulk density between the piezoelectric body near the internal electrode forming part and the piezoelectric body near the internal electrode non-forming part is the difference in bulk density between the piezoelectric body near the internal electrode forming part and the piezoelectric body near the internal electrode non-forming part. The quotient divided by the bulk density of the piezoelectric body in the vicinity of the electrode forming portion is expressed as a percentage. It can be seen from FIG. 4 that as the bulk density difference between the piezoelectric body near the internal electrode forming portion and the piezoelectric body near the internal electrode non-forming portion increases, defects due to delamination and cracks increase.
[0075]
The sample of the comparative example in which the shrinkage adjusting layer was not formed had a bulk density difference of 11.5%, and the defect rate was 15%.
[0076]
FIG. 5 shows the relationship between the volume percentage of the silver-palladium alloy in the shrinkage adjustment layer, the bulk density difference, and the sheet resistance of the shrinkage adjustment layer. It can be seen that when the metal component in the shrinkage adjusting layer is smaller than 5% by volume, the bulk density difference becomes larger than 5%, and defects such as delamination and cracks frequently occur. In addition, when the metal component in the shrinkage adjustment layer is larger than 50% by volume, the sheet resistance value of the shrinkage adjustment layer becomes small, and the insulating property of the internal electrode non-forming portion is lowered.
[0077]
That is, when the amount of the metal component in the shrinkage adjustment layer is 5 to 50% by volume within the range specified in the present invention, the piezoelectric body substantially in the vicinity of the internal electrode forming portion and the piezoelectric body in the vicinity of the internal electrode non-forming portion It can be seen that the densities are equal, it is possible to prevent the occurrence of defects such as delamination and cracks at or near the laminated interface, and there is no deterioration in the insulating properties of the internal electrode non-formed portion.
[0078]
【The invention's effect】
According to the ceramic electronic component of the present invention, in the conductor non-formation region between the conductor end buried between the insulating layers and the side surface of the electronic component main body,50-95% by volumeWith insulation material5-50% by volumeSince the shrinkage adjusting layer containing a metal material and having an insulating property is formed, the presence of the shrinkage adjusting layer containing the metal material improves the sinterability of the insulator in the conductor non-forming region. Thereby, the contraction rate of the insulator in the conductor formation region and the conductor non-formation region can be made substantially the same, and the occurrence of problems such as delamination can be prevented. In addition, since the shrinkage adjusting layer has an insulating property, the insulating property of the conductor non-forming region is not lowered. As a result, delamination and cracks are not generated at or near the laminated interface during firing, and high reliability is ensured that the laminated piezoelectric element is not damaged even when the laminated piezoelectric element is driven. The provided ceramic electronic component can be provided.
[Brief description of the drawings]
1A and 1B show a laminated piezoelectric element of the present invention, in which FIG. 1A is a perspective view, FIG. 1B is an exploded perspective view showing an enlarged laminated structure, and FIG. 1C is an AA ′ view of FIG. (D) is a longitudinal sectional view taken along line BB ′ in (a).
2A is an enlarged view of a portion C in FIG. 1C, and FIG. 2B is an enlarged view of a portion D in FIG.
FIG. 3 is an explanatory view showing an injection device of the present invention.
FIG. 4 is a graph showing a relationship between a defect density and a bulk density difference between a piezoelectric body near an internal electrode forming portion and a piezoelectric body near an internal electrode non-forming portion.
FIG. 5 is a graph showing the relationship between the ratio of the metal component in the shrinkage adjustment layer, the difference in bulk density between the piezoelectric body near the internal electrode forming portion and the piezoelectric body near the internal electrode non-forming portion, and the sheet resistance of the shrinkage adjustment layer. is there.
6A and 6B show a conventional multilayer piezoelectric element, in which FIG. 6A is a perspective view, and FIG. 6B is an exploded perspective view showing an enlarged multilayer structure.
[Explanation of symbols]
1 ... Piezoelectric body (insulator)
1a: electronic component body
2 ... Internal electrode
13 ... Shrinkage adjustment layer
31 ... Storage container
33 ... Injection hole
35 ... Valve
43 ... Multilayer piezoelectric element

Claims (9)

複数の絶縁層が積層されるとともに、該絶縁層間における一部領域に導体が介装され、前記絶縁層及び前記導体が同時焼成された電子部品本体を具備するセラミック電子部品であって、
前記絶縁層間に埋設された前記導体の端部と前記電子部品本体の側面との間の導体非形成領域に、50〜95体積%の絶縁材料と5〜50体積%の金属材料とを含有し絶縁性を有する収縮調整層が形成されていることを特徴とするセラミック電子部品。
A ceramic electronic component comprising an electronic component body in which a plurality of insulating layers are laminated, a conductor is interposed in a partial region between the insulating layers, and the insulating layer and the conductor are simultaneously fired,
The conductor non-formation region between the end portion of the conductor buried between the insulating layers and the side surface of the electronic component main body contains 50 to 95 vol% insulating material and 5 to 50 vol% metal material. A ceramic electronic component comprising a shrinkage adjusting layer having an insulating property.
前記収縮調整層が前記金属材料を10〜50体積%含む請求項に記載のセラミック電子部品。The ceramic electronic component according to claim 1 , wherein the shrinkage adjustment layer contains 10 to 50% by volume of the metal material. 前記収縮調整層のシート抵抗値が106Ω/□以上であることを特徴とする請求項1又は2に記載のセラミック電子部品。The ceramic electronic component according to claim 1 or 2, characterized in that the sheet resistance value of the shrinkage adjustment layer is 10 6 Ω / □ or more. 前記収縮調整層の厚みは、前記導体厚みとほぼ同一であることを特徴とする請求項1〜3のいずれかに記載のセラミック電子部品。The ceramic electronic component according to any one of claims 1 to 3 , wherein the thickness of the shrinkage adjustment layer is substantially the same as the thickness of the conductor. 積層型圧電素子として機能することを特徴とする請求項1〜4のいずれかに記載のセラミック電子部品。The ceramic electronic component according to any one of claims 1 to 4 , wherein the ceramic electronic component functions as a multilayer piezoelectric element. 請求項1〜5のいずれかに記載のセラミック電子部品は積層型圧電素子であり、該積層型圧電素子が収容され、噴射孔を有する収納容器と、前記積層型圧電素子の駆動により前記噴射孔から液体を噴出させるバルブとを具備してなることを特徴とする噴射装置。The ceramic electronic component according to any one of claims 1 to 5 , wherein the ceramic electronic component is a multilayer piezoelectric element, the multilayer piezoelectric element is accommodated therein, a container having an ejection hole, and the ejection hole by driving the multilayer piezoelectric element. And a valve for ejecting liquid from the jetting apparatus. 複数の絶縁層成形体が積層されるとともに、該絶縁層成形体間における一部領域に導体パターンが介装された積層成形体を作製する工程と、該積層成形体を焼成して電子部品本体を作製する工程とを具備するセラミック電子部品の製法であって、前記積層成形体は、該積層成形体の側面と前記絶縁層成形体間に埋設された導体パターン端との間の導体パターン非形成領域に、50〜95体積%の絶縁材料と5〜50体積%の金属材料を含有する収縮調整用パターンが形成されていることを特徴とするセラミック電子部品の製法。A step of producing a laminated molded body in which a plurality of insulating layer molded bodies are laminated and a conductor pattern is interposed in a partial region between the insulating layer molded bodies, and firing the laminated molded body to form an electronic component main body A method of manufacturing a ceramic electronic component comprising: a step of forming a conductor pattern between a side surface of the laminate molded body and an end of the conductor pattern embedded between the insulating layer molded bodies. A method for producing a ceramic electronic component, wherein a shrinkage adjustment pattern containing 50 to 95% by volume of an insulating material and 5 to 50% by volume of a metal material is formed in the formation region. 複数の絶縁層成形体が積層されるとともに、該絶縁層成形体間における一部領域に導体パターンが介装された積層成形体を作製する工程と、該積層成形体を焼成し、該焼成体の側面を形状調整加工して電子部品本体を作製する工程とを具備するセラミック電子部品の製法であって、前記積層成形体は、該積層成形体の側面と前記絶縁層成形体間に埋設された導体パターン端との間の導体パターン非形成領域に、絶縁材料と金属材料を含有する収縮調整用パターンが形成されており、該収縮調整用パターンは焼成後に前記形状調整加工で除去されることを特徴とするセラミック電子部品の製法。  A step of producing a laminated molded body in which a plurality of insulating layer molded bodies are laminated and a conductor pattern is interposed in a partial region between the insulating layer molded bodies, and firing the laminated molded body, the fired body And manufacturing the electronic component main body by adjusting the shape of the side surface of the ceramic electronic component, wherein the multilayer molded body is embedded between the side surface of the multilayer molded body and the insulating layer molded body. A shrinkage adjustment pattern containing an insulating material and a metal material is formed in the conductor pattern non-formation region between the conductor pattern ends, and the shrinkage adjustment pattern is removed by the shape adjustment process after firing. A manufacturing method for ceramic electronic components. 圧電セラミック粉末を含むセラミックグリーンシートを作製する工程と、Producing a ceramic green sheet containing piezoelectric ceramic powder;
金属粉末を含む内部電極ペーストを作製する工程と、Producing an internal electrode paste containing metal powder;
50〜95体積%の絶縁材料と5〜50体積%の金属材料とを含有する混合物を含む収縮調整層用ペーストを作製する工程と、Producing a paste for shrinkage adjustment layer comprising a mixture containing 50 to 95% by volume of an insulating material and 5 to 50% by volume of a metal material;
前記セラミックグリーンシートの上面の一部に前記内部電極ペーストを印刷して内部電極パターンを形成する工程と、Printing the internal electrode paste on a part of the upper surface of the ceramic green sheet to form an internal electrode pattern;
前記セラミックグリーンシートの上面のうち前記内部電極ペーストが印刷されていない非印刷領域の一部又は全部に前記収縮調整用ペーストを印刷して収縮調整用パターンを形成する工程と、Forming the shrinkage adjustment pattern by printing the shrinkage adjustment paste on a part or all of the non-printing area where the internal electrode paste is not printed on the upper surface of the ceramic green sheet;
前記上面に前記内部電極パターンと前記収縮調整用パターンが形成されたセラミックグA ceramic ground having the internal electrode pattern and the shrinkage adjustment pattern formed on the upper surface. リーンシートを複数枚積層して積層成形体を作製する工程と、A step of laminating a plurality of lean sheets to produce a laminated molded body,
前記積層成形体を焼成する工程と、を含むセラミック電子部品の製法。Firing the laminated molded body, and a method for producing a ceramic electronic component.
JP2002377489A 2002-12-26 2002-12-26 CERAMIC ELECTRONIC COMPONENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE Expired - Fee Related JP3921171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002377489A JP3921171B2 (en) 2002-12-26 2002-12-26 CERAMIC ELECTRONIC COMPONENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002377489A JP3921171B2 (en) 2002-12-26 2002-12-26 CERAMIC ELECTRONIC COMPONENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006314512A Division JP4942461B2 (en) 2006-11-21 2006-11-21 Ceramic electronic component and injection device

Publications (2)

Publication Number Publication Date
JP2004207632A JP2004207632A (en) 2004-07-22
JP3921171B2 true JP3921171B2 (en) 2007-05-30

Family

ID=32814653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002377489A Expired - Fee Related JP3921171B2 (en) 2002-12-26 2002-12-26 CERAMIC ELECTRONIC COMPONENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE

Country Status (1)

Country Link
JP (1) JP3921171B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602006017603D1 (en) * 2006-10-31 2010-11-25 Kyocera Corp MULTILAYER PIEZOELECTRIC ELEMENT AND INJECTION DEVICE THEREWITH
JP2015185666A (en) * 2014-03-24 2015-10-22 株式会社日本セラテック Method for manufacturing piezoelectric element

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2994492B2 (en) * 1991-06-25 1999-12-27 太平洋セメント株式会社 Multilayer piezoelectric actuator and method of manufacturing the same
JP2986706B2 (en) * 1995-03-03 1999-12-06 日立金属株式会社 Piezoelectric element and piezoelectric actuator using the same
JPH10173248A (en) * 1996-12-06 1998-06-26 Nissan Motor Co Ltd Piezoelectric actuator and its manufacture
JP4658280B2 (en) * 1999-11-29 2011-03-23 太平洋セメント株式会社 Multilayer piezoelectric actuator
JP3999473B2 (en) * 2000-04-19 2007-10-31 日本碍子株式会社 Integral piezoelectric / electrostrictive membrane element having excellent durability and method for manufacturing the same
JP2002162518A (en) * 2000-11-27 2002-06-07 Teijin Ltd Near-infrared ray reflecting film for front plate of plasma display, and laminate consisting of the same
JP3730893B2 (en) * 2001-09-20 2006-01-05 京セラ株式会社 LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE

Also Published As

Publication number Publication date
JP2004207632A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
JP4933554B2 (en) Multilayer piezoelectric element, injection apparatus and fuel injection system using the same, and method for manufacturing multilayer piezoelectric element
EP1965447A1 (en) Laminated electronic component and method for manufacturing same
EP1753039B1 (en) Multilayer piezoelectric element
JP4885869B2 (en) Multilayer piezoelectric element and jetting apparatus using the same
EP1653527A1 (en) Laminate type electronic component and production method therefor and laminate type piezoelectric element
JP2012099827A (en) Laminated electronic component and injector using it
JP5409772B2 (en) Multilayer piezoelectric element, injection device using the same, and fuel injection system
JP3730893B2 (en) LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE
JP4817610B2 (en) LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE USING THE SAME
CN100448047C (en) Laminate type electronic component and production method therefor, laminate type piezoelectric element and jet device
JP4373643B2 (en) LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE
JP4803956B2 (en) Piezoelectric ceramics, laminated piezoelectric element using the same, and jetting apparatus
JP3921171B2 (en) CERAMIC ELECTRONIC COMPONENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE
JP4261903B2 (en) Ceramic electronic component and injection device
JP4942461B2 (en) Ceramic electronic component and injection device
JP3598057B2 (en) Multilayer piezoelectric element and injection device
JP4196474B2 (en) Ink ejecting apparatus and manufacturing method thereof
JP4868707B2 (en) Multilayer piezoelectric element and injection device
JP2006245594A (en) Manufacturing method of laminated piezoelectric element and laminated piezoelectric element
JP3894861B2 (en) Multilayer piezoelectric element and injection device
JP3872349B2 (en) Manufacturing method of multilayer piezoelectric element
JP4822664B2 (en) Multilayer piezoelectric element, manufacturing method thereof, and injection apparatus
JP4109433B2 (en) Manufacturing method of multilayer piezoelectric element
JP4299807B2 (en) Multilayer piezoelectric element and injection device
JP2827299B2 (en) Manufacturing method of laminated piezoelectric ceramic element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20060926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070216

R150 Certificate of patent or registration of utility model

Ref document number: 3921171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees