[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3912310B2 - Anisotropic conductive film - Google Patents

Anisotropic conductive film Download PDF

Info

Publication number
JP3912310B2
JP3912310B2 JP2003091994A JP2003091994A JP3912310B2 JP 3912310 B2 JP3912310 B2 JP 3912310B2 JP 2003091994 A JP2003091994 A JP 2003091994A JP 2003091994 A JP2003091994 A JP 2003091994A JP 3912310 B2 JP3912310 B2 JP 3912310B2
Authority
JP
Japan
Prior art keywords
metal
anisotropic conductive
metal powder
conductive film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003091994A
Other languages
Japanese (ja)
Other versions
JP2004303461A (en
Inventor
晃久 細江
耕司 新田
英昭 年岡
正道 山本
鉄也 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003091994A priority Critical patent/JP3912310B2/en
Publication of JP2004303461A publication Critical patent/JP2004303461A/en
Application granted granted Critical
Publication of JP3912310B2 publication Critical patent/JP3912310B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)
  • Non-Insulated Conductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、異方導電膜に関するものである。
【0002】
【従来の技術】
プリント配線板上に半導体パッケージを実装したり、あるいは2つのプリント配線板上の導体回路同士を電気的に接続するとともに、両プリント配線板を互いに結合、固定したりするエレクトロニクス実装の方法の1つに、フィルム状の異方導電膜を用いた方法がある(例えば特許文献1、特許文献2等参照)。
例えば半導体パッケージの実装の場合は、プリント配線板への実装面に複数のバンプを配列して接続部を形成した半導体パッケージと、当該半導体パッケージを実装する領域に、上記バンプとピッチを合わせて複数の電極を配列して接続部を形成したプリント配線板とを用意する。そしてこの両者の接続部を相対向させて、その間に異方導電膜を挟んだ状態で、両接続部の各々のバンプと電極とが1対1で膜の面方向に重なるように位置合わせしながら熱接着を行うことで、半導体パッケージが基板上に実装される。
【0003】
またプリント配線板同士の接続の場合は、それぞれの接続位置に、互いにピッチを合わせて複数の電極を配列して接続部を形成した2つのプリント配線板を用意する。そしてこの両者の接続部を相対向させて、その間に異方導電膜を挟んだ状態で、同様に両接続部の各々の電極が1対1で膜の面方向に重なるように位置合わせしながら熱接着を行うことで、配線板同士が接続される。
かかるエレクトロニクス実装に用いる異方導電膜は一般に、粉末状の導電成分を、例えば熱可塑性樹脂や硬化性樹脂等の結着剤を含む、感熱接着性を有する膜中に分散させた構造を有する。
【0004】
また異方導電膜は、膜の面方向に重なった各々のバンプ−電極対や電極−電極対が、隣接する他の対のバンプや電極と短絡する、膜の面方向の短絡が発生するのを防止すべく、面方向の導電抵抗(「絶縁抵抗」という)が高くなるように、導電成分の、式(1):
【0005】
【数1】

Figure 0003912310
【0006】
で求められる充てん率を調整してある。なお式中の、固形分の総体積とは、膜を、前記のように導電成分と結着剤とを固形分として用いて形成する場合、この両者の体積の合計量である。
そして熱接着を行うと、その際の加熱、加圧によって異方性導電膜が厚み方向に圧縮されることで、当該厚み方向の導電成分の充てん率が上昇し、導電成分同士が互いに近接もしくは接触して導電ネットワークを形成する結果、厚み方向の導電抵抗(「接続抵抗」という)が低くなる。しかしこの際、異方導電膜の面方向における導電成分の充てん率は増加しないため、面方向は、絶縁抵抗が高く導電率が低い初期の状態を維持する。
【0007】
このため異方導電膜は、厚み方向の接続抵抗が低く、かつ面方向の絶縁抵抗が高い異方導電特性を有するものとなり、かかる異方導電特性に基づいて、
* 前述したような膜の面方向の短絡が発生するのを防止して、各バンプ−電極対や電極−電極対ごとの、それぞれ電気的に独立した状態を維持しつつ、
* 各対の、1対1で膜の面方向に重なったバンプ−電極間、電極−電極間を良好に導電接続する
ことが可能となる。
【0008】
またそれとともに、膜の持つ感熱接着性によって、プリント配線板上に、半導体パッケージを熱接着によって固定したり、プリント配線板同士を熱接着によって固定したりできる。
このため異方導電膜を用いれば、エレクトロニクス実装の作業が容易になる。従来の異方導電膜中に含まれる導電成分としては、例えば平均粒径が数μm〜数十μm程度で、かつその形状が粒状、球状、薄片状(鱗片状、フレーク状)などであるNi粉末や、あるいは表面に金メッキを施した樹脂粉末などの、種々の金属粉末が実用化されている。
【0009】
また従来の異方導電膜においては通常、上記の金属粉末を、前記式(1)で求められる充てん率が3〜10体積%となるように含有させている。
しかし近時、この充てん率の範囲では、熱接着後の厚み方向の接続抵抗の値が十分でなく、より一層、接続抵抗を低くすることを求められる場合が増加しつつある。
そこで、厚み方向の接続抵抗をこれまでよりもさらに低くするべく、導電成分としての金属粉末の充てん率を、上記の範囲より高くすることが考えられる。
【0010】
しかしそうした場合、前記の一般的な金属粉末を用いた従来の異方導電膜では、膜の面方向の絶縁抵抗まで低くなるため、同方向の短絡を生じやすくなるという問題がある。
そこで発明者は先に、金属のイオンと還元剤とを含む液中で、還元剤の作用によって金属のイオンを還元させて、微細な金属粒として析出させる還元析出法(特許文献3〜5参照)を利用して、当該金属粒が多数、鎖状に繋がった形状を有する金属粉末を製造し、それを異方導電膜の導電成分として用いることを検討した。
【0011】
【特許文献1】
特開平6−102523号公報(第0009欄、第0010欄、図2)
【特許文献2】
特開平8−115617号公報(第0003欄、図1)
【特許文献3】
特開平11−302709号公報(第0007欄、第0008欄)
【特許文献4】
特許第3018655号公報(第0005欄)
【特許文献5】
特開2001−200305号公報(第0007欄〜第0010欄)
【0012】
【発明が解決しようとする課題】
発明者の検討によると、例えばNi、Fe、Coなどの強磁性を有する金属やその合金などを、上記還元析出法によって析出させると、液中で、多数の金属粒が、自身の持つ磁性によって自然に鎖状に繋がって、鎖状の金属粉末を形成する。
この鎖状の金属粉末を導電成分として用いて異方導電膜を形成するには、まず金属粉末を、結着剤などと配合して液状の複合材料を調製する。次にこの複合材料を膜状に塗布した状態で磁場をかけて、鎖状の金属粉末を膜の厚み方向に配向させながら固化させる。そうすると、鎖状の金属粉末が膜の厚み方向に配向された異方導電膜が製造される。
【0013】
かかる異方導電膜は、膜の厚み方向に配向した鎖状の金属粉末の作用によって、これまでよりも異方導電特性が向上する。
すなわち鎖状の金属粉末を膜の厚み方向に配向させると、膜の面方向では、隣り合う金属粉末同士が接触する機会を極力少なくすることができるので、金属粉末間に介在する樹脂の絶縁性によって十分な絶縁抵抗を確保することができる。また膜の厚み方向では、同方向に配向させた多数の、鎖状の金属粉末による良好な導電ネットワークが形成されるため、接続抵抗をこれまでよりも低くすることができる。
【0014】
ところが、前述した還元析出法によって製造される鎖状の金属粉末を、上記のように膜の厚み方向に配向させた異方導電膜は、確かに、粒状などの他の形状の金属粉末を用いたものに比べて異方導電特性は向上するものの、金属粉末の鎖の、長さのばらつきに基づいて、異方導電特性にもばらつきを生じると言う問題がある。
すなわち還元析出法によって製造される鎖状の金属粉末は、製造工程上、どうしても長さにある程度のばらつきを生じるのであるが、その最大長が膜の厚みを超える場合、かかる長寸の金属粉末は、たとえ磁場をかけても、物理的に、膜の厚み方向に配向させることができないため、当該長寸の金属粉末を介して電極間が短絡するおそれがある。このため、異方導電特性のうち面方向の絶縁抵抗が低下するおそれがある。
【0015】
一方、金属粉末の最大長を、上記の短絡を防止するために、膜の厚み以下に設定した場合には、金属粉末全体の長さの分布が、それに応じてより短い側にシフトすることになり、良好な導電ネットワークの形成に寄与しない、ごく短寸の金属粉末の割合が増加することになる。このため、異方導電特性のうち厚み方向の接続抵抗が上昇するおそれがある。
また、還元析出法によって形成した金属粉末は微細な金属粒の集合体であり、金属粒間の接続抵抗は、従来の、粒状などの金属粉末同士の接触抵抗に比べれば格段に小さくなるが、依然として、金属のバルクな抵抗値に比べればかなり高い値を示す。また、金属粉末の鎖の太さを太くすることにも限界がある。
【0016】
このため、還元析出法によって形成した金属粉末を用いた異方導電膜は、大電流を流した際に、ジュール熱によって局部的に高温となって溶断するおそれがあり、前述した半導体パッケージの実装などには適しているものの、例えば2つのプリント配線板上の、大電流の導体回路同士の接続などには使用できないという問題もある。
本発明の目的は、異方導電特性のばらつきを生じるおそれがない上、大電流の導体回路同士の接続などにも十分に対応することが可能な、新規な異方導電膜を提供することにある。
【0017】
【課題を解決するための手段および発明の効果】
上記課題を解決するため、発明者は、所定の平面形状を有する微小電極表面を多数、備えためっき金型を使用して、上記微小電極表面を陰極とする電気めっきによって、当該表面に選択的に、その平面形状に対応した微小な金属薄膜を形成したのち、はく離する、いわゆる微細電鋳法によって製造した金属粉末を、異方導電膜の導電成分として利用することを検討した。
【0018】
かかる微細電鋳法によって製造した金属粉末は、微小電極表面の平面形状を忠実に再現した平面形状を有しており、しかも微小電極表面の平面形状は、例えばリソグラフィーを利用した形成方法などを採用すれば、ミクロンレベルで任意の形状とすることが可能である。このため、多数の金属粉末の、長さを含む寸法、形状を均一化して、異方導電膜の、異方導電特性のばらつきをなくすることができると考えたのである。
【0019】
また、微細電鋳法によって製造した金属薄膜の抵抗値はバルクな金属のそれであり、微細な金属粒の集合体である鎖状の金属粉末に比べて抵抗値を著しく小さくすることができる。しかも、上記のように微小電極表面の平面形状を調整することで、金属粉末の幅を極力広くとることもできる。このため異方導電膜を、大電流の導体回路同士の接続などにも使用できるようになると考えたのである。
さらに、長さLと幅Dの比L/Dが1を超えるとともに、長さ方向の上下両端に、前記長さ方向と直交する短寸の両端部を繋いだ平面形状に形成すると、異方導電膜に良好な異方導電特性を付与できるとともに、異方導電膜の熱接着時に上下の両端部が支えとなって、金属粉末が横倒しになるのを確実に防止できると考えたのである。
したがって請求項1記載の発明は、長さLと幅Dの比L/Dが1を超えるとともに、長さ方向の上下両端に、前記長さ方向と直交する短寸の両端部を繋いだ平面形状を有する微小電極表面を多数、備えためっき金型を使用して、上記微小電極表面を陰極とする電気めっきによって、当該表面に選択的に、その平面形状に対応した微小な金属薄膜を形成したのち、はく離して製造した微細な金属粉末を、導電成分として含むことを特徴とする異方導電膜である。
【0020】
なお上記の異方導電膜においても、良好な異方導電特性を得るためには、金属粉末を、膜の厚み方向に配向させるのが好ましい。
したがって請求項2記載の発明は、金属粉末を、その長さ方向が膜の厚み方向と一致するように、膜中で配向させたことを特徴とする請求項1記載の異方導電膜である。
【0021】
また上記の異方導電膜において、金属粉末を、面方向の絶縁抵抗が上昇しないように膜の厚み方向にきれいに配向させるためには、やはり金属粉末の長さLを、膜の厚み以下とするのが好ましい。その場合でも、本発明によれば全ての金属粉末の寸法、形状が均一であり、長さのたりない短寸の金属粉末を生じないため、膜の厚み方向に良好な導電ネットワークを形成することができ、厚み方向の接続抵抗が上昇するおそれはない。
【0022】
したがって請求項3記載の発明は、金属粉末の長さLを、膜の厚み以下としたことを特徴とする請求項2記載の異方導電膜である。
また金属粉末を、膜の厚み方向によりスムースに配向させるためには、当該金属粉末が、磁場をかけることによって容易に配向するように磁性を有しているのが好ましく、そのためには金属粉末が、磁性を有する金属を含んでいるのが好ましい。
【0023】
したがって請求項4記載の発明は、金属粉末を、磁性を有する金属単体、磁性を有する2種以上の金属の合金、磁性を有する金属と他の金属との合金、もしくは磁性を有する金属を含む複合体にて形成したことを特徴とする請求項1記載の異方導電膜である。
また金属粉末は、良好な導電性と、当該導電性が、長期間使用した際の酸化によって低下するのを防止するための良好な耐酸化性とを有しているのが好ましく、そのためには金属粉末を、前述した微細電鋳法による製造過程を考慮して、磁性を有する金属薄膜からなる層と、導電性、耐酸化性に優れた金属薄膜からなる層との積層による複合構造とするのが好ましい。
【0024】
したがって請求項5記載の発明は、金属粉末を、微小電極表面に電気めっきによって積層、形成した2層以上の金属薄膜からなる複合体にて形成するとともに、その少なくとも1層を、磁性を有する金属単体、磁性を有する2種以上の金属の合金、または磁性を有する金属と他の金属との合金にて形成したことを特徴とする請求項1記載の異方導電膜である。
また請求項6記載の発明は、他の少なくとも1層を、導電性、耐酸化性に優れた他の金属にて形成したことを特徴とする請求項5記載の異方導電膜である。
【0025】
さらに上記異方導電膜における、前記式(1)で求められる、導電成分としての金属粉末の充てん量は、0.05〜20体積%であるのが好ましい。
充てん率が0.05体積%未満では、異方導電膜の厚み方向の導通に寄与する金属粉末が少なすぎるため、同方向の接続抵抗を十分に低くできないおそれがある。また充てん率が20体積%を超える場合には、異方導電膜の面方向の絶縁抵抗が低くなりすぎて、隣接する電極間で短絡が発生しやすくなるおそれがある。
【0026】
したがって請求項7記載の発明は、固形分として金属粉末と結着剤とを含み、かつ固形分の総量に占める金属粉末の割合で表される充てん率を0.05〜20体積%としたことを特徴とする請求項1記載の異方導電膜である。
【0027】
【発明の実施の形態】
以下に、本発明を説明する。
本発明の異方導電膜は、前記のように微細電鋳法によって製造した、寸法、形状の揃った金属粉末を、導電性分として含有することを特徴とするものである。
(金属粉末)
微細電鋳法による金属粉末の製造工程の一例を図1(a)〜図1(c)に示す。なお、この例では、長さ方向の上下両端に、前記長さ方向と直交する短寸の両端部を繋いでいない、長円形の平面形状を有する金属粉末を製造する場合を例にとって説明しているが、以下の説明と同じ工程により、図3 (a)(b) に示した、前記上下両端に、短寸の両端部を繋いだ平面形状を有する金属粉末を形成できることは言うまでもない。
【0028】
まずこの例の製造工程では、図1(a)、図2(a)に示す構造を有するめっき金型Mを用意する。
図のめっき金型Mは、図2(b)(c)に示すようにその平面形状が長円形である金属粉末3を製造するためのものであって、平板状の導電性基板1の表面に、無機の絶縁材料からなり、上記金属粉末3の平面形状に対応した長円形の開口2aを多数、配列した絶縁層2を形成し、かつ絶縁層2の開口2aを通して露出した導電性基体1の表面を微小電極表面1aとしたものである。
【0029】
上記のうち導電性基板1は、例では、ステンレス鋼板等からなる基板11の、絶縁層2を積層する側の表面に、耐食性の表面層12を積層した2層構造に形成してあり、この表面層12の表面を、上記微小電極表面1aとして、絶縁層2の開口2aを通して露出してある。
基板11としては、導電性を有するまたは有しない種々の材料からなる板材がいずれも使用可能である。しかし表面層12とともに導電性基板1の良好な導電性を確保するとともに、電気めっき液に対する良好な耐食性を確保することを考慮すると、基板11は、例えばステンレス鋼板などで形成するのが好ましい。
【0030】
また表面層12は、微小電極表面1aの導電性を確保するとともに、電気めっき液に対する耐食性をさらに向上するために、チタンや、あるいはハステロイ(Ni−Cr−Mo合金)などのニッケル系耐食合金などで形成するのが好ましい。
ただし、めっき金型Mの構造を簡略化するためには、基板11の全体を、ステンレス鋼やチタン、あるいはニッケル系耐食合金などで一体に形成してもよい。
【0031】
また例では、絶縁層2を、導電性基板1の表面に形成した中間層21と、この中間層21の上に積層した表層22の2層構造に形成してある。
このうち中間層21としてはケイ素や炭化ケイ素の薄膜が好ましく、表層22としては絶縁性のDLC(ダイヤモンドライクカーボン)の薄膜が好ましい。
かかる積層構造においては、表層22としてのDLCの薄膜が、高硬度でかつ高強度である上、中間層21としてのケイ素や炭化ケイ素の薄膜が、上記DLC薄膜と導電性基板1との密着性を向上するために機能するので、絶縁層2の耐久性を向上することができる。
【0032】
なお絶縁層2は、例えば酸化ケイ素、酸化アルミニウム、絶縁性のDLCなどの単層の薄膜からなる単層構造に形成してもよい。
絶縁層2に、金属粉末3の平面形状に対応した開口2aを形成するには、前述したようにリソグラフィーを利用した方法を実施すればよい。
例えば導電性基板1の表面に、リソグラフィーによって、上記開口2aに対応した平面形状を有するレジスト膜を形成した状態で、気相成長法などによって、導電性基板1の、レジスト膜を形成していない露出した表面に選択的に絶縁層2を積層、形成した後、レジスト膜を除去すれば、開口2aを形成することができる。また、導電性基板1の表面全面に形成した絶縁層2の上に、リソグラフィーによって、開口2aに対応した開口を有するレジスト膜を形成した状態で、気相エッチング法などによって、絶縁層2の、開口で露出した部分を選択的にエッチング除去して開口2aを形成した後、レジスト膜を除去してもよい。
【0033】
上記のめっき金型Mを用いて金属粉末を製造するには、図示していないが、当該めっき金型Mと、金属粉末3のもとになる金属やカーボンなどで形成した対向電極とをめっき液に浸漬した状態で、前者のうち導電性基板1を電源の陰極、後者を陽極に接続して電気めっきを開始する。
そうすると図1(b)に示すようにめっき金型Mの、絶縁層2の開口2aを通して露出した導電性基板1の微小電極表面1aに選択的に、その平面形状に対応した微小な金属薄膜30が成長する。
【0034】
そして、金属薄膜30が所定の厚みに成長した時点でめっき金型Mをめっき液中から取り出して洗浄などした後、その表面を不織布でこするなどして、図1(c)に示すように金属薄膜30を微小電極表面1aからはく離すると、図2(b)に示すように所定の平面形状(図では長円形)と一定の寸法とを有する、多数の金属粉末3を製造することができる
【0035】
なお図2 (b) の金属粉末3は、1層の金属薄膜30からなる単層構造を有しており、かかる金属粉末3は、異方導電膜中で、その厚み方向に良好に配向させることを考慮すると、例えばNi、Fe、Coなどの強磁性を有する金属単体、これら金属の2種以上の金属の合金、またはこれらの金属と他の金属との合金などで形成して磁性を付与するのが好ましい。
【0036】
た金属粉末3に、良好な導電性と耐酸化性とを付与することを考慮すると、当該金属粉末3は、前記のようにして磁性を付与した金属薄膜31と、導電性、耐酸化性に優れた金属薄膜32とを積層した複合構造に形成するのが好ましい〔図2(c)参照〕。
【0037】
このうち金属薄膜32は、例えばCu、Rb、Rh、Pd、Ag、Re、PtおよびAuからなる群より選ばれた少なくとも1種の、導電性、耐酸化性に優れた金属やその合金などによって形成すればよい。
なお図では金属粉末3を2層構造としているが、例えば磁性を付与した金属薄膜31の両面に、それぞれ導電性、耐酸化性に優れた金属薄膜32を積層した3層構造や、あるいはそれ以上の多層構造に形成してもよい。
【0038】
かかる複合構造を有する金属粉末3は、各層ごとにめっき液を違えながら、連続して電気めっきを行うことによって形成できる。
金属粉末3の平面形状は、微細電鋳法に特有の、リソグラフィーによる加工精度の範囲内で任意の平面形状の金属薄膜を形成できるという利点を活かして、長さ方向の上下両端に、前記長さ方向と直交する短寸の両端部を繋いだ平面形状に形成される
例えば図3(a)の金属粉末3は、直線状の本体部3aの上下両端に、当該本体部3aと直交する短寸の両端部3b、3bを繋いだ平面形状を有しており、異方導電膜の熱接着時に上下の両端部3b、3bが支えとなって、金属粉末3が横倒しになるのを確実に防止できる。
【0039】
また図3(b)の金属粉末3は、両端部3b、3b間をジグザグ状の本体部3dで繋いだ平面形状を有しており、異方導電膜の熱接着時に上下の両端部3b、3bが支えとなって、金属粉末3が横倒しになるのを確実に防止できる。またジグザグ状の本体部3dが、熱接着による圧を受けた際にばねのように変形して圧を吸収することによって折れにくいものとなる。
なお上記両金属粉末において、異方導電膜の厚み方向に配向させた際に、当該膜に良好な異方導電特性を付与するため、それぞれの図中に示した長さLと幅Dの比L/D1を超える必要がある
【0040】
また長さLは、異方導電膜の厚み以下であるのが好ましい。
また特に、熱接着時に金属粉末3が横倒しになった際に、隣り合う電極間を短絡させないためには、長さLは、当該電極間の距離未満とするのが好ましく、電極間の距離の0.9倍以下とするのがさらに好ましい。
ただし、前記のように両金属粉末3は、いずれも両端部3b、3bの働きによって、金属粉末3が横倒しになりにくいものであるため、長さLを、必ずしも隣り合う電極間の距離未満に設定する必要はない。その場合は、横倒しをより一層、確実に防止するために、幅Dに相当する両端部3b、3bの長さを、隣り合う電極間の距離未満の範囲でできるだけ大きくするのが好ましい。
【0041】
図3(a)(b)の金属粉末3はいずれも、磁性を付与した単層の金属薄膜からなる単層構造に形成してもよいし、磁性を付与した金属薄膜と、導電性、耐酸化性に優れた金属薄膜の、2層以上の積層構造に形成してもよい。
異方導電膜に良好な異方導電特性を付与するためには、製造した金属粉末3が、上記所定の平面形状を有するできるだけまっすぐな状態であることも重要である。そのためには、めっき時に金属薄膜に生じる残留応力をできるだけ小さくするのが好ましい。残留応力が大きい場合には、微小電極表面1aからのはく離時に、金属薄膜が反り返ってまっすぐな状態にならないためである。
【0042】
金属薄膜の残留応力を小さくするためには、めっき液にサッカリンなどの応力緩和剤を加えたり、めっき浴の温度、pH、濃度等を最適化したりすればよい。これにより金属薄膜の残留応力を、例えば20kg/mm2以下といった小さな値として、金属粉末3をできるだけまっすぐな状態に形成することができる。
(結着剤)
金属粉末とともに異方導電膜を形成する結着剤としては、当該用途において結着剤として従来公知の、成膜性および接着性を有する種々の化合物がいずれも使用可能である。かかる結着剤としては、例えば熱可塑性樹脂や硬化性樹脂、液状硬化性樹脂などがあり、特に好ましくはアクリル系樹脂、エポキシ系樹脂、フッ素系樹脂、フェノール系樹脂などをあげることができる。
【0043】
(異方導電膜とその製造方法)
本発明の異方導電膜は、従来同様に、結着剤からなる膜中に、金属粉末を均一に分散させてなるものであって、特に前記のように、長さLと幅Dの比L/Dが1を超える平面形状に形成した金属粉末を、その長さ方向が膜の厚み方向と一致するように、膜中で配向させた状態で固定しているのが好ましい。
かかる異方導電膜は、
(A) 下地面と交差する方向に磁場をかけた下地上に、金属粉末と結着剤とを、適当な溶媒とともに所定の割合で配合して調製した複合材料を塗布して、金属粉末を、その長さ方向が、上記磁場の方向に沿う膜の厚み方向と一致するように配向させた状態で、複合材料を固化または硬化させることによって、金属粉末の配向を固定するか、あるいは
(B) 金属粉末を、下地面と交差する方向に磁場をかけた下地上に散布して、当該金属粉末の長さ方向が、上記磁場の方向と一致するように配向させた状態で、結着剤を含む、流動性を有する塗剤を塗布して固化または硬化させることによって、金属粉末の配向を固定したのち、
下地からはく離することによって製造できる。
【0044】
なお(A)の方法で使用する複合材料や(B)の方法で使用する塗剤は、液状硬化性樹脂等の液状の結着剤を用いることで、溶媒を省略してもよい。
これらの方法を実施する際にかける磁場の強さは、金属粉末中に含まれる、磁性を有する金属の種類や割合等によって異なるものの、異方導電膜中の金属粉末を、当該膜の厚み方向に十分に配向させることを考慮すると、磁束密度で表して1mT以上、中でも10mT以上、とくに40mT以上であるのが好ましい。
【0045】
磁場をかける方法としては、ガラス基板、プラスチック基板などの下地の上下に磁石を配置する方法や、あるいは下地として磁石の表面を利用する方法などをあげることができる。後者の方法は、磁石の表面から出る磁力線が、当該表面から、異方導電膜の厚み程度までの領域では、磁石の表面に対してほぼ垂直であることを利用したもので、異方導電膜の製造装置を簡略化できるという利点がある。
【0046】
かくして製造した異方導電膜における、前記式(1)で求められる、導電成分としての金属粉末の充てん量は、0.05〜20体積%とするのが好ましい。
またその厚みは、異方導電膜を介して電極とバンプ、あるいは電極と電極を圧着させた際に良好に導電接着させることを考慮すると、10μm〜100μmであるのが好ましい。
【0047】
【実施例】
参考例1
〔めっき金型の製造〕
縦200mm×横300mmのステンレス(SUS316L)鋼板(基板)11の片面に、スパッタリング法によって、チタンの薄膜からなる耐食性の表面層12(厚み100nm)を形成した。
【0048】
次にこの表面層12の上に、フォトリソグラフ法によって、図2(a)(b)に示す長円形の金属粉末3の平面形状に対応した、長さL=20μm、幅D=2μmのレジスト膜が多数、分布したレジストパターンを形成した。レジスト膜の厚みは2μmであった。
次に、上記表面層12上に、スパッタリング法によって、中間層21のもとになるケイ素薄膜を形成し、次いでその上に、プラズマCVD法によって、表層22のもとになる絶縁性のDLC薄膜を形成した。両層の合計の厚みは0.2μmであった。
【0049】
次に、上記の積層体をアセトンに浸漬してレジスト膜を溶解、除去したのち水洗して乾燥させた。
そしてそれにより、レジスト膜を除去した跡に、金属粉末3の形状に対応した長円形の、長さL=20μm、幅D=2μmの開口2aを多数、有する絶縁層2を形成し、かつ開口2aを通して露出した表面層12の表面を微小電極表面1aとして、図1(a)に示す積層構造を有するめっき金型Mを製造した。
【0050】
〔金属粉末の作製〕
次に、上記めっき金型Mと、下記組成のニッケルめっき液(pH=3)とを使用して、エアバブリング中、液温45℃の条件でニッケルの電気めっきを行った。
(成 分) (濃 度)
硫酸ニッケル6水和物 200g/リットル
塩化ニッケル6水和物 40g/リットル
ホウ酸 30g/リットル
サッカリン 1g/リットル
電気めっきは、めっき金型Mを陰極とし、かつ陽極にニッケル板を使用して、直流10A/dm2で30秒間の通電を行うことによって実施し、それによってめっき金型Mの微小電極表面1aに選択的に、ニッケル薄膜を成長させた。
【0051】
そして電気めっき後のめっき金型Mにポリプロピレン製の不織布を押し付けてこすることによって、微小電極表面1a上に形成されたニッケル薄膜をはく離してニッケル粉末を製造した。
得られたニッケル粉末を、走査型電子顕微鏡を用いて観察したところ、図4に示すように、いずれの粉末も欠陥や変形のない、長さL=20μm、幅D=2μm、長円形の平面形状を有する、厚みt=1μmの粉末であることが確認された。
【0052】
〔異方導電膜の製造〕
2種の固形エポキシ樹脂〔旭化成(株)製の品番6099(樹脂Aとする)、6144(樹脂Bとする)〕と、マイクロカプセル型潜在性硬化剤〔旭化成(株)製の品番HX3721(硬化剤とする)〕とを、重量比で樹脂A/樹脂B/硬化剤=70/30/40の割合で、酢酸ブチルとメチルイソブチルケトンとの重量比75/25の混合溶媒に溶解して、樹脂分、すなわち樹脂A、樹脂Bおよび硬化剤の3成分の合計の濃度が40重量%である樹脂溶液を調製した。
【0053】
次にこの樹脂溶液に、前記式(1)で求められる充てん率が0.5体積%となるように、先に作製した金属粉末を配合し、遠心かく拌ミキサーを用いてかく拌して均一に分散させることで、異方導電膜用の液状の複合材料を調製した。
そしてこの複合材料を、PETフィルム上に、ドクターナイフを用いて塗布した後、40mTの磁場をかけながら80℃で5分間、次いで100℃で10分間、加熱して溶媒を乾燥、除去するとともに樹脂を予備硬化させて、金属粉末の長さ方向が膜の厚み方向と一致するように配向した状態で固定された、厚み30μmの異方導電膜を製造した。
【0054】
参考例2
参考例1で作製したのと同じ金属粉末を、その充てん率が2.0体積%となるように樹脂溶液に配合したこと以外は参考例1と同様にして、厚み30μmの異方導電膜を製造した。
比較例1
〔金属粉末の作製〕
純水に、硫酸ニッケルと、クエン酸三ナトリウムとを溶解し、次いで三塩化チタンを混合して還元析出反応用の液を調製した。次に述べるpH調整後の液における各成分のモル濃度は、Ni(II)が0.04モル/リットル、クエン酸が0.3モル/リットル、Ti(III)が0.1モル/リットルとした。
【0055】
次にこの液をかく拌下、アンモニア水と、必要に応じて少量の純水とを加えて液のpHを9に調整するとともに、各成分のモル濃度を上記の値に調整して、還元析出反応を開始させた。液温は23±1℃とし、液のかく拌速度は400rpmとした。
そして、15分経過時点で液中に析出した沈殿をロ別し、水、次いでエタノールで十分に洗浄した後、真空乾燥して、多数の金属粒が鎖状に繋がった形状を有する金属粉末を得た。
【0056】
得られた金属粉末は、その鎖長が5〜20μmの範囲で分布していた。また金属粉末を形成する個々の金属粒の一次粒子径は400nmであった。
〔異方導電膜の製造〕
上記の金属粉末を使用したこと以外は実施例1と同様にして、厚み30μmの異方導電膜を製造した。金属粉末の充てん率は0.5体積%であった。
比較例2
〔金属粉末の作製〕
液温を50±1℃、pHを10.5としたこと以外は比較例1と同様にして、多数の金属粒が鎖状に繋がった形状を有する金属粉末を得た。
【0057】
得られた金属粉末は、その鎖長が10〜35μmの範囲で分布していた。また金属粉末を形成する個々の金属粒の一次粒子径は400nmであった。
〔異方導電膜の製造〕
上記の金属粉末を使用したこと以外は実施例1と同様にして、厚み30μmの異方導電膜を製造した。金属粉末の充てん率は0.5体積%であった。
接続抵抗、絶縁抵抗の測定
幅15μm、長さ50μm、厚み8μmのAu電極が15μm間隔で配列された電極パターンを有するFPCの、上記電極パターン上に、実施例、比較例で製造した異方導電膜を重ねて、80℃に加熱しながら0.1N/mm2の圧力で10秒間、加圧して仮接着した。
【0058】
次にこの異方導電膜上に、同形状、同寸法の電極パターンを有するもう1枚のFPCを、異方導電膜を挟んで電極パターン同士を相対向させて、両電極パターンの各々の電極が1対1で膜の面方向に重なるように位置合わせした状態で、200℃に加熱しながら3N/mm2の圧力で加圧して本接着した。
そして異方導電膜を介して導電接続された、相対向する2つのAu電極間の抵抗値を測定して、異方導電膜の厚み方向の接続抵抗とした。
【0059】
また隣り合う2つのAu電極間の抵抗値を測定して、異方導電膜の面方向の絶縁抵抗とした。
限界電流値の測定
異方導電膜を介して導電接続された、相対向する2つのAu電極間に流す電流を徐々に増加させた際に、溶断による断線が発生した電流値を求めて限界電流値とした。
【0060】
以上の結果を表1に示す。
【0061】
【表1】
Figure 0003912310
【0062】
表より、最大長が膜の厚みを超える鎖状の金属粉末を用いた比較例2の異方導電膜は、長寸の金属粉末が膜の厚み方向にきれいに配向せず、斜めに存在していたことから、膜の面方向の絶縁抵抗が100MΩという低い値を示すことがわかった。
また最大長を膜の厚み以下とした鎖状の金属粉末を用いた比較例1の異方導電膜は、膜の面方向の絶縁抵抗を100GΩまで高くすることができるものの、相対的に導電ネットワークの形成に寄与しない短寸のものが多量に含まれるため、膜の厚み方向の接続抵抗が0.3Ωと高くなってしまうこともわかった。
【0063】
さらに比較例1、2の異方導電膜はいずれも、限界電流値が0.5Aと小さいため、大電流を流す回路などの接続には適さないこともわかった。
これに対し参考例1、2の異方導電膜はいずれも、長さLを膜の厚み以下とした金属粉末を用いているため、比較例2に比べて膜の面方向の絶縁抵抗を高くできるとともに、金属粉末の寸法、形状が揃っていて、導電ネットワークの形成に寄与しない短寸のものなどを含まないため、比較例1に比べて、膜の厚み方向の接続抵抗を低くできることが確認された。
【0064】
また両参考例の異方導電膜はいずれも、両比較例に比べて限界電流値が大きいことから、大電流を流す回路などの接続に適していることも確認された。
【図面の簡単な説明】
【図1】 同図(a)〜(c)はそれぞれ、本発明の異方導電膜に含有させる金属粉末を、微細電鋳法によって製造する工程の一例を示す断面図である。
【図2】 同図(a)は、図1(a)〜(c)の工程に使用するめっき金型の一例を示す平面図、同図(b)(c)はそれぞれ、上記めっき金型を使用して製造される金属粉末の外観を示す斜視図である。
【図3】 同図(a)(b)はそれぞれ、本発明の異方導電膜に含有させる金属粉末の平面形状を示す平面図である。
【図4】 本発明の参考例1で作製した金属粉末の粒子構造を示す顕微鏡写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an anisotropic conductive film.
[0002]
[Prior art]
One of electronic mounting methods for mounting a semiconductor package on a printed wiring board, or electrically connecting conductor circuits on two printed wiring boards, and coupling and fixing both printed wiring boards to each other. In addition, there is a method using a film-like anisotropic conductive film (see, for example, Patent Document 1 and Patent Document 2).
For example, in the case of mounting a semiconductor package, a semiconductor package in which a plurality of bumps are arranged on a mounting surface to a printed wiring board to form a connection portion, and a plurality of the bumps and pitches are aligned in a region where the semiconductor package is mounted. And a printed wiring board on which connection portions are formed by arranging the electrodes. Then, with the two connection portions facing each other and with the anisotropic conductive film sandwiched between them, the bumps and the electrodes of both connection portions are aligned so that they overlap one on one in the surface direction of the film. The semiconductor package is mounted on the substrate by performing thermal bonding.
[0003]
In the case of connection between printed wiring boards, two printed wiring boards are prepared in which a plurality of electrodes are arranged at respective connection positions so as to form a connection portion. Then, with the connecting portions of the two facing each other and sandwiching the anisotropic conductive film between them, the electrodes of both connecting portions are similarly aligned so that they overlap one on one in the film surface direction. By performing thermal bonding, the wiring boards are connected to each other.
An anisotropic conductive film used for such electronics mounting generally has a structure in which a powdery conductive component is dispersed in a film having heat-sensitive adhesive properties including a binder such as a thermoplastic resin or a curable resin.
[0004]
An anisotropic conductive film causes a short circuit in the film surface direction, in which each bump-electrode pair or electrode-electrode pair overlapping in the film surface direction is short-circuited with another adjacent pair of bumps or electrodes. In order to prevent this, the conductive component equation (1):
[0005]
[Expression 1]
Figure 0003912310
[0006]
The filling rate required in is adjusted. In addition, the total volume of solid content in a formula is a total amount of both volume, when forming a film | membrane using a conductive component and a binder as solid content as mentioned above.
And when thermal bonding is performed, the anisotropic conductive film is compressed in the thickness direction by heating and pressurization at that time, so that the filling rate of the conductive component in the thickness direction increases, and the conductive components are close to each other or As a result of contact and formation of the conductive network, the conductive resistance in the thickness direction (referred to as “connection resistance”) decreases. However, at this time, since the filling rate of the conductive component in the plane direction of the anisotropic conductive film does not increase, the plane direction maintains the initial state where the insulation resistance is high and the conductivity is low.
[0007]
For this reason, the anisotropic conductive film has anisotropic conductive characteristics with low connection resistance in the thickness direction and high insulation resistance in the plane direction, and based on such anisotropic conductive characteristics,
* Preventing the occurrence of short-circuit in the surface direction of the film as described above, while maintaining an electrically independent state for each bump-electrode pair and each electrode-electrode pair,
* Good conductive connection between bumps and electrodes, and between electrodes and electrodes that overlap each other in the direction of the film surface.
It becomes possible.
[0008]
At the same time, the semiconductor package can be fixed on the printed wiring board by thermal bonding or the printed wiring boards can be fixed by thermal bonding due to the heat-sensitive adhesiveness of the film.
For this reason, if an anisotropic conductive film is used, the operation | work of electronics mounting becomes easy. As a conductive component contained in a conventional anisotropic conductive film, for example, Ni having an average particle diameter of about several μm to several tens of μm, and its shape is granular, spherical, flaky (flaky, flaky), etc. Various metal powders such as powders or resin powders whose surfaces are gold-plated have been put into practical use.
[0009]
Further, in the conventional anisotropic conductive film, the above metal powder is usually contained so that the filling rate obtained by the formula (1) is 3 to 10% by volume.
However, recently, in this filling rate range, the value of the connection resistance in the thickness direction after thermal bonding is not sufficient, and there are increasing cases where it is required to further reduce the connection resistance.
Therefore, in order to further reduce the connection resistance in the thickness direction than before, it is conceivable to increase the filling rate of the metal powder as the conductive component from the above range.
[0010]
However, in such a case, the conventional anisotropic conductive film using the above-described general metal powder has a problem that the insulation resistance in the surface direction of the film is lowered, so that a short circuit in the same direction is likely to occur.
Therefore, the inventor first reduced the metal ions in a liquid containing metal ions and a reducing agent by the action of the reducing agent to precipitate as fine metal particles (see Patent Documents 3 to 5). ) Was used to manufacture a metal powder having a shape in which a large number of the metal particles are connected in a chain, and the use of the metal powder as a conductive component of the anisotropic conductive film was studied.
[0011]
[Patent Document 1]
JP-A-6-102523 (column 0009, column 0010, FIG. 2)
[Patent Document 2]
JP-A-8-115617 (column 0003, FIG. 1)
[Patent Document 3]
JP-A-11-302709 (Columns 0007 and 0008)
[Patent Document 4]
Japanese Patent No. 3018655 (column 0005)
[Patent Document 5]
JP 2001-200305 A (columns 0007 to 0010)
[0012]
[Problems to be solved by the invention]
According to the inventor's study, for example, when a ferromagnetic metal such as Ni, Fe, or Co or an alloy thereof is deposited by the above-described reduction precipitation method, a large number of metal particles are formed in the liquid due to their own magnetism. The chain is naturally connected to form a chain metal powder.
In order to form an anisotropic conductive film using the chain metal powder as a conductive component, first, a metal composite is mixed with a binder or the like to prepare a liquid composite material. Next, a magnetic field is applied in a state where the composite material is applied in a film shape, and the chain metal powder is solidified while being oriented in the thickness direction of the film. Then, an anisotropic conductive film in which chain metal powder is oriented in the thickness direction of the film is manufactured.
[0013]
Such an anisotropic conductive film has improved anisotropic conductive characteristics than before due to the action of the chain metal powder oriented in the thickness direction of the film.
That is, if chain metal powder is oriented in the thickness direction of the film, the chance of contact between adjacent metal powders in the film surface direction can be reduced as much as possible. Therefore, a sufficient insulation resistance can be ensured. Further, in the thickness direction of the film, a good conductive network is formed by a large number of chain metal powders oriented in the same direction, so that the connection resistance can be made lower than before.
[0014]
However, the anisotropic conductive film obtained by orienting the chain metal powder produced by the above-described reduction precipitation method in the thickness direction of the film as described above certainly uses a metal powder of another shape such as a granular shape. Although the anisotropic conductive property is improved as compared with the conventional one, there is a problem that the anisotropic conductive property also varies based on the variation in the length of the chain of the metal powder.
That is, the chain metal powder produced by the reduction deposition method inevitably causes some variation in length in the production process, but when the maximum length exceeds the thickness of the film, such a long metal powder is Even if a magnetic field is applied, the electrodes cannot be physically oriented in the thickness direction of the film, and thus there is a possibility that the electrodes are short-circuited through the long metal powder. For this reason, there exists a possibility that the insulation resistance of a surface direction may fall among anisotropic conductive characteristics.
[0015]
On the other hand, when the maximum length of the metal powder is set to be equal to or less than the thickness of the film in order to prevent the short circuit, the length distribution of the entire metal powder is shifted to the shorter side accordingly. Thus, the proportion of very short metal powder that does not contribute to the formation of a good conductive network increases. For this reason, there exists a possibility that the connection resistance of the thickness direction among anisotropic conductive characteristics may rise.
In addition, the metal powder formed by the reduction precipitation method is an aggregate of fine metal particles, and the connection resistance between the metal particles is much smaller than the conventional contact resistance between metal powders such as particles, Still, it is considerably higher than the bulk resistance of metal. There is also a limit to increasing the thickness of the metal powder chain.
[0016]
For this reason, the anisotropic conductive film using metal powder formed by the reduction deposition method may melt locally due to Joule heat when a large current flows, and the semiconductor package mounting described above may occur. For example, there is a problem that it cannot be used for connection between high-current conductor circuits on two printed wiring boards.
An object of the present invention is to provide a novel anisotropic conductive film that does not cause a variation in anisotropic conductive characteristics and can sufficiently cope with connection between conductor circuits of a large current. is there.
[0017]
[Means for Solving the Problems and Effects of the Invention]
In order to solve the above-mentioned problems, the inventor uses a plating mold having a large number of microelectrode surfaces having a predetermined planar shape, and selectively selects the surface by electroplating using the microelectrode surface as a cathode. In addition, the inventors examined the use of metal powder produced by a so-called fine electroforming method, which is formed after forming a minute metal thin film corresponding to the planar shape, as a conductive component of the anisotropic conductive film.
[0018]
The metal powder produced by this micro electroforming method has a planar shape that faithfully reproduces the planar shape of the surface of the microelectrode, and the planar shape of the surface of the microelectrode employs, for example, a forming method utilizing lithography. In this case, it is possible to obtain an arbitrary shape at the micron level. For this reason, it was thought that the anisotropic conductive characteristics of the anisotropic conductive film can be eliminated by making the dimensions and shapes including the lengths of many metal powders uniform.
[0019]
  Moreover, the resistance value of the metal thin film manufactured by the micro electroforming method is that of a bulk metal, and the resistance value can be remarkably reduced as compared with a chain metal powder that is an aggregate of fine metal particles. Moreover, the width of the metal powder can be made as wide as possible by adjusting the planar shape of the surface of the microelectrode as described above. For this reason, it was considered that the anisotropic conductive film can be used for connection between conductor circuits of a large current.
  Further, when the ratio L / D of the length L to the width D exceeds 1, and the two ends of the short direction perpendicular to the length direction are connected to the upper and lower ends in the length direction, The present inventors thought that it was possible to impart good anisotropic conductive characteristics to the conductive film, and to reliably prevent the metal powder from lying down by supporting the upper and lower ends during thermal bonding of the anisotropic conductive film.
  Therefore, the invention of claim 1The ratio L / D of the length L to the width D exceeds 1, and both short ends perpendicular to the length direction are connected to the upper and lower ends in the length direction.Using a plating mold provided with a large number of microelectrode surfaces having a planar shape, electroplating with the microelectrode surface as a cathode is used to selectively form a minute metal thin film corresponding to the planar shape on the surface. It is an anisotropic conductive film characterized in that it contains fine metal powder produced after peeling as a conductive component.
[0020]
  In the above anisotropic conductive film, in order to obtain good anisotropic conductive characteristics, a metal powder is used.,filmIt is preferable to orient in the thickness direction.
  Therefore, in the invention described in claim 2, the metal powder is used., That2. The anisotropic conductive film according to claim 1, wherein the anisotropic conductive film is oriented in the film so that the length direction of the film coincides with the thickness direction of the film.
[0021]
Further, in the above anisotropic conductive film, in order to orient the metal powder cleanly in the thickness direction of the film so that the insulation resistance in the plane direction does not increase, the length L of the metal powder is also made equal to or less than the thickness of the film. Is preferred. Even in that case, according to the present invention, the size and shape of all the metal powders are uniform, and no short metal powder with no length is produced, so that a good conductive network is formed in the thickness direction of the film. The connection resistance in the thickness direction does not increase.
[0022]
Therefore, the invention described in claim 3 is the anisotropic conductive film according to claim 2, wherein the length L of the metal powder is set to be equal to or less than the thickness of the film.
Further, in order to smoothly orient the metal powder in the thickness direction of the film, it is preferable that the metal powder has magnetism so that it can be easily oriented by applying a magnetic field. It is preferable that a metal having magnetism is included.
[0023]
Therefore, according to the invention of claim 4, the metal powder is composed of a single metal having magnetism, an alloy of two or more metals having magnetism, an alloy of a metal having magnetism with another metal, or a composite containing a metal having magnetism. The anisotropic conductive film according to claim 1, wherein the anisotropic conductive film is formed of a body.
The metal powder preferably has good conductivity and good oxidation resistance to prevent the conductivity from being deteriorated by oxidation when used for a long time. Considering the manufacturing process by the micro electroforming method described above, the metal powder has a composite structure by laminating a layer made of a magnetic metal thin film and a layer made of a metal thin film having excellent conductivity and oxidation resistance. Is preferred.
[0024]
Accordingly, in the invention described in claim 5, the metal powder is formed of a composite composed of two or more layers of metal thin films formed by electroplating on the surface of the microelectrode, and at least one layer of the metal powder has magnetic properties. 2. The anisotropic conductive film according to claim 1, wherein the anisotropic conductive film is formed of a single substance, an alloy of two or more kinds of metals having magnetism, or an alloy of a metal having magnetism and another metal.
The invention according to claim 6 is the anisotropic conductive film according to claim 5, wherein at least one other layer is formed of another metal having excellent conductivity and oxidation resistance.
[0025]
Furthermore, it is preferable that the filling amount of the metal powder as the conductive component, which is obtained by the formula (1) in the anisotropic conductive film, is 0.05 to 20% by volume.
When the filling rate is less than 0.05% by volume, there is too little metal powder contributing to conduction in the thickness direction of the anisotropic conductive film, and thus there is a possibility that the connection resistance in the same direction cannot be sufficiently lowered. Moreover, when a filling rate exceeds 20 volume%, the insulation resistance of the surface direction of an anisotropic conductive film becomes low too much, and there exists a possibility that it may become easy to generate | occur | produce a short circuit between adjacent electrodes.
[0026]
Therefore, the invention according to claim 7 includes a metal powder and a binder as a solid content, and a filling rate represented by a ratio of the metal powder in the total amount of the solid content is 0.05 to 20% by volume. The anisotropic conductive film according to claim 1.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
  The present invention is described below.
  The anisotropic conductive film of the present invention is characterized by containing, as a conductive component, a metal powder having a uniform size and shape, manufactured by a fine electroforming method as described above.
  (Metal powder)
  An example of the manufacturing process of the metal powder by the fine electroforming method is shown in FIGS. 1 (a) to 1 (c).In this example, the case where metal powder having an oval planar shape is produced, in which the upper and lower ends in the length direction are not connected to the short ends perpendicular to the length direction, will be described as an example. However, according to the same process as described below, FIG. (a) (b) Needless to say, it is possible to form a metal powder having a planar shape connecting both short ends at the upper and lower ends shown in FIG.
[0028]
First, in the manufacturing process of this example, a plating mold M having the structure shown in FIGS. 1 (a) and 2 (a) is prepared.
The plating mold M shown in the figure is for producing a metal powder 3 whose planar shape is oval as shown in FIGS. 2 (b) and 2 (c). In addition, an insulating layer 2 made of an inorganic insulating material and arranged with a number of oval openings 2a corresponding to the planar shape of the metal powder 3 is formed, and the conductive substrate 1 is exposed through the openings 2a of the insulating layer 2. This surface is the microelectrode surface 1a.
[0029]
Of the above, the conductive substrate 1 is formed in a two-layer structure in which a corrosion-resistant surface layer 12 is laminated on the surface of the substrate 11 made of a stainless steel plate or the like on the side where the insulating layer 2 is laminated. The surface of the surface layer 12 is exposed through the opening 2a of the insulating layer 2 as the microelectrode surface 1a.
As the substrate 11, any plate material made of various materials with or without conductivity can be used. However, in consideration of ensuring good conductivity of the conductive substrate 1 together with the surface layer 12 and ensuring good corrosion resistance against the electroplating solution, the substrate 11 is preferably formed of, for example, a stainless steel plate.
[0030]
Further, the surface layer 12 is made of titanium or a nickel-based corrosion resistant alloy such as Hastelloy (Ni—Cr—Mo alloy) in order to ensure the conductivity of the microelectrode surface 1a and further improve the corrosion resistance against the electroplating solution. It is preferable to form by.
However, in order to simplify the structure of the plating mold M, the entire substrate 11 may be integrally formed of stainless steel, titanium, nickel-based corrosion resistant alloy, or the like.
[0031]
In the example, the insulating layer 2 is formed in a two-layer structure of an intermediate layer 21 formed on the surface of the conductive substrate 1 and a surface layer 22 stacked on the intermediate layer 21.
Among these, the intermediate layer 21 is preferably a silicon or silicon carbide thin film, and the surface layer 22 is preferably an insulating DLC (diamond-like carbon) thin film.
In such a laminated structure, the DLC thin film as the surface layer 22 has high hardness and high strength, and the silicon or silicon carbide thin film as the intermediate layer 21 adheres between the DLC thin film and the conductive substrate 1. Therefore, the durability of the insulating layer 2 can be improved.
[0032]
The insulating layer 2 may be formed in a single-layer structure made of a single-layer thin film such as silicon oxide, aluminum oxide, or insulating DLC.
In order to form the opening 2a corresponding to the planar shape of the metal powder 3 in the insulating layer 2, a method using lithography may be performed as described above.
For example, in a state where a resist film having a planar shape corresponding to the opening 2a is formed on the surface of the conductive substrate 1 by lithography, the resist film of the conductive substrate 1 is not formed by a vapor deposition method or the like. The opening 2a can be formed by selectively laminating and forming the insulating layer 2 on the exposed surface and then removing the resist film. Further, in a state where a resist film having an opening corresponding to the opening 2a is formed by lithography on the insulating layer 2 formed on the entire surface of the conductive substrate 1, the insulating layer 2 is formed by vapor phase etching or the like. The resist film may be removed after the portion exposed at the opening is selectively etched away to form the opening 2a.
[0033]
In order to manufacture metal powder using the above-described plating mold M, although not shown, the plating mold M and a counter electrode formed of metal, carbon, or the like that is the basis of the metal powder 3 are plated. In the state immersed in the liquid, electroplating is started by connecting the conductive substrate 1 to the cathode of the power source and the latter to the anode among the former.
Then, as shown in FIG. 1B, a minute metal thin film 30 corresponding to the planar shape is selectively formed on the minute electrode surface 1a of the conductive substrate 1 exposed through the opening 2a of the insulating layer 2 of the plating mold M. Will grow.
[0034]
  Then, after the metal thin film 30 has grown to a predetermined thickness, the plating mold M is taken out of the plating solution and washed, and then the surface thereof is rubbed with a non-woven fabric, as shown in FIG. 1 (c). When the metal thin film 30 is peeled off from the microelectrode surface 1a, a large number of metal powders 3 having a predetermined planar shape (oval in the figure) and a certain size can be produced as shown in FIG. 2 (b)..
[0035]
  2 (b) The metal powder 3 has a single-layer structure composed of a single metal thin film 30, and considering that the metal powder 3 is well oriented in the thickness direction in an anisotropic conductive film, for example, It is preferable to provide magnetism by forming a single metal having ferromagnetism such as Ni, Fe, Co, or the like, an alloy of two or more of these metals, or an alloy of these metals with another metal.
[0036]
  MaIn view of imparting good conductivity and oxidation resistance to the metal powder 3, the metal powder 3 has the metal thin film 31 provided with magnetism as described above, and the conductivity and oxidation resistance. It is preferable to form a composite structure in which an excellent metal thin film 32 is laminated [see FIG. 2 (c)].
[0037]
Of these, the metal thin film 32 is made of, for example, at least one metal selected from the group consisting of Cu, Rb, Rh, Pd, Ag, Re, Pt, and Au, a metal having excellent conductivity and oxidation resistance, and an alloy thereof. What is necessary is just to form.
Although the metal powder 3 has a two-layer structure in the figure, for example, a three-layer structure in which a metal thin film 32 having excellent conductivity and oxidation resistance is laminated on both surfaces of a metal thin film 31 imparted with magnetism or more. It may be formed in a multilayer structure.
[0038]
  The metal powder 3 having such a composite structure can be formed by continuously performing electroplating while changing the plating solution for each layer.
  The planar shape of the metal powder 3 is, FineTaking advantage of the ability to form a metal thin film of any planar shape within the range of processing accuracy by lithography, unique to the fine electroforming method,The short ends that are perpendicular to the length direction are connected to the upper and lower ends in the length direction.Formed into a flat shapeBe done.
  For example, the metal powder 3 in FIG. 3A has a planar shape in which short ends 3b and 3b orthogonal to the main body 3a are connected to the upper and lower ends of the linear main body 3a. It is possible to reliably prevent the metal powder 3 from lying down by supporting the upper and lower end portions 3b and 3b during thermal bonding of the conductive film.
[0039]
  The metal powder 3 in FIG. 3 (b) has a planar shape in which both end portions 3b and 3b are connected by a zigzag main body portion 3d, and the upper and lower end portions 3b, 3b becomes a support and it can prevent reliably that the metal powder 3 falls sideways. Further, when the zigzag main body 3d receives pressure due to thermal bonding, it deforms like a spring and absorbs the pressure, so that the zigzag main body 3d is hardly broken.
  In both the above metal powdersIsWhen the anisotropic conductive film is oriented in the thickness direction, it imparts good anisotropic conductive characteristics to the film.For, Ratio L / D of length L and width D shown in each figureButOver 1There is a need.
[0040]
The length L is preferably equal to or less than the thickness of the anisotropic conductive film.
In particular, when the metal powder 3 is laid down during thermal bonding, the length L is preferably less than the distance between the electrodes so as not to short-circuit between adjacent electrodes. More preferably, it is 0.9 times or less.
However, as described above, both the metal powders 3 are such that the metal powders 3 are unlikely to lie down by the action of both end portions 3b and 3b, so the length L is not necessarily less than the distance between adjacent electrodes. It is not necessary to set. In that case, in order to more reliably prevent the sideways falling, it is preferable that the lengths of both end portions 3b and 3b corresponding to the width D be as large as possible within a range less than the distance between adjacent electrodes.
[0041]
Each of the metal powders 3 in FIGS. 3 (a) and 3 (b) may be formed in a single layer structure composed of a single-layer metal thin film imparted with magnetism, or a metal thin film imparted with magnetism, conductivity and acid resistance. You may form in the laminated structure of two or more layers of the metal thin film excellent in crystallization property.
In order to impart good anisotropic conductive characteristics to the anisotropic conductive film, it is also important that the manufactured metal powder 3 is as straight as possible having the predetermined planar shape. For this purpose, it is preferable to minimize the residual stress generated in the metal thin film during plating. This is because when the residual stress is large, the metal thin film warps and does not become straight when peeled from the microelectrode surface 1a.
[0042]
In order to reduce the residual stress of the metal thin film, a stress relaxation agent such as saccharin may be added to the plating solution, or the temperature, pH, concentration, etc. of the plating bath may be optimized. Thereby, the residual stress of the metal thin film is reduced to, for example, 20 kg / mm.2As a small value such as the following, the metal powder 3 can be formed as straight as possible.
(Binder)
As the binder for forming the anisotropic conductive film together with the metal powder, any of various compounds having film forming properties and adhesiveness, which are conventionally known as binders in the application, can be used. Examples of the binder include thermoplastic resins, curable resins, and liquid curable resins, and particularly preferable examples include acrylic resins, epoxy resins, fluorine resins, and phenol resins.
[0043]
(Anisotropic conductive film and manufacturing method thereof)
The anisotropic conductive film of the present invention is obtained by uniformly dispersing a metal powder in a film made of a binder as in the prior art, and particularly as described above, the ratio of the length L to the width D. It is preferable that the metal powder formed in a planar shape with L / D exceeding 1 is fixed in an oriented state in the film so that the length direction thereof coincides with the thickness direction of the film.
Such anisotropic conductive film
(A) A composite material prepared by blending a metal powder and a binder in a predetermined ratio with an appropriate solvent is applied onto a base applied with a magnetic field in a direction crossing the lower ground. Fixing the orientation of the metal powder by solidifying or hardening the composite material with its length direction aligned with the thickness direction of the film along the direction of the magnetic field, or
(B) The metal powder is sprinkled on a base applied with a magnetic field in a direction crossing the base surface, and the metal powder is aligned in such a manner that the length direction of the metal powder coincides with the direction of the magnetic field. After fixing the orientation of the metal powder by applying a flowable coating material containing an adhesive and solidifying or curing it,
It can be manufactured by peeling from the substrate.
[0044]
The composite material used in the method (A) and the coating material used in the method (B) may be omitted by using a liquid binder such as a liquid curable resin.
Although the strength of the magnetic field applied when carrying out these methods varies depending on the type and ratio of the metal having magnetism contained in the metal powder, the metal powder in the anisotropic conductive film is used in the thickness direction of the film. In view of sufficient orientation, the magnetic flux density is preferably 1 mT or more, more preferably 10 mT or more, and particularly preferably 40 mT or more.
[0045]
Examples of a method for applying a magnetic field include a method of arranging magnets above and below a base such as a glass substrate or a plastic substrate, or a method of using the surface of a magnet as a base. The latter method utilizes the fact that the lines of magnetic force emerging from the surface of the magnet are substantially perpendicular to the surface of the magnet in the region from the surface to the thickness of the anisotropic conductive film. There is an advantage that the manufacturing apparatus can be simplified.
[0046]
In the anisotropic conductive film thus manufactured, the filling amount of the metal powder as the conductive component, which is obtained by the above formula (1), is preferably 0.05 to 20% by volume.
The thickness is preferably 10 μm to 100 μm in consideration of good conductive adhesion when the electrodes and bumps or the electrodes and electrodes are pressure-bonded via the anisotropic conductive film.
[0047]
【Example】
  Reference example 1
  [Manufacture of plating molds]
  On one surface of a stainless steel (SUS316L) steel plate (substrate) 11 having a length of 200 mm and a width of 300 mm, a corrosion-resistant surface layer 12 (thickness: 100 nm) made of a titanium thin film was formed by sputtering.
[0048]
Next, a resist having a length L = 20 μm and a width D = 2 μm corresponding to the planar shape of the oval metal powder 3 shown in FIGS. 2A and 2B is formed on the surface layer 12 by photolithography. A resist pattern in which a large number of films were distributed was formed. The thickness of the resist film was 2 μm.
Next, a silicon thin film serving as the intermediate layer 21 is formed on the surface layer 12 by sputtering, and then an insulating DLC thin film serving as the surface layer 22 is formed thereon by plasma CVD. Formed. The total thickness of both layers was 0.2 μm.
[0049]
Next, the laminate was immersed in acetone to dissolve and remove the resist film, and then washed with water and dried.
As a result, an insulating layer 2 having a large number of oval-shaped openings 2a having a length L = 20 μm and a width D = 2 μm corresponding to the shape of the metal powder 3 is formed on the trace after removing the resist film. Using the surface of the surface layer 12 exposed through 2a as the microelectrode surface 1a, a plating mold M having the laminated structure shown in FIG.
[0050]
[Production of metal powder]
Next, using the plating mold M and a nickel plating solution (pH = 3) having the following composition, nickel was electroplated at a liquid temperature of 45 ° C. during air bubbling.
(Component) (Concentration)
Nickel sulfate hexahydrate 200g / liter
Nickel chloride hexahydrate 40g / liter
Boric acid 30g / liter
Saccharin 1g / liter
Electroplating uses a plating mold M as a cathode and a nickel plate as an anode, and a direct current of 10 A / dm2Then, the nickel thin film was selectively grown on the microelectrode surface 1a of the plating mold M.
[0051]
Then, a non-woven fabric made of polypropylene was pressed against the plating mold M after electroplating to peel off the nickel thin film formed on the microelectrode surface 1a to produce nickel powder.
When the obtained nickel powder was observed using a scanning electron microscope, as shown in FIG. 4, the length L = 20 μm, the width D = 2 μm, and an oval plane without any defects or deformation. It was confirmed to be a powder having a shape and a thickness t = 1 μm.
[0052]
[Manufacture of anisotropic conductive film]
Two kinds of solid epoxy resins [product number 6099 (referred to as resin A) and 6144 (referred to as resin B) manufactured by Asahi Kasei Co., Ltd.)] and a microcapsule latent curing agent [product number HX3721 manufactured by Asahi Kasei Corp. (cured) In a weight ratio of resin A / resin B / curing agent = 70/30/40 in a mixed solvent of butyl acetate and methyl isobutyl ketone in a weight ratio of 75/25, A resin solution having a resin component, that is, a total concentration of three components of resin A, resin B, and a curing agent was 40% by weight was prepared.
[0053]
Next, in this resin solution, the previously prepared metal powder is blended so that the filling rate obtained by the formula (1) is 0.5% by volume, and stirred uniformly using a centrifugal mixer. To prepare a liquid composite material for anisotropic conductive film.
And after applying this composite material on a PET film using a doctor knife, it is heated at 80 ° C. for 5 minutes and then at 100 ° C. for 10 minutes while applying a magnetic field of 40 mT to dry and remove the solvent and resin. Was anisotropically cured to produce an anisotropic conductive film having a thickness of 30 μm, which was fixed in such a manner that the length direction of the metal powder was aligned so as to coincide with the thickness direction of the film.
[0054]
  Reference example 2
  Reference example 1Except that the same metal powder as prepared in the above was added to the resin solution so that the filling rate was 2.0% by volume.Reference example 1In the same manner, an anisotropic conductive film having a thickness of 30 μm was manufactured.
  Comparative Example 1
  [Production of metal powder]
  Nickel sulfate and trisodium citrate were dissolved in pure water, and then titanium trichloride was mixed to prepare a solution for reduction precipitation reaction. The molar concentration of each component in the solution after pH adjustment described below is 0.04 mol / liter for Ni (II), 0.3 mol / liter for citric acid, and 0.1 mol / liter for Ti (III). did.
[0055]
Next, while stirring this liquid, ammonia water and a small amount of pure water as necessary are added to adjust the pH of the liquid to 9, and the molar concentration of each component is adjusted to the above value to reduce the liquid. A precipitation reaction was started. The liquid temperature was 23 ± 1 ° C., and the liquid stirring speed was 400 rpm.
Then, the precipitate deposited in the liquid at the time when 15 minutes have passed is separated, washed thoroughly with water and then with ethanol, and then vacuum dried to obtain a metal powder having a shape in which a large number of metal particles are connected in a chain. Obtained.
[0056]
The obtained metal powder had a chain length distributed in the range of 5 to 20 μm. The primary particle diameter of each metal particle forming the metal powder was 400 nm.
[Manufacture of anisotropic conductive film]
An anisotropic conductive film having a thickness of 30 μm was produced in the same manner as in Example 1 except that the above metal powder was used. The filling rate of the metal powder was 0.5% by volume.
Comparative Example 2
[Production of metal powder]
Except that the liquid temperature was 50 ± 1 ° C. and the pH was 10.5, a metal powder having a shape in which a number of metal particles were connected in a chain was obtained in the same manner as in Comparative Example 1.
[0057]
The obtained metal powder had a chain length distributed in the range of 10 to 35 μm. The primary particle diameter of each metal particle forming the metal powder was 400 nm.
[Manufacture of anisotropic conductive film]
An anisotropic conductive film having a thickness of 30 μm was produced in the same manner as in Example 1 except that the above metal powder was used. The filling rate of the metal powder was 0.5% by volume.
Measurement of connection resistance and insulation resistance
An anisotropic conductive film manufactured in Examples and Comparative Examples was stacked on the above electrode pattern of FPC having an electrode pattern in which Au electrodes having a width of 15 μm, a length of 50 μm, and a thickness of 8 μm were arranged at intervals of 15 μm. 0.1N / mm while heating2The pressure was applied for 10 seconds at a pressure of 5 to temporarily bond.
[0058]
Next, on this anisotropic conductive film, another FPC having an electrode pattern of the same shape and the same size is placed so that the electrode patterns are opposed to each other with the anisotropic conductive film sandwiched therebetween. 3: 1 N / mm while heating to 200 ° C. in a state of being aligned so as to overlap with the film surface direction2The main adhesion was performed by applying pressure of
Then, the resistance value between the two opposing Au electrodes that were conductively connected via the anisotropic conductive film was measured to obtain the connection resistance in the thickness direction of the anisotropic conductive film.
[0059]
Further, the resistance value between two adjacent Au electrodes was measured to obtain the insulation resistance in the surface direction of the anisotropic conductive film.
Limit current measurement
When the current flowing between two opposing Au electrodes that were conductively connected via an anisotropic conductive film was gradually increased, the current value at which disconnection due to fusing occurred was determined and used as the limit current value.
[0060]
The results are shown in Table 1.
[0061]
[Table 1]
Figure 0003912310
[0062]
From the table, the anisotropic conductive film of Comparative Example 2 using a chain metal powder whose maximum length exceeds the thickness of the film does not align the long metal powder cleanly in the thickness direction of the film and exists diagonally. This indicates that the insulation resistance in the surface direction of the film shows a low value of 100 MΩ.
Further, the anisotropic conductive film of Comparative Example 1 using a chain metal powder whose maximum length is equal to or less than the thickness of the film can increase the insulation resistance in the surface direction of the film up to 100 GΩ, but it is relatively conductive network. It has also been found that the connection resistance in the thickness direction of the film becomes as high as 0.3Ω because of the large amount of short-sized materials that do not contribute to the formation of the film.
[0063]
  Further, it has also been found that the anisotropic conductive films of Comparative Examples 1 and 2 are not suitable for connection to a circuit or the like in which a large current flows because the limit current value is as small as 0.5 A.
  On the other handReference exampleSince each of the anisotropic conductive films 1 and 2 uses a metal powder having a length L equal to or less than the thickness of the film, the insulation resistance in the surface direction of the film can be increased as compared with Comparative Example 2, and the metal powder Therefore, it was confirmed that the connection resistance in the thickness direction of the film can be reduced as compared with Comparative Example 1, since the short-sized ones that do not contribute to the formation of the conductive network are not included.
[0064]
  BothReference exampleEach of these anisotropic conductive films has a larger limit current value as compared with both comparative examples, and therefore, it was confirmed that the anisotropic conductive film is suitable for connection to a circuit or the like through which a large current flows.
[Brief description of the drawings]
FIGS. 1A to 1C are sectional views showing an example of a process for producing a metal powder to be contained in an anisotropic conductive film of the present invention by a fine electroforming method.
FIG. 2A is a plan view showing an example of a plating mold used in the steps of FIGS. 1A to 1C, and FIGS. 2B and 2C are the above-described plating molds, respectively. It is a perspective view which shows the external appearance of the metal powder manufactured using this.
Fig. 3 (a) and (b) are respectivelyMetal powder included in anisotropic conductive film of the present inventionIt is a top view which shows the planar shape of this.
FIG. 4 of the present inventionReference example 1It is a microscope picture which shows the particle structure of the metal powder produced by.

Claims (7)

長さLと幅Dの比L/Dが1を超えるとともに、長さ方向の上下両端に、前記長さ方向と直交する短寸の両端部を繋いだ平面形状を有する微小電極表面を多数、備えためっき金型を使用して、上記微小電極表面を陰極とする電気めっきによって、当該表面に選択的に、その平面形状に対応した微小な金属薄膜を形成したのち、はく離して製造した微細な金属粉末を、導電成分として含むことを特徴とする異方導電膜。 The ratio L / D of the length L to the width D exceeds 1, and a number of microelectrode surfaces having a planar shape in which both ends of the short direction perpendicular to the length direction are connected to the upper and lower ends in the length direction , Using the provided plating mold, a fine metal thin film corresponding to the planar shape is selectively formed on the surface by electroplating using the surface of the microelectrode as a cathode. An anisotropic conductive film characterized in that it contains a metal powder as a conductive component. 金属粉末を、その長さ方向が膜の厚み方向と一致するように、膜中で配向させたことを特徴とする請求項1記載の異方導電膜。The metal powder, so that the length direction of that coincides with the thickness direction of the film, the anisotropic conductive film according to claim 1, characterized in that oriented in the film. 金属粉末の長さLを、膜の厚み以下としたことを特徴とする請求項2記載の異方導電膜。3. The anisotropic conductive film according to claim 2, wherein the length L of the metal powder is equal to or less than the thickness of the film. 金属粉末を、磁性を有する金属単体、磁性を有する2種以上の金属の合金、磁性を有する金属と他の金属との合金、もしくは磁性を有する金属を含む複合体にて形成したことを特徴とする請求項1記載の異方導電膜。The metal powder is formed of a single metal having magnetism, an alloy of two or more metals having magnetism, an alloy of a metal having magnetism with another metal, or a composite containing a metal having magnetism. The anisotropic conductive film according to claim 1. 金属粉末を、微小電極表面に電気めっきによって積層、形成した2層以上の金属薄膜からなる複合体にて形成するとともに、その少なくとも1層を、磁性を有する金属単体、磁性を有する2種以上の金属の合金、または磁性を有する金属と他の金属との合金にて形成したことを特徴とする請求項1記載の異方導電膜。The metal powder is formed of a composite composed of two or more layers of metal thin films formed by electroplating on the surface of the microelectrode, and at least one layer is composed of a single metal having magnetism, two or more kinds of magnetism having magnetism. 2. The anisotropic conductive film according to claim 1, wherein the anisotropic conductive film is formed of a metal alloy or an alloy of a metal having magnetism and another metal. 他の少なくとも1層を、導電性、耐酸化性に優れた他の金属にて形成したことを特徴とする請求項5記載の異方導電膜。6. The anisotropic conductive film according to claim 5, wherein at least one other layer is formed of another metal having excellent conductivity and oxidation resistance. 固形分として金属粉末と結着剤とを含み、かつ固形分の総量に占める金属粉末の割合で表される充てん率を0.05〜20体積%としたことを特徴とする請求項1記載の異方導電膜。The filling rate represented by the ratio of the metal powder which contains a metal powder and a binder as solid content, and occupies for the total amount of solid content was 0.05-20 volume%, The characterized by the above-mentioned. Anisotropic conductive film.
JP2003091994A 2003-03-28 2003-03-28 Anisotropic conductive film Expired - Fee Related JP3912310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003091994A JP3912310B2 (en) 2003-03-28 2003-03-28 Anisotropic conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003091994A JP3912310B2 (en) 2003-03-28 2003-03-28 Anisotropic conductive film

Publications (2)

Publication Number Publication Date
JP2004303461A JP2004303461A (en) 2004-10-28
JP3912310B2 true JP3912310B2 (en) 2007-05-09

Family

ID=33405223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003091994A Expired - Fee Related JP3912310B2 (en) 2003-03-28 2003-03-28 Anisotropic conductive film

Country Status (1)

Country Link
JP (1) JP3912310B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011150838A (en) * 2010-01-20 2011-08-04 Jsr Corp Circuit connection member, conductive particles, and manufacturing method of conductive particles
JP2011150836A (en) * 2010-01-20 2011-08-04 Jsr Corp Circuit connection member, conductive particles, and manufacturing method of conductive particles
JP2011165320A (en) * 2010-02-04 2011-08-25 Jsr Corp Circuit connecting member

Also Published As

Publication number Publication date
JP2004303461A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
KR100804924B1 (en) Conductive paste and conductive film using it, plating method and production method for fine metal component
TWI280080B (en) Nickel coated copper as electrodes for embedded passive devices
US20160330850A1 (en) Method for producing printed wiring board
JP2008218459A (en) Circuit board and manufacturing method thereof
CN100495824C (en) Anisotropic conductive film and method for producing the same
JP3912310B2 (en) Anisotropic conductive film
JP3878527B2 (en) Printed board
US20030048172A1 (en) Composition and method for manufacturing integral resistors in printed circuit boards
US20040103813A1 (en) Paste for electroless plating and method of producing metallic structured body, micrometallic component, and conductor circuit using the paste
US8038762B2 (en) Process for production of chain metal powders, chain metal powers produced thereby, and anisotropic conductive film formed by using the powders
JP2004119063A (en) Anisotropic conductive membrane
JP4433449B2 (en) Anisotropic conductive film and manufacturing method thereof
JP4126960B2 (en) Anisotropic conductive material
JP4470103B2 (en) Method for producing chain metal powder, chain metal powder produced by the method, and anisotropic conductive film using the same
JP4347974B2 (en) Method for producing conductive fine particles, anisotropic conductive adhesive, and conductive connection structure
JP3991269B2 (en) Conductive paste and semiconductor device using the same
JP4470104B2 (en) Method for producing chain metal powder, chain metal powder produced by the method, and anisotropic conductive film using the same
WO2023100622A1 (en) Printed-wiring-board substrate
CN214627496U (en) Buried resistance metal foil and printed board
JP2004292850A (en) Metal powder, its production method, and anisotropic conductive film using the same
JP2007299762A (en) Anisotropic conductive film and its manufacturing method
JP2018046238A (en) Connection structure and method for manufacturing the same, method for manufacturing electrode with terminal, and conductive particles, kit and transfer mold used for the same
JP2005286150A (en) Laminate for flexible printed wiring board and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R150 Certificate of patent or registration of utility model

Ref document number: 3912310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees