JP4433449B2 - Anisotropic conductive film and manufacturing method thereof - Google Patents
Anisotropic conductive film and manufacturing method thereof Download PDFInfo
- Publication number
- JP4433449B2 JP4433449B2 JP2002324311A JP2002324311A JP4433449B2 JP 4433449 B2 JP4433449 B2 JP 4433449B2 JP 2002324311 A JP2002324311 A JP 2002324311A JP 2002324311 A JP2002324311 A JP 2002324311A JP 4433449 B2 JP4433449 B2 JP 4433449B2
- Authority
- JP
- Japan
- Prior art keywords
- metal
- conductive film
- anisotropic conductive
- metal powder
- chain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Manufacturing Of Electrical Connectors (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
- Wire Bonding (AREA)
- Non-Insulated Conductors (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、例えばエレクトロニクス実装などに用いる新規な異方導電膜と、その製造方法とに関するものである。
【0002】
【従来の技術】
例えばフレキシブルプリント配線板(FPC)などの導体回路に設けた実装用の電極上に、半導体パッケージを、いわゆるフリップチップボンディングなどによって実装したり、あるいは2つ以上のFPCの導体回路同士を、接続部分に設けた電極を介して接続したりするエレクトロニクス実装の分野においては高密度実装化が進んでおり、隣接する電極間のピッチがますます狭くなる傾向にある。
【0003】
エレクトロニクス実装における実装法の1つに、熱接着性を有するフィルム状の異方導電膜を用いる方法がある(例えば特許文献1、2参照)。
異方導電膜は、例えば粉末状の導電成分を、熱可塑性樹脂や硬化性樹脂等の、導電成分を保持して膜を形成する機能(成膜性)と、熱接着するための接着剤としての機能(接着性)とを兼ね備えた結着剤からなる膜中に分散させた構造を有する。
【0004】
かかる構造を有する異方導電膜は、上記導電成分と固形の結着剤とを、溶媒とともに所定の割合で配合して液状の複合材料を形成し、この複合材料を、下地上に塗布して乾燥、固化させたのち、下地からはく離することで製造できる。また異方導電膜は、例えば結着剤として液状の硬化性樹脂等を用いることで溶媒を省略した複合材料を下地上に塗布したのち、硬化性樹脂を半硬化させて固形化することでも製造できる。
【0005】
また異方導電膜においては、熱接着した際に隣り合う電極間が短絡するのを防止すべく、面方向の導電抵抗(「絶縁抵抗」という)が高くなるように、導電成分の分布密度を規定する、金属粉末と結着剤との総量に占める金属粉末の割合で表される金属充てん率を調整しておく。
そして、導電接続したいFPCと半導体パッケージの間や、あるいはFPC同士の間に異方導電膜を挟んだ状態で熱接着を行う。
【0006】
そうすると異方導電膜が、熱接着時の加熱、加圧によって厚み方向に圧縮されることで、当該厚み方向の導電成分の分布密度が上昇して、導電成分同士が互いに近接もしくは接触して導電ネットワークを形成する結果、厚み方向の導電抵抗(「接続抵抗」という)が低くなる。
しかしこの際、異方導電膜の面方向における導電成分の分布密度は増加しない。つまり面方向は、絶縁抵抗が高く導電率が低い初期の状態を維持する。
【0007】
したがって異方導電膜によれば、面方向の絶縁抵抗によって隣り合う電極間の絶縁を維持して短絡を防止しつつ、厚み方向の接続抵抗によって多数の電極−バンプ間、もしくは電極−電極間を一度に、そしてそれぞれ独立して導電接続できるとともに、FPCと半導体パッケージの間、あるいはFPC同士の間を熱接着によって固定できるため、実装作業が容易である。
【0008】
【特許文献1】
特開平6−102523号公報(第0009欄、第0010欄、図2)
【特許文献2】
特開平8−115617号公報(第0003欄、図1)
【0009】
【発明が解決しようとする課題】
従来の異方導電膜中に含まれる導電成分としては、例えば平均粒径が数μm〜数十μm程度で、かつその形状が粒状、球状、薄片状(鱗片状、フレーク状)などであるNi粉末や、あるいは表面に金メッキを施した樹脂粉末などの、種々の金属粉末が実用化されている。
また従来の異方導電膜においては通常、上記の金属粉末を、金属充てん率が7〜10体積%となるように含有させている。
【0010】
しかしこの金属充てん率の範囲では、熱接着時の接続抵抗の値が十分でなく、より一層、接続抵抗を低くすることを求められる場合が増加しつつある。そこで熱接着時の接続抵抗をこれまでよりもさらに低くすべく、金属充てん率を上記の範囲より高くすることが考えられるが、そうした場合に、従来の異方導電膜では面方向の絶縁抵抗まで低くなってしまう。このため、例えば半導体パッケージのバンプの間隔にあわせて近接配置させた、面方向に隣接する電極間などで短絡を生じやすいという新たな問題を生じる。
【0011】
そして、かかる問題を生じやすいために従来の異方導電膜は、隣接する電極間のピッチが50μm以上でないと対応することができず、エレクトロニクス実装の分野におけるさらなる高密度実装化の要求に対応できないのが現状である。
また近時、発明者は、メモリ、IC、LSI、ASICなどの半導体チップが正常に製造されたか否かを検査するために用いるプローブカードにおいて、実装基板上に実装した多数の微細なコンタクトプローブをそれぞれ別個に、プローブカード本体の回路上の電極と接続するために用いている多数の配線に代えて、1枚の異方導電膜を用いることを検討した。かかる接続においては、半導体チップのパッドのピッチが100〜200μm程度であることから、従来の異方導電膜でも十分に対応できるのではないかと考えたのである。
【0012】
すなわちプローブカードは、例えばウエハ上に形成した、所定のサイズに切り出す前の半導体チップなどのパッドにコンタクトプローブを圧接させて導通を図り、それによって半導体チップ内の回路を、プローブカード本体の回路を介して外部の検査回路と接続して検査するためのものであるが、半導体チップの微小化、多集積化によるパッド自体やその形成ピッチの微小化、あるいはパッド数の増加に伴って、コンタクトプローブ自体も精密化し、また実装基板上に多集積化される傾向にある。
【0013】
特に最近では、ミクロン単位の加工精度で加工されたごく微細なコンタクトプローブを多数、実装基板上に、前記のように半導体チップのパッドのピッチに合わせて100〜200μmのピッチで実装したプローブカードが実用化されている。
しかし、例えば1枚のウエハ上に形成した数十〜数百個の半導体チップを一度に検査するプローブカードでは、コンタクトプローブを、実装基板上に数千本も実装しなければならず、それぞれのコンタクトプローブとプローブカード本体とを繋ぐ配線についても同数が必要となる。またそれゆえに、配線のはんだ付け作業の回数も膨大な数になる。
【0014】
このためプローブカードの製造や使用時の管理などが極めて難しいという問題がある。
そこで発明者は、多数の配線とそのはんだ付けを、1枚の異方導電膜で代用することを検討したのであるが、従来の異方導電膜を単純に転用したのでは、下記のような問題を生じるため実用化が難しいことがわかった。
(1) テストする半導体チップの内部回路に短絡が生じていた場合には、テスト時の異方導電膜に、局部的に、例えば1A以上の大電流が流れるおそれがある。ところが従来の異方導電膜は、かかる大電流への対応を考慮したものではなく、許容される電流値はおよそ数十mA程度に過ぎない。このため短絡等によって大電流が流れるとジュール熱を生じて、異方導電膜が局部的に高温になり、溶断などするおそれがある。
【0015】
(2) 前記のようにコンタクトプローブは、極めて微小な、そして壊れやすいものであるため、その実装に異方導電膜を用いる場合は、前述した通常の、電極−パッド間などの接続の場合よりも、熱接着時の加圧を低圧で行う必要がある。しかし低圧で接続した場合、従来の異方導電膜では、厚み方向の接続抵抗を、十分に実用可能なレベルまで低くすることができず、導通不良を生じるおそれがある。
【0016】
(3) また導通不良をなくするために金属粉末の金属充てん率を高めた場合、従来の異方導電膜では、前記のように面方向の絶縁抵抗も低くなってしまうため、たとえ100〜200μmのピッチであっても、隣り合う電極間での短絡を生じるおそれがある。
(4) また、例えばグラフィックボードやゲーム用の半導体チップ、Ga−As素子などの高速の半導体チップを、その実際に用いる動作速度で検査するためには高周波の信号を用いる必要がある。しかし、特に上記のように導通不良をなくするべく金属粉末の金属充てん率を高めた場合には、異方導電膜のインピーダンスが大きくなるため高周波信号の通過が困難になり、検査できなくなるおそれもある。
【0017】
(5) プローブカードによる検査の対象である半導体チップは、前記のように1枚のウエハの全面に分布して形成される場合などが多いことから、コンタクトプローブの実装基板とプローブカード本体は、ウエハを覆う大きなサイズに形成される。したがってプローブカード接続用の異方導電膜は、従来の半導体パッケージ実装用のものよりもかなり大きなサイズをカバーしなければならない上、前記のように低圧での接続時に、これら大きな部材の反りなどによる厚み方向のばらつきを、その全面にわたって吸収して、接続不良や導通不良などを生じないようにする必要がある。しかし従来の異方導電膜では、かかる要求に対応することも難しい。
【0018】
本発明の目的は、例えば隣接する電極間のピッチが50μm未満、より好ましくは40μm以下であっても短絡を生じることがないため、特に半導体パッケージなどの実装用として、さらなる高密度実装化の要求に十分対応しうる新規な異方導電膜を提供することにある。
また本発明の他の目的は、上記半導体パッケージの場合よりも低圧の接続でより確実に導電接続することができ、しかも大電流が流れても溶断したりしない上、高周波の信号にも対応可能であるため、特にコンタクトプローブなどの実装用として好適な新規な異方導電膜を提供することにある。
【0019】
また本発明のさらに他の目的は、かかる新規な異方導電膜を製造する方法を提供することにある。
【0020】
【課題を解決するための手段および発明の効果】
請求項1記載の発明は、粒径が400nm以下の金属粒が多数、鎖状に繋がった形状を有するとともに、鎖の長さLと径Dとの比L/Dが3以上であり、かつDが1μm以下である金属粉末を、導電成分として含むことを特徴とする異方導電膜であって、前記金属粉末、又はこの金属粉末を形成する個々の金属粒は、強磁性を有する金属単体、強磁性を有する2種以上の金属の合金、強磁性を有する金属と他の金属との合金、又は強磁性を有する金属を含む複合体にて形成されていることを特徴とする異方導電膜である。
請求項1の構成において導電成分として用いる金属粉末は、例えば後述する還元析出方などによって、ミクロンオーダーないしサブミクロンオーダーの微細な金属粒が最初から多数、鎖状に繋がった形状に形成される。また特に後述するように、多数の金属粒が繋がった周囲にさらに金属膜が析出した構造を有する金属粉末では、個々の金属粒間が直接に接続される。このため従来の粒状の金属粉末に比べて、個々の金属粒間における接触抵抗の増加を抑制することができる。
【0021】
また上記鎖状の金属粉末は、従来の粒状等の金属粉末に比べて比表面積が大きいため、凝集等を生じることなく、結着剤中に均一に分散させることもできる。
しかも鎖状の金属粉末は、上記のように鎖の長さLと径Dとの比L/Dが3以上、好ましくはおよそ10〜100程度と大きいため、少量の添加でも、異方導電膜中で良好な導電性のネットワークを形成することができる。
このため請求項1の構成によれば、金属粉末の充てん密度をあまり高くすることなしに、つまり異方導電膜の面方向の絶縁抵抗を高いレベルに維持しつつ、厚み方向の接続抵抗をこれまでよりも大幅に低下させることができる。
これに対し、比L/Dが3未満では鎖の長さが短すぎて、金属粉末間の相互作用の粗密の効果によって、短絡を生じることなしに、異方導電膜の接触抵抗を低くする効果が得られない。
【0022】
したがって請求項1の異方導電膜を半導体パッケージなどの実装に用いた場合には、従来は実現不可能であった、隣接する電極間のピッチが50μm未満、より好ましくは40μm以下といった微細な部品の導電接続であっても、短絡を生じることなく確実に行うことができ、さらなる高密度実装化の要求に十分に対応することが可能となる。
また請求項1の異方導電膜をコンタクトプローブなどの実装用として用いた場合には、前記のように金属粉末の充てん密度をあまり高くすることなしに、したがってインピーダンスを低いレベルに維持して高周波信号の通過を可能とした状態で、より低圧での接続で、多数のコンタクトプローブをより確実に導電接続することが可能となる。
【0023】
請求項2記載の発明は、金属粉末の鎖を膜の厚み方向に配向させた請求項1記載の異方導電膜である。
金属粉末の鎖を膜の厚み方向に配向させると、当該厚み方向の接続抵抗をさらに大幅に低下させることができる。
【0024】
上記の構成では、以下に述べる還元析出法などによってサブミクロンオーダーの微細な金属粒を析出させると、当該金属粒が磁性を帯び、そして多数の金属粒が磁力によって鎖状に繋がることで鎖状の金属粉末が自動的に形成される。
よって請求項3の構成によれば、鎖状の金属粉末の製造が容易であり、異方導電膜の、製造効率の向上やコストダウンなどが可能となる。
また上記金属粉末としては、多数の微細な金属粒が単に磁力によって鎖状に繋がったものから、繋がった金属粒の周囲にさらに金属層が析出して金属粒間が強固に結合されたものまで種々の構造を有するものが含まれるが、このいずれのものにおいても、基本的に金属粒は磁力を保持している。
【0025】
このため、例えば複合材料を製造する際や、下地上に塗布して異方導電膜を製造する際の応力程度では鎖が簡単に切れたりしない上、もし切れた場合でも、応力が加わらなくなった時点で鎖の再結合等を生じやすい。しかも塗布後の塗膜中では、複数の金属粉末が、金属粒の磁力に基づいて互いに接触して導電ネットワークを形成しやすい。
よって請求項3の構成によれば、異方導電膜の厚み方向の接続抵抗をさらに低くすることも可能である。
【0026】
請求項3記載の発明は、前記鎖状の金属粉末、またはこの金属粉末を形成する個々の金属粒は、その形成材料である強磁性を有する金属のイオンを、還元剤を含む溶液に加えることで、液中に析出させて形成した鎖状の金属粉末、またはこの金属粉末を形成する個々の金属粒である請求項1又は2記載の異方導電膜である。
【0027】
かかる還元析出法によれば、前述したように鎖状の金属粉末を自動的に形成することが可能となる。
また、還元析出法によって形成される金属粒は個々の粒径が揃っており、粒度分布がシャープである。これは、還元反応が系中で均一に進行するためである。したがってかかる金属粒から製造される金属粉末は、とくに異方導電膜の厚み方向の接続抵抗を、当該異方導電膜の全面にわたって均一な状態とする効果に優れている。
【0028】
請求項5記載の発明は、還元剤として3価のチタン化合物を用いた請求項4記載の異方導電膜である。
上記還元析出法によって、鎖状の金属粉末またはこの金属粉末を形成する個々の金属粒を形成するための還元剤としては種々の化合物が考えられる。しかし、その中でも三塩化チタンなどの3価のチタン化合物を用いた場合には、鎖状の金属粉末を析出、形成した後の溶液を、電解再生によって繰り返し、鎖状の金属粉末の製造に利用可能な状態に再生できるという利点がある。
【0029】
請求項5記載の発明は、固形分として鎖状の金属粉末と結着剤とを含み、かつ固形分の総量に占める金属粉末の割合で表される金属充てん率を0.05〜20体積%とした請求項1ないし4のいずれか1つに記載の異方導電膜である。金属充てん率が0.05%未満では異方導電膜の厚み方向の導通に寄与する金属粉末が少なすぎるため、熱接着による同方向の接続抵抗を十分に低くできないおそれがある。また金属充てん率が20体積%を越える場合には、異方導電膜の面方向の絶縁抵抗が低くなりすぎて、隣接する電極間で短絡が発生しやすくなるおそれがある。
【0030】
請求項6記載の発明は、金属粉末として、粒径が400nm以下の金属粒が多数、直鎖状または針状に繋がった形状を有するものを用いた請求項1ないし5のいずれか1つに記載の異方導電膜である。直鎖状または針状の金属粉末を用いた場合には、異方導電膜の厚み方向の接続抵抗をさらに低く、かつ面方向の絶縁抵抗をさらに高くすることができる。とくに金属粉末の鎖を膜の厚み方向に配向させた際には、配向方向に沿って並んだ金属粉末間の相互作用をより密に、また配向方向と交差する横方向に並んだ金属粉末間の相互作用をより粗にすることができるため、前記の硬化をより一層、顕著に発揮させることができる。
【0031】
金属粉末の鎖の長さを、導電接合する隣り合う電極間の距離未満とすることが好ましい。特に半導体パッケージの実装の場合に、金属粉末の鎖の長さを、上記のように隣り合う電極間の距離未満に規定すると、熱接着時に鎖状の金属粉末の横倒しが発生しても、隣り合う電極間を短絡させることがない。このため、隣り合う電極間で短絡が発生するのを確実に防止することができる。
【0032】
また半導体パッケージの実装の場合に、隣接する電極間のピッチが50nm未満、より好ましくは40μm以下であっても、請求項6と同様の、金属粉末間の相互作用の粗密の効果によって、短絡を生じることなしに半導体パッケージなどを実装するためには、金属粉末の鎖の径は1μm以下とするのが好ましい。
【0033】
また鎖の径を1μm以下とするためには、当該鎖を形成する個々の金属粒の粒径を400nm以下とするのが好ましい。
【0036】
さらに、前記半導体パッケージの実装において、熱接着による異方導電膜の厚み方向の接続抵抗を十分に低くすること、ならびに上記コンタクトプローブの実装において、低圧接続時の接続抵抗をさらに小さくすることを考慮すると、このいずれの場合も、金属粉末としては、例えば強磁性を有する金属などで形成した鎖の表面を、導電性に優れた金属で被覆した複合構造を有するものを用いるのが好ましい。
【0037】
したがって請求項7記載の発明は、前記鎖状の金属粉末はその表面にさらに、強磁性を有する金属単体、強磁性を有する2種以上の金属の合金、強磁性を有する金属と他の金属との合金からなる金属層を析出させた鎖状の金属粉末である請求項1ないし6のいずれか1に記載の異方導電膜である。
さらに請求項8記載の発明は、前記鎖状の金属粉末はその表面にさらに、Cu、Rb、Rh、Pd、Ag、Re、PtおよびAuからなる群より選ばれた少なくとも1種の金属からなる金属層を析出させその金属層で被覆された鎖状の金属粉末である請求項1ないし7のいずれか1つに記載の異方導電膜である。
【0038】
請求項9記載の発明は、請求項2記載の異方導電膜を製造する方法であって、少なくともその一部が強磁性を有する金属によって形成された鎖状の金属粉末と、結着剤とを含む、流動性を有する複合材料を、下地面と交差する方向に磁場を印加した下地上に塗布して、複合材料中の金属粉末の鎖を、上記磁場の方向に沿う膜の厚み方向に配向させるとともに、複合材料を固化または硬化させて鎖の配向を固定することを特徴とする異方導電膜の製造方法である。
【0039】
また請求項10記載の発明は、請求項2記載の異方導電膜を製造する方法であって、少なくともその一部が強磁性を有する金属によって形成された鎖状の金属粉末を、下地面と交差する方向に磁場を印加した下地上に散布して、金属粉末の鎖を、上記磁場の方向に配向させるとともに、その上に、結着剤を含む、流動性を有する塗剤を塗布して固化または硬化させて鎖の配向を固定することを特徴とする異方導電膜の製造方法である。
【0040】
これらの製造方法によれば、金属粉末の鎖を膜の厚み方向に配向させた異方導電膜を、より効率よく形成することができる。
【0041】
【発明の実施の形態】
以下に、本発明を説明する。
本発明の異方導電膜は、微細な金属粒が多数、鎖状に繋がった形状を有する金属粉末を、導電成分として含むことを特徴とするものである。
(金属粉末)
鎖状の金属粉末としては、気相法、液相法等の種々の方法で製造される、鎖状構造を有する種々の金属粉末が、いずれも使用可能であるが、とくに多数の微細な金属粒が直鎖状または針状に繋がった形状を有するものが好ましい。
【0042】
また鎖状の金属粉末としては、当該金属粉末、またはこの金属粉末を形成する個々の金属粒を、強磁性を有する金属単体、強磁性を有する2種以上の金属の合金、強磁性を有する金属と他の金属との合金、もしくは強磁性を有する金属を含む複合体にて形成したものが好ましい。
強磁性を有する金属を含む金属粉末の具体例としては、下記(a)〜(e)のいずれか1種、もしくは2種以上の混合物などをあげることができる。
【0043】
(a) 強磁性を有する金属単体、強磁性を有する2種以上の金属の合金、または強磁性を有する金属と他の金属との合金から形成したミクロンオーダーないしサブミクロンオーダーの金属粒を、自身の磁性によって多数個、鎖状に繋がらせた金属粉末。
(b) 上記(a)の金属粉末の表面にさらに、強磁性を有する金属単体、強磁性を有する2種以上の金属の合金、または強磁性を有する金属と他の金属との合金からなる金属層を析出させて、金属粒間を強固に結合した金属粉末。
【0044】
(c) 上記(a)または(b)の金属粉末の表面にさらに、他の金属や合金からなる金属層を析出させて、金属粒間を強固に結合した金属粉末。
(d) 強磁性を有する金属単体、強磁性を有する2種以上の金属の合金、または強磁性を有する金属と他の金属との合金から形成した粒状の芯材の表面を、他の金属や合金で被覆して複合体を得、この複合体を金属粒として、芯材の磁性によって多数個、鎖状に繋がらせた金属粉末。
【0045】
(e) 上記(d)の金属粉末の表面にさらに、他の金属や合金からなる金属層を析出させて、金属粒間を強固に結合した金属粉末。
上記のうち強磁性を有する金属単体、強磁性を有する2種以上の金属の合金、または強磁性を有する金属と他の金属との合金によって形成される金属粉末または金属粒の全体、もしくは
強磁性を有する金属を含む複合体によって形成される金属粉末または金属粒のうち、強磁性を有する金属を含む部分は、
還元析出法によって、その形成材料である強磁性を有する金属のイオンを含む溶液に還元剤を加えることで、液中に析出させて形成するのが好ましい。
【0046】
還元析出法においては、まず還元剤、例えば三塩化チタンなどの3価のチタン化合物と、例えばクエン酸三ナトリウム等とを溶解させた溶液(以下「還元剤溶液」とする)に、アンモニア水等を加えてpHを9〜10に調整する。これにより、3価のチタンイオンが錯化剤としてのクエン酸と結合して配位化合物を形成して、Ti(III)からTi(IV)に酸化する際の活性化エネルギーが低くなり、還元電位が高くなる。具体的には、Ti(III)とTi(IV)との電位差が1Vを超える。この値は、Ni(II)からNi(0)への還元電位や、Fe(II)からFe(0)への還元電位などに比べて著しく高い値である。よって各種の金属のイオンを効率よく還元して、金属粒や金属膜などを析出、形成することができる。
【0047】
次に上記の還元剤溶液に、例えばNi等の、強磁性を有する金属単体のイオンを含む溶液、または強磁性を有する金属を含む合金を形成する2種以上のイオンを含む溶液を加える。
そうすると、Ti (III)が還元剤として機能して、自身がTi(IV)に酸化する際に、金属のイオンを還元して液中に析出させる。すなわち液中に、上記金属単体または合金からなる金属粒が析出するとともに、自身の磁性によって多数が鎖状に繋がって鎖状の金属粉末を形成する。また、このあとさらに析出を続けると、上記金属粉末の表面にさらに金属層が析出して、金属粒同士を強固に結合する。
【0048】
つまり前記(a)(b)などの金属粉末や、その元になる金属粒、あるいは前記(d)の金属粉末の元になる複合体のうち芯材などを、上記の方法によって製造することができる。
このうち金属粒や芯材は個々の粒径が揃っており、粒度分布がシャープである。これは、還元反応が系中で均一に進行するためである。したがってかかる金属粒や芯材から製造される金属粉末は、とくに異方導電膜の厚み方向の導電抵抗を、当該異方導電膜の全面にわたって均一な状態とする効果に優れている。
【0049】
金属粒や芯材等を析出させた後の還元剤溶液は、電解再生を行うことで、何度でも繰り返し、還元析出法による鎖状の金属粉末の製造に利用することができる。すなわち、金属粒や芯材等を析出させた後の還元剤溶液を電解槽に入れるなどして電圧を印加することで、Ti(IV)をTi(III)に還元してやれば、再び電解析出用の還元剤溶液として使用することができる。これは、電解析出時にチタンイオンが殆ど消費されない、つまり析出させる金属とともに析出されないためである。
【0050】
金属粒や芯材等を形成する、強磁性を有する金属または合金としては、例えばNi、鉄、コバルトおよびこれらのうち2種以上の合金等をあげることができ、とくにNi単体やNi−鉄合金(パーマロイ)等が好ましい。かかる金属や合金にて形成した、とくに金属粒は、鎖状に繋がる際の磁気的な相互作用が強いため、金属粒間の接触抵抗を低減する効果に優れている。
また上記の、強磁性を有する金属や合金とともに、前記(c)(d)(e)の複合体を形成する他の金属としては、Cu、Rb、Rh、Pd、Ag、Re、PtおよびAuからなる群より選ばれた少なくとも1種の金属またはその合金などをあげることができる。金属粉末の導電性を向上することを考慮すると、これらの金属で形成される部分は、鎖の外表面に露出している部分であるのが好ましい。つまり鎖の表面をこれらの金属で被覆した、前記(c)(e)の構造を有する複合体が好ましい。被覆は、例えば無電解めっき法、電解めっき法、還元析出法、真空状着法などの種々の成膜方法によって形成できる。
【0051】
半導体パッケージの実装などに用いる金属粉末としては、前記(a)〜(e)のいずれかの構造を有し、なおかつその鎖の長さが、導電接合する隣り合う電極間の距離未満であるものが好ましい。
また上記金属粉末としては、鎖の径が1μm以下、鎖状の金属粉末を形成する個々の金属粒の粒径が400nm以下であるものが好ましい。
これらの理由は先に説明したとおりである。
【0052】
なお鎖の長さは、横倒しによる短絡をより一層、確実に防止することを考慮すると、導電接合する隣り合う電極間の距離の0.9倍以下であるのがさらに好ましい。
また鎖の径があまりに小さすぎると、複合材料を製造する際や、下地上に塗布して異方導電膜を製造する際の応力程度で簡単に切れやすくなるおそれがあるので、鎖の径は10nm以上であるのが好ましい。
【0053】
また鎖を形成する金属粒の粒径があまりに小さすぎると、鎖状に繋がれた金属粉末自体のサイズが小さくなりすぎて、導電成分としての機能が十分に得られないおそれがあるので、金属粒の粒径は10nm以上であるのが好ましい。
上述した鎖の長さの下限を規定する、鎖の長さLと径Dとの比L/Dは3以上である必要がある。
【0054】
比L/Dが3未満では、これも先に述べたように、金属粉末間の相互作用の粗密の効果によって、短絡を生じることなしに、異方導電膜の接触抵抗を低くする効果が得られない。
またとくに前記(c)または(e)のように、鎖の表面をCu、Rb、Rh、Pd、Ag、Re、PtおよびAuからなる群より選ばれた少なくとも1種の金属で被覆した複合構造を有するものが、導電性を向上できるため好ましい。
【0055】
一方、コンタクトプローブの実装などに用いる金属粉末としては、やはり(a)〜(e)のいずれかの構造を有し、なおかつその鎖の径が1μmを超え、かつ20μm以下であるものが好ましい。
また、上記金属粉末を形成する個々の金属粒の粒径は、0.5〜2μmであるのが好ましい。
またとくに前記(c)または(e)のように、鎖の表面をCu、Rb、Rh、Pd、Ag、Re、PtおよびAuからなる群より選ばれた少なくとも1種の金属で被覆した複合構造を有するものが、導電性を向上できるため好ましい。
【0056】
ただしコンタクトプローブ実装用の金属粉末としては、より径の細い、半導体パッケージの実装に用いるものと同程度の鎖が多数、束状に凝集した形状を有し、なおかつ凝集してできた鎖の径が1μmを超え、かつ20μm以下であるものを用いることもできる。また導電性を向上することを考慮すると、かかる凝集体の表面を、前記金属で被覆してもよい。
なお上記の金属粉末に寸法が類似した、直径が20μm程度、長さが120μm程度の円柱状のCu粉末を、樹脂中に分散させた異方導電膜がある。
【0057】
しかし、かかる異方導電膜をコンタクトプローブの実装に使用した場合には、後述する比較例の結果から明らかなように、膜の厚み方向の導電性が不十分になる。これは、銅粉末であるがゆえに、膜の厚み方向に磁性配向できないためであると考えられる。つまり銅粉末は、磁場の印加によって膜の厚み方向に配向させることができず、膜形成時の応力などによってランダムに向いてしてしまう。このため、コンタクトプローブ実装時の低圧接続では十分な導電ネットワークを形成することができず、同方向の接続抵抗を十分に低くできないのである。
【0058】
(結着剤)
鎖状の金属粉末とともに異方導電膜を形成する結着剤としては、当該用途において結着剤として従来公知の、成膜性および接着性を有する種々の化合物がいずれも使用可能である。かかる結着剤としては、例えば熱可塑性樹脂や硬化性樹脂、液状硬化性樹脂などがあり、特に好ましくはアクリル系樹脂、エポキシ系樹脂、フッ素系樹脂、フェノール系樹脂などをあげることができる。
【0059】
(複合材料)
異方導電膜のもとになる複合材料は、鎖状の金属粉末と結着剤とを、適当な溶媒とともに所定の割合で配合して製造する。また液状硬化性樹脂等の液状の結着剤を用いることで、溶媒を省略してもよい。
(異方導電膜とその製造方法)
本発明の異方導電膜は、例えばガラス板などの下地上に、上記の複合材料を塗布して乾燥、固化させるか、あるいは結着剤が硬化性樹脂、液状硬化性樹脂である場合はこれを硬化させたのち、下地からはく離することで製造できる。
【0060】
その厚みは、半導体パッケージの実装用の場合、異方導電膜を介して電極とバンプとを圧着させた際に良好に導電接着させることを考慮すると、10μm〜100μmであるのが好ましい。
またコンタクトプローブ実装用の場合、その厚みは、実装基板やプローブカード本体の、反りなどによる厚み方向のばらつきを、その全面にわたって吸収して、接続不良や導通不良などを生じないようにすることを考慮すると、100〜300μmであるのが好ましい。
【0061】
また本発明の異方導電膜は、いずれの用途においても、金属粉末の鎖を、膜の厚み方向に配向させた状態で固定しているのが好ましい。かかる異方導電膜は、
(A) 先に説明した、少なくともその一部が強磁性を有する金属によって形成された鎖状の金属粉末と、結着剤とを含む、流動性を有する複合材料を、下地面と交差する方向に磁場を印加した下地上に塗布することで、金属粉末の鎖を、上記磁場の方向に沿う膜の厚み方向に配向させた状態で複合材料を固化または硬化させることによって、金属粉末の鎖の配向を固定するか、もしくは
(B) 上記鎖状の金属粉末を、下地面と交差する方向に磁場を印加した下地上に散布して、金属粉末の鎖を、上記磁場の方向に配向させた状態で、結着剤を含む、流動性を有する塗剤を塗布して固化または硬化させることによって、金属粉末の鎖の配向を固定したのち、
下地からはく離することによって製造できる。
【0062】
これらの方法を実施する際に印加する磁場の強さは、金属粉末中に含まれる、強磁性を有する金属の種類や割合等によって異なるものの、異方導電膜中の金属粉末を、当該膜の厚み方向に十分に配向させることを考慮すると、磁束密度で表して1000μT以上、中でも10000μT以上、とくに40000μT以上であるのが好ましい。
磁場を印加する方法としては、ガラス基板などの下地の上下に磁石を配置する方法や、あるいは下地として磁石の表面を利用する方法などをあげることができる。後者の方法は、磁石の表面から出る磁力線が、当該表面から、異方導電膜の厚み程度までの領域では、磁石の表面に対してほぼ垂直であることを利用したもので、異方導電膜の製造装置を簡略化できるという利点がある。
【0063】
かくして製造した異方導電膜における、固形分、すなわち鎖状の金属粉末と結着剤との総量に占める金属粉末の割合で表される金属充てん量は、0.05〜20体積%とするのが好ましい。
なお特にコンタクトプローブの実装用の場合は、インピーダンスの上昇を抑えて高周波信号の通過を可能とするために、金属粉末の充てん率を、上記の範囲内でも特に0.05〜5体積%とするのが好ましい。
【0064】
金属充てん量を上記の範囲に調整するためには、鎖状の金属粉末を配向させない場合、および上記(A)の場合は、金属粉末と結着剤とを上記の比率で含有する複合材料を用いて異方導電膜を形成すればよい。また(B)の場合は、金属粉末の散布量、塗剤中の結着剤濃度や塗布量などを調整すればよい。
上記本発明の異方導電膜は、導電成分としての、鎖状の金属粉末の機能により、例えば半導体パッケージの実装において、隣接する電極間のピッチが50μm未満、より好ましくは40μm以下であっても短絡を生じることが無い。このためエレクトロニクス実装の分野における、さらなる高密度実装化の要求に十分に対応することが可能となる。
【0065】
またコンタクトプローブ実装用の場合は、特に鎖の径を太くするとともに、鎖を膜の厚み方向に配向させることで、半導体パッケージの場合より低圧の接続で、より確実に導電接続することが可能となる。しかも大電流が流れても溶断したりしない上、高周波の信号に対応可能とすることもできる。
なお本発明の異方導電膜は、上記の用途以外にも、例えばIC用ソケットのピン実装用などにも使用できる。また、現在はワイヤボンディングやμBGA(μボールグリッドアレイ)接続している三次元パッケージに使用することも可能である。
【0066】
【実施例】
以下に本発明を、実施例、比較例に基づいて説明する。
〔半導体パッケージ実装用の異方導電膜〕
実施例1
導電成分としては、微細なNi粒が直鎖状に繋がれた形状を有し、Ni粒の粒径が100nm、鎖の径Dが400nm、長さLが5μm、比L/Dが12.5であるNi粉末を用いた。
【0067】
そしてこのNi粉末と、結着剤としてのアクリル樹脂とを、金属充てん率が20体積%となるように混合し、メチルエチルケトンを加えてペースト状の複合材料を調製した。
次に、この複合材料をガラス基板上に塗布して乾燥、固化させたのち、はく離することで、厚み30μmの異方導電膜を製造した。
実施例2
導電成分として、微細なNi粒が直鎖状に繋がれた形状を有し、Ni粒の粒径が400nm、鎖の径Dが1μm、長さLが5μm、比L/Dが5であるNi粉末を用いたことと、このNi粉末と、結着剤としてのアクリル樹脂とを、金属充てん率が0.05体積%となるように混合し、メチルエチルケトンを加えてペースト状の複合材料を調製したこと以外は実施例1と同様にして、厚み30μmの異方導電膜を製造した。
【0068】
実施例3
導電成分として、微細なNi粒が直鎖状に繋がれた形状を有し、Ni粒の粒径が300nm、鎖の径Dが600nm、長さLが5μm、比L/Dが8.3であるNi粉末の表面を、厚み50nmのAgで被覆した複合構造を有する金属粉末を用いたことと、この金属粉末と、結着剤としてのアクリル樹脂とを、金属充てん率が1体積%となるように混合し、メチルエチルケトンを加えてペースト状の複合材料を調製したこと以外は実施例1と同様にして、厚み30μmの異方導電膜を製造した。
【0069】
実施例4
上記実施例3で調製したのと同じ複合材料を、下地としての磁石の上に塗布して、磁束密度40000μTの磁場中で乾燥、固化させることによって、金属粉末を膜の厚み方向に配向させた状態で固定したのちはく離して、厚み30μmの異方導電膜を製造した。
実施例5
実施例3で使用したのと同じ金属粉末を、実施例4で使用したのと同じ磁石の上に散布して、磁束密度40000μTの磁場中で、膜の厚み方向に配向させた。
【0070】
次にこの状態で、結着剤としてのアクリル樹脂をメチルエチルケトンに溶解した塗剤を塗布した。塗布量は金属充てん率が1体積%となるように調整した。
そして塗剤を乾燥、固化させることによって、金属粉末を膜の厚み方向に配向させた状態で固定したのちはく離して、厚み30μmの異方導電膜を製造した。
比較例1
導電成分として、5μmから20μmまで粒度分布があるフレーク状のNi粉末を用いたことと、このNi粉末と、結着剤としてのアクリル樹脂とを、金属充てん率が20体積%となるように混合し、メチルエチルケトンを加えてペースト状の複合材料を調製したこと以外は実施例1と同様にして、厚み30μmの異方導電膜を製造した。
【0071】
比較例2
導電成分として、直径5μmの球状の樹脂粒子の表面に、100nmのAuを被覆した複合構造を有する球状の金属粉末を用いたことと、この金属粉末と、結着剤としてのアクリル樹脂とを、金属充てん率が20体積%となるように混合し、メチルエチルケトンを加えてペースト状の複合材料を調製したこと以外は実施例1と同様にして、厚み30μmの異方導電膜を製造した。
【0072】
比較例3
比較例2で使用したのと同じ金属粉末と、結着剤としてのアクリル樹脂とを、金属充てん率が1体積%となるように混合し、メチルエチルケトンを加えてペースト状の複合材料を調製したこと以外は比較例2と同様にして、厚み30μmの異方導電膜を製造した。
接続抵抗の測定
幅15μm、長さ50μm、厚み2μmのAu電極が15μm間隔で配列された電極パターンを有するFPCの、上記電極パターン上に、各実施例、比較例で製造した異方導電膜を貼り付けた。
【0073】
次に、片面にAl膜を蒸着したガラス基板を、Al膜が異方導電膜と接するように重ねた状態で、100℃に加熱しながら1電極あたり10gの圧力で加圧して熱接着させた。
そして異方導電膜とAl膜とを介して導電接続された隣り合う2つのAu電極間の抵抗値を測定し、この測定値を1/2にして、異方導電膜の厚み方向の接続抵抗とした。
【0074】
結果を表1に示す。なお表中の評価は、それぞれ下記のとおりとした。
◎:接続抵抗が0.1Ω以下。厚み方向の導電性は極めて良好。
○:接続抵抗が0.1Ω超で、かつ1Ω以下。厚み方向の導電性は良好。
×:接続抵抗が1Ω超。厚み方向の導電性は不良。
絶縁抵抗の測定
上記で使用したのと同じFPCの電極パターン上に、各実施例、比較例で製造した異方導電膜を貼り付けた。
【0075】
次にこの異方導電膜上に、今度はAl膜を蒸着していないガラス基板を重ねた状態で、100℃に加熱しながら1電極あたり10gの圧力で加圧して熱接着させた。
そして異方導電膜を介してガラス基板が熱接着された、隣り合う2つのAu電極間の抵抗値を測定して、異方導電膜の面方向の絶縁抵抗とした。
結果を表1に示す。なお表中の評価は、それぞれ下記のとおりとした。
【0076】
◎:絶縁抵抗が1GΩ超。面方向の絶縁性は極めて良好。
○:絶縁抵抗が1MΩ超で、かつ1GΩ以下。面方向の絶縁性は良好。
×:絶縁抵抗が1MΩ以下。面方向の絶縁性は不良。
【0077】
【表1】
【0078】
表1より、フレーク状のNi粉末を20体積%の金属充てん率で含有させた比較例1の異方導電膜、並びに樹脂粒子とAu被覆の複合構造を有する球状の金属粉末を20体積%の金属充てん率で含有させた比較例2の異方導電膜はともに絶縁抵抗が低く、面方向の絶縁性が悪いことがわかった。また、上記複合構造を有する球状の金属粉末の金属充てん率を1体積%に減少させた比較例3の異方導電膜は、接続抵抗が高く、厚み方向の導電性が悪いことがわかった。
【0079】
これに対し、実施例1〜5の異方導電膜は何れも接続抵抗が低く、厚み方向の導電性に優れるとともに、絶縁抵抗が高く、面方向の絶縁性にも優れることがわかった。
また実施例1、2から、接続抵抗をより低く、かつ絶縁抵抗をより高くするためには、直鎖状の金属粉末の鎖の径を太くしつつ、金属充てん率を低くすればよいことが確認された。
【0080】
また実施例1〜3から、接続抵抗をさらに低くするためには、金属粉末の鎖の表面に、導電性に優れた金属を被覆すればよいこと、実施例3〜5から、金属粉末の鎖を厚み方向に配向させればよいことが確認された。
実施例6
導電成分としては、微細なNi粒が直鎖状に繋がれた形状を有し、Ni粒の粒径が400nm、鎖の径Dが1μm、長さLが9μm、比L/Dが9であるNi粉末を用いた。
【0081】
そしてこのNi粉末と、結着剤としてのアクリル樹脂とを、金属充てん率が1体積%となるように混合し、メチルエチルケトンを加えてペースト状の複合材料を調製した。
次にこの複合材料を、下地としての磁石の上に塗布して、磁束密度200000μTの磁場中で乾燥、固化させることによって、金属粉末を膜の厚み方向に配向させた状態で固定したのちはく離して、厚み20μmの異方導電膜を製造した。
【0082】
参考例1
導電成分として、微細なNi粒が直鎖状に繋がれた形状を有し、Ni粒の粒径が400nm、鎖の径Dが3μm、長さLが9μm、比L/Dが3であるNi粉末を用いたこと以外は実施例6と同様にして、厚み20μmの異方導電膜を製造した。
比較例4
導電成分として、微細なNi粒が直鎖状に繋がれた形状を有し、Ni粒の粒径が400nm、鎖の径Dが1μm、長さLが15μm、比L/Dが15であるNi粉末を用いたこと以外は実施例6と同様にして、厚み20μmの異方導電膜を製造した。
【0083】
比較例5
導電成分として、微細なNi粒の集合体からなり、Ni粒の粒径が400nm、短径Dが6μm、長径Lが9μm、比L/Dが1.5である粒状のNi粉末を用いたこと以外は実施例6と同様にして、厚み20μmの異方導電膜を製造した。
接続抵抗の測定
幅15μm、長さ50μm、厚み5μmのAu電極が10μm間隔で配列された電極パターンを有するFPCの、上記電極パターン上に、各実施例、比較例で製造した異方導電膜を貼り付けた。
【0084】
次に、片面にAl膜を蒸着したガラス基板を、Al膜が異方導電膜と接するように重ねた状態で、100℃に加熱しながら1電極あたり10gの圧力で加圧して熱接着させた。
そして異方導電膜とAl膜とを介して導電接続された隣り合う2つのAu電極間の抵抗値を測定し、この測定値を1/2にして、異方導電膜の厚み方向の接続抵抗とした。
【0085】
結果を表2に示す。なお表中の評価は、それぞれ下記のとおりとした。
◎:接続抵抗が0.1Ω以下。厚み方向の導電性は極めて良好。
○:接続抵抗が0.1Ω超で、かつ1Ω以下。厚み方向の導電性は良好。
×:接続抵抗が1Ω超。厚み方向の導電性は不良。
絶縁抵抗の測定
上記で使用したのと同じFPCの電極パターン上に、各実施例、比較例で製造した異方導電膜を貼り付けた。
【0086】
次にこの異方導電膜上に、今度はAl膜を蒸着していないガラス基板を重ねた状態で、100℃に加熱しながら1電極あたり10gの圧力で加圧して熱接着させた。
そして異方導電膜を介してガラス基板が熱接着された、隣り合う2つのAu電極間の抵抗値を測定して、異方導電膜の面方向の絶縁抵抗とした。
結果を表2に示す。なお表中の評価は、それぞれ下記のとおりとした。
【0087】
◎:絶縁抵抗が1GΩ超。面方向の絶縁性は極めて良好。
○:絶縁抵抗が1MΩ超で、かつ1GΩ以下。面方向の絶縁性は良好。
×:絶縁抵抗が1MΩ以下。面方向の絶縁性は不良。
【0088】
【表2】
【0089】
表2より、鎖の長さが隣り合う電極間の距離よりも長い鎖状のNi粉末を含有させた比較例4の異方導電膜は絶縁抵抗が低く、面方向の絶縁性が悪いことがわかった。そしてこの原因として、熱接着時にNi粉末の横倒しが発生して、隣り合う電極間を短絡させたことが予測された。
また、比L/Dが小さすぎて鎖状でなく粒状を呈するNi粉末を含有させた比較例5の異方導電膜は、接続抵抗が高く、厚み方向の導電性が低いことがわかった。
【0090】
これに対し、実施例6の異方導電膜は接続抵抗が低く、厚み方向の導電性に優れるとともに、絶縁抵抗が高く、面方向の絶縁性にも優れることがわかった。そしてこのことから、鎖の長さを隣り合う電極間の距離未満とすることによって、たとえ熱接着時にNi粉末の横倒しが発生しても、隣り合う電極間の短絡を確実に防止できることが確認された。
〔コンタクトプローブ実装用の異方導電膜〕
参考例2
導電成分としては、微細なNi粒が直鎖状に繋がれた鎖が複数本、束状に凝集した形状を有し、Ni粒の粒径が100nm、鎖の径Dが10μm、長さLが50μm、比L/Dが5であるNi粉末を用いた。
【0091】
そしてこのNi粉末と、結着剤としてのアクリル樹脂とを、金属充てん率が1体積%となるように混合し、メチルエチルケトンを加えてペースト状の複合材料を調製した。
次にこの複合材料を、下地としての磁石の上に塗布して、200000μTの磁場中で乾燥、固化させることによって、金属粉末を膜の厚み方向に配向させた状態で固定したのちはく離して、厚み120μmの異方導電膜を製造した。
【0092】
参考例3
導電成分として、微細なNi粒が直鎖状に繋がれた形状を有し、Ni粒の粒径が1μm、鎖の径Dが10μm、長さLが50μm、比L/Dが5であるNi粉末を用いたこと以外は参考例2と同様にして、厚み120μmの異方導電膜を製造した。
参考例4
導電成分として、微細なNi粒が直鎖状に繋がれた形状を有し、Ni粒の粒径が1μm、鎖の径Dが10μm、長さLが50μm、比L/Dが5であるNi粉末の表面を、厚み50nmのAgで被覆した複合構造を有する金属粉末を用いたこと以外は参考例2と同様にして、厚み120μmの異方導電膜を製造した。
【0093】
参考例5
導電成分として、微細なNi粒が直鎖状に繋がれた形状を有し、Ni粒の粒径が300nm、鎖の径Dが600nm、長さLが50μm、比L/Dが83.3であるNi粉末を用いたこと以外は参考例2と同様にして、厚み120μmの異方導電膜を製造した。
比較例6
導電成分として、直径5μmの球状のNi粉末を用い、このNi粉末と、結着剤としてのアクリル樹脂とを、金属充てん率が10体積%となるように混合し、メチルエチルケトンを加えてペースト状の複合材料を調製した。
【0094】
次に、この複合材料をガラス基板上に塗布して乾燥、固化させたのち、はく離することで、厚み120μmの異方導電膜を製造した。
比較例7
導電成分として、前記比較例2で使用したのと同じ、直径5μmの球状の樹脂粒子の表面に、100nmのAuを被覆した金属粉末を用い、この金属粉末と、結着剤としてのアクリル樹脂とを、金属充てん率が10体積%となるように混合し、メチルエチルケトンを加えてペースト状の複合材料を調製した。
【0095】
次に、この複合材料をガラス基板上に塗布して乾燥、固化させたのち、はく離することで、厚み120μmの異方導電膜を製造した。
比較例8
絶縁性の樹脂中に、直径20μm、長さ120μmの円柱状のCu粉末を30μm間隔で分布させた、厚み120μmの市販の異方導電膜を、比較例8とした。
【0096】
接続抵抗の測定
幅100μm、長さ50μm、厚み2μmのAu電極が40μm間隔で配列された電極パターンを有するFPCの、上記電極パターン上に、各参考例、比較例で製造した異方導電膜を貼り付けた。次に、片面にAl膜を蒸着したガラス基板を、Al膜が異方導電膜と接するように重ねた状態で、100℃に加熱しながら1電極あたり1gの圧力で加圧して熱接着させた。
【0097】
そして異方導電膜とAl膜とを介して導電接続された隣り合う2つのAu電極間の抵抗値を測定し、この測定値を1/2にして、異方導電膜の厚み方向の接続抵抗とした。
結果を表3に示す。なお表中の評価は、それぞれ下記のとおりとした。
◎:接続抵抗が0.1Ω以下。厚み方向の導電性は極めて良好。
○:接続抵抗が0.1Ω超で、かつ1Ω以下。厚み方向の導電性は良好。
【0098】
×:接続抵抗が1Ω超。厚み方向の導電性は不良。
絶縁抵抗の測定
幅100μm、長さ50μm、厚み2μmのAu電極が40μm間隔で配列された電極パターンを有するFPCの、上記電極パターン上に、各実施例、比較例で製造した異方導電膜を貼り付けた。
次にこの異方導電膜上に、今度はAl膜を蒸着していないガラス基板を重ねた状態で、100℃に加熱しながら1電極あたり1gの圧力で加圧して熱接着させた。
【0099】
そして異方導電膜を介してガラス基板が熱接着された、隣り合う2つのAu電極間の抵抗値を測定して、異方導電膜の面方向の絶縁抵抗とした。
結果を表3に示す。なお表中の評価は、それぞれ下記のとおりとした。
◎:絶縁抵抗が10GΩ以上。面方向の絶縁性は極めて良好。
○:絶縁抵抗が100MΩ超で、かつ10GΩ未満。面方向の絶縁性は良好。
×:絶縁抵抗が100MΩ以下。面方向の絶縁性は不良。
【0100】
限界電流量の測定
幅100μm、長さ50μm、厚み2μmのAu電極が40μm間隔で配列された電極パターンを有するFPCの、上記電極パターン上に、各参考例、比較例で製造した異方導電膜を貼り付けた。次に、片面にAl膜を蒸着したガラス基板を、Al膜が異方導電膜と接するように重ねた状態で、100℃に加熱しながら1電極あたり1gの圧力で加圧して熱接着させた。
【0101】
そして異方導電膜とAl膜とを介して導電接続された隣り合う2つのAu電極間に電流を流すとともに、その電流値を徐々に増加させた際に、溶断による断線が発生した電流値を求めて限界電流量とした。
結果を表3に示す。なお表中の評価は、それぞれ下記のとおりとした。
◎:限界電流量が1.5A超。耐電流特性は極めて良好。
○:限界電流値が1.0A以上で、かつ1.5A以下。耐電流特性は良好。
【0102】
×:限界電流値が1.0A未満。耐電流特性は不良。
【0103】
【表3】
【0104】
表3より、球状のNi粉末を10体積%の金属充てん率で含有させた比較例6の異方導電膜、並びに樹脂粒子とAu被覆の複合構造を有する球状の金属粉末を10体積%の金属充てん率で含有させた比較例7の異方導電膜はともに接続抵抗が高く、厚み方向の導電性が悪いことがわかった。また比較例6の異方導電膜は絶縁抵抗が低いことから、面方向の絶縁性も悪いことがわかった。
また円柱状のCu粉末を含有させた比較例8の異方導電膜は、やはり接続抵抗が高く、厚み方向の導電性が悪いことがわかった。
【0105】
これに対し、参考例2〜5の異方導電膜は何れも接続抵抗が低く、厚み方向の導電性に優れるとともに、絶縁抵抗が高く、面方向の絶縁性にも優れることがわかった。また参考例2〜4と参考例5から、異方導電膜の限界電流値を向上するためには、金属粉末の鎖の径を1μmを超える範囲、特に5μm以上にするのが好ましいことが確認された。
【0106】
また参考例2、3と参考例4から、接続抵抗をさらに低くするためには、金属粉末の鎖の表面に、導電性に優れた金属を被覆すればよいことが確認された。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel anisotropic conductive film used for, for example, electronics mounting and a manufacturing method thereof.
[0002]
[Prior art]
For example, a semiconductor package is mounted on a mounting electrode provided on a conductor circuit such as a flexible printed wiring board (FPC) by so-called flip chip bonding, or two or more FPC conductor circuits are connected to each other. In the field of electronics mounting, in which the electrodes are connected via electrodes, high-density mounting is progressing, and the pitch between adjacent electrodes tends to become narrower.
[0003]
As one of the mounting methods in electronics mounting, there is a method using a film-like anisotropic conductive film having thermal adhesiveness (see, for example, Patent Documents 1 and 2).
An anisotropic conductive film, for example, a powdery conductive component, a function of forming a film by holding a conductive component such as a thermoplastic resin or a curable resin (film forming property), and an adhesive for heat bonding It has a structure in which it is dispersed in a film made of a binder having both functions (adhesiveness).
[0004]
An anisotropic conductive film having such a structure is formed by mixing the conductive component and a solid binder together with a solvent at a predetermined ratio to form a liquid composite material, and applying the composite material on a base. After drying and solidifying, it can be produced by peeling from the substrate. An anisotropic conductive film can also be produced by applying a composite material without a solvent by using a liquid curable resin as a binder, for example, and then solidifying the curable resin by semi-curing it. it can.
[0005]
In the anisotropic conductive film, the distribution density of the conductive component is set so that the conductive resistance in the surface direction (referred to as “insulation resistance”) is high in order to prevent short-circuiting between adjacent electrodes when thermally bonded. The metal filling rate represented by the ratio of the metal powder to the total amount of the specified metal powder and binder is adjusted.
Then, thermal bonding is performed with an anisotropic conductive film sandwiched between the FPC and the semiconductor package to be conductively connected or between the FPCs.
[0006]
Then, the anisotropic conductive film is compressed in the thickness direction by heating and pressurization at the time of thermal bonding, so that the distribution density of the conductive component in the thickness direction is increased, and the conductive components are close to each other or in contact with each other. As a result of forming the network, the conductive resistance in the thickness direction (referred to as “connection resistance”) is lowered.
However, at this time, the distribution density of the conductive component in the plane direction of the anisotropic conductive film does not increase. That is, the surface direction maintains the initial state where the insulation resistance is high and the conductivity is low.
[0007]
Therefore, according to the anisotropic conductive film, the insulation between adjacent electrodes is maintained by the insulation resistance in the plane direction to prevent a short circuit, while the connection resistance in the thickness direction allows a large number of electrodes-bumps or between the electrodes-electrodes. Since the conductive connection can be made at a time and independently, and the FPC and the semiconductor package or between the FPCs can be fixed by thermal bonding, the mounting operation is easy.
[0008]
[Patent Document 1]
JP-A-6-102523 (column 0009, column 0010, FIG. 2)
[Patent Document 2]
JP-A-8-115617 (column 0003, FIG. 1)
[0009]
[Problems to be solved by the invention]
As a conductive component contained in a conventional anisotropic conductive film, for example, Ni having an average particle diameter of about several μm to several tens of μm, and its shape is granular, spherical, flaky (flaky, flaky), etc. Various metal powders such as powders or resin powders whose surfaces are gold-plated have been put into practical use.
Moreover, in the conventional anisotropic conductive film, said metal powder is normally contained so that a metal filling rate may be 7-10 volume%.
[0010]
However, in the range of the metal filling rate, the value of the connection resistance at the time of thermal bonding is not sufficient, and there are increasing cases where it is required to further reduce the connection resistance. Therefore, in order to further lower the connection resistance during thermal bonding, it is conceivable to increase the metal filling rate from the above range. It will be lower. For this reason, for example, a new problem that a short circuit is likely to occur between electrodes adjacent to each other in the surface direction, which are arranged close to each other in accordance with the interval between the bumps of the semiconductor package, is caused.
[0011]
And since it is easy to produce such a problem, the conventional anisotropic conductive film cannot respond unless the pitch between adjacent electrodes is 50 μm or more, and cannot meet the demand for higher density mounting in the field of electronics mounting. is the current situation.
In addition, recently, the inventor has used a number of fine contact probes mounted on a mounting board in a probe card used to inspect whether a semiconductor chip such as a memory, IC, LSI, or ASIC has been normally manufactured. Separately, it was considered to use one anisotropic conductive film in place of a large number of wires used to connect to the electrodes on the circuit of the probe card body. In such connection, since the pitch of the pads of the semiconductor chip is about 100 to 200 μm, it was thought that a conventional anisotropic conductive film could sufficiently cope.
[0012]
That is, for example, the probe card is connected to a pad such as a semiconductor chip formed on a wafer before being cut into a predetermined size, and the contact probe is brought into conduction, whereby the circuit in the semiconductor chip is replaced with the circuit in the probe card body. This is intended for inspection by connecting to an external inspection circuit via a contact probe as the semiconductor chip is miniaturized, the pads themselves and their formation pitch are miniaturized due to multi-integration, or the number of pads is increased. There is a tendency to refine itself and to be multi-integrated on a mounting substrate.
[0013]
In particular, recently, probe cards in which a large number of very fine contact probes processed with a processing accuracy of micron units are mounted on a mounting substrate at a pitch of 100 to 200 μm according to the pitch of the pads of the semiconductor chip as described above. It has been put into practical use.
However, for example, in a probe card that inspects several tens to several hundreds of semiconductor chips formed on one wafer at a time, thousands of contact probes must be mounted on a mounting substrate. The same number is required for the wiring connecting the contact probe and the probe card body. Therefore, the number of wiring soldering operations is enormous.
[0014]
For this reason, there is a problem that it is very difficult to manufacture and manage the probe card.
Therefore, the inventor studied to substitute a large number of wirings and their soldering with a single anisotropic conductive film. However, if the conventional anisotropic conductive film was simply diverted, the following was obtained. It turned out that it was difficult to put it to practical use because it caused problems.
(1) If a short circuit has occurred in the internal circuit of the semiconductor chip to be tested, a large current of, for example, 1 A or more may flow locally in the anisotropic conductive film during the test. However, the conventional anisotropic conductive film does not consider the response to such a large current, and the allowable current value is only about several tens mA. For this reason, when a large current flows due to a short circuit or the like, Joule heat is generated, and the anisotropic conductive film becomes locally high in temperature, which may cause fusing.
[0015]
(2) As mentioned above, the contact probe is extremely small and fragile, so when using an anisotropic conductive film for its mounting, it is more than the usual connection between electrode and pad as described above. However, it is necessary to apply pressure at the time of thermal bonding at a low pressure. However, when the connection is made at a low pressure, the conventional anisotropic conductive film cannot reduce the connection resistance in the thickness direction to a sufficiently practical level, which may cause poor conduction.
[0016]
(3) Further, when the metal filling rate of the metal powder is increased in order to eliminate the conduction failure, the conventional anisotropic conductive film also decreases the insulation resistance in the surface direction as described above. Even if the pitch is, a short circuit may occur between adjacent electrodes.
(4) Further, in order to inspect a high-speed semiconductor chip such as a graphic board, a game semiconductor chip, or a Ga-As element at an actual operation speed, it is necessary to use a high-frequency signal. However, especially when the metal filling rate of the metal powder is increased so as to eliminate the conduction failure as described above, the impedance of the anisotropic conductive film increases, so that it is difficult to pass a high-frequency signal and it may not be possible to inspect. is there.
[0017]
(5) Since the semiconductor chip to be inspected by the probe card is often formed distributed over the entire surface of one wafer as described above, the contact probe mounting substrate and the probe card body are: It is formed in a large size that covers the wafer. Therefore, the anisotropic conductive film for connecting the probe card has to cover a considerably larger size than that for mounting a conventional semiconductor package, and, as described above, due to warping of these large members when connected at a low pressure. It is necessary to absorb variations in the thickness direction over the entire surface so as not to cause poor connection or poor conduction. However, it is difficult for conventional anisotropic conductive films to meet such requirements.
[0018]
An object of the present invention is to prevent a short circuit even when, for example, the pitch between adjacent electrodes is less than 50 μm, more preferably 40 μm or less. It is an object of the present invention to provide a novel anisotropic conductive film that can sufficiently cope with this.
Another object of the present invention is that the conductive connection can be made more reliably with a low-voltage connection than in the case of the semiconductor package described above, and it does not blow out even when a large current flows, and can also handle high-frequency signals. Accordingly, it is an object of the present invention to provide a novel anisotropic conductive film particularly suitable for mounting a contact probe or the like.
[0019]
Still another object of the present invention is to provide a method for producing such a novel anisotropic conductive film.
[0020]
[Means for Solving the Problems and Effects of the Invention]
The invention described in claim 1Particle size is 400nm or lessA metal powder having a shape in which a large number of metal particles are connected in a chain, a ratio L / D of the chain length L to the diameter D is 3 or more, and D is 1 μm or less is included as a conductive component. An anisotropic conductive film characterized in that,The metal powder or the individual metal particles forming the metal powder may be a single metal having ferromagnetism, an alloy of two or more metals having ferromagnetism, an alloy of a metal having ferromagnetism and another metal, or It is formed of a composite containing a metal with ferromagnetism.It is a characteristic anisotropic conductive film.
The metal powder used as the conductive component in the structure of claim 1 is formed into a shape in which a large number of fine metal particles of micron order or submicron order are connected in a chain form from the beginning by, for example, reduction precipitation described later. In particular, as will be described later, in a metal powder having a structure in which a metal film is further deposited around a large number of metal particles connected, individual metal particles are directly connected. For this reason, compared with the conventional granular metal powder, the increase in the contact resistance between each metal particle can be suppressed.
[0021]
Further, the chain metal powder has a specific surface area larger than that of a conventional metal powder such as a granule, and therefore can be uniformly dispersed in the binder without causing aggregation or the like.
Moreover, chain metal powderAs described above, the ratio L / D of the chain length L to the diameter D is 3 or more, preferablySince it is as large as about 10 to 100, a good conductive network can be formed in the anisotropic conductive film even when added in a small amount.
For this reason, according to the configuration of the first aspect, the connection resistance in the thickness direction is reduced without increasing the packing density of the metal powder, that is, while maintaining the insulation resistance in the surface direction of the anisotropic conductive film at a high level. Can be greatly reduced.
On the other hand, when the ratio L / D is less than 3, the chain length is too short, and the contact resistance of the anisotropic conductive film is lowered without causing a short circuit due to the effect of the density of the interaction between the metal powders. The effect is not obtained.
[0022]
Therefore, when the anisotropic conductive film according to claim 1 is used for mounting a semiconductor package or the like, a fine component having a pitch between adjacent electrodes of less than 50 μm, more preferably 40 μm or less, which could not be realized conventionally. Even the conductive connection can be reliably performed without causing a short circuit, and can sufficiently meet the demand for higher density mounting.
Further, when the anisotropic conductive film according to claim 1 is used for mounting a contact probe or the like, the packing density of the metal powder is not so high as described above, and therefore the impedance is maintained at a low level and the high frequency is maintained. In a state where signals can be passed, a large number of contact probes can be conductively connected more reliably by connection at a lower pressure.
[0023]
The invention according to claim 2 is the anisotropic conductive film according to claim 1, wherein the chain of the metal powder is oriented in the thickness direction of the film.
If the chain of metal powder is oriented in the thickness direction of the film, the connection resistance in the thickness direction can be further greatly reduced..
[0024]
In the above configuration, when fine metal particles of submicron order are deposited by the reduction precipitation method described below, the metal particles are magnetized, and a large number of metal particles are chained by a magnetic force. The metal powder is automatically formed.
Therefore, according to the structure of Claim 3, manufacture of a chain | strand-shaped metal powder is easy, and the improvement of manufacturing efficiency, a cost reduction, etc. of an anisotropic conductive film are attained.
In addition, the metal powder ranges from those in which a large number of fine metal particles are simply connected in a chain form by magnetic force, to those in which a metal layer is further deposited around the connected metal particles and the metal particles are firmly bonded. Although those having various structures are included, in any of these, the metal particles basically hold the magnetic force.
[0025]
For this reason, for example, when a composite material is manufactured or when an anisotropic conductive film is manufactured by applying on a base, the chain is not easily broken, and even if it is broken, no stress is applied. At this point, chain recombination is likely to occur. In addition, in the coated film after application, a plurality of metal powders easily come into contact with each other based on the magnetic force of the metal particles to form a conductive network.
Therefore, according to the configuration of claim 3, it is possible to further reduce the connection resistance in the thickness direction of the anisotropic conductive film.
[0026]
Claim3In the described invention, the chain metal powder, or individual metal particles forming the metal powder, is added by adding ions of a metal having ferromagnetism as a forming material to a solution containing a reducing agent. A chain metal powder formed by precipitation in the metal powder or individual metal particles forming the metal powder.1 or 2It is an anisotropic conductive film of description.
[0027]
According to this reduction precipitation method, it becomes possible to automatically form a chain metal powder as described above.
Further, the metal particles formed by the reduction precipitation method have a uniform particle size and a sharp particle size distribution. This is because the reduction reaction proceeds uniformly in the system. Therefore, the metal powder produced from such metal grains is particularly excellent in the effect of making the connection resistance in the thickness direction of the anisotropic conductive film uniform over the entire surface of the anisotropic conductive film.
[0028]
The invention according to claim 5 is the anisotropic conductive film according to claim 4 using a trivalent titanium compound as a reducing agent.
Various compounds are conceivable as reducing agents for forming chain metal powders or individual metal particles forming the metal powders by the reduction precipitation method. However, among these, when a trivalent titanium compound such as titanium trichloride is used, the solution after the chain metal powder is deposited and formed is repeatedly used for the production of the chain metal powder by electrolytic regeneration. There is an advantage that it can be reproduced in a possible state.
[0029]
Claim5The described invention includes a chain metal powder and a binder as solid content, and the metal filling rate represented by the ratio of the metal powder in the total amount of solid content is 0.05 to 20% by volume. Item 1 to4It is an anisotropic conductive film as described in any one of these. If the metal filling rate is less than 0.05%, there is too little metal powder that contributes to conduction in the thickness direction of the anisotropic conductive film, and thus there is a possibility that the connection resistance in the same direction due to thermal bonding cannot be sufficiently lowered. When the metal filling rate exceeds 20% by volume, the insulation resistance in the surface direction of the anisotropic conductive film becomes too low, and there is a possibility that a short circuit is likely to occur between adjacent electrodes.
[0030]
Claim6The described invention is a metal powder,Particle size is 400nm or lessA metal particle having a shape in which a large number of metal grains are connected in a linear or needle shape is used.5It is an anisotropic conductive film as described in any one of these. When a linear or acicular metal powder is used, the connection resistance in the thickness direction of the anisotropic conductive film can be further reduced, and the insulation resistance in the plane direction can be further increased. In particular, when the metal powder chains are oriented in the thickness direction of the film, the interaction between the metal powders arranged along the orientation direction becomes closer and between the metal powders arranged in the transverse direction intersecting the orientation direction. Therefore, the above-described curing can be exhibited more remarkably.
[0031]
The chain length of the metal powder is less than the distance between adjacent electrodes to be conductively joined.It is preferable to do.In particular, in the case of mounting a semiconductor package, if the length of the chain of the metal powder is defined to be less than the distance between the adjacent electrodes as described above, even if the chain metal powder is laid down during thermal bonding, There is no short circuit between the matching electrodes. For this reason, it can prevent reliably that a short circuit generate | occur | produces between adjacent electrodes.
[0032]
In the case of mounting a semiconductor package, even if the pitch between adjacent electrodes is less than 50 nm, more preferably 40 μm or less.6In order to mount a semiconductor package or the like without causing a short circuit due to the effect of the density of the interaction between the metal powders, the chain diameter of the metal powder is preferably 1 μm or less.
[0033]
In order to make the chain diameter 1 μm or less, it is preferable that the particle diameter of each metal particle forming the chain is 400 nm or less..
[0036]
Further, in mounting the semiconductor package, it is necessary to sufficiently reduce the connection resistance in the thickness direction of the anisotropic conductive film by thermal bonding, and to further reduce the connection resistance during low-voltage connection in mounting the contact probe. Then, in either case, as the metal powder, for example,FerromagneticIt is preferable to use those having a composite structure in which the surface of the chain formed of a metal having a metal is coated with a metal having excellent conductivity.
[0037]
Claims7In the described invention, the chain metal powder further comprises a single metal having ferromagnetism, an alloy of two or more metals having ferromagnetism, and an alloy of a metal having ferromagnetism and another metal. A chain metal powder on which a metal layer is deposited.6The anisotropic conductive film according to any one of the above.
Further claims8In the described invention, the chain metal powder further deposits a metal layer made of at least one metal selected from the group consisting of Cu, Rb, Rh, Pd, Ag, Re, Pt and Au on the surface thereof. And a chain metal powder coated with the metal layer.7It is an anisotropic conductive film as described in any one of these.
[0038]
Claim9The described invention is a method for producing the anisotropic conductive film according to claim 2, comprising at least a part of a chain metal powder formed of a ferromagnetic metal, and a binder. A composite material having fluidity is applied on a base to which a magnetic field is applied in a direction crossing the base surface, and the metal powder chains in the composite material are oriented in the thickness direction of the film along the magnetic field direction. The method for producing an anisotropic conductive film is characterized in that the orientation of the chain is fixed by solidifying or curing the composite material.
[0039]
And claims10The invention described in the above is a method for producing the anisotropic conductive film according to claim 2, wherein at least a part of the chain-shaped metal powder formed of a ferromagnetic metal is crossed with the base surface. It is spread on a substrate to which a magnetic field is applied, and the metal powder chains are oriented in the direction of the magnetic field, and a fluid coating material containing a binder is applied thereon to solidify or cure. Thus, the anisotropic conductive film is produced by fixing the orientation of the chain.
[0040]
According to these manufacturing methods, the anisotropic conductive film in which the chain of the metal powder is oriented in the thickness direction of the film can be formed more efficiently.
[0041]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described below.
The anisotropic conductive film of the present invention is characterized by containing, as a conductive component, metal powder having a shape in which a large number of fine metal particles are connected in a chain.
(Metal powder)
As the chain metal powder, any of various metal powders having a chain structure manufactured by various methods such as a gas phase method and a liquid phase method can be used. Those having a shape in which the grains are connected in a linear or needle shape are preferred.
[0042]
In addition, as the chain metal powder, the metal powder, or individual metal particles forming the metal powder,FerromagneticA single metal havingFerromagneticAn alloy of two or more metals havingFerromagneticAn alloy of a metal with other metal andFerromagneticWhat was formed with the composite containing the metal which has this is preferable.
FerromagneticSpecific examples of the metal powder containing a metal having the following can include any one of the following (a) to (e), or a mixture of two or more.
[0043]
(a)FerromagneticA single metal havingFerromagneticAn alloy of two or more metals having, orFerromagneticA metal powder in which a large number of micron-order to sub-micron-order metal grains formed from an alloy of a metal having a metal and other metals are connected in a chain by its own magnetism.
(b) Further on the surface of the metal powder of (a) above,FerromagneticA single metal havingFerromagneticAn alloy of two or more metals having, orFerromagneticThe metal powder which precipitated the metal layer which consists of an alloy of the metal which has this, and another metal, and couple | bonded the metal grain firmly.
[0044]
(c) A metal powder in which a metal layer made of another metal or alloy is further deposited on the surface of the metal powder of (a) or (b), and the metal particles are firmly bonded.
(d)FerromagneticA single metal havingFerromagneticAn alloy of two or more metals having, orFerromagneticThe surface of a granular core material formed from an alloy of a metal having a metal and another metal is coated with another metal or alloy to obtain a composite, and this composite is used as a metal particle to produce a large number of particles by the magnetism of the core , Metal powder linked in a chain.
[0045]
(e) A metal powder in which a metal layer made of another metal or alloy is further deposited on the surface of the metal powder of (d), and the metal particles are firmly bonded.
Of the aboveFerromagneticA single metal havingFerromagneticAn alloy of two or more metals having, orFerromagneticThe entire metal powder or metal particles formed by an alloy of a metal having a
FerromagneticOf metal powder or metal particles formed by a composite containing a metal havingFerromagneticThe portion containing the metal having
The material is formed by reduction depositionFerromagneticIt is preferable to form it by depositing in a solution by adding a reducing agent to a solution containing metal ions having the above.
[0046]
In the reduction precipitation method, first, a reducing agent, for example, a trivalent titanium compound such as titanium trichloride and a solution in which, for example, trisodium citrate is dissolved (hereinafter referred to as “reducing agent solution”), ammonia water or the like. To adjust the pH to 9-10. As a result, trivalent titanium ions are combined with citric acid as a complexing agent to form a coordination compound, and the activation energy when oxidized from Ti (III) to Ti (IV) is reduced. The potential increases. Specifically, the potential difference between Ti (III) and Ti (IV) exceeds 1V. This value is significantly higher than the reduction potential from Ni (II) to Ni (0), the reduction potential from Fe (II) to Fe (0), and the like. Therefore, various metal ions can be efficiently reduced to deposit and form metal particles, metal films, and the like.
[0047]
Next, to the above reducing agent solution, such as Ni,FerromagneticA solution containing ions of a single metal havingFerromagneticAdd a solution containing two or more ions to form an alloy containing a metal having.
Then, when Ti (III) functions as a reducing agent and oxidizes itself to Ti (IV), metal ions are reduced and deposited in the liquid. That is, metal particles composed of the above-mentioned simple metal or alloy are precipitated in the liquid, and a large number are connected in a chain by its own magnetism to form a chain metal powder. Further, if the precipitation is continued thereafter, a metal layer is further deposited on the surface of the metal powder, and the metal particles are firmly bonded to each other.
[0048]
That is, the metal powder such as (a) and (b), the metal particles that are the basis thereof, or the core material of the composite that is the basis of the metal powder of (d) can be manufactured by the above method. it can.
Among these, the metal particles and the core material have uniform particle sizes, and the particle size distribution is sharp. This is because the reduction reaction proceeds uniformly in the system. Therefore, the metal powder produced from such metal particles and core material is particularly excellent in the effect of making the conductive resistance in the thickness direction of the anisotropic conductive film uniform over the entire surface of the anisotropic conductive film.
[0049]
The reducing agent solution after the metal particles, the core material, and the like are deposited can be used for the production of chain metal powder by the reductive precipitation method by repeating the electrolytic regeneration any number of times. That is, by reducing the Ti (IV) to Ti (III) by applying a voltage, for example, by putting the reducing agent solution after depositing metal particles, cores, etc. into the electrolytic cell, electrolytic deposition again. Can be used as a reducing agent solution. This is because titanium ions are hardly consumed during electrolytic deposition, that is, they are not deposited together with the metal to be deposited.
[0050]
Forming metal particles, cores, etc.FerromagneticExamples of the metal or alloy having Ni include Ni, iron, cobalt, and two or more of these alloys, and particularly Ni simple substance or Ni-iron alloy (Permalloy) is preferable. Particularly, metal particles formed of such metals and alloys have a strong effect of reducing the contact resistance between the metal particles because they have a strong magnetic interaction when connected in a chain.
Also above,FerromagneticThe other metal that forms the composite of (c), (d), and (e) together with the metal or alloy having the above is selected from the group consisting of Cu, Rb, Rh, Pd, Ag, Re, Pt, and Au. Further, at least one kind of metal or an alloy thereof can be used. In consideration of improving the conductivity of the metal powder, the portion formed of these metals is preferably a portion exposed on the outer surface of the chain. That is, a composite having the structure of (c) and (e) in which the chain surface is coated with these metals is preferable. The coating can be formed by various film forming methods such as electroless plating, electrolytic plating, reduction deposition, and vacuum deposition.
[0051]
The metal powder used for mounting a semiconductor package or the like has any one of the structures (a) to (e), and the chain length is less than the distance between adjacent electrodes to be conductively bonded. Is preferred.
The metal powder preferably has a chain diameter of 1 μm or less, and individual metal particles forming the chain metal powder have a particle diameter of 400 nm or less.
These reasons are as described above.
[0052]
The length of the chain is more preferably 0.9 times or less of the distance between adjacent electrodes to be conductively bonded in consideration of further reliably preventing a short circuit due to sideways.
Also, if the chain diameter is too small, the chain diameter may be easily cut when the composite material is manufactured, or when it is applied on the base and the anisotropic conductive film is manufactured with a degree of stress. It is preferably 10 nm or more.
[0053]
Also, if the particle size of the metal particles forming the chain is too small, the size of the metal powder itself connected in a chain shape may be too small, and the function as a conductive component may not be sufficiently obtained. The grain size is preferably 10 nm or more.
UpThe lower limit of the chain length mentionedStipulate,Ratio L / D of chain length L to diameter DIs3 or moreNeed to be.
[0054]
When the ratio L / D is less than 3, as described above, the effect of reducing the contact resistance of the anisotropic conductive film can be obtained without causing a short circuit due to the effect of the density of the interaction between the metal powders. RenaNo.
In particular, as in the above (c) or (e), a composite structure in which the chain surface is coated with at least one metal selected from the group consisting of Cu, Rb, Rh, Pd, Ag, Re, Pt and Au. It is preferable to have conductivity because the conductivity can be improved.
[0055]
On the other hand, the metal powder used for mounting the contact probe or the like preferably has any one of the structures (a) to (e), and the chain diameter exceeds 1 μm and is 20 μm or less.
Moreover, it is preferable that the particle size of each metal particle which forms the said metal powder is 0.5-2 micrometers.
In particular, as in the above (c) or (e), a composite structure in which the chain surface is coated with at least one metal selected from the group consisting of Cu, Rb, Rh, Pd, Ag, Re, Pt and Au. It is preferable to have conductivity because the conductivity can be improved.
[0056]
However, as the metal powder for mounting the contact probe, there are many chains of the same diameter as those used for mounting the semiconductor package, and the diameter of the chain formed by agglomeration in a bundle shape. Can be used with a thickness exceeding 1 μm and not exceeding 20 μm. In consideration of improving conductivity, the surface of the aggregate may be coated with the metal.
There is an anisotropic conductive film in which a cylindrical Cu powder having a diameter similar to that of the above metal powder and having a diameter of about 20 μm and a length of about 120 μm is dispersed in a resin.
[0057]
However, when such an anisotropic conductive film is used for mounting a contact probe, the conductivity in the thickness direction of the film becomes insufficient as is apparent from the results of comparative examples described later. This is considered to be because it cannot be magnetically oriented in the thickness direction of the film because of the copper powder. That is, the copper powder cannot be oriented in the thickness direction of the film by applying a magnetic field, and is randomly oriented due to stress during film formation. For this reason, a sufficient conductive network cannot be formed by the low voltage connection when the contact probe is mounted, and the connection resistance in the same direction cannot be sufficiently lowered.
[0058]
(Binder)
As the binder for forming the anisotropic conductive film together with the chain metal powder, any of various conventionally known compounds having film-forming properties and adhesiveness can be used as the binder in the application. Examples of the binder include thermoplastic resins, curable resins, and liquid curable resins, and particularly preferable examples include acrylic resins, epoxy resins, fluorine resins, and phenol resins.
[0059]
(Composite material)
The composite material which becomes the base of the anisotropic conductive film is manufactured by blending a chain metal powder and a binder together with an appropriate solvent at a predetermined ratio. Further, the solvent may be omitted by using a liquid binder such as a liquid curable resin.
(Anisotropic conductive film and manufacturing method thereof)
The anisotropic conductive film of the present invention is applied to the above-mentioned composite material on a ground such as a glass plate and dried or solidified, or when the binder is a curable resin or a liquid curable resin. Can be manufactured by peeling off from the base after curing.
[0060]
In the case of mounting a semiconductor package, the thickness is preferably 10 μm to 100 μm in consideration of good conductive adhesion when the electrodes and the bumps are pressure-bonded via the anisotropic conductive film.
In the case of contact probe mounting, the thickness of the mounting board and probe card body should absorb variations in the thickness direction due to warpage, etc., over the entire surface so as not to cause poor connection or poor conduction. In consideration, it is preferably 100 to 300 μm.
[0061]
Moreover, it is preferable that the anisotropic conductive film of this invention is fixing in the state which orientated the chain | strand of the metal powder in the thickness direction of the film | membrane in any use. Such anisotropic conductive film
(A) At least some of the previously explainedFerromagneticBy applying a flowable composite material including a chain metal powder formed of a metal having a binder and a binder onto a base to which a magnetic field is applied in a direction crossing the base surface, the metal powder Fixing the orientation of the chain of the metal powder by solidifying or curing the composite material in a state where the chain is oriented in the thickness direction of the film along the direction of the magnetic field, or
(B) The chain-like metal powder is dispersed on a base to which a magnetic field is applied in a direction crossing the base surface, and the binder is added in a state where the chains of the metal powder are oriented in the direction of the magnetic field. After fixing the chain orientation of the metal powder by applying and solidifying or hardening by applying a fluid coating agent,
It can be manufactured by peeling from the substrate.
[0062]
The strength of the magnetic field applied when carrying out these methods is contained in the metal powder.FerromagneticIn consideration of sufficiently orienting the metal powder in the anisotropic conductive film in the thickness direction of the film, the magnetic flux density is 1000 μT or more, especially 10,000 μT or more. It is preferably 40,000 μT or more.
Examples of a method for applying a magnetic field include a method of arranging magnets above and below a base such as a glass substrate, or a method of using the surface of a magnet as a base. The latter method utilizes the fact that the lines of magnetic force emerging from the surface of the magnet are substantially perpendicular to the surface of the magnet in the region from the surface to the thickness of the anisotropic conductive film. There is an advantage that the manufacturing apparatus can be simplified.
[0063]
In the anisotropic conductive film thus produced, the solid content, that is, the metal filling amount represented by the ratio of the metal powder to the total amount of the chain metal powder and the binder is 0.05 to 20% by volume. Is preferred.
In particular, in the case of contact probe mounting, in order to suppress the increase in impedance and allow high-frequency signals to pass, the filling rate of the metal powder is particularly 0.05 to 5% by volume even within the above range. Is preferred.
[0064]
In order to adjust the metal filling amount to the above range, in the case of not aligning the chain metal powder, and in the case of (A), a composite material containing the metal powder and the binder in the above ratio is used. And an anisotropic conductive film may be formed. In the case of (B), the amount of the metal powder sprayed, the binder concentration in the coating agent, the coating amount, etc. may be adjusted.
The anisotropic conductive film of the present invention has a function of a chain metal powder as a conductive component. For example, in mounting a semiconductor package, the pitch between adjacent electrodes may be less than 50 μm, more preferably 40 μm or less. There is no short circuit. Therefore, it is possible to sufficiently meet the demand for higher density mounting in the field of electronics mounting.
[0065]
In the case of contact probe mounting, in particular, by increasing the chain diameter and orienting the chain in the thickness direction of the film, it is possible to make a more reliable conductive connection at a lower pressure than in the case of a semiconductor package. Become. Moreover, it does not melt even when a large current flows, and it can be adapted to high-frequency signals.
Note that the anisotropic conductive film of the present invention can be used for, for example, pin mounting of IC sockets in addition to the above applications. It can also be used for three-dimensional packages that are currently connected by wire bonding or μBGA (μball grid array).
[0066]
【Example】
Hereinafter, the present invention will be described based on examples and comparative examples.
[Anisotropic conductive film for mounting semiconductor packages]
Example 1
The conductive component has a shape in which fine Ni particles are connected in a straight chain, the particle size of the Ni particles is 100 nm, the chain diameter D is 400 nm, the length L is 5 μm, and the ratio L / D is 12. 5 Ni powder was used.
[0067]
And this Ni powder and the acrylic resin as a binder were mixed so that a metal filling rate might be 20 volume%, methyl ethyl ketone was added, and the paste-form composite material was prepared.
Next, this composite material was applied on a glass substrate, dried and solidified, and then peeled off to produce an anisotropic conductive film having a thickness of 30 μm.
Example 2
As a conductive component, it has a shape in which fine Ni particles are connected in a straight chain, the particle size of Ni particles is 400 nm, the diameter D of the chain is 1 μm, the length L is 5 μm, and the ratio L / D is 5. Using Ni powder, mixing this Ni powder and acrylic resin as a binder so that the metal filling rate is 0.05% by volume, and adding methyl ethyl ketone to prepare a paste-like composite material Except for this, an anisotropic conductive film with a thickness of 30 μm was produced in the same manner as in Example 1.
[0068]
Example 3
The conductive component has a shape in which fine Ni particles are connected in a straight chain, the particle size of the Ni particles is 300 nm, the chain diameter D is 600 nm, the length L is 5 μm, and the ratio L / D is 8.3. The metal powder having a composite structure obtained by coating the surface of the Ni powder with 50 nm thick Ag and the metal powder and an acrylic resin as a binder have a metal filling rate of 1% by volume. An anisotropic conductive film having a thickness of 30 μm was manufactured in the same manner as in Example 1 except that methyl ethyl ketone was added to prepare a paste-like composite material.
[0069]
Example 4
The same composite material as prepared in Example 3 was applied on a magnet as a base, dried and solidified in a magnetic field having a magnetic flux density of 40000 μT, so that the metal powder was oriented in the thickness direction of the film. After fixing in the state, it was peeled off to produce an anisotropic conductive film having a thickness of 30 μm.
Example 5
The same metal powder as used in Example 3 was dispersed on the same magnet as used in Example 4, and was oriented in the thickness direction of the film in a magnetic field having a magnetic flux density of 40000 μT.
[0070]
Next, in this state, a coating material in which an acrylic resin as a binder was dissolved in methyl ethyl ketone was applied. The coating amount was adjusted so that the metal filling rate was 1% by volume.
Then, by drying and solidifying the coating agent, the metal powder was fixed in a state of being oriented in the thickness direction of the film, and then peeled to produce an anisotropic conductive film having a thickness of 30 μm.
Comparative Example 1
As a conductive component, a flaky Ni powder having a particle size distribution from 5 μm to 20 μm was used, and this Ni powder and an acrylic resin as a binder were mixed so that the metal filling rate was 20% by volume. Then, an anisotropic conductive film having a thickness of 30 μm was produced in the same manner as in Example 1 except that methyl ethyl ketone was added to prepare a pasty composite material.
[0071]
Comparative Example 2
A spherical metal powder having a composite structure in which 100 nm of Au is coated on the surface of spherical resin particles having a diameter of 5 μm as a conductive component, and this metal powder and an acrylic resin as a binder, An anisotropic conductive film having a thickness of 30 μm was manufactured in the same manner as in Example 1 except that mixing was performed so that the metal filling rate was 20% by volume and methyl ethyl ketone was added to prepare a pasty composite material.
[0072]
Comparative Example 3
The same metal powder used in Comparative Example 2 and an acrylic resin as a binder were mixed so that the metal filling rate was 1% by volume, and methyl ethyl ketone was added to prepare a paste-like composite material. Except for the above, an anisotropic conductive film with a thickness of 30 μm was produced in the same manner as in Comparative Example 2.
Connection resistance measurement
An anisotropic conductive film produced in each example and comparative example was attached to the above electrode pattern of an FPC having an electrode pattern in which Au electrodes having a width of 15 μm, a length of 50 μm, and a thickness of 2 μm were arranged at intervals of 15 μm.
[0073]
Next, a glass substrate having an Al film deposited on one side was heated and bonded at a pressure of 10 g per electrode while being heated to 100 ° C. with the Al film being in contact with the anisotropic conductive film. .
Then, the resistance value between two adjacent Au electrodes conductively connected via the anisotropic conductive film and the Al film is measured, and the measured value is halved to determine the connection resistance in the thickness direction of the anisotropic conductive film. It was.
[0074]
The results are shown in Table 1. The evaluations in the table were as follows.
A: Connection resistance is 0.1Ω or less. The conductivity in the thickness direction is very good.
○: Connection resistance is more than 0.1Ω and 1Ω or less. Good electrical conductivity in the thickness direction.
X: Connection resistance exceeds 1Ω. The conductivity in the thickness direction is poor.
Insulation resistance measurement
On the same FPC electrode pattern as used above, the anisotropic conductive films produced in the examples and comparative examples were attached.
[0075]
Next, on this anisotropic conductive film, a glass substrate on which an Al film was not deposited was overlapped, and pressure was applied at a pressure of 10 g per electrode while being heated to 100 ° C. to perform thermal bonding.
Then, the resistance value between two adjacent Au electrodes, to which the glass substrate was thermally bonded via the anisotropic conductive film, was measured to obtain the insulation resistance in the surface direction of the anisotropic conductive film.
The results are shown in Table 1. The evaluations in the table were as follows.
[0076]
A: Insulation resistance exceeds 1 GΩ. Insulation in the surface direction is very good.
○: Insulation resistance is more than 1 MΩ and 1 GΩ or less. Excellent insulation in the surface direction.
X: Insulation resistance is 1 MΩ or less. Insulation in the surface direction is poor.
[0077]
[Table 1]
[0078]
From Table 1, 20% by volume of the anisotropic conductive film containing 20% by volume of flaky Ni powder and 20% by volume of spherical metal powder having a composite structure of resin particles and Au coating. It was found that both of the anisotropic conductive films of Comparative Example 2 contained at a metal filling rate had low insulation resistance and poor planar insulation. Moreover, it turned out that the anisotropic conductive film of the comparative example 3 which reduced the metal filling rate of the spherical metal powder which has the said composite structure to 1 volume% has high connection resistance, and its electroconductivity of thickness direction is bad.
[0079]
On the other hand, it has been found that the anisotropic conductive films of Examples 1 to 5 each have low connection resistance and excellent conductivity in the thickness direction, high insulation resistance, and excellent surface insulation.
Also, from Examples 1 and 2, in order to lower the connection resistance and increase the insulation resistance, it is only necessary to reduce the metal filling rate while increasing the chain diameter of the linear metal powder. confirmed.
[0080]
Further, from Examples 1 to 3, in order to further reduce the connection resistance, the surface of the metal powder chain may be coated with a metal having excellent conductivity. From Examples 3 to 5, the metal powder chain It was confirmed that the film should be oriented in the thickness direction.
Example 6
The conductive component has a shape in which fine Ni particles are connected in a straight chain, the particle size of the Ni particles is 400 nm, the chain diameter D is 1 μm, the length L is 9 μm, and the ratio L / D is 9. Some Ni powder was used.
[0081]
And this Ni powder and the acrylic resin as a binder were mixed so that a metal filling rate might be 1 volume%, methyl ethyl ketone was added, and the paste-form composite material was prepared.
Next, this composite material is applied onto a base magnet, dried and solidified in a magnetic field having a magnetic flux density of 200,000 μT, and then fixed in a state where the metal powder is oriented in the thickness direction of the film, and then released. Thus, an anisotropic conductive film having a thickness of 20 μm was manufactured.
[0082]
Reference example 1
As a conductive component, it has a shape in which fine Ni particles are connected in a straight chain, the particle size of the Ni particles is 400 nm, the chain diameter D is 3 μm, the length L is 9 μm, and the ratio L / D is 3. An anisotropic conductive film having a thickness of 20 μm was produced in the same manner as in Example 6 except that Ni powder was used.
Comparative Example 4
As a conductive component, it has a shape in which fine Ni particles are connected in a straight chain, the particle size of Ni particles is 400 nm, the diameter D of the chain is 1 μm, the length L is 15 μm, and the ratio L / D is 15. An anisotropic conductive film having a thickness of 20 μm was produced in the same manner as in Example 6 except that Ni powder was used.
[0083]
Comparative Example 5
As the conductive component, a granular Ni powder comprising an aggregate of fine Ni particles, the particle size of Ni particles being 400 nm, the short diameter D being 6 μm, the long diameter L being 9 μm, and the ratio L / D being 1.5 was used. Except for this, an anisotropic conductive film having a thickness of 20 μm was produced in the same manner as in Example 6.
Connection resistance measurement
An anisotropic conductive film produced in each example and comparative example was attached to the above electrode pattern of an FPC having an electrode pattern in which Au electrodes having a width of 15 μm, a length of 50 μm, and a thickness of 5 μm were arranged at intervals of 10 μm.
[0084]
Next, a glass substrate having an Al film deposited on one side was heated and bonded at a pressure of 10 g per electrode while being heated to 100 ° C. with the Al film being in contact with the anisotropic conductive film. .
Then, the resistance value between two adjacent Au electrodes conductively connected via the anisotropic conductive film and the Al film is measured, and the measured value is halved to determine the connection resistance in the thickness direction of the anisotropic conductive film. It was.
[0085]
The results are shown in Table 2. The evaluations in the table were as follows.
A: Connection resistance is 0.1Ω or less. The conductivity in the thickness direction is very good.
○: Connection resistance is more than 0.1Ω and 1Ω or less. Good electrical conductivity in the thickness direction.
X: Connection resistance exceeds 1Ω. The conductivity in the thickness direction is poor.
Insulation resistance measurement
On the same FPC electrode pattern as used above, the anisotropic conductive films produced in the examples and comparative examples were attached.
[0086]
Next, on this anisotropic conductive film, a glass substrate on which an Al film was not deposited was overlapped, and pressure was applied at a pressure of 10 g per electrode while being heated to 100 ° C. to perform thermal bonding.
Then, the resistance value between two adjacent Au electrodes, to which the glass substrate was thermally bonded via the anisotropic conductive film, was measured to obtain the insulation resistance in the surface direction of the anisotropic conductive film.
The results are shown in Table 2. The evaluations in the table were as follows.
[0087]
A: Insulation resistance exceeds 1 GΩ. Insulation in the surface direction is very good.
○: Insulation resistance is more than 1 MΩ and 1 GΩ or less. Excellent insulation in the surface direction.
X: Insulation resistance is 1 MΩ or less. Insulation in the surface direction is poor.
[0088]
[Table 2]
[0089]
From Table 2, it can be seen that the anisotropic conductive film of Comparative Example 4 containing a chain-like Ni powder having a chain length longer than the distance between adjacent electrodes has low insulation resistance and poor planar insulation. all right. And as a cause of this, it was predicted that Ni powder laid down during thermal bonding, and the adjacent electrodes were short-circuited.
Moreover, it turned out that the anisotropic conductive film of the comparative example 5 which contained Ni powder which is too small in the ratio L / D and which is not a chain | strand shape but a granular form has high connection resistance, and its electroconductivity of the thickness direction is low.
[0090]
On the other hand, it was found that the anisotropic conductive film of Example 6 had low connection resistance and excellent conductivity in the thickness direction, high insulation resistance, and excellent surface insulation. And from this, it was confirmed that short-circuiting between adjacent electrodes can be reliably prevented even if Ni powder lays down during thermal bonding by making the chain length less than the distance between adjacent electrodes. It was.
[Anisotropic conductive film for mounting contact probes]
Reference example 2
As a conductive component, it has a shape in which a plurality of chains in which fine Ni particles are connected in a straight line and aggregated in a bundle shape, the particle diameter of Ni particles is 100 nm, the diameter D of the chain is 10 μm, and the length L Ni powder having a ratio L / D of 5 was used.
[0091]
And this Ni powder and the acrylic resin as a binder were mixed so that a metal filling rate might be 1 volume%, methyl ethyl ketone was added, and the paste-form composite material was prepared.
Next, this composite material is applied on a magnet as a base, dried and solidified in a magnetic field of 200,000 μT, and then fixed in a state where the metal powder is oriented in the thickness direction of the film, and then released. An anisotropic conductive film having a thickness of 120 μm was manufactured.
[0092]
Reference example 3
As a conductive component, it has a shape in which fine Ni particles are connected in a straight chain, the particle size of Ni particles is 1 μm, the chain diameter D is 10 μm, the length L is 50 μm, and the ratio L / D is 5. Except for using Ni powderReference example 2In the same manner, an anisotropic conductive film having a thickness of 120 μm was manufactured.
Reference example 4
As a conductive component, it has a shape in which fine Ni particles are connected in a straight chain, the particle size of Ni particles is 1 μm, the chain diameter D is 10 μm, the length L is 50 μm, and the ratio L / D is 5. Except for using a metal powder having a composite structure in which the surface of Ni powder is coated with Ag having a thickness of 50 nm.Reference example 2In the same manner, an anisotropic conductive film having a thickness of 120 μm was manufactured.
[0093]
Reference Example 5
The conductive component has a shape in which fine Ni particles are connected in a straight chain, the particle size of the Ni particles is 300 nm, the chain diameter D is 600 nm, the length L is 50 μm, and the ratio L / D is 83.3. Except for using Ni powderReference example 2In the same manner, an anisotropic conductive film having a thickness of 120 μm was manufactured.
Comparative Example 6
As a conductive component, a spherical Ni powder having a diameter of 5 μm was used. This Ni powder and an acrylic resin as a binder were mixed so that the metal filling rate was 10% by volume, and methyl ethyl ketone was added to form a paste. A composite material was prepared.
[0094]
Next, this composite material was applied onto a glass substrate, dried and solidified, and then peeled to produce an anisotropic conductive film having a thickness of 120 μm.
Comparative Example 7
As the conductive component, the same metal powder coated with 100 nm of Au on the surface of spherical resin particles having a diameter of 5 μm, which is the same as that used in Comparative Example 2, was used. This metal powder and an acrylic resin as a binder were used. Were mixed so that the metal filling rate would be 10% by volume, and methyl ethyl ketone was added to prepare a paste-like composite material.
[0095]
Next, this composite material was applied onto a glass substrate, dried and solidified, and then peeled to produce an anisotropic conductive film having a thickness of 120 μm.
Comparative Example 8
A commercially available anisotropic conductive film having a thickness of 120 μm, in which cylindrical Cu powder having a diameter of 20 μm and a length of 120 μm was distributed in an insulating resin at intervals of 30 μm, was used as Comparative Example 8.
[0096]
Connection resistance measurement
Each of the FPCs having an electrode pattern in which Au electrodes having a width of 100 μm, a length of 50 μm, and a thickness of 2 μm are arranged at intervals of 40 μm,referenceAnisotropic conductive films produced in Examples and Comparative Examples were attached. Next, a glass substrate having an Al film deposited on one side was heated and bonded at a pressure of 1 g per electrode while heating at 100 ° C. with the Al film being in contact with the anisotropic conductive film. .
[0097]
Then, the resistance value between two adjacent Au electrodes conductively connected via the anisotropic conductive film and the Al film is measured, and the measured value is halved to determine the connection resistance in the thickness direction of the anisotropic conductive film. It was.
The results are shown in Table 3. The evaluations in the table were as follows.
A: Connection resistance is 0.1Ω or less. The conductivity in the thickness direction is very good.
○: Connection resistance is more than 0.1Ω and 1Ω or less. Good electrical conductivity in the thickness direction.
[0098]
X: Connection resistance exceeds 1Ω. The conductivity in the thickness direction is poor.
Insulation resistance measurement
An anisotropic conductive film manufactured in each of Examples and Comparative Examples was pasted on the above electrode pattern of FPC having an electrode pattern in which Au electrodes having a width of 100 μm, a length of 50 μm, and a thickness of 2 μm were arranged at intervals of 40 μm.
Next, on this anisotropic conductive film, a glass substrate on which an Al film was not deposited was overlapped, and pressure was applied at a pressure of 1 g per electrode while being heated to 100 ° C. to perform thermal bonding.
[0099]
Then, the resistance value between two adjacent Au electrodes, to which the glass substrate was thermally bonded via the anisotropic conductive film, was measured to obtain the insulation resistance in the surface direction of the anisotropic conductive film.
The results are shown in Table 3. The evaluations in the table were as follows.
A: Insulation resistance is 10 GΩ or more. Insulation in the surface direction is very good.
○: Insulation resistance is more than 100 MΩ and less than 10 GΩ. Excellent insulation in the surface direction.
X: Insulation resistance is 100 MΩ or less. Insulation in the surface direction is poor.
[0100]
Limit current measurement
Each of the FPCs having an electrode pattern in which Au electrodes having a width of 100 μm, a length of 50 μm, and a thickness of 2 μm are arranged at intervals of 40 μm,referenceAnisotropic conductive films produced in Examples and Comparative Examples were attached. Next, a glass substrate having an Al film deposited on one side was heated and bonded at a pressure of 1 g per electrode while heating at 100 ° C. with the Al film being in contact with the anisotropic conductive film. .
[0101]
A current is passed between two adjacent Au electrodes that are conductively connected via an anisotropic conductive film and an Al film, and when the current value is gradually increased, the current value at which disconnection due to fusing occurs The limit current amount was obtained.
The results are shown in Table 3. The evaluations in the table were as follows.
A: Limit current amount exceeds 1.5 A. Excellent current resistance.
◯: Limit current value is 1.0 A or more and 1.5 A or less. Good withstand current characteristics.
[0102]
X: Limit current value is less than 1.0A. Current resistance is poor.
[0103]
[Table 3]
[0104]
From Table 3, the anisotropic conductive film of Comparative Example 6 containing a spherical Ni powder with a metal filling rate of 10% by volume, and the spherical metal powder having a composite structure of resin particles and Au coating of 10% by volume of metal. It was found that both of the anisotropic conductive films of Comparative Example 7 contained at a filling rate had high connection resistance and poor conductivity in the thickness direction. Moreover, since the anisotropic conductive film of the comparative example 6 had low insulation resistance, it turned out that the insulation of a surface direction is also bad.
It was also found that the anisotropic conductive film of Comparative Example 8 containing columnar Cu powder had high connection resistance and poor conductivity in the thickness direction.
[0105]
In contrast,Reference Examples 2-5These anisotropic conductive films were found to have low connection resistance, excellent conductivity in the thickness direction, high insulation resistance, and excellent surface direction insulation. AlsoReference Examples 2-4WhenReference Example 5Thus, in order to improve the limit current value of the anisotropic conductive film, it was confirmed that the chain diameter of the metal powder is preferably in a range exceeding 1 μm, particularly 5 μm or more.
[0106]
AlsoReference examples 2 and 3WhenReference example 4Therefore, it was confirmed that the surface of the metal powder chain may be coated with a metal having excellent conductivity in order to further reduce the connection resistance.
Claims (10)
前記金属粉末、又はこの金属粉末を形成する個々の金属粒は、強磁性を有する金属単体、強磁性を有する2種以上の金属の合金、強磁性を有する金属と他の金属との合金、もしくは強磁性を有する金属を含む複合体にて形成されていることを特徴とする異方導電膜。Metal powder having a shape in which a large number of metal particles having a particle size of 400 nm or less are connected in a chain, the ratio L / D of the chain length L to the diameter D is 3 or more, and D is 1 μm or less Is an anisotropic conductive film characterized by containing as a conductive component,
The metal powder or the individual metal particles forming the metal powder may be a single metal having ferromagnetism, an alloy of two or more metals having ferromagnetism, an alloy of a metal having ferromagnetism and another metal, or An anisotropic conductive film formed of a composite containing a metal having ferromagnetism .
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002324311A JP4433449B2 (en) | 2001-11-09 | 2002-11-07 | Anisotropic conductive film and manufacturing method thereof |
TW92104419A TWI264735B (en) | 2002-03-04 | 2003-03-03 | Anisotropic electrical conductive film and its manufacturing method thereof |
US10/506,425 US7390442B2 (en) | 2002-03-04 | 2003-03-03 | Anisotropic conductive film and method for producing the same |
AT03743552T ATE408250T1 (en) | 2002-03-04 | 2003-03-03 | ANISOTROPIC CONDUCTIVE FILM AND METHOD FOR THE PRODUCTION THEREOF |
CNB038052180A CN100495824C (en) | 2002-03-04 | 2003-03-03 | Anisotropic conductive film and manufacturing method thereof |
ES03743552T ES2312797T3 (en) | 2002-03-04 | 2003-03-03 | ANISOTROPIC DRIVING FILM AND METHOD TO PRODUCE THE SAME. |
DE60323473T DE60323473D1 (en) | 2002-03-04 | 2003-03-03 | Anisotropic Conductive Film and Method for Making the Same |
KR1020047013653A KR100923183B1 (en) | 2002-03-04 | 2003-03-03 | Anisotropic conductive film and method for producing the same |
EP03743552A EP1489695B1 (en) | 2002-03-04 | 2003-03-03 | Anisotropic conductive film and method for producing the same |
PCT/JP2003/002411 WO2003075409A1 (en) | 2002-03-04 | 2003-03-03 | Anisotropic conductive film and method for producing the same |
HK05104158A HK1071233A1 (en) | 2002-03-04 | 2005-05-18 | Anisotropic conductive film and method for producing the same |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001-344838 | 2001-11-09 | ||
JP2001344838 | 2001-11-09 | ||
JP2002-57598 | 2002-03-04 | ||
JP2002057598 | 2002-03-04 | ||
JP2002324311A JP4433449B2 (en) | 2001-11-09 | 2002-11-07 | Anisotropic conductive film and manufacturing method thereof |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007174076A Division JP2007299762A (en) | 2001-11-09 | 2007-07-02 | Anisotropic conductive film and manufacturing method thereof |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2003331951A JP2003331951A (en) | 2003-11-21 |
JP2003331951A5 JP2003331951A5 (en) | 2005-09-02 |
JP4433449B2 true JP4433449B2 (en) | 2010-03-17 |
Family
ID=29715875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002324311A Expired - Fee Related JP4433449B2 (en) | 2001-11-09 | 2002-11-07 | Anisotropic conductive film and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4433449B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4572562B2 (en) * | 2004-04-01 | 2010-11-04 | 住友電気工業株式会社 | Film adhesive |
KR101051254B1 (en) | 2004-04-30 | 2011-07-21 | 스미토모덴키고교가부시키가이샤 | Method for producing chain metal powder, chain metal powder produced by the same, and anisotropic conductive film using the same |
JP2007091959A (en) * | 2005-09-30 | 2007-04-12 | Sumitomo Electric Ind Ltd | Anisotropic conductive adhesive |
JP4807183B2 (en) * | 2006-08-24 | 2011-11-02 | 住友電気工業株式会社 | Mounting product inspection method and inspection device |
JP2008235556A (en) * | 2007-03-20 | 2008-10-02 | Sumitomo Electric Ind Ltd | Wiring board module and method for manufacturing the wiring board module |
JP5429334B2 (en) * | 2012-08-10 | 2014-02-26 | 住友電気工業株式会社 | Wiring board module and method for manufacturing the wiring board module |
US9548252B2 (en) * | 2013-11-19 | 2017-01-17 | Raytheon Company | Reworkable epoxy resin and curative blend for low thermal expansion applications |
-
2002
- 2002-11-07 JP JP2002324311A patent/JP4433449B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003331951A (en) | 2003-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100923183B1 (en) | Anisotropic conductive film and method for producing the same | |
CN103748744B (en) | Anisotropic conductive film, process for producing anisotropic conductive film, connecting method, and bonded object | |
JP5614135B2 (en) | Anisotropic conductive adhesive, manufacturing method thereof, connection structure and manufacturing method thereof | |
JP4433449B2 (en) | Anisotropic conductive film and manufacturing method thereof | |
JP3912244B2 (en) | Anisotropic conductive film | |
JP5609492B2 (en) | Electronic component and manufacturing method thereof | |
JP2004079855A (en) | Printed circuit board | |
US8038762B2 (en) | Process for production of chain metal powders, chain metal powers produced thereby, and anisotropic conductive film formed by using the powders | |
JP2007299762A (en) | Anisotropic conductive film and manufacturing method thereof | |
JP4126960B2 (en) | Anisotropic conductive material | |
JP5494299B2 (en) | Method for demagnetizing magnetic powder | |
JP2004292850A (en) | Metal powder, method for producing the same, and anisotropic conductive film using the same | |
JP2005314781A (en) | Method for producing chain metal powder, chain metal powder produced by the method, and anisotropic conductive film using the same | |
JP5505225B2 (en) | Method for manufacturing connection structure | |
JP2006111807A (en) | Electronic part and method for producing the same | |
JP2004303461A (en) | Anisotropic conductive film | |
CN119183404A (en) | Metal particle aggregate, conductive film, connection structure, and methods for producing the same | |
JP2005320597A (en) | Method for producing chain metal powder, chain metal powder produced by the method, and anisotropic conductive film using the same | |
JP2007242731A (en) | Connection structure | |
JPH04146632A (en) | Mounting method for semiconductor devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050302 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050302 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070206 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070508 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070702 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20070709 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20070727 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090928 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091218 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4433449 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140108 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |