JP3918691B2 - 固体高分子型燃料電池 - Google Patents
固体高分子型燃料電池 Download PDFInfo
- Publication number
- JP3918691B2 JP3918691B2 JP2002265253A JP2002265253A JP3918691B2 JP 3918691 B2 JP3918691 B2 JP 3918691B2 JP 2002265253 A JP2002265253 A JP 2002265253A JP 2002265253 A JP2002265253 A JP 2002265253A JP 3918691 B2 JP3918691 B2 JP 3918691B2
- Authority
- JP
- Japan
- Prior art keywords
- flow path
- gas
- gas flow
- fuel cell
- surface portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04119—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0247—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
- H01M8/0263—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0267—Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2483—Details of groupings of fuel cells characterised by internal manifolds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2484—Details of groupings of fuel cells characterised by external manifolds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0223—Composites
- H01M8/0228—Composites in the form of layered or coated products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04029—Heat exchange using liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04291—Arrangements for managing water in solid electrolyte fuel cell systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、固体高分子型燃料電池に関し、特に、セル内の水分量の不均一性を解消させる固体高分子燃料電池に関するものである。
【0002】
【従来の技術】
従来から固体高分子型燃料電池のセル内の水分量の不均一性を解消するため、電解質膜をガス拡散電極で挟んだ膜電極接合体の過剰に湿潤しているガス下流部分でその余分の水分を吸取り、膜電極接合体の乾き気味となるガス上流部分に水分を供給するものが知られている(特許文献1参照)。
【0003】
これは、膜電極接合体へ夫々の側から反応ガスを供給するバイポーラプレートを多孔質体により形成し、さらにその外側に水分均一化構造体を配置した構成を備える。この水分均一化構造体は、多孔質体のバイポーラプレートを介して膜電極接合体の過剰な水分を吸取ることでフラッディングの発生を防止し、吸取った水分を構造体内部の毛細管現象によりより乾いた部分移動させ、膜電極接合体が乾き気味となる部位へ多孔質体のバイポーラプレートを介して水分を供給してドライアウトの発生を防止するようにしている。
【0004】
【特許文献1】
特開平8−138691号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来例では、湿潤部分から乾き気味部分への水分の移動が水分均一化構造体内での毛細管現象のみによるため、過剰な水分がある部分から乾き気味となる部分までの移動距離が長い場合には乾き気味となる部分への充分な加湿ができず、水分量の不均一性を確実には解消できないものであった。
【0006】
そこで本発明は、上記問題点に鑑みてなされたもので、セル内での水分量の不均一性を解消し、フラッディングやドライアウトの防止に好適な固体高分子型燃料電池を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、膜電極接合体を挟むセパレータの少なくとも何れか一方は、前記膜電極接合体に対面する表面部分とその裏面部分とにガス流路を備え、表面部分と裏面部分とのガス流路間で厚み方向に水移動可能に形成し、供給するガスを裏面部分のガス流路を経由させて表面部分のガス流路に供給することを特徴とする。加えて、裏面側ガス流路のガスを吸引して表面側ガス流路に送出す吸引送出手段を備えるようにしてもよい。
【0008】
【発明の効果】
したがって、本発明では、セパレータは膜電極接合体に対面する表面部分とその裏面部分とにガス流路を備え、表面部分と裏面部分とのガス流路間で厚み方向に水移動可能に形成し、供給するガスを裏面部分のガス流路を経由させて表面部分のガス流路に供給するようにしている。このため、裏面側ガス流路を通過するガスは、表面側ガス流路のガスおよびスタックの熱によって加温され、表面側ガス流路の下流部でガス中に含むことができずにガス流路内で液化した水がセパレータ厚み方向へ移動することにより加湿され、この加温され加湿されたガスが表面側ガス流路に供給される。従って、表面側ガス流路の入口付近での温度上昇により電解質膜から水分を奪い取る、所謂ライアウト現象を防止する効果がある。
【0009】
また、表面側ガス流路の下流部でガス中に含むことができずにガス流路内で液化した水がセパレータ厚み方向へ移動することにより、表面側流路では過剰となり液化した水がガス流路やガス拡散層を閉塞する、所謂フラッディング現象を防止する効果がある。
【0010】
しかも、裏面側ガス流路のガスを吸引して表面側ガス流路に送出す吸引送出手段を設けることにより、裏側の流路を流れるガスは外気からブロワによって引っ張られて負圧となり、逆に表側の流路を流れるガスはブロワによって送り込まれて正圧となるため、裏と表の間に圧力差が生じ、セパレータの表面で液相の水が生じた場合に、反対側のセパレータ裏面に効果的に排出することができる。
【0011】
その結果、反応ガスの供給が液相の水によって妨げられること(フラッディング現象)を防止でき、燃料電池の性能を改善できるという効果がある。
【0012】
【発明の実施の形態】
以下、本発明の固体高分子型燃料電池を各実施形態に基づいて説明する。
【0013】
(第1実施形態)
図1〜3は、本発明を適用した固体高分子型燃料電池の第1実施形態を示し、図1は燃料電池システムのシステム構成図、図2は燃料電池単セルの断面図、図3はカソードプレートの流路形状を示す正面図である。
【0014】
本実施例形態においては、ポーラスタイプのバイポーラプレート(以下、BPPという)を使用し、反応ガスをBPPの背面を通して表面に流すことで、セル内部での水分量を均一化し、フラッディングの発生およびドライアウトの発生を防止することを特徴とする。
【0015】
図1において、燃料電池システムは、燃料電池スタック1と、燃料電池スタック1にアノードガスを供給するアノードガス供給系統2と、燃料電池スタック1にカソードガスを供給するカソードガス供給系統3と、燃料電池スタック1を冷却する冷却系統4とを備える。
【0016】
前記アノードガス供給系統2は、アノードガス供給源5から供給されるアノードガスを圧力調整弁6を介して入口マニホールド7から燃料電池スタック1に導入し、燃料電池スタック1内を経由し、出口マニホールド8からのアノード排ガスは循環流路9および循環ポンプ10により圧力調整弁6の上流に還流させる。アノード排ガス中に含まれる水蒸気も圧力調整弁6上流に循環されてリサイクルされる。パージ弁11は、通常時は閉じてアノード排ガスは還流され、パージ作動時には、循環流路9中のアノード排ガスは循環されることなく外部へ排出する。
【0017】
前記カソードガス供給系統3は、ブロア15によりカソードガスとしての空気をフィルタ16を介して燃料電池スタック1の入口マニホールド17に供給し、燃料電池スタック1内を経由させ、出口マニホールド18からは、ガス圧力を調整する圧力調整弁19を経由して大気に放出させる。
【0018】
前記冷却系統4は、燃料電池スタック1を最適な温度に保つため、燃料電池スタック1内に冷却液としてロングライフクーラント(以下、冷却液という)を流すものである。これは、クーラントタンク20内の冷却液をポンプ21で吸上げて燃料電池スタック1の入口マニホールド22に供給し、燃料電池スタック1内を経由させた後、出口マニホールド23から送出された冷却液をラジエータ24により冷却してクーラントタンク20に戻す。
【0019】
図2は前記燃料電池スタック1の単セルの構成を示す。単セルは、膜電極接合体26(Membrane Electrode Assembly、以下、MEAと称す)を、アノードガスを供給するソリッドバイポーラプレート27(以下、ソリッドBPPと称す)と、カソードガスを供給するポーラスBPP28および冷却液流路用溝29を備えたソリッドBPP30とにより挟持して構成する。
【0020】
前記アノードガスを供給するソリッドBPP27は、MEA26の一方の面にアノードガスを供給するガス流路31を備える。ソリッドBPP27は構成材内に微細孔が存在しないため、アノードガスを洩れなくガス流路31によってMEA26に案内する。
【0021】
前記ポーラスBPP28は、MEA26と離反する側の面と隣接するソリッドBPP30の表面との間にカソードガスの裏面部分のガス流路としての上流側ガス流路32を形成し、MEA26との間でカソードガスの表面部分のガス流路としての下流側ガス流路33を形成する。上流側ガス流路32の始端は入口マニホールド17に連通し、下流側ガス流路33の終端は出口マニホールド18に連通し、上流側ガス流路32の終端と下流側ガス流路33の始端とは貫通孔34により連通されている。ポーラスBPP28は構成材内に無数の微細孔が存在するため、ガスや液体の透過を許容するが、構成材内に水等の液体が存在する場合にはその表面張力により構成素材内の微細孔が閉じられ、上流側ガス流路32と下流側ガス流路33との間のカソードガスの透過を阻止するよう機能する。
【0022】
前記冷却液流路用溝29を備えたソリッドBPP30は、一方の面でカソードガスの上流側ガス流路32の一部を構成し、他方の面に冷却液流路のための流路用溝29を備える。他方の面は隣接する単セルのアノードガスを案内するソリッドBPP27の背面に接触させて積層されるため、流路用溝29は冷却液流路に形成される。このソリッドBPP30においても構成材内に微細孔が存在しないため、上流側ガス流路32からのカソードガスの洩れや冷却液流路29からの冷却液の洩れを阻止する。
【0023】
図3は、前記ポーラスBPP28の正面図を示し、図中背面部にMEA26に対面する下流側ガス流路33(点線図示)が、始端を貫通孔34に連通させ、終端を出口マニホールド18に連通させて突堤33Aにより蛇行させて形成している。図中手前部分はMEA26から離反した面を示し、上流側ガス流路32が、始端を入口マニホールド17に連通させ、終端を貫通孔34に連通させて同じく突堤32Aにより蛇行させて形成している。上流側ガス流路32は図中上方から下方にカソードガスを流通させ、下流側ガス流路33は下方から上方にカソードガスを流通させる。なお、符号7、8はアノードガスの入口マニホールドおよび出口マニホールドを示し、符号22、23は冷却液の液入口マニホールドおよび液出口マニホールドを示す。
【0024】
以上の構成の固体高分子燃料電池においては、入口マニホールド22に冷却液を供給する一方、出口マニホールド23から冷却液を排出する。また、入口マニホールド7にアノードガスを供給する一方、出口マニホールド8からアノード排ガスを排出する。そして、入口マニホールド17にカソードガスを供給する一方、出口マニホールド18からカソード排ガスを排出することにより、作動させることができる。
【0025】
図2、3において、カソードガスは、入口マニホールド17から、セル毎に図中手前の上流側ガス流路32に分岐して流れ、突堤32Aにより蛇行した後に貫通孔34に達し、貫通孔34から図中裏面側の下流側ガス流路33に流れる。下流側ガス流路33を流れるカソードガスは突堤33Aにより蛇行されながらMEA26面に供給され、終端の出口マニホールド18から排気される。
【0026】
上流側ガス流路32(ポーラスBPP28の裏面)には、ブロワ15によって外気の冷たいカソードガスが供給されるため、特に上流側ガス流路32の入口付近にポーラスBPP28の断面方向で近接している下流側ガス流路33(ポーラスBPPの表面)のカソードガスは上流側ガス流路32のカソードガスによって冷やされる。このため、下流側ガス流路33を流れるカソードガスの飽和蒸気圧が下がり、その分カソードガスに持ちきれなくなった水蒸気が液化してくる。液化した水蒸気(水)は、ポーラスBPP28の無数の微細孔に毛細管現象により吸取られ、乾燥しているポーラスBPP28の(上流側ガス流路32を構成する)裏面に移動する。
【0027】
前記ポーラスBPP28の裏面に移動した水は、下流側ガス流路33のカソードガスによって温められて飽和蒸気圧が上昇し、下流側ガス流路33のカソードガスによって気化され、上流側ガス流路32のカソードガスを加湿する。そして、温度が燃料電池スタック1と同じに昇温され且つ十分に加湿された上流側ガス流路32のカソードガスは、貫通孔34を通ってMEA26に接する下流側ガス流路33に流れる。
【0028】
従って、下流側ガス流路33に流れるカソードガスは、前記のように加湿されているため、外気が乾燥している場合に下流側ガス流路33のMEA26反応面への入口付近でのドライアウト(乾燥状態)の発生を防止できる。また、下流側ガス流路33の下流に移動するに連れて過剰となり液化した水は、前述のごとくポーラスBPP28に速やかに吸取られるため、過剰となり液化した水がガス流路やガス拡散層を閉塞して生ずる所謂フラッディング現象を防止することができる。
【0029】
前記ポーラスBPP28は、ガスおよび液体の透過性があるため、図4に示すように、ポーラスBPP28の周囲およびマニホールド等の貫通穴7、8、17、18、22、23、34の壁面には、ガスおよび液体を不透過にするための処理(例えば、樹脂含浸)を施している。このようにすると、ガスまたは冷却水がポーラスプレート28を透過しマニホールド等から進入してくるのを防止できる。
【0030】
なお、上記実施形態において、アノード側は循環ポンプ10によってリサイクルしてアノード排ガス中の水蒸気をリサイクルさせて加湿するものについて説明しているが、例えば、カソード側と同様にポーラスタイプのBPPをアノード側に設け、アノードガスをMEA26反応面と対面する表面の裏側を先ず通し次いで表面に折り返して流すようにすることによりセル内部での水分量を均一化するものであってもよい。なお、図4に図示しているカソードプレート28は、上流側ガス流路の終端と下流側ガス流路の始端とが直接貫通孔34によって連結されるのでなく、夫々終端マニホールド36および始端マニホールド37に纏められ、マニホールドを介して連通するようにしている。
【0031】
本実施形態においては、下記に記載した効果を奏することができる。
【0032】
(ア)膜電極接合体26を挟むセパレータ28は、前記膜電極接合体26に対面する表面部分とその裏面部分とにガス流路33、32を備え、表面部分と裏面部分とのガス流路32、33間で厚み方向に水移動可能に形成し、供給するガスを裏面部分の上流側ガス流路32を経由させて表面部分の下流側ガス流路33に供給するようにしている。このため、下流側ガス流路33を通過するガスは、下流側ガス流路33のガスおよび燃料電池スタック1の熱によって加温され、下流側ガス流路33の下流部でガス中に含むことができずにガス流路内で液化した水がセパレータ厚み方向へ移動することにより加湿され、この加温され加湿されたガスが下流側ガス流路33に供給される。従って、下流側ガス流路33の入口付近での温度上昇により電解質膜26から水分を奪い取る、所謂ドライアウト現象を防止する効果がある。
【0033】
また、下流側ガス流路33の下流部でガス中に含むことができずにガス流路33内で液化した水がセパレータ28厚み方向へ移動することにより、下流側ガス流路33では過剰となり液化した水がガス流路やガス拡散層を閉塞する、所謂フラッディング現象を防止する効果がある。
【0034】
(イ)上流側ガス流路32中の上流部と下流側ガス流路33中の下流部とはセパレータ28の厚み方向に水移動可能な部位を介して隣接させたので、下流側ガス流路33の出口付近の高温のガスは上流側ガス流路32の外気温度に近いガスによって冷却され、その結果、飽和水蒸気圧が下がりガス中の水蒸気が凝縮し液水となる。凝縮された液水はポーラスBPP28の内部を移動し、上流側ガス流路32へ運ばれるが、上流側ガス流路32に流れているガスは下流側ガス流路33の高温のガスによって加熱されているので、飽和蒸気圧が上がっており、上流側ガス流路32に運ばれた液水は一気に水蒸気となり、上流側ガス流路32のガスが加湿される。つまり、排気ガスからの水の回収と供給ガスの加湿を効果的に行うことができる。その結果、システムの水バランスを成立させるための水回収装置あるいは加湿装置が不要になり、システムをシンプル化することができるという効果がある。
【0035】
しかも、発電による生成水と電気浸透水によってガスを飽和状態にする以上の水が最も生じやすい下流側ガス流路33の出口付近と、もっともガス中の水分量の少ない上流側ガス流路32の入口付近を断面方向に隣接させることによって、より効果的にフラッディング(水が過剰となった状態)防止と供給ガスの加湿が行える。
【0036】
(ウ)ポーラスタイプのセパレータ28の外周部と各マニホールドの壁面部分には、ガスおよび冷却液の不透過処理を施しているため、ポーラスプレート28を透過して燃料ガスのスタック1外部への漏れ、マニホールドからポーラスプレート28を透過してのアノードガスのカソード流路32、33への漏れやカソードガスのアノード流路31への漏れに起因する、ガス利用率の低下を防止する効果がある。
【0037】
(第2実施形態)
図5〜図8は、本発明を適用した固体高分子型燃料電池の第2実施形態を示し、カソードガスの上流側ガス流路32の終端と下流側ガス流路33の始端とに夫々マニホールド36、37を設け、カソードガスを流すブロア38を終端マニホールド36から吸い込み始端マニホールド37へ吐出するよう配置したものである。図5は燃料電池システムのシステム構成図、図6はカソードプレート28の流路形状を示す正面図、図7、8はセルの構成を示す縦断面図および横断面図である。
【0038】
図5、6において、終端マニホールド36は、夫々のセルの上流側ガス流路32の終端が連結され、外部配管39Aを介してブロア38に吸引されて入口マニホールド17から上流側ガス流路32を経由してカソードガスとしての空気が導入される。ブロア38で吐き出されたカソードガスは外部配管39Bを経由して始端マニホールド37に導入され、下流側ガス流路33を経由して出口マニホールド18に送出される。
【0039】
上流側ガス流路32を流れるカソードガスは外気からブロワ38によって引っ張られて負圧となり、逆に下流側ガス流路33を流れるカソードガスはブロワ38によって送出されているので正圧となっている。このため、上流側ガス流路32と下流側ガス流路33との間に圧力差が生じ、ポーラスBPP28の下流側ガス流路33で液相の水が生じた場合に、反対側のポーラスBPP28の上流側ガス流路32に効果的に排出することができる。その結果、反応ガスの供給が液相の水によって妨げられること(フラッディング現象)を防止でき、燃料電池スタック1の性能を改善でき、第1実施例の効果をより一層増大させる働きがある。
【0040】
図7において、燃料電池スタック1のセルは、MEA26をアノードBPP27とカソードBPP28とで挟み、カソードBPP28の背面に冷却液流路29を備えたソリッドBPP30を配置して構成している。カソードBPP28はポーラスタイプのプレートであり、カソードBPP28の両面には複数の上流側ガス流路32および下流側ガス流路33を構成するよう突起32B、33Bによりガス流路が分離されている。アノードBPP27およびソリッドBPP30はソリッドタイプのプレートであり、同様に複数の突起27A、30Aにより複数のアノードガス流路31、冷却液流路29が形成されている。
【0041】
図8は、ポーラス(カソード)BPP28内の水の移動状態を示す断面図である。上流側ガス流路32に外気を取り入れて下流側ガス流路33の反応ガスを冷却し、凝縮させた水をポーラス(カソード)BPP28内に断面方向に移動させ、上流側ガス流路32のカソードガスを加湿し、下流側ガス流路33のドライアウトおよびフラッディングを防止する効果は、第1実施形態と同じである。
【0042】
そして、この実施形態では、上流側ガス流路32の終端マニホールド36と下流側ガス流路33の始端マニホールド37の間にブロワ38を設けてあるため、上流側ガス流路32は負圧となり、下流側ガス流路33は正圧になるので、両流路間で圧力差が生じ、下流側ガス流路33から上流側ガス流路32への水の移動をより効果的に実現することができる。
【0043】
尚、上記の例では、カソードBPP28のみをポーラスタイプとしているが、アノード側のみにポーラスタイプのプレートを用いてもよいし、アノード側およびカソード側の両方にポーラスタイプのプレートを用いてよい。
【0044】
次に、ポーラスタイプのプレートであるカソードBPP28における流路形状の他の実施形態について説明する。これは、下流側ガス流路33の膜電極接合体26へのカソードガスの分配をより均一化するための一つの方法である。
【0045】
本実施形態では、図9に示すように、下流側ガス流路33の出口マニホールド18の幅を下流側ガス流路33の幅と同等とし、上流側ガス流路32の入口マニホールド17をその分だけ小さく形成したものである。一方入口マニホールド17が小さくなった上流側ガス流路32は電池反応面ではないため、下流側ガス流路33ほどガス分配の均一化を考慮する必要がなく、また、流路の深さや幅を調整することにより、上流側ガス流路32の機能を十分満足できる構造とすることができる。
【0046】
図10は、図6に示すカソード流路形状をもつポーラスBPP28に適用するアノード流路形状の一例を示すものである。これは、水過剰となり易いカソードガスの下流側ガス流路33に生じた液水がカソードガスとアノードガスの水蒸気の濃度勾配によって、アノード側に電解質膜を通して移動する逆拡散を促進するものである。
【0047】
アノードガスのガス流路31は、カソード側の下流側ガス流路33の下流側に近接して、入口マニホールド7と入口マニホールド7から延びるガス流路31の上流側とを配置している。また、カソード側の下流側ガス流路33の上流側に近接して、アノードガスの出口マニホールド8および出口マニホールド8へ連なるガス流路31を配置している。
【0048】
このように構成すると、水過剰となり易いカソードガスの下流側ガス流路33に生じた液水がカソードガスとアノードガスの水蒸気の濃度勾配によって、アノード側に膜電極接合体26を通して移動する逆拡散を促進する。
【0049】
また、下流側ガス流路33のカソードガスを、供給されたアノードガスによって冷やすことにより、カソードガス中の水蒸気を凝縮させ、カソードBPP28を通して効率よく水を上流側ガス流路32を通過するカソードガスへ回収拡散することができる。
【0050】
また、冷却液の入口マニホールド22およびそれに連なる冷却液流路29は、カソード側の下流側ガス流路33の出口マニホールド18にできるだけ近づけて配置することが望ましい。即ち、カソード側の出口マニホールド18付近のカソードガスをより一層冷やすことができ、カソードガス中の水を凝縮させ、水の燃料電池スタック1の外部への持ち出し量を少なくし、燃料電池スタック1の水の収支バランスをよりよく成立させることができる。その結果、外部に加湿器を備える必要がなくなり、燃料電池システムを簡略化できる。
【0051】
図11は、図6に示すカソード流路形状をもつポーラスBPP28に適用する冷却液流路形状の一例を示すものである。冷却液流路29はサーペンタイン式(蛇行式)となっている。即ち、スタック1内部に流入した冷却液は入口マニホールド22から冷却液流路29に分岐して流れ、折り返されて冷却液流路29から出口マニホールド23で合流してスタック1外部に排出される。冷却液はスタック1で発生した熱を吸収するため、入口マニホールド22から出口マニホールド23に移動するにつれて温度が上昇する。冷却液流路29の温度変化はカソードガスのガス流路32、33に対して、上流側ガス流路32を流れるカソードガスは入口マニホールド17から終端マニホールド36に向かって温度を上昇させつつ流動し、下流側ガス流路33を流れるカソードガスは始端マニホールド37から出口マニホールド18に向かって温度を低下されつつ流動するよう作用する。
【0052】
図12は温度変化に対する飽和蒸気圧の変化を示す。温度が高くなるに連れて、急激に飽和蒸気圧が大きくなる。これはガスの温度が上がれば、その分だけガスが水分を気相状態で保持できることを示している。
【0053】
図13は従来技術におけるセル内のカソードガス流路の流動位置に対する温度と相対湿度を示す。通常は図示するように、カソードガスはスタックに流入すると温度が上昇し、出口付近で最も温度が高くなり、排出される。このため、図12に示すように排気ガス中に含まれる水蒸気量が多く、スタック外への水の持ち出しが多くなり、水バランスが成立しなくなる。また、外部加湿器が無い場合にはセル入口付近では、図12に示すようにガス中に含まれる水蒸気量が少なく、ドライアウトが生じてしまう。
【0054】
図14は、図11に示す実施例のカソードガスのガス流路32、33中の位置における温度と相対湿度を示す。前述したように、カソードガスの上流側ガス流路32の入口マニホールド17から終端マニホールド36に向かって温度が上昇し、ガス中に含ませることができる水蒸気量が多くなる。これは、上流側ガス流路32のカソードガスの相対湿度が100%となるまでポーラスBPP28を透過させて下流側ガス流路33で発生する液水の蒸発を許容し、上流側ガス流路32のガスを効果的に加湿し、下流側ガス通路33の上流部分に生ずるドライアウトを防止することができる。
【0055】
他方、MEA26面と対面するポーラスBPP28の表側(反応面)では、カソードガスが始端マニホールド37から出口マニホールド18に向かうにつれて温度が低下する。このため、ガス中に含むことができる水蒸気量が少なくなり、相対湿度は常に100%以上となり、過飽和分の水はポーラスBPP28の表側で凝縮する。この液化した水はポーラスBPP28内を透過して上流側ガス流路32に移動し、上流側ガス流路32を流れているカソードガスの加湿に使われる。従って、下流側ガス流路33側でのフラッディングが発生することがない。
【0056】
このように、上流側ガス流路32と下流側ガス流路33のガス流路の流れ方向に温度勾配が生じるので、下流側ガス流路33の上流側のドライアウトや下流側のフラッディングを効果的に防止しつつ、下流側ガス流路33の出口マニホールド18付近のガス温度を低くして、スタック1外への水の持ち出しを少なくすることができる。
【0057】
ブロア38に終端マニホールド36および始端マニホールド37を連結する外部配管39A、39Bとブロア38とは、少なくともいずれか一方は断熱材により覆うようにしており、内部を流通するカソードガスの温度変化を抑制している。
【0058】
本実施形態においては、第1実施形態における効果(ア)〜(ウ)に加えて、下記に記載する効果を奏することができる。
【0059】
(エ)上流側ガス流路32をセパレータ28に形成した溝若しくは突起32Bにより構成しているため、当該ガス流路32を他のガス流路31や冷却液流路29と確実に分離でき、ポーラスBPP28およびソリッドBPP27、30の構造を簡単化できる。
【0060】
(オ)下流側ガス流路33の圧力を上流側ガス流路32の圧力より高くして両流路間に圧力差があるため、下流側ガス流路33から上流側ガス流路32への水の移動をより効果的に実現することができる。その結果、下流側ガス流路33内でのフラッディング現象を防止でき、燃料電池スタック1の性能を改善できるという効果がある。
【0061】
(カ)しかも、吸引送出手段としてのブロワ38により上流側ガス流路32のガスを吸い込み下流側ガス流路33に送出す等により、上流側ガス流路32を負圧とする一方、下流側ガス流路33を正圧としているため、下流側ガス流路33から上流側ガス流路32への水の移動をより一層効果的に実現することができる。その結果、下流側ガス流路33内でのフラッディング現象を確実に防止でき、燃料電池スタック1の性能を一層改善できるという効果がある。
【0062】
(キ)ブロワ38および外部配管39A、39Bは、少なくともいずれかが断熱材により覆われているため、上流側ガス流路32から下流側ガス流路33へ流れるガスの温度低下を防止でき、それが含んでいる水蒸気量を変化させることなく下流側ガス流路33へ送出すことができる。
【0063】
(ク)図11〜図14に示す具体例では、冷却液流路29を上流側を前記下流側ガス流路33の下流側に隣接させ、冷却液流路29の下流側を前記下流側ガス通路33の上流側に隣接させて備え、下流側ガス流路33中を流れるガスは、ガス流路33中の上流から下流に移動するに連れて温度が降下される。このため、上流側ガス流路32においては相対湿度が100%となるまでポーラスBPP28を透過させて下流側ガス流路33で発生する液水の蒸発を許容し、上流側ガス流路32のガスを効果的に加湿し、下流側ガス流路33においてはガス中に含むことができる水蒸気量が少なくなり、過飽和分の水はポーラスBPP28の表側で凝縮し、ポーラスBPP28内を透過して上流側ガス流路32に移動して上流側ガス流路32のカソードガスを加湿する。従って、下流側ガス流路33の上流側のドライアウトや下流側のフラッディングを効果的に防止しつつ、下流側ガス流路33の出口マニホールド18付近のガス温度を低くして、スタック1外への水の持ち出しを少なくすることができる。
【0064】
(ケ)図9に示す例では、下流側ガス流路33および上流側ガス流路32に連通して厚み方向に貫通するマニホールドの断面積は、下流側ガス流路33に連通するマニホールド18、37が上流側ガス流路32に連通するマニホールド17、36より大きく形成したため、下流側ガス流路33の膜電極接合体26へのカソードガスの分配をより均一化することができる。
【0065】
(第3実施形態)
図15、16は、本発明を適用した固体高分子型燃料電池の第3実施形態を示し、第2実施形態に加えてカソードガスの下流側ガス流路33から上流側ガス流路32への水の排出効果をさらに一層向上させるものである。図15は燃料電池システムのシステム構成図であり、図16は制御システム図である。
【0066】
図15において、圧力調整弁40をカソードガスの入口マニホールド17へのガス供給配管に設け、圧力調整弁40の開度を調整することでカソードガスの上流側ガス流路32と下流側ガス流路33の圧力差を調整するものである。上流側ガス流路32と下流側ガス流路33との圧力差は、ポーラスBPP28を透過させての下流側ガス流路33から上流側ガス流路32への水移動を補助する。この圧力差は、それが小さい場合には前記した第2実施形態での水移動に留まるものであるが、それが所定値以上ある場合には前記水移動が円滑且つ確実に行われる。
【0067】
前記圧力差は、図17に示すように、カソードガスの流量、即ち、燃料電池スタック1の運転負荷に応じて運転されるブロア38の運転速度により決定される流量に応じ、流量が増加するほど大きくなり、流量が減少するほど小さくなるよう変化する。従って、流量が少ない時には圧力差も小さく、下流側ガス流路33からポーラスBPP28を透過して上流側ガス流路32への水の排水効果が小さくなる。
【0068】
前記圧力差を流量が少ない場合にも確保するために、圧力調整弁19の調整に加えて圧力調整弁40も調整することにより、前記差圧を制御している。
【0069】
図16は、圧力制御弁19、40およびブロア38の制御システムを示し、燃料電池スタック1の負荷信号をコントローラ41に入力し、コントローラ41により負荷信号に応じてブロア38および各圧力制御弁19、40を制御するようにしている。燃料電池スタック1の負荷信号と各圧力調整弁19、40の開度とは、図18に示すように、制御する。
【0070】
即ち、負荷が小さい場合には、圧力調整弁40を絞ることにより上流側ガス流路32の圧力が下がり、加えて、圧力調整弁19を絞ることにより下流側ガス流路33の圧力を上げることができる。その結果、流量が変化した場合においても、差圧(P30−P33)を一定に保持することができる。
【0071】
以上のように、本実施形態では、流量変化に影響されずに、上流側ガス流路32と下流側ガス流路33との間のガス圧力の差圧(P30−P33)を一定に保つことができ、常にフラッディングの発生を防止し且つ、上流側ガス流路32の加湿に必要な液水を効果的にポーラスBPP28を透過させて移動させることができる。
【0072】
次に、セルの積層構造の具体例について説明する。
【0073】
図19に示す具体例では、カソード側の上流側ガス流路32を、第2実施形態の図7では下流側流路33を構成するポーラスBPP28により構成するものについて説明したが、本例の積層構造では冷却液流路29を構成するソリッドBPP30により構成したものである。このソリッドBPP30はアノード側のガス流路31を形成するソリッドBPP27と別体に構成しているが、両者を一体のソリッドBPPとして形成してもよい。
【0074】
図19に示す具体例では、冷却液流路29を構成するソリッドBPP30と一体にしているため、ポーラスプレートの使用量を低減でき、機械的強度が弱く加工が比較的困難であるポーラスタイプの両側に流路を形成する必要も無く、片面のみに流路を形成すればよいので製造コストを低減できる。
【0075】
また、ポーラスプレートの使用量を少なくすることにより、燃料電池の発電停止時に残留している微細孔中の水分量を減らすことができ、外気温が摂氏0℃以下から起動する場合において解凍しなければならない氷の量を減らし、起動時間を速めることができるとともに、解凍するためのエネルギーを節約することもできる。
【0076】
次に、セル積層構造の他の具体例を図20により説明する。この具体例では、アノードBPP27のアノードガスを流すガス流路31の裏側に冷却液流路29を設け、冷却液流路29とポーラスBPP28で形成したカソードの上流側ガス流路32との間にセパレータ43を配置している。このセパレータ43の材質は、導電性があり冷却液とカソードガスとを遮断するものであればよい。
【0077】
なお、冷却液流路29を備えたソリッドBPP30を図7に示すように、カソードガスのガス流路31を形成するソリッドBPP27を個別に設けることによって、図20に示すセパレータ43も必要がなくなる。
【0078】
図21に示すものは、カソード側の上流側ガス流路32を冷却液流路29と同一平面上として冷却液流路29を構成するソリッドBPP27に配置した具体例である。このソリッドBPP27には、入口マニホールド17と終端マニホールド36に連なる図中の上方に配置した上流側ガス流路32と入口マニホールド22と出口マニホールド23に連なる図中下方に配置した冷却液流路29とを備え、これらの流路29、32は下流側流路33を備えるポーラスBPP28の背面に臨ませて配置している。また、上流側ガス流路32の入口マニホールド17付近を下流側ガス流路33の出口マニホールド18付近と断面方向で隣接するように設けている。
【0079】
以上の構成により、最もフラッディングが起こりやすい下流側ガス流路33の出口マニホールド18付近の液水を、最もドライな上流側ガス流路32の入口マニホールド17付近のカソードガスにポーラスBPP28を透過させて供給するという効果を維持したまま、この上流側ガス流路32が冷却液流路29と同一平面状に配置されることによってセルを薄く形成でき、結果として出力密度を向上させる効果がある。
【0080】
図22は、図21の流路形状を具体化するスタック断面の一例を示したものである。図22において、カソードガスの上流側ガス流路32は断面方向に見て下流側ガス流路33の下流側と隣接している。また、カソードガスの下流側ガス流路33の上流側は、液水が生じにくく、上流側ガス流路32に水を透過しなくてもフラッディングは起きないので、この部分には上流側ガス流路32を設けずに、冷却液流路29を隣接させるように設ける。そして、裏側に冷却液流路29が断面方向に隣接した位置に設けられるポーラスBPP28部分には、ガスおよび冷却液が不透過となる、例えば、樹脂含浸のようなクーラント・ガス不透過処理44を施して、冷却液がポーラス内部に浸透し、さらに、ガス流路に侵入することによる膜電極接合体26が汚染されるのを防止している。逆に、反応ガスがポーラス内部を通過し冷却液流路29に進入することによりガスの利用率が低下するのも防止している。
【0081】
図23は、図21の流路形状を具体化するスタック断面の他の具体例である。図23においては、冷却液流路29に断面方向で隣接している下流側ガス流路33の部分にはソリッドタイプのBPP45を用い、上流側ガス流路32に隣接している部分にはポーラスタイプのBPP28を用いている。このため、冷却液を不透過にするためのクーラント・ガス不透過処理を施す必要が無く、製造コストを安くする効果がある。
【0082】
さらに、ポーラスタイプのBPP28の使用量を少なくでき、燃料電池スタック1の起動停止時に残留している微細孔中の水分量を減らすことができ、外気温が摂氏0℃以下から起動する場合に解凍しなければならない氷の量を減らし、起動時間を速めることができるとともに、解凍するためのエネルギーを節約するという効果もある。
【0083】
本実施形態においては、第1実施形態における効果(ア)〜(ウ)および第2実施形態の効果(エ)、(キ)、(ク)に加えて、以下に記載した効果を奏することができる。
【0084】
(コ)図19、22、23においては、裏面部分の上流側ガス流路32は、セパレータとしてのポーラスBPP28に背面から接する部材の接触表面に形成した溝により構成したため、機械的強度が弱くまた、加工が比較的困難であるポーラスタイプの両側に流路を形成する必要が無く、片面のみに流路を形成すればよいので生産コストを安くできる。また、ポーラスプレートの使用量を少なくすることにより、燃料電池の発電停止時に残留している微細孔中の水分量を減らすことができ、外気温が摂氏0℃以下から起動する場合に解凍しなければならない氷の量を減らし、起動時間を速めることができるとともに、解凍するためのエネルギーを節約することもできる。
【0085】
(サ)図21〜23では、セパレータとしてのポーラスBPP28の裏面には、裏面部分の上流側ガス流路32部分を除いて冷却液を流通させる冷却液流路29が形成されているため、最もフラッディングが起こりやすい下流側ガス流路33の出口付近の液水を、最もドライな上流側ガス流路32の入口付近のガスに供給するという効果を維持したまま、この上流側ガス流路32が冷却液流路29と同一平面状にあることによってセルの厚みを削減することができ、結果として燃料電池の出力密度を向上できる効果がある。
【0086】
(シ)図22に示す例では、セパレータとしてのポーラスタイプのBPP28は、冷却液流路29と隣接する部分に、ガスおよび冷却液を不透過とする処理44を施しているため、冷却液がポーラス内部、さらには、ガス流路に侵入してくることによって膜電極接合体26が汚染されてしまうのを防止する一方、反応ガスがポーラス内部を通過して冷却液流路29に進入してくることによってガスの利用率の低下を防止する効果がある。
【0087】
(ス)図23に示す例では、セパレータとしてのポーラスBPP28の冷却液流路29と隣接する部分には、ガスおよび冷却液を不透過とする部材45により構成されている、即ち、冷却液流路29に断面方向で隣接しているガス流路の部分にはソリッドタイプのBPP45を用い、上流側ガス流路32に隣接している部分にはポーラスタイプのBPP28を用いているため、冷却液を不透過にするための樹脂含浸などの処理を施す必要が無く、生産コストを安くする効果がある。
【0088】
さらに、ポーラスプレートの使用量を少なくすることにより、燃料電池の起動停止時に残留している微細孔中の水分量を減らすことができ、低温から起動する場合に解凍しなければならない氷の量を減らし、起動時間を速めることができるとともに、解凍するためのエネルギーを節約するという効果もある。
【0089】
(セ)上流側ガス流路32へのガス導入部分に上流側ガス流路32の圧力を調整する圧力調整手段としての圧力調整弁40を設けたため、上流側ガス流路32と下流側ガス流路33の圧力差を制御することができ、下流側ガス流路33と上流側ガス流路32の水分のやりとりを最適に制御することができる。よって、下流側ガス流路33の下流側でのフラッディングの発生や供給ガスの加湿不足によるドライアウトの発生を効果的に防止することができるという効果がある。
【0090】
(ソ)圧力調整手段としての圧力調整弁40は、燃料電池の負荷に基づいて調整度合いを変えることとしため、燃料電池の各負荷条件に合致させて最適に下流側ガス流路33と上流側ガス流路32との圧力差、即ち、両流路間の水分のやりとりを最適に制御でき、よって、下流側ガス流路33の下流側でのフラッディングの発生や下流側ガス流路33の上流側でのガス加湿不足によるドライアウトの発生を効果的に防止することができるという効果がある。
【0091】
(第4実施形態)
図24、25は、本発明を適用した固体高分子型燃料電池の第4実施形態を示し、発電停止時にスタック内部の液水をスタック外部に排出するようにしたものである。図24は燃料電池システムのシステム図であり、図25は図示しないコントローラにより定時的に作動される制御フローチャートである。
【0092】
図24に示すものは、図15に示す第3実施形態の燃料電池システムに対して、ブロワ38からのカソードガスが燃料電池スタック1に供給されるのを遮断する第1遮断弁と、ブロワ38からのカソードガスを排気する排気配管48と、この排気配管48中に配置され前記第1遮断弁47の作動時に開放する第2遮断弁49と、ブロア38の吸気側配管に配置された液水トラップ50とを追加して備える。
【0093】
前記燃料電池システムのカソードガス供給系統3の動作を図25の制御フローチャートにより説明する。なお、アノードガス供給系統2および冷却系統4については、ここでは説明しないが、夫々の運転モードに対応して図示しないコントローラにより制御されるものである。
【0094】
先ず、ステップ1において、燃料電池の運転モードが起動モードであるか否かが判断される。起動モードである場合にはステップ2へ進み、起動モードでない場合にはステップ6へ進む。
【0095】
ステップ2では、燃料電池の雰囲気温度Tが読込まれてステップ3へ進む。
【0096】
ステップ3では、雰囲気温度Tが摂氏0℃を超えているか否かが判断され、摂氏0℃以下の場合にはステップ4へ進み、摂氏0℃を超えている場合にはステップ5へ進む。
【0097】
ステップ4は燃料電池の起動モードの処理である。コントローラは、カソード入口圧力制御弁40を閉じて上流側ガス流路32へのカソードガスの供給を遮断し、第2遮断弁49を閉じカソード出口圧力制御弁19および第1遮断弁47を開いてカソードガスの下流側ガス流路33への供給を可能としてブロア38をオン作動させる。そして、カウンタをゼロ(I=0)にセットする。
【0098】
ステップ5は、ステップ3での雰囲気温度Tの判定が摂氏0℃を超えている場合(燃料電池の起動モードによる運転により雰囲気温度が摂氏0℃を超える場合も含む)に、通常運転モードで燃料電池を運転する。ステップ5においては、起動モードでの運転に対して入口圧力制御弁40が追加的に開放され、カソードガスが上流側ガス流路32にも供給され、次いで、ブロア38を介して下流側ガス流路33に供給される。このステップでも、カウンタをゼロ(I=0)にセットする。
【0099】
ステップ6では、停止モードか否かが判断され、停止モードでない場合にはステップ5での通常運転モードで燃料電池が運転され、停止モードである場合にはステップ7へ進む。
【0100】
ステップ7では、ステップ7での停止モード継続のカウンタ(I)が所定回数N以上か否かが判定される。この所定回数Nはステップ8での停止モードのブロワ38の動作時間であり、スタックの大きさや流路の形状などから求められ、実験的に設定する数値である。カウンタ(I)が設定値Nを超えていない場合にはステップ8へ進んで停止モードで運転し、超えている場合にはステップ9へ進んで燃料電池の運転を停止する。
【0101】
ステップ8での停止モードにおいては、ブロワ38の運転は継続されるも、入口圧力調整弁40および出口圧力調整弁19を閉じ、第1遮断弁47を閉じるも第2遮断弁49を開放する。カソードガスの下流側ガス流路33へのカソードガスの出入は遮断され、上流側ガス流路32はブロア38に吸引されることで負圧となり、存在したカソードガスはブロア38から第2遮断弁49を経由して外気に放出される。ポーラスBPP28の上流側ガス流路32が真空状態に近くなり、上流側ガス流路32、下流側ガス流路33、および、ポーラスBPP28の内部に存在していた液水は上流側ガス流路32に移動してスタックの外部に排出され、液水トラップ50に溜められる。これにより、セルの流路には液水が存在しない状態を作り出すことができる。カウンタ(I)は定時的にインクレメントされ、所定時間(所定値N)を超えるとステップ9へ進む。
【0102】
ステップ9では、ブロア38が停止され、第2遮断弁49が閉じ、カウンタ(I)をゼロにリセットして、燃料電池の運転が停止される。
【0103】
以上の作動により、雰囲気温度Tが摂氏0℃以下からの起動時には、前述の運転停止フロー、特に、ステップ8の停止モードでの運転を実行した効果により、カソードガスの上流側ガス流路32および下流側ガス流路33には氷が存在することがなく、流路の閉塞を考慮することなくカソードガスを供給することができる。
【0104】
図26は、上記した第4実施形態の変形例を示す固体高分子型燃料電池システムのシステム図であり、燃料電池の起動性をより一層向上させたものである。
【0105】
図26に示す燃料電池システムにおいては、図24に示す燃料電池システムに対して、入口圧力制御弁40を含む上流側ガス流路32、入口・終端マニホールド17、39、および、液水トラップ50をバイパスしたバイパス通路52とバイパス通路52に配置された第3遮断弁53を追加したものである。
【0106】
この変形例では、起動時に、第3遮断弁53が開き入口圧力調整弁40が全閉となることによって、供給ガスはバイパス通路52を通りブロワ38に供給され、セルの下流側ガス流路33に直接供給させる。
【0107】
起動時に上流側ガス流路32をバイパスさせるので、図25での停止モードで上流側ガス流路32および上流側ガス流路32に連通する前後のマニホールド17、36の液水までも、すべてスタック外に排出する必要が無く、停止時のエネルギーを節約できる。
【0108】
即ち、この時、すくなくとも下流側ガス流路33には氷が存在していないため、氷点下時においても流路が閉塞することなく燃料電池の起動が行える。
【0109】
その後、燃料電池の反応熱により、上流側ガス流路32に存在していた氷が溶け、第3遮断弁53を閉じ、入口圧力調整弁40を開くことによって、通常の上流側ガス流路32を使ったガスの供給に切り替えることができる。なお、上流側ガス流路32の氷が溶けたかどうかは、燃料電池内部に設けられた図示していない温度センサーにより判断することができる。
【0110】
本実施形態のおいては、第1実施形態の効果(ア)〜(ウ)、第2実施形態の効果(エ)、(キ)、(ク)および第3実施形態の効果(コ)、(セ)、(ソ)に加えて、以下に記載する効果を奏することができる。
【0111】
(タ)図24、25に示す実施形態においては、上流側ガス流路32の上流に設けた入口弁40と、前記下流側ガス流路33の下流に設けた出口弁19と、前記吸引送出手段としてのブロア38の下流でかつ前記下流側ガス流路33の上流に設けた第1の遮断弁47と、前記ブロア38と前記第1の遮断弁47との間から分岐した排気管48に設けた第2の遮断弁49とを設け、燃料電池停止時に、入口弁40、出口弁19、および、第1の遮断弁47を閉成し且つ第2の遮断弁49を開成するようにしている。このため、発電停止時のスタック内部の水を排出することができ、外気温が摂氏0℃以下からの起動時に解凍しなければならない氷の量を減らすことができ、起動時間を短縮する効果があるとともに、起動するためのエネルギーも節約することができるという効果がある。
【0112】
(チ)図26に示す実施形態においては、前記入口弁40および上流側ガス流路32をバイパスするバイパス通路52と、バイパス通路52に設けられた第3の遮断弁53を設けて、燃料電池起動時に、第3の遮断弁53を開成するため、外気温が摂氏0℃以下からの起動時には上流側ガス流路32をバイパスさせて直接下流側ガス流路33にガスを供給することができ、発電停止時には下流側ガス流路33の液水のみ排出できればよく、上流側ガス流路32やこれに連なるマニホールドの液水は排出する必要が無くなり、停止時のエネルギーを節約することができるという効果がある。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す固体高分子燃料電池のシステムの構成図。
【図2】燃料電池の単セルの断面図。
【図3】図1のポーラスタイプのカソードプレートの流路形状を示す正面図。
【図4】図1のポーラスタイプのカソードプレートのガス不透過処理を施す部位を示す正面図。
【図5】本発明の第2実施形態の固体高分子燃料電池のシステムの構成図。
【図6】図5のポーラスタイプのカソードプレートの流路形状を示す正面図。
【図7】図5の単セルの縦断面図。
【図8】図5の単セルの横断面図。
【図9】ポーラスタイプのカソードプレートの流路形状の変形例を示す正面図。
【図10】アノードガスのガス流路を説明する図。
【図11】冷却液流路を説明する図。
【図12】温度に対する飽和蒸気圧を説明するグラフ。
【図13】従来技術における流路位置に対するガス温度と相対湿度を表したグラフ。
【図14】図11における流路位置に対する温度と相対湿度を表したグラフ。
【図15】本発明の第3実施形態の固体高分子燃料電池のシステムの構成図。
【図16】図15の制御システムを示すシステム構成図。
【図17】ガス流量と上流側ガス流路と下流側ガス流路の圧力差を示したグラフ。
【図18】燃料電池の負荷と圧力調整弁の開度の関係を示した図。
【図19】燃料電池単セルの積層構造の具体例を示す断面図。
【図20】燃料電池単セルの積層構造の別の具体例を示す断面図。
【図21】上流側ガス流路と冷却液流路とを同一平面上に配置する例を示す正面図。
【図22】図21を実現する一例のセル積層方向の断面図。
【図23】図21を実現する別例のセル積層方向の断面図。
【図24】本発明の第4実施形態の固体高分子燃料電池のシステムの構成図。
【図25】図24の制御を説明するフローチャート。
【図26】図24の固体高分子燃料電池の変形例のシステムの構成図。
【符号の説明】
1 燃料電池スタック
2 アノードガス供給系統
3 カソードガス供給系統
4 冷却系統
15、38 吸引送出手段としてのブロア
17 入口マニホールド
18 出口マニホールド
19 出口圧力調整弁(出口弁)
26 膜電極接合体(MEA)
27、30、45 ソリッドBPP
28 ポーラスBPP(セパレータ)
29 冷却液流路
31 アノードガスのガス流路
32 カソードガスの上流側ガス流路(裏面部分のガス流路)
33 カソードガスの下流側ガス流路(表面部分のガス流路)
34 貫通孔
36 終端マニホールド
37 始端マニホールド
40 入口圧力調整弁(入口弁)
41 コントローラ
44 ガスおよび冷却液を不透過とする処理
47 第1の遮断弁
49 第2の遮断弁
50 液水トラップ
52 バイパス通路
53 第3の遮断弁
【発明の属する技術分野】
本発明は、固体高分子型燃料電池に関し、特に、セル内の水分量の不均一性を解消させる固体高分子燃料電池に関するものである。
【0002】
【従来の技術】
従来から固体高分子型燃料電池のセル内の水分量の不均一性を解消するため、電解質膜をガス拡散電極で挟んだ膜電極接合体の過剰に湿潤しているガス下流部分でその余分の水分を吸取り、膜電極接合体の乾き気味となるガス上流部分に水分を供給するものが知られている(特許文献1参照)。
【0003】
これは、膜電極接合体へ夫々の側から反応ガスを供給するバイポーラプレートを多孔質体により形成し、さらにその外側に水分均一化構造体を配置した構成を備える。この水分均一化構造体は、多孔質体のバイポーラプレートを介して膜電極接合体の過剰な水分を吸取ることでフラッディングの発生を防止し、吸取った水分を構造体内部の毛細管現象によりより乾いた部分移動させ、膜電極接合体が乾き気味となる部位へ多孔質体のバイポーラプレートを介して水分を供給してドライアウトの発生を防止するようにしている。
【0004】
【特許文献1】
特開平8−138691号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来例では、湿潤部分から乾き気味部分への水分の移動が水分均一化構造体内での毛細管現象のみによるため、過剰な水分がある部分から乾き気味となる部分までの移動距離が長い場合には乾き気味となる部分への充分な加湿ができず、水分量の不均一性を確実には解消できないものであった。
【0006】
そこで本発明は、上記問題点に鑑みてなされたもので、セル内での水分量の不均一性を解消し、フラッディングやドライアウトの防止に好適な固体高分子型燃料電池を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、膜電極接合体を挟むセパレータの少なくとも何れか一方は、前記膜電極接合体に対面する表面部分とその裏面部分とにガス流路を備え、表面部分と裏面部分とのガス流路間で厚み方向に水移動可能に形成し、供給するガスを裏面部分のガス流路を経由させて表面部分のガス流路に供給することを特徴とする。加えて、裏面側ガス流路のガスを吸引して表面側ガス流路に送出す吸引送出手段を備えるようにしてもよい。
【0008】
【発明の効果】
したがって、本発明では、セパレータは膜電極接合体に対面する表面部分とその裏面部分とにガス流路を備え、表面部分と裏面部分とのガス流路間で厚み方向に水移動可能に形成し、供給するガスを裏面部分のガス流路を経由させて表面部分のガス流路に供給するようにしている。このため、裏面側ガス流路を通過するガスは、表面側ガス流路のガスおよびスタックの熱によって加温され、表面側ガス流路の下流部でガス中に含むことができずにガス流路内で液化した水がセパレータ厚み方向へ移動することにより加湿され、この加温され加湿されたガスが表面側ガス流路に供給される。従って、表面側ガス流路の入口付近での温度上昇により電解質膜から水分を奪い取る、所謂ライアウト現象を防止する効果がある。
【0009】
また、表面側ガス流路の下流部でガス中に含むことができずにガス流路内で液化した水がセパレータ厚み方向へ移動することにより、表面側流路では過剰となり液化した水がガス流路やガス拡散層を閉塞する、所謂フラッディング現象を防止する効果がある。
【0010】
しかも、裏面側ガス流路のガスを吸引して表面側ガス流路に送出す吸引送出手段を設けることにより、裏側の流路を流れるガスは外気からブロワによって引っ張られて負圧となり、逆に表側の流路を流れるガスはブロワによって送り込まれて正圧となるため、裏と表の間に圧力差が生じ、セパレータの表面で液相の水が生じた場合に、反対側のセパレータ裏面に効果的に排出することができる。
【0011】
その結果、反応ガスの供給が液相の水によって妨げられること(フラッディング現象)を防止でき、燃料電池の性能を改善できるという効果がある。
【0012】
【発明の実施の形態】
以下、本発明の固体高分子型燃料電池を各実施形態に基づいて説明する。
【0013】
(第1実施形態)
図1〜3は、本発明を適用した固体高分子型燃料電池の第1実施形態を示し、図1は燃料電池システムのシステム構成図、図2は燃料電池単セルの断面図、図3はカソードプレートの流路形状を示す正面図である。
【0014】
本実施例形態においては、ポーラスタイプのバイポーラプレート(以下、BPPという)を使用し、反応ガスをBPPの背面を通して表面に流すことで、セル内部での水分量を均一化し、フラッディングの発生およびドライアウトの発生を防止することを特徴とする。
【0015】
図1において、燃料電池システムは、燃料電池スタック1と、燃料電池スタック1にアノードガスを供給するアノードガス供給系統2と、燃料電池スタック1にカソードガスを供給するカソードガス供給系統3と、燃料電池スタック1を冷却する冷却系統4とを備える。
【0016】
前記アノードガス供給系統2は、アノードガス供給源5から供給されるアノードガスを圧力調整弁6を介して入口マニホールド7から燃料電池スタック1に導入し、燃料電池スタック1内を経由し、出口マニホールド8からのアノード排ガスは循環流路9および循環ポンプ10により圧力調整弁6の上流に還流させる。アノード排ガス中に含まれる水蒸気も圧力調整弁6上流に循環されてリサイクルされる。パージ弁11は、通常時は閉じてアノード排ガスは還流され、パージ作動時には、循環流路9中のアノード排ガスは循環されることなく外部へ排出する。
【0017】
前記カソードガス供給系統3は、ブロア15によりカソードガスとしての空気をフィルタ16を介して燃料電池スタック1の入口マニホールド17に供給し、燃料電池スタック1内を経由させ、出口マニホールド18からは、ガス圧力を調整する圧力調整弁19を経由して大気に放出させる。
【0018】
前記冷却系統4は、燃料電池スタック1を最適な温度に保つため、燃料電池スタック1内に冷却液としてロングライフクーラント(以下、冷却液という)を流すものである。これは、クーラントタンク20内の冷却液をポンプ21で吸上げて燃料電池スタック1の入口マニホールド22に供給し、燃料電池スタック1内を経由させた後、出口マニホールド23から送出された冷却液をラジエータ24により冷却してクーラントタンク20に戻す。
【0019】
図2は前記燃料電池スタック1の単セルの構成を示す。単セルは、膜電極接合体26(Membrane Electrode Assembly、以下、MEAと称す)を、アノードガスを供給するソリッドバイポーラプレート27(以下、ソリッドBPPと称す)と、カソードガスを供給するポーラスBPP28および冷却液流路用溝29を備えたソリッドBPP30とにより挟持して構成する。
【0020】
前記アノードガスを供給するソリッドBPP27は、MEA26の一方の面にアノードガスを供給するガス流路31を備える。ソリッドBPP27は構成材内に微細孔が存在しないため、アノードガスを洩れなくガス流路31によってMEA26に案内する。
【0021】
前記ポーラスBPP28は、MEA26と離反する側の面と隣接するソリッドBPP30の表面との間にカソードガスの裏面部分のガス流路としての上流側ガス流路32を形成し、MEA26との間でカソードガスの表面部分のガス流路としての下流側ガス流路33を形成する。上流側ガス流路32の始端は入口マニホールド17に連通し、下流側ガス流路33の終端は出口マニホールド18に連通し、上流側ガス流路32の終端と下流側ガス流路33の始端とは貫通孔34により連通されている。ポーラスBPP28は構成材内に無数の微細孔が存在するため、ガスや液体の透過を許容するが、構成材内に水等の液体が存在する場合にはその表面張力により構成素材内の微細孔が閉じられ、上流側ガス流路32と下流側ガス流路33との間のカソードガスの透過を阻止するよう機能する。
【0022】
前記冷却液流路用溝29を備えたソリッドBPP30は、一方の面でカソードガスの上流側ガス流路32の一部を構成し、他方の面に冷却液流路のための流路用溝29を備える。他方の面は隣接する単セルのアノードガスを案内するソリッドBPP27の背面に接触させて積層されるため、流路用溝29は冷却液流路に形成される。このソリッドBPP30においても構成材内に微細孔が存在しないため、上流側ガス流路32からのカソードガスの洩れや冷却液流路29からの冷却液の洩れを阻止する。
【0023】
図3は、前記ポーラスBPP28の正面図を示し、図中背面部にMEA26に対面する下流側ガス流路33(点線図示)が、始端を貫通孔34に連通させ、終端を出口マニホールド18に連通させて突堤33Aにより蛇行させて形成している。図中手前部分はMEA26から離反した面を示し、上流側ガス流路32が、始端を入口マニホールド17に連通させ、終端を貫通孔34に連通させて同じく突堤32Aにより蛇行させて形成している。上流側ガス流路32は図中上方から下方にカソードガスを流通させ、下流側ガス流路33は下方から上方にカソードガスを流通させる。なお、符号7、8はアノードガスの入口マニホールドおよび出口マニホールドを示し、符号22、23は冷却液の液入口マニホールドおよび液出口マニホールドを示す。
【0024】
以上の構成の固体高分子燃料電池においては、入口マニホールド22に冷却液を供給する一方、出口マニホールド23から冷却液を排出する。また、入口マニホールド7にアノードガスを供給する一方、出口マニホールド8からアノード排ガスを排出する。そして、入口マニホールド17にカソードガスを供給する一方、出口マニホールド18からカソード排ガスを排出することにより、作動させることができる。
【0025】
図2、3において、カソードガスは、入口マニホールド17から、セル毎に図中手前の上流側ガス流路32に分岐して流れ、突堤32Aにより蛇行した後に貫通孔34に達し、貫通孔34から図中裏面側の下流側ガス流路33に流れる。下流側ガス流路33を流れるカソードガスは突堤33Aにより蛇行されながらMEA26面に供給され、終端の出口マニホールド18から排気される。
【0026】
上流側ガス流路32(ポーラスBPP28の裏面)には、ブロワ15によって外気の冷たいカソードガスが供給されるため、特に上流側ガス流路32の入口付近にポーラスBPP28の断面方向で近接している下流側ガス流路33(ポーラスBPPの表面)のカソードガスは上流側ガス流路32のカソードガスによって冷やされる。このため、下流側ガス流路33を流れるカソードガスの飽和蒸気圧が下がり、その分カソードガスに持ちきれなくなった水蒸気が液化してくる。液化した水蒸気(水)は、ポーラスBPP28の無数の微細孔に毛細管現象により吸取られ、乾燥しているポーラスBPP28の(上流側ガス流路32を構成する)裏面に移動する。
【0027】
前記ポーラスBPP28の裏面に移動した水は、下流側ガス流路33のカソードガスによって温められて飽和蒸気圧が上昇し、下流側ガス流路33のカソードガスによって気化され、上流側ガス流路32のカソードガスを加湿する。そして、温度が燃料電池スタック1と同じに昇温され且つ十分に加湿された上流側ガス流路32のカソードガスは、貫通孔34を通ってMEA26に接する下流側ガス流路33に流れる。
【0028】
従って、下流側ガス流路33に流れるカソードガスは、前記のように加湿されているため、外気が乾燥している場合に下流側ガス流路33のMEA26反応面への入口付近でのドライアウト(乾燥状態)の発生を防止できる。また、下流側ガス流路33の下流に移動するに連れて過剰となり液化した水は、前述のごとくポーラスBPP28に速やかに吸取られるため、過剰となり液化した水がガス流路やガス拡散層を閉塞して生ずる所謂フラッディング現象を防止することができる。
【0029】
前記ポーラスBPP28は、ガスおよび液体の透過性があるため、図4に示すように、ポーラスBPP28の周囲およびマニホールド等の貫通穴7、8、17、18、22、23、34の壁面には、ガスおよび液体を不透過にするための処理(例えば、樹脂含浸)を施している。このようにすると、ガスまたは冷却水がポーラスプレート28を透過しマニホールド等から進入してくるのを防止できる。
【0030】
なお、上記実施形態において、アノード側は循環ポンプ10によってリサイクルしてアノード排ガス中の水蒸気をリサイクルさせて加湿するものについて説明しているが、例えば、カソード側と同様にポーラスタイプのBPPをアノード側に設け、アノードガスをMEA26反応面と対面する表面の裏側を先ず通し次いで表面に折り返して流すようにすることによりセル内部での水分量を均一化するものであってもよい。なお、図4に図示しているカソードプレート28は、上流側ガス流路の終端と下流側ガス流路の始端とが直接貫通孔34によって連結されるのでなく、夫々終端マニホールド36および始端マニホールド37に纏められ、マニホールドを介して連通するようにしている。
【0031】
本実施形態においては、下記に記載した効果を奏することができる。
【0032】
(ア)膜電極接合体26を挟むセパレータ28は、前記膜電極接合体26に対面する表面部分とその裏面部分とにガス流路33、32を備え、表面部分と裏面部分とのガス流路32、33間で厚み方向に水移動可能に形成し、供給するガスを裏面部分の上流側ガス流路32を経由させて表面部分の下流側ガス流路33に供給するようにしている。このため、下流側ガス流路33を通過するガスは、下流側ガス流路33のガスおよび燃料電池スタック1の熱によって加温され、下流側ガス流路33の下流部でガス中に含むことができずにガス流路内で液化した水がセパレータ厚み方向へ移動することにより加湿され、この加温され加湿されたガスが下流側ガス流路33に供給される。従って、下流側ガス流路33の入口付近での温度上昇により電解質膜26から水分を奪い取る、所謂ドライアウト現象を防止する効果がある。
【0033】
また、下流側ガス流路33の下流部でガス中に含むことができずにガス流路33内で液化した水がセパレータ28厚み方向へ移動することにより、下流側ガス流路33では過剰となり液化した水がガス流路やガス拡散層を閉塞する、所謂フラッディング現象を防止する効果がある。
【0034】
(イ)上流側ガス流路32中の上流部と下流側ガス流路33中の下流部とはセパレータ28の厚み方向に水移動可能な部位を介して隣接させたので、下流側ガス流路33の出口付近の高温のガスは上流側ガス流路32の外気温度に近いガスによって冷却され、その結果、飽和水蒸気圧が下がりガス中の水蒸気が凝縮し液水となる。凝縮された液水はポーラスBPP28の内部を移動し、上流側ガス流路32へ運ばれるが、上流側ガス流路32に流れているガスは下流側ガス流路33の高温のガスによって加熱されているので、飽和蒸気圧が上がっており、上流側ガス流路32に運ばれた液水は一気に水蒸気となり、上流側ガス流路32のガスが加湿される。つまり、排気ガスからの水の回収と供給ガスの加湿を効果的に行うことができる。その結果、システムの水バランスを成立させるための水回収装置あるいは加湿装置が不要になり、システムをシンプル化することができるという効果がある。
【0035】
しかも、発電による生成水と電気浸透水によってガスを飽和状態にする以上の水が最も生じやすい下流側ガス流路33の出口付近と、もっともガス中の水分量の少ない上流側ガス流路32の入口付近を断面方向に隣接させることによって、より効果的にフラッディング(水が過剰となった状態)防止と供給ガスの加湿が行える。
【0036】
(ウ)ポーラスタイプのセパレータ28の外周部と各マニホールドの壁面部分には、ガスおよび冷却液の不透過処理を施しているため、ポーラスプレート28を透過して燃料ガスのスタック1外部への漏れ、マニホールドからポーラスプレート28を透過してのアノードガスのカソード流路32、33への漏れやカソードガスのアノード流路31への漏れに起因する、ガス利用率の低下を防止する効果がある。
【0037】
(第2実施形態)
図5〜図8は、本発明を適用した固体高分子型燃料電池の第2実施形態を示し、カソードガスの上流側ガス流路32の終端と下流側ガス流路33の始端とに夫々マニホールド36、37を設け、カソードガスを流すブロア38を終端マニホールド36から吸い込み始端マニホールド37へ吐出するよう配置したものである。図5は燃料電池システムのシステム構成図、図6はカソードプレート28の流路形状を示す正面図、図7、8はセルの構成を示す縦断面図および横断面図である。
【0038】
図5、6において、終端マニホールド36は、夫々のセルの上流側ガス流路32の終端が連結され、外部配管39Aを介してブロア38に吸引されて入口マニホールド17から上流側ガス流路32を経由してカソードガスとしての空気が導入される。ブロア38で吐き出されたカソードガスは外部配管39Bを経由して始端マニホールド37に導入され、下流側ガス流路33を経由して出口マニホールド18に送出される。
【0039】
上流側ガス流路32を流れるカソードガスは外気からブロワ38によって引っ張られて負圧となり、逆に下流側ガス流路33を流れるカソードガスはブロワ38によって送出されているので正圧となっている。このため、上流側ガス流路32と下流側ガス流路33との間に圧力差が生じ、ポーラスBPP28の下流側ガス流路33で液相の水が生じた場合に、反対側のポーラスBPP28の上流側ガス流路32に効果的に排出することができる。その結果、反応ガスの供給が液相の水によって妨げられること(フラッディング現象)を防止でき、燃料電池スタック1の性能を改善でき、第1実施例の効果をより一層増大させる働きがある。
【0040】
図7において、燃料電池スタック1のセルは、MEA26をアノードBPP27とカソードBPP28とで挟み、カソードBPP28の背面に冷却液流路29を備えたソリッドBPP30を配置して構成している。カソードBPP28はポーラスタイプのプレートであり、カソードBPP28の両面には複数の上流側ガス流路32および下流側ガス流路33を構成するよう突起32B、33Bによりガス流路が分離されている。アノードBPP27およびソリッドBPP30はソリッドタイプのプレートであり、同様に複数の突起27A、30Aにより複数のアノードガス流路31、冷却液流路29が形成されている。
【0041】
図8は、ポーラス(カソード)BPP28内の水の移動状態を示す断面図である。上流側ガス流路32に外気を取り入れて下流側ガス流路33の反応ガスを冷却し、凝縮させた水をポーラス(カソード)BPP28内に断面方向に移動させ、上流側ガス流路32のカソードガスを加湿し、下流側ガス流路33のドライアウトおよびフラッディングを防止する効果は、第1実施形態と同じである。
【0042】
そして、この実施形態では、上流側ガス流路32の終端マニホールド36と下流側ガス流路33の始端マニホールド37の間にブロワ38を設けてあるため、上流側ガス流路32は負圧となり、下流側ガス流路33は正圧になるので、両流路間で圧力差が生じ、下流側ガス流路33から上流側ガス流路32への水の移動をより効果的に実現することができる。
【0043】
尚、上記の例では、カソードBPP28のみをポーラスタイプとしているが、アノード側のみにポーラスタイプのプレートを用いてもよいし、アノード側およびカソード側の両方にポーラスタイプのプレートを用いてよい。
【0044】
次に、ポーラスタイプのプレートであるカソードBPP28における流路形状の他の実施形態について説明する。これは、下流側ガス流路33の膜電極接合体26へのカソードガスの分配をより均一化するための一つの方法である。
【0045】
本実施形態では、図9に示すように、下流側ガス流路33の出口マニホールド18の幅を下流側ガス流路33の幅と同等とし、上流側ガス流路32の入口マニホールド17をその分だけ小さく形成したものである。一方入口マニホールド17が小さくなった上流側ガス流路32は電池反応面ではないため、下流側ガス流路33ほどガス分配の均一化を考慮する必要がなく、また、流路の深さや幅を調整することにより、上流側ガス流路32の機能を十分満足できる構造とすることができる。
【0046】
図10は、図6に示すカソード流路形状をもつポーラスBPP28に適用するアノード流路形状の一例を示すものである。これは、水過剰となり易いカソードガスの下流側ガス流路33に生じた液水がカソードガスとアノードガスの水蒸気の濃度勾配によって、アノード側に電解質膜を通して移動する逆拡散を促進するものである。
【0047】
アノードガスのガス流路31は、カソード側の下流側ガス流路33の下流側に近接して、入口マニホールド7と入口マニホールド7から延びるガス流路31の上流側とを配置している。また、カソード側の下流側ガス流路33の上流側に近接して、アノードガスの出口マニホールド8および出口マニホールド8へ連なるガス流路31を配置している。
【0048】
このように構成すると、水過剰となり易いカソードガスの下流側ガス流路33に生じた液水がカソードガスとアノードガスの水蒸気の濃度勾配によって、アノード側に膜電極接合体26を通して移動する逆拡散を促進する。
【0049】
また、下流側ガス流路33のカソードガスを、供給されたアノードガスによって冷やすことにより、カソードガス中の水蒸気を凝縮させ、カソードBPP28を通して効率よく水を上流側ガス流路32を通過するカソードガスへ回収拡散することができる。
【0050】
また、冷却液の入口マニホールド22およびそれに連なる冷却液流路29は、カソード側の下流側ガス流路33の出口マニホールド18にできるだけ近づけて配置することが望ましい。即ち、カソード側の出口マニホールド18付近のカソードガスをより一層冷やすことができ、カソードガス中の水を凝縮させ、水の燃料電池スタック1の外部への持ち出し量を少なくし、燃料電池スタック1の水の収支バランスをよりよく成立させることができる。その結果、外部に加湿器を備える必要がなくなり、燃料電池システムを簡略化できる。
【0051】
図11は、図6に示すカソード流路形状をもつポーラスBPP28に適用する冷却液流路形状の一例を示すものである。冷却液流路29はサーペンタイン式(蛇行式)となっている。即ち、スタック1内部に流入した冷却液は入口マニホールド22から冷却液流路29に分岐して流れ、折り返されて冷却液流路29から出口マニホールド23で合流してスタック1外部に排出される。冷却液はスタック1で発生した熱を吸収するため、入口マニホールド22から出口マニホールド23に移動するにつれて温度が上昇する。冷却液流路29の温度変化はカソードガスのガス流路32、33に対して、上流側ガス流路32を流れるカソードガスは入口マニホールド17から終端マニホールド36に向かって温度を上昇させつつ流動し、下流側ガス流路33を流れるカソードガスは始端マニホールド37から出口マニホールド18に向かって温度を低下されつつ流動するよう作用する。
【0052】
図12は温度変化に対する飽和蒸気圧の変化を示す。温度が高くなるに連れて、急激に飽和蒸気圧が大きくなる。これはガスの温度が上がれば、その分だけガスが水分を気相状態で保持できることを示している。
【0053】
図13は従来技術におけるセル内のカソードガス流路の流動位置に対する温度と相対湿度を示す。通常は図示するように、カソードガスはスタックに流入すると温度が上昇し、出口付近で最も温度が高くなり、排出される。このため、図12に示すように排気ガス中に含まれる水蒸気量が多く、スタック外への水の持ち出しが多くなり、水バランスが成立しなくなる。また、外部加湿器が無い場合にはセル入口付近では、図12に示すようにガス中に含まれる水蒸気量が少なく、ドライアウトが生じてしまう。
【0054】
図14は、図11に示す実施例のカソードガスのガス流路32、33中の位置における温度と相対湿度を示す。前述したように、カソードガスの上流側ガス流路32の入口マニホールド17から終端マニホールド36に向かって温度が上昇し、ガス中に含ませることができる水蒸気量が多くなる。これは、上流側ガス流路32のカソードガスの相対湿度が100%となるまでポーラスBPP28を透過させて下流側ガス流路33で発生する液水の蒸発を許容し、上流側ガス流路32のガスを効果的に加湿し、下流側ガス通路33の上流部分に生ずるドライアウトを防止することができる。
【0055】
他方、MEA26面と対面するポーラスBPP28の表側(反応面)では、カソードガスが始端マニホールド37から出口マニホールド18に向かうにつれて温度が低下する。このため、ガス中に含むことができる水蒸気量が少なくなり、相対湿度は常に100%以上となり、過飽和分の水はポーラスBPP28の表側で凝縮する。この液化した水はポーラスBPP28内を透過して上流側ガス流路32に移動し、上流側ガス流路32を流れているカソードガスの加湿に使われる。従って、下流側ガス流路33側でのフラッディングが発生することがない。
【0056】
このように、上流側ガス流路32と下流側ガス流路33のガス流路の流れ方向に温度勾配が生じるので、下流側ガス流路33の上流側のドライアウトや下流側のフラッディングを効果的に防止しつつ、下流側ガス流路33の出口マニホールド18付近のガス温度を低くして、スタック1外への水の持ち出しを少なくすることができる。
【0057】
ブロア38に終端マニホールド36および始端マニホールド37を連結する外部配管39A、39Bとブロア38とは、少なくともいずれか一方は断熱材により覆うようにしており、内部を流通するカソードガスの温度変化を抑制している。
【0058】
本実施形態においては、第1実施形態における効果(ア)〜(ウ)に加えて、下記に記載する効果を奏することができる。
【0059】
(エ)上流側ガス流路32をセパレータ28に形成した溝若しくは突起32Bにより構成しているため、当該ガス流路32を他のガス流路31や冷却液流路29と確実に分離でき、ポーラスBPP28およびソリッドBPP27、30の構造を簡単化できる。
【0060】
(オ)下流側ガス流路33の圧力を上流側ガス流路32の圧力より高くして両流路間に圧力差があるため、下流側ガス流路33から上流側ガス流路32への水の移動をより効果的に実現することができる。その結果、下流側ガス流路33内でのフラッディング現象を防止でき、燃料電池スタック1の性能を改善できるという効果がある。
【0061】
(カ)しかも、吸引送出手段としてのブロワ38により上流側ガス流路32のガスを吸い込み下流側ガス流路33に送出す等により、上流側ガス流路32を負圧とする一方、下流側ガス流路33を正圧としているため、下流側ガス流路33から上流側ガス流路32への水の移動をより一層効果的に実現することができる。その結果、下流側ガス流路33内でのフラッディング現象を確実に防止でき、燃料電池スタック1の性能を一層改善できるという効果がある。
【0062】
(キ)ブロワ38および外部配管39A、39Bは、少なくともいずれかが断熱材により覆われているため、上流側ガス流路32から下流側ガス流路33へ流れるガスの温度低下を防止でき、それが含んでいる水蒸気量を変化させることなく下流側ガス流路33へ送出すことができる。
【0063】
(ク)図11〜図14に示す具体例では、冷却液流路29を上流側を前記下流側ガス流路33の下流側に隣接させ、冷却液流路29の下流側を前記下流側ガス通路33の上流側に隣接させて備え、下流側ガス流路33中を流れるガスは、ガス流路33中の上流から下流に移動するに連れて温度が降下される。このため、上流側ガス流路32においては相対湿度が100%となるまでポーラスBPP28を透過させて下流側ガス流路33で発生する液水の蒸発を許容し、上流側ガス流路32のガスを効果的に加湿し、下流側ガス流路33においてはガス中に含むことができる水蒸気量が少なくなり、過飽和分の水はポーラスBPP28の表側で凝縮し、ポーラスBPP28内を透過して上流側ガス流路32に移動して上流側ガス流路32のカソードガスを加湿する。従って、下流側ガス流路33の上流側のドライアウトや下流側のフラッディングを効果的に防止しつつ、下流側ガス流路33の出口マニホールド18付近のガス温度を低くして、スタック1外への水の持ち出しを少なくすることができる。
【0064】
(ケ)図9に示す例では、下流側ガス流路33および上流側ガス流路32に連通して厚み方向に貫通するマニホールドの断面積は、下流側ガス流路33に連通するマニホールド18、37が上流側ガス流路32に連通するマニホールド17、36より大きく形成したため、下流側ガス流路33の膜電極接合体26へのカソードガスの分配をより均一化することができる。
【0065】
(第3実施形態)
図15、16は、本発明を適用した固体高分子型燃料電池の第3実施形態を示し、第2実施形態に加えてカソードガスの下流側ガス流路33から上流側ガス流路32への水の排出効果をさらに一層向上させるものである。図15は燃料電池システムのシステム構成図であり、図16は制御システム図である。
【0066】
図15において、圧力調整弁40をカソードガスの入口マニホールド17へのガス供給配管に設け、圧力調整弁40の開度を調整することでカソードガスの上流側ガス流路32と下流側ガス流路33の圧力差を調整するものである。上流側ガス流路32と下流側ガス流路33との圧力差は、ポーラスBPP28を透過させての下流側ガス流路33から上流側ガス流路32への水移動を補助する。この圧力差は、それが小さい場合には前記した第2実施形態での水移動に留まるものであるが、それが所定値以上ある場合には前記水移動が円滑且つ確実に行われる。
【0067】
前記圧力差は、図17に示すように、カソードガスの流量、即ち、燃料電池スタック1の運転負荷に応じて運転されるブロア38の運転速度により決定される流量に応じ、流量が増加するほど大きくなり、流量が減少するほど小さくなるよう変化する。従って、流量が少ない時には圧力差も小さく、下流側ガス流路33からポーラスBPP28を透過して上流側ガス流路32への水の排水効果が小さくなる。
【0068】
前記圧力差を流量が少ない場合にも確保するために、圧力調整弁19の調整に加えて圧力調整弁40も調整することにより、前記差圧を制御している。
【0069】
図16は、圧力制御弁19、40およびブロア38の制御システムを示し、燃料電池スタック1の負荷信号をコントローラ41に入力し、コントローラ41により負荷信号に応じてブロア38および各圧力制御弁19、40を制御するようにしている。燃料電池スタック1の負荷信号と各圧力調整弁19、40の開度とは、図18に示すように、制御する。
【0070】
即ち、負荷が小さい場合には、圧力調整弁40を絞ることにより上流側ガス流路32の圧力が下がり、加えて、圧力調整弁19を絞ることにより下流側ガス流路33の圧力を上げることができる。その結果、流量が変化した場合においても、差圧(P30−P33)を一定に保持することができる。
【0071】
以上のように、本実施形態では、流量変化に影響されずに、上流側ガス流路32と下流側ガス流路33との間のガス圧力の差圧(P30−P33)を一定に保つことができ、常にフラッディングの発生を防止し且つ、上流側ガス流路32の加湿に必要な液水を効果的にポーラスBPP28を透過させて移動させることができる。
【0072】
次に、セルの積層構造の具体例について説明する。
【0073】
図19に示す具体例では、カソード側の上流側ガス流路32を、第2実施形態の図7では下流側流路33を構成するポーラスBPP28により構成するものについて説明したが、本例の積層構造では冷却液流路29を構成するソリッドBPP30により構成したものである。このソリッドBPP30はアノード側のガス流路31を形成するソリッドBPP27と別体に構成しているが、両者を一体のソリッドBPPとして形成してもよい。
【0074】
図19に示す具体例では、冷却液流路29を構成するソリッドBPP30と一体にしているため、ポーラスプレートの使用量を低減でき、機械的強度が弱く加工が比較的困難であるポーラスタイプの両側に流路を形成する必要も無く、片面のみに流路を形成すればよいので製造コストを低減できる。
【0075】
また、ポーラスプレートの使用量を少なくすることにより、燃料電池の発電停止時に残留している微細孔中の水分量を減らすことができ、外気温が摂氏0℃以下から起動する場合において解凍しなければならない氷の量を減らし、起動時間を速めることができるとともに、解凍するためのエネルギーを節約することもできる。
【0076】
次に、セル積層構造の他の具体例を図20により説明する。この具体例では、アノードBPP27のアノードガスを流すガス流路31の裏側に冷却液流路29を設け、冷却液流路29とポーラスBPP28で形成したカソードの上流側ガス流路32との間にセパレータ43を配置している。このセパレータ43の材質は、導電性があり冷却液とカソードガスとを遮断するものであればよい。
【0077】
なお、冷却液流路29を備えたソリッドBPP30を図7に示すように、カソードガスのガス流路31を形成するソリッドBPP27を個別に設けることによって、図20に示すセパレータ43も必要がなくなる。
【0078】
図21に示すものは、カソード側の上流側ガス流路32を冷却液流路29と同一平面上として冷却液流路29を構成するソリッドBPP27に配置した具体例である。このソリッドBPP27には、入口マニホールド17と終端マニホールド36に連なる図中の上方に配置した上流側ガス流路32と入口マニホールド22と出口マニホールド23に連なる図中下方に配置した冷却液流路29とを備え、これらの流路29、32は下流側流路33を備えるポーラスBPP28の背面に臨ませて配置している。また、上流側ガス流路32の入口マニホールド17付近を下流側ガス流路33の出口マニホールド18付近と断面方向で隣接するように設けている。
【0079】
以上の構成により、最もフラッディングが起こりやすい下流側ガス流路33の出口マニホールド18付近の液水を、最もドライな上流側ガス流路32の入口マニホールド17付近のカソードガスにポーラスBPP28を透過させて供給するという効果を維持したまま、この上流側ガス流路32が冷却液流路29と同一平面状に配置されることによってセルを薄く形成でき、結果として出力密度を向上させる効果がある。
【0080】
図22は、図21の流路形状を具体化するスタック断面の一例を示したものである。図22において、カソードガスの上流側ガス流路32は断面方向に見て下流側ガス流路33の下流側と隣接している。また、カソードガスの下流側ガス流路33の上流側は、液水が生じにくく、上流側ガス流路32に水を透過しなくてもフラッディングは起きないので、この部分には上流側ガス流路32を設けずに、冷却液流路29を隣接させるように設ける。そして、裏側に冷却液流路29が断面方向に隣接した位置に設けられるポーラスBPP28部分には、ガスおよび冷却液が不透過となる、例えば、樹脂含浸のようなクーラント・ガス不透過処理44を施して、冷却液がポーラス内部に浸透し、さらに、ガス流路に侵入することによる膜電極接合体26が汚染されるのを防止している。逆に、反応ガスがポーラス内部を通過し冷却液流路29に進入することによりガスの利用率が低下するのも防止している。
【0081】
図23は、図21の流路形状を具体化するスタック断面の他の具体例である。図23においては、冷却液流路29に断面方向で隣接している下流側ガス流路33の部分にはソリッドタイプのBPP45を用い、上流側ガス流路32に隣接している部分にはポーラスタイプのBPP28を用いている。このため、冷却液を不透過にするためのクーラント・ガス不透過処理を施す必要が無く、製造コストを安くする効果がある。
【0082】
さらに、ポーラスタイプのBPP28の使用量を少なくでき、燃料電池スタック1の起動停止時に残留している微細孔中の水分量を減らすことができ、外気温が摂氏0℃以下から起動する場合に解凍しなければならない氷の量を減らし、起動時間を速めることができるとともに、解凍するためのエネルギーを節約するという効果もある。
【0083】
本実施形態においては、第1実施形態における効果(ア)〜(ウ)および第2実施形態の効果(エ)、(キ)、(ク)に加えて、以下に記載した効果を奏することができる。
【0084】
(コ)図19、22、23においては、裏面部分の上流側ガス流路32は、セパレータとしてのポーラスBPP28に背面から接する部材の接触表面に形成した溝により構成したため、機械的強度が弱くまた、加工が比較的困難であるポーラスタイプの両側に流路を形成する必要が無く、片面のみに流路を形成すればよいので生産コストを安くできる。また、ポーラスプレートの使用量を少なくすることにより、燃料電池の発電停止時に残留している微細孔中の水分量を減らすことができ、外気温が摂氏0℃以下から起動する場合に解凍しなければならない氷の量を減らし、起動時間を速めることができるとともに、解凍するためのエネルギーを節約することもできる。
【0085】
(サ)図21〜23では、セパレータとしてのポーラスBPP28の裏面には、裏面部分の上流側ガス流路32部分を除いて冷却液を流通させる冷却液流路29が形成されているため、最もフラッディングが起こりやすい下流側ガス流路33の出口付近の液水を、最もドライな上流側ガス流路32の入口付近のガスに供給するという効果を維持したまま、この上流側ガス流路32が冷却液流路29と同一平面状にあることによってセルの厚みを削減することができ、結果として燃料電池の出力密度を向上できる効果がある。
【0086】
(シ)図22に示す例では、セパレータとしてのポーラスタイプのBPP28は、冷却液流路29と隣接する部分に、ガスおよび冷却液を不透過とする処理44を施しているため、冷却液がポーラス内部、さらには、ガス流路に侵入してくることによって膜電極接合体26が汚染されてしまうのを防止する一方、反応ガスがポーラス内部を通過して冷却液流路29に進入してくることによってガスの利用率の低下を防止する効果がある。
【0087】
(ス)図23に示す例では、セパレータとしてのポーラスBPP28の冷却液流路29と隣接する部分には、ガスおよび冷却液を不透過とする部材45により構成されている、即ち、冷却液流路29に断面方向で隣接しているガス流路の部分にはソリッドタイプのBPP45を用い、上流側ガス流路32に隣接している部分にはポーラスタイプのBPP28を用いているため、冷却液を不透過にするための樹脂含浸などの処理を施す必要が無く、生産コストを安くする効果がある。
【0088】
さらに、ポーラスプレートの使用量を少なくすることにより、燃料電池の起動停止時に残留している微細孔中の水分量を減らすことができ、低温から起動する場合に解凍しなければならない氷の量を減らし、起動時間を速めることができるとともに、解凍するためのエネルギーを節約するという効果もある。
【0089】
(セ)上流側ガス流路32へのガス導入部分に上流側ガス流路32の圧力を調整する圧力調整手段としての圧力調整弁40を設けたため、上流側ガス流路32と下流側ガス流路33の圧力差を制御することができ、下流側ガス流路33と上流側ガス流路32の水分のやりとりを最適に制御することができる。よって、下流側ガス流路33の下流側でのフラッディングの発生や供給ガスの加湿不足によるドライアウトの発生を効果的に防止することができるという効果がある。
【0090】
(ソ)圧力調整手段としての圧力調整弁40は、燃料電池の負荷に基づいて調整度合いを変えることとしため、燃料電池の各負荷条件に合致させて最適に下流側ガス流路33と上流側ガス流路32との圧力差、即ち、両流路間の水分のやりとりを最適に制御でき、よって、下流側ガス流路33の下流側でのフラッディングの発生や下流側ガス流路33の上流側でのガス加湿不足によるドライアウトの発生を効果的に防止することができるという効果がある。
【0091】
(第4実施形態)
図24、25は、本発明を適用した固体高分子型燃料電池の第4実施形態を示し、発電停止時にスタック内部の液水をスタック外部に排出するようにしたものである。図24は燃料電池システムのシステム図であり、図25は図示しないコントローラにより定時的に作動される制御フローチャートである。
【0092】
図24に示すものは、図15に示す第3実施形態の燃料電池システムに対して、ブロワ38からのカソードガスが燃料電池スタック1に供給されるのを遮断する第1遮断弁と、ブロワ38からのカソードガスを排気する排気配管48と、この排気配管48中に配置され前記第1遮断弁47の作動時に開放する第2遮断弁49と、ブロア38の吸気側配管に配置された液水トラップ50とを追加して備える。
【0093】
前記燃料電池システムのカソードガス供給系統3の動作を図25の制御フローチャートにより説明する。なお、アノードガス供給系統2および冷却系統4については、ここでは説明しないが、夫々の運転モードに対応して図示しないコントローラにより制御されるものである。
【0094】
先ず、ステップ1において、燃料電池の運転モードが起動モードであるか否かが判断される。起動モードである場合にはステップ2へ進み、起動モードでない場合にはステップ6へ進む。
【0095】
ステップ2では、燃料電池の雰囲気温度Tが読込まれてステップ3へ進む。
【0096】
ステップ3では、雰囲気温度Tが摂氏0℃を超えているか否かが判断され、摂氏0℃以下の場合にはステップ4へ進み、摂氏0℃を超えている場合にはステップ5へ進む。
【0097】
ステップ4は燃料電池の起動モードの処理である。コントローラは、カソード入口圧力制御弁40を閉じて上流側ガス流路32へのカソードガスの供給を遮断し、第2遮断弁49を閉じカソード出口圧力制御弁19および第1遮断弁47を開いてカソードガスの下流側ガス流路33への供給を可能としてブロア38をオン作動させる。そして、カウンタをゼロ(I=0)にセットする。
【0098】
ステップ5は、ステップ3での雰囲気温度Tの判定が摂氏0℃を超えている場合(燃料電池の起動モードによる運転により雰囲気温度が摂氏0℃を超える場合も含む)に、通常運転モードで燃料電池を運転する。ステップ5においては、起動モードでの運転に対して入口圧力制御弁40が追加的に開放され、カソードガスが上流側ガス流路32にも供給され、次いで、ブロア38を介して下流側ガス流路33に供給される。このステップでも、カウンタをゼロ(I=0)にセットする。
【0099】
ステップ6では、停止モードか否かが判断され、停止モードでない場合にはステップ5での通常運転モードで燃料電池が運転され、停止モードである場合にはステップ7へ進む。
【0100】
ステップ7では、ステップ7での停止モード継続のカウンタ(I)が所定回数N以上か否かが判定される。この所定回数Nはステップ8での停止モードのブロワ38の動作時間であり、スタックの大きさや流路の形状などから求められ、実験的に設定する数値である。カウンタ(I)が設定値Nを超えていない場合にはステップ8へ進んで停止モードで運転し、超えている場合にはステップ9へ進んで燃料電池の運転を停止する。
【0101】
ステップ8での停止モードにおいては、ブロワ38の運転は継続されるも、入口圧力調整弁40および出口圧力調整弁19を閉じ、第1遮断弁47を閉じるも第2遮断弁49を開放する。カソードガスの下流側ガス流路33へのカソードガスの出入は遮断され、上流側ガス流路32はブロア38に吸引されることで負圧となり、存在したカソードガスはブロア38から第2遮断弁49を経由して外気に放出される。ポーラスBPP28の上流側ガス流路32が真空状態に近くなり、上流側ガス流路32、下流側ガス流路33、および、ポーラスBPP28の内部に存在していた液水は上流側ガス流路32に移動してスタックの外部に排出され、液水トラップ50に溜められる。これにより、セルの流路には液水が存在しない状態を作り出すことができる。カウンタ(I)は定時的にインクレメントされ、所定時間(所定値N)を超えるとステップ9へ進む。
【0102】
ステップ9では、ブロア38が停止され、第2遮断弁49が閉じ、カウンタ(I)をゼロにリセットして、燃料電池の運転が停止される。
【0103】
以上の作動により、雰囲気温度Tが摂氏0℃以下からの起動時には、前述の運転停止フロー、特に、ステップ8の停止モードでの運転を実行した効果により、カソードガスの上流側ガス流路32および下流側ガス流路33には氷が存在することがなく、流路の閉塞を考慮することなくカソードガスを供給することができる。
【0104】
図26は、上記した第4実施形態の変形例を示す固体高分子型燃料電池システムのシステム図であり、燃料電池の起動性をより一層向上させたものである。
【0105】
図26に示す燃料電池システムにおいては、図24に示す燃料電池システムに対して、入口圧力制御弁40を含む上流側ガス流路32、入口・終端マニホールド17、39、および、液水トラップ50をバイパスしたバイパス通路52とバイパス通路52に配置された第3遮断弁53を追加したものである。
【0106】
この変形例では、起動時に、第3遮断弁53が開き入口圧力調整弁40が全閉となることによって、供給ガスはバイパス通路52を通りブロワ38に供給され、セルの下流側ガス流路33に直接供給させる。
【0107】
起動時に上流側ガス流路32をバイパスさせるので、図25での停止モードで上流側ガス流路32および上流側ガス流路32に連通する前後のマニホールド17、36の液水までも、すべてスタック外に排出する必要が無く、停止時のエネルギーを節約できる。
【0108】
即ち、この時、すくなくとも下流側ガス流路33には氷が存在していないため、氷点下時においても流路が閉塞することなく燃料電池の起動が行える。
【0109】
その後、燃料電池の反応熱により、上流側ガス流路32に存在していた氷が溶け、第3遮断弁53を閉じ、入口圧力調整弁40を開くことによって、通常の上流側ガス流路32を使ったガスの供給に切り替えることができる。なお、上流側ガス流路32の氷が溶けたかどうかは、燃料電池内部に設けられた図示していない温度センサーにより判断することができる。
【0110】
本実施形態のおいては、第1実施形態の効果(ア)〜(ウ)、第2実施形態の効果(エ)、(キ)、(ク)および第3実施形態の効果(コ)、(セ)、(ソ)に加えて、以下に記載する効果を奏することができる。
【0111】
(タ)図24、25に示す実施形態においては、上流側ガス流路32の上流に設けた入口弁40と、前記下流側ガス流路33の下流に設けた出口弁19と、前記吸引送出手段としてのブロア38の下流でかつ前記下流側ガス流路33の上流に設けた第1の遮断弁47と、前記ブロア38と前記第1の遮断弁47との間から分岐した排気管48に設けた第2の遮断弁49とを設け、燃料電池停止時に、入口弁40、出口弁19、および、第1の遮断弁47を閉成し且つ第2の遮断弁49を開成するようにしている。このため、発電停止時のスタック内部の水を排出することができ、外気温が摂氏0℃以下からの起動時に解凍しなければならない氷の量を減らすことができ、起動時間を短縮する効果があるとともに、起動するためのエネルギーも節約することができるという効果がある。
【0112】
(チ)図26に示す実施形態においては、前記入口弁40および上流側ガス流路32をバイパスするバイパス通路52と、バイパス通路52に設けられた第3の遮断弁53を設けて、燃料電池起動時に、第3の遮断弁53を開成するため、外気温が摂氏0℃以下からの起動時には上流側ガス流路32をバイパスさせて直接下流側ガス流路33にガスを供給することができ、発電停止時には下流側ガス流路33の液水のみ排出できればよく、上流側ガス流路32やこれに連なるマニホールドの液水は排出する必要が無くなり、停止時のエネルギーを節約することができるという効果がある。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す固体高分子燃料電池のシステムの構成図。
【図2】燃料電池の単セルの断面図。
【図3】図1のポーラスタイプのカソードプレートの流路形状を示す正面図。
【図4】図1のポーラスタイプのカソードプレートのガス不透過処理を施す部位を示す正面図。
【図5】本発明の第2実施形態の固体高分子燃料電池のシステムの構成図。
【図6】図5のポーラスタイプのカソードプレートの流路形状を示す正面図。
【図7】図5の単セルの縦断面図。
【図8】図5の単セルの横断面図。
【図9】ポーラスタイプのカソードプレートの流路形状の変形例を示す正面図。
【図10】アノードガスのガス流路を説明する図。
【図11】冷却液流路を説明する図。
【図12】温度に対する飽和蒸気圧を説明するグラフ。
【図13】従来技術における流路位置に対するガス温度と相対湿度を表したグラフ。
【図14】図11における流路位置に対する温度と相対湿度を表したグラフ。
【図15】本発明の第3実施形態の固体高分子燃料電池のシステムの構成図。
【図16】図15の制御システムを示すシステム構成図。
【図17】ガス流量と上流側ガス流路と下流側ガス流路の圧力差を示したグラフ。
【図18】燃料電池の負荷と圧力調整弁の開度の関係を示した図。
【図19】燃料電池単セルの積層構造の具体例を示す断面図。
【図20】燃料電池単セルの積層構造の別の具体例を示す断面図。
【図21】上流側ガス流路と冷却液流路とを同一平面上に配置する例を示す正面図。
【図22】図21を実現する一例のセル積層方向の断面図。
【図23】図21を実現する別例のセル積層方向の断面図。
【図24】本発明の第4実施形態の固体高分子燃料電池のシステムの構成図。
【図25】図24の制御を説明するフローチャート。
【図26】図24の固体高分子燃料電池の変形例のシステムの構成図。
【符号の説明】
1 燃料電池スタック
2 アノードガス供給系統
3 カソードガス供給系統
4 冷却系統
15、38 吸引送出手段としてのブロア
17 入口マニホールド
18 出口マニホールド
19 出口圧力調整弁(出口弁)
26 膜電極接合体(MEA)
27、30、45 ソリッドBPP
28 ポーラスBPP(セパレータ)
29 冷却液流路
31 アノードガスのガス流路
32 カソードガスの上流側ガス流路(裏面部分のガス流路)
33 カソードガスの下流側ガス流路(表面部分のガス流路)
34 貫通孔
36 終端マニホールド
37 始端マニホールド
40 入口圧力調整弁(入口弁)
41 コントローラ
44 ガスおよび冷却液を不透過とする処理
47 第1の遮断弁
49 第2の遮断弁
50 液水トラップ
52 バイパス通路
53 第3の遮断弁
Claims (19)
- 固体高分子膜からなる電解質膜を電極層により挟んで形成した膜電極接合体と、膜電極接合体の一方の面に燃料ガスを供給するガス流路を備えたセパレータと、膜電極接合体の他方の面に酸化ガスを供給するガス流路を備えたセパレータと、から構成した固体高分子型燃料電池において、
前記セパレータの少なくとも何れか一方は、前記膜電極接合体に対面する表面部分とその裏面部分とにガス流路を備え、表面部分と裏面部分とのガス流路間で厚み方向に水移動可能に形成し、供給するガスを裏面部分のガス流路を経由させて表面部分のガス流路に供給するようにしたことを特徴とする固体高分子型燃料電池。 - 前記裏面部分のガス流路は、セパレータに形成した溝により構成したことを特徴とする請求項1に記載の固体高分子型燃料電池。
- 前記裏面部分のガス流路は、セパレータに背面から接する部材の接触表面に形成した溝により構成したことを特徴とする請求項1に記載の固体高分子型燃料電池。
- 前記裏面部分のガス流路中の上流部と前記表面部分のガス流路中の下流部とはセパレータの厚み方向に水移動可能な部位を介して近接させたことを特徴とする請求項1ないし請求項3の何れか一つに記載の固体高分子型燃料電池。
- 前記固体高分子型燃料電池は、上流側が前記表面部分のガス流路の下流側に近接し且つ下流側が前記表面部分のガス通路の上流側に近接する冷却液流路を備えることを特徴とする請求項1ないし請求項4のいずれか一つに記載の固体高分子型燃料電池。
- 前記固体高分子型燃料電池は、表面部分のガス流路中を流れるガスは、ガス流路中の上流から下流に移動するに連れて温度が降下されることを特徴とする請求項1ないし請求項5のいずれか一つに記載の固体高分子型燃料電池。
- 前記セパレータの裏面には、裏面部分のガス流路部分を除いて冷却液を流通させる流路が形成されていることを特徴とする請求項5に記載の固体高分子型燃料電池。
- 前記セパレータの冷却液流路と隣接する部分には、ガスおよび冷却液を不透過とする処理が施されていることを特徴とする請求項7に記載の固体高分子型燃料電池。
- 前記セパレータの冷却液流路と隣接する部分には、ガスおよび冷却液を不透過とする部材により構成されていることを特徴とする請求項7に記載の固体高分子型燃料電池。
- 前記セパレータは、表面部分のガス流路および裏面部分のガス流路に連通して厚み方向に貫通するマニホールドを備え、表面部分のガス流路に連通するマニホールドの断面積は、裏面部分のガス流路に連通するマニホールドの断面積より大きく形成したことを特徴とする請求項1ないし請求項9のいずれか一つに記載の固体高分子型燃料電池。
- 前記セパレータは、反応ガスおよび冷却液が通過するマニホールドを形成する壁面部分とセパレータの外周部分とにガスおよび冷却液の不透過処理を施していることを特徴とする請求項1ないし請求項10のいずれか一つに記載の固体高分子型燃料電池。
- 前記表面部分のガス流路の圧力を前記裏面部分のガス流路の圧力より高くしたことを特徴とする請求項1ないし請求項11のいずれか一つに記載の固体高分子型燃料電池。
- 前記固体高分子燃料電池は、裏面部分のガス流路のガスを吸引して表面部分のガス流路に送出する吸引送出手段を備えていることを特徴とする請求項1ないし請求項12のいずれか一つに記載の固体高分子型燃料電池。
- 前記吸引送出手段は、外部配管を介して燃料電池に接続され、少なくとも前記吸引送出手段または外部配管のいずれかが断熱材により覆われている請求項13に記載の固体高分子型燃料電池。
- 前記固体高分子燃料電池は、裏面部分のガス流路へのガス導入部分に裏面部分のガス流路の圧力を調整する圧力調整手段を備えることを特徴とする請求項13または請求項14に記載の固体高分子型燃料電池。
- 前記圧力調整手段は、燃料電池の負荷に基づいて調整度合いを制御することを特徴とする請求項15に記載の固体高分子型燃料電池。
- 前記固体高分子型燃料電池は、前記裏面部分のガス流路の上流に設けた入口弁と、前記表面部分のガス流路の下流に設けた出口弁と、前記吸引送出手段下流でかつ前記表面部分のガス流路の上流に設けた第1の遮断弁と、前記吸引送出手段と前記第1の遮断弁との間から分岐した排気管に設けた第2の遮断弁とを備え、
燃料電池停止時に、入口弁、出口弁および第1の遮断弁を閉じ且つ第2の遮断弁を開くことを特徴とする請求項13ないし請求項16のいずれか一つに記載の固体高分子型燃料電池。 - 前記固体高分子型燃料電池は、前記入口弁および裏面部分のガス流路をバイパスするバイパス通路と、バイパス通路に設けられた第3の遮断弁を備え、
燃料電池起動時に、第3の遮断弁を開くことを特徴とする請求項17に記載の固体高分子型燃料電池。 - 前記固体高分子型燃料電池は、前記裏面部分のガス流路の入口と前記表面部分のガス流路 上流とを連通して、裏面部分のガス流路をバイパスする連通通路と、連通通路に設けられた連通遮断弁を備え、
燃料電池起動時に、上記連通遮断弁を開くことを特徴とする請求項1ないし請求項15のいずれか一つに記載の固体高分子型燃料電池。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002265253A JP3918691B2 (ja) | 2002-09-11 | 2002-09-11 | 固体高分子型燃料電池 |
US10/527,051 US20050287416A1 (en) | 2002-09-11 | 2003-08-22 | Polymer electrolyte fuel cell and power generation device |
PCT/JP2003/010622 WO2004025764A1 (en) | 2002-09-11 | 2003-08-22 | Polymer electrolyte fuel cell and power generation device |
CNB038212919A CN1327560C (zh) | 2002-09-11 | 2003-08-22 | 聚合物电解质燃料电池和发电装置 |
EP03795233A EP1537618B1 (en) | 2002-09-11 | 2003-08-22 | Polymer electrolyte fuel cell and power generation device |
DE60328692T DE60328692D1 (de) | 2002-09-11 | 2003-08-22 | Polymerelektrolyt-brennstoffzelle und energieerzeugungsvorrichtung |
KR1020057002785A KR100760758B1 (ko) | 2002-09-11 | 2003-08-22 | 중합체 전해질 연료 전지 및 전력 발생 장치 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002265253A JP3918691B2 (ja) | 2002-09-11 | 2002-09-11 | 固体高分子型燃料電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004103452A JP2004103452A (ja) | 2004-04-02 |
JP3918691B2 true JP3918691B2 (ja) | 2007-05-23 |
Family
ID=31986568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002265253A Expired - Fee Related JP3918691B2 (ja) | 2002-09-11 | 2002-09-11 | 固体高分子型燃料電池 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20050287416A1 (ja) |
EP (1) | EP1537618B1 (ja) |
JP (1) | JP3918691B2 (ja) |
KR (1) | KR100760758B1 (ja) |
CN (1) | CN1327560C (ja) |
DE (1) | DE60328692D1 (ja) |
WO (1) | WO2004025764A1 (ja) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4180404B2 (ja) * | 2003-03-05 | 2008-11-12 | アイシン精機株式会社 | 燃料電池、酸化剤配流板 |
JP4742513B2 (ja) * | 2004-04-13 | 2011-08-10 | トヨタ自動車株式会社 | 燃料電池 |
JP4500584B2 (ja) * | 2004-05-10 | 2010-07-14 | 株式会社日本自動車部品総合研究所 | 加湿装置及び方法、並びに燃料電池システム |
JP4757479B2 (ja) * | 2004-05-18 | 2011-08-24 | 本田技研工業株式会社 | 燃料電池システム |
JP4992187B2 (ja) * | 2005-03-11 | 2012-08-08 | 株式会社エクォス・リサーチ | 燃料電池スタック及び燃料電池システム |
JP5205718B2 (ja) * | 2006-07-12 | 2013-06-05 | トヨタ自動車株式会社 | 燃料電池システム |
PL2115445T3 (pl) * | 2006-12-23 | 2012-10-31 | Miox Corp | Sterowanie przepływem wewnętrznym w ogniwach elektrolitycznych |
US7875400B2 (en) * | 2007-03-09 | 2011-01-25 | Mti Microfuel Cells, Inc. | Method and apparatus for internal hydration of a fuel cell system |
JP5309603B2 (ja) | 2007-06-20 | 2013-10-09 | 日産自動車株式会社 | 燃料電池システム及びその運転方法 |
WO2010002861A1 (en) * | 2008-07-02 | 2010-01-07 | Miox Corporation | Internal flow control in electrolytic cells |
CN103460472B (zh) * | 2010-12-23 | 2016-09-28 | 奥迪股份公司 | 用于蒸发式冷却燃料电池的混合双极板 |
CN102751526B (zh) * | 2011-04-21 | 2014-06-11 | 李铁流 | 氢燃料电池及其系统及动态变湿度控制方法 |
KR101406518B1 (ko) * | 2012-12-24 | 2014-06-12 | 주식회사 포스코 | 분리판 및 이를 포함하는 연료전지 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4365007A (en) * | 1981-06-12 | 1982-12-21 | Energy Research Corporation | Fuel cell with internal reforming |
DE4201632C2 (de) * | 1992-01-23 | 1997-02-06 | Siemens Ag | Verfahren und Anordnung zur Befeuchtung der einer Brennstoffzelle zuströmenden Reaktanten |
WO1997033331A1 (de) * | 1996-03-06 | 1997-09-12 | Siemens Aktiengesellschaft | Brennstoffzelle mit interner befeuchtung |
US5759712A (en) * | 1997-01-06 | 1998-06-02 | Hockaday; Robert G. | Surface replica fuel cell for micro fuel cell electrical power pack |
US6416895B1 (en) * | 2000-03-09 | 2002-07-09 | Ballard Power Systems Inc. | Solid polymer fuel cell system and method for humidifying and adjusting the temperature of a reactant stream |
JP4074061B2 (ja) * | 1998-09-04 | 2008-04-09 | 株式会社東芝 | 固体高分子型燃料電池システム |
US6284399B1 (en) * | 1999-09-17 | 2001-09-04 | Plug Power Llc | Fuel cell system having humidification membranes |
-
2002
- 2002-09-11 JP JP2002265253A patent/JP3918691B2/ja not_active Expired - Fee Related
-
2003
- 2003-08-22 DE DE60328692T patent/DE60328692D1/de not_active Expired - Lifetime
- 2003-08-22 CN CNB038212919A patent/CN1327560C/zh not_active Expired - Fee Related
- 2003-08-22 US US10/527,051 patent/US20050287416A1/en not_active Abandoned
- 2003-08-22 WO PCT/JP2003/010622 patent/WO2004025764A1/en active Application Filing
- 2003-08-22 KR KR1020057002785A patent/KR100760758B1/ko not_active IP Right Cessation
- 2003-08-22 EP EP03795233A patent/EP1537618B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP1537618A1 (en) | 2005-06-08 |
KR20050039855A (ko) | 2005-04-29 |
WO2004025764A1 (en) | 2004-03-25 |
CN1682398A (zh) | 2005-10-12 |
KR100760758B1 (ko) | 2007-10-04 |
US20050287416A1 (en) | 2005-12-29 |
DE60328692D1 (de) | 2009-09-17 |
EP1537618B1 (en) | 2009-08-05 |
CN1327560C (zh) | 2007-07-18 |
JP2004103452A (ja) | 2004-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100986525B1 (ko) | 증발냉각식의 연료전지 시스템과 그 냉각방법 | |
US8304123B2 (en) | Ambient pressure fuel cell system employing partial air humidification | |
JP3918691B2 (ja) | 固体高分子型燃料電池 | |
US7045229B2 (en) | Gas-supplying apparatus, gas-supplying mechanism and gas-supplying process in fuel cell | |
US6723461B2 (en) | Water management system for fuel cell | |
JP3699063B2 (ja) | 燃料電池およびその制御方法 | |
US7556879B2 (en) | Polymer electrolyte fuel cell | |
JP2006513528A (ja) | 燃料電池駆動の電気車両又はその他の負荷の氷点下での起動運転 | |
US20050064261A1 (en) | Internal PEM fuel cell water management | |
JP5287184B2 (ja) | 燃料電池システム | |
JP4453192B2 (ja) | 固体高分子形燃料電池 | |
JP2011008916A (ja) | 燃料電池冷却システム | |
JP2010129482A (ja) | 燃料電池用セパレータ、燃料電池スタック及び燃料電池システム | |
US20090061262A1 (en) | Retaining water in a fuel cell stack for cooling and humidification during frozen startup | |
US7179557B2 (en) | Direct antifreeze cooled fuel cell power plant with passive water management | |
JP2004158369A (ja) | 燃料電池 | |
JP2006032094A (ja) | 燃料電池システム | |
JP2004206951A (ja) | 除加湿装置付き燃料電池 | |
JP2004111060A (ja) | 燃料電池システム | |
JP2004253185A (ja) | 燃料電池 | |
JP2006032092A (ja) | 燃料電池システム | |
JP2005149827A (ja) | 燃料電池 | |
JP2004186008A (ja) | 固体高分子型燃料電池および固体高分子燃料型電池システムおよび移動体 | |
US7063907B2 (en) | Passive water management system for a fuel cell power plant | |
JP2004146147A (ja) | 燃料電池システム及びその制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050726 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070123 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070205 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |