[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3911335B2 - Absorption air conditioner - Google Patents

Absorption air conditioner Download PDF

Info

Publication number
JP3911335B2
JP3911335B2 JP01542798A JP1542798A JP3911335B2 JP 3911335 B2 JP3911335 B2 JP 3911335B2 JP 01542798 A JP01542798 A JP 01542798A JP 1542798 A JP1542798 A JP 1542798A JP 3911335 B2 JP3911335 B2 JP 3911335B2
Authority
JP
Japan
Prior art keywords
liquid
absorption
refrigerant
condensable gas
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01542798A
Other languages
Japanese (ja)
Other versions
JPH11211289A (en
Inventor
泰平 林
尚哉 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Rinnai Corp
Original Assignee
Osaka Gas Co Ltd
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Rinnai Corp filed Critical Osaka Gas Co Ltd
Priority to JP01542798A priority Critical patent/JP3911335B2/en
Publication of JPH11211289A publication Critical patent/JPH11211289A/en
Application granted granted Critical
Publication of JP3911335B2 publication Critical patent/JP3911335B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、臭化リチウムなどの水溶液を吸収液とする吸収サイクルを形成するとともに再生器から蒸発器へ吸収液を供給する暖房用の吸収液流路を設けて、暖房用の吸収液流路中の弁の開閉によって暖房運転と冷房運転とを切替える吸収式空調装置に関し、特に、吸収サイクル内で発生する不凝縮性ガスの貯蔵構造に係る。
【0002】
【従来の技術】
吸収サイクルを用いた吸収式空調装置では、冷房運転時には、吸収サイクルにおいて、再生器でバーナの加熱により沸騰した低濃度吸収液から冷媒蒸気が分離され、冷媒蒸気は凝縮器で冷却されて冷媒液となり蒸発器へ供給される。再生器で冷媒蒸気が分離されて高濃度となった吸収液は、吸収器へ供給される。吸収器と蒸発器とは連通しており、冷媒液は蒸発器内で蒸発して熱を奪う冷却源となり、蒸発器内に配した冷温水配管内を循環する冷温水を冷却して、室内機の空調用熱交換器に循環させることで、室内の冷房を行う。
吸収液は吸収器で蒸発器で蒸発した冷媒蒸気を吸収し、このときの発熱を外部へ排出するために、吸収器内には熱交換用配管が設けられていて、冷却水ポンプによって供給される冷却水の通過によって外部へ排熱される。
【0003】
暖房運転時には、上記構成の吸収サイクルとは別に再生器と蒸発器とを連絡する吸収液流路中の冷暖切替え弁を開弁し、バーナで加熱された吸収液を蒸発器内へ供給することにより、蒸発器内の冷温水配管を通過する冷温水を加熱して室内機へ循環させ、蒸発器へ供給された吸収液は、吸収器を介して再生器へ戻される。
【0004】
上記構成によって、冷房運転と暖房運転とを切替えによって行うようにした吸収式空調装置では、冷房運転に最適な吸収液濃度のままで暖房運転を行うと、加熱された吸収液が吸収液の循環路の各所で晶析する恐れがある。このため、従来では、吸収液中の冷媒である水の量を多くして、吸収液の濃度を吸収サイクル内全体では冷房運転時に最適な濃度より低く抑えておき、冷房運転時に凝縮器で冷却されて生じた冷媒液を凝縮器内に一時的に貯留できるように、凝縮器内には容器状の冷媒液貯留部が設けられている。
【0005】
これにより、冷房運転時に吸収サイクル内を吸収液が循環する際には、凝縮器で冷却されて生じた冷媒液がそのまますべて蒸発器へ供給されるのではなく、一部が凝縮器内で貯留されることによって、冷房運転時における吸収サイクル内の実質的な吸収液濃度を高くして冷房性能を確保し、暖房運転時には、冷媒液貯留部と蒸発器とを連通させる冷媒液流路中の冷媒弁を開弁することによって、冷媒液貯留部内の冷媒液をすべて蒸発器内へ供給して、吸収器および再生器内の吸収液の濃度を下げて上記晶析を防止している。
【0006】
一方、暖房運転時には、再生器から蒸発器内へ直接供給される高温の吸収液が、蒸発コイルに付着しないようにする必要があるため、蒸発器内の暖房用吸収液流路の開口部には、吐出する高温の吸収液の蒸発器内への噴き出しを防止するための防止板(バッフル板)が蒸発コイルの下方に設けられている。
さらに、上記構成において、吸収サイクルを構成する再生器等の各器具および配管には、臭化リチウムに対して耐食性が強いステンレス材および銅材が用いられており、また、吸収液内には、各器具の腐食を防止するためのインヒビター(腐食抑制剤)が含まれている。
しかし、これらによって吸収サイクル内の各器具及び配管内の化学反応を完全に無くすことはできず、吸収液と各構成器具との化学反応によって不凝縮性ガス(具体的には水素ガス)が発生し、長期間の使用の間に吸収サイクル内に蓄積される。
このため、吸収サイクル内で発生した不凝縮性ガスを、運転時に蒸発吸収ケース内で抽気する不凝縮性ガス抽出装置を設けて、ガス貯蔵室(ガス貯蔵タンク)内に保管するようにしている。
【0007】
【発明が解決しようとする課題】
上記のとおり構成された吸収式空調装置において、暖房運転時には、前記の如く吸収液の濃度を下げて晶析防止するために、冷房運転時に貯留された冷媒液を戻しているが、これによって暖房運転時に循環する吸収液の絶対量が多くなり、再生器から蒸発器内に供給されて滞留した高温の吸収液の液面が高くなって蒸発コイルに達してしまったり、また、蒸発器内の底部に滞留した高温の吸収液の液面が蒸発器内に設けられた防止板を越えてしまう。
吸収液の液面が防止板より高いと、暖房運転時における吸収液の噴き出しを防止するための防止板が蒸発器内に設けられていても、再生器で加熱された吸収液の沸騰により生じた冷媒蒸気の気泡が吸収液に混入していることから、吸収液の蒸発器内への吐出時に、気泡の吐出によって蒸発器内の吸収液が防止板を越えて飛び散り、飛散した吸収液が蒸発コイルに付着する不具合が生じ、蒸発コイルの腐食の原因になる。
尚、蒸発コイルや防止板を蒸発器の底面から十分に高く設定することは、装置が大きくなり、小型化の要請に反してしまう。
【0008】
本発明は、装置の小型化を図りつつ、暖房運転時に吸収器および蒸発器内の吸収液の液位を適切に維持して吸収液が蒸発コイルに付着することを防止することを目的とする。
【0009】
【課題を解決するための手段】
本発明の請求項1では、冷媒を含む吸収液を加熱手段により加熱して吸収液から冷媒蒸気を分離させる再生器と、該再生器によって分離した前記冷媒蒸気を冷却して凝縮させるとともに、凝縮によって生じた冷媒液を貯留する冷媒液貯留部が設けられた凝縮器と、該凝縮器の前記冷媒液貯留部に貯留された冷媒液を低圧下で蒸発させて冷却源とする蒸発器と、前記蒸発器と連通して設けられ、前記再生器で前記冷媒蒸気が分離された吸収液に、前記蒸発器で蒸発した冷媒蒸気を吸収させる吸収器と、前記吸収器から前記再生器へ吸収液を戻すための吸収液ポンプとから吸収サイクルを形成し、室内機に設けられた空調用熱交換器との間で冷温水を循環させるための冷温水循環回路を形成した熱交換用配管を前記蒸発器内に配するとともに、冷房運転と暖房運転とを切り替えるための冷暖切替え弁を備えた暖房用吸収液流路により前記再生器と前記蒸発器とを接続した吸収式空調装置であって、冷房運転時には前記冷暖切替え弁を閉弁制御し、暖房運転時には前記冷暖切替え弁を開弁制御する運転制御手段を具備した吸収式空調装置において、前記蒸発器及び前記吸収器を形成する蒸発吸収ケース内の不凝縮性ガスを抽出する抽出部および前記蒸発吸収ケースの底部と連通して設けられ前記抽出部で抽出された不凝縮性ガスを吸収液から分離する気液分離部とからなる不凝縮性ガス抽出装置と、該不凝縮性ガス抽出装置の前記気液分離部の端が下端に接続され、前記不凝縮性ガス抽出装置によって抽出される不凝縮性ガスとともに、前記蒸発吸収ケースからの吸収液を貯蔵する不凝縮性ガス貯蔵タンクであって、前記気液分離部との接続位置より上方に位置する該不凝縮性ガス貯蔵タンク内で上方に向かって開口し該不凝縮性ガス貯蔵タンクと前記吸収液ポンプの吸引側とを連通する吸収液戻し用流路を配するとともに、前記不凝縮性ガス貯蔵タンク内に位置する前記吸収液戻し用流路の開口に、吸収液に浮かぶ浮き弁体を有し前記不凝縮性ガス貯蔵タンクから前記吸収液ポンプへ向かう不凝縮性ガスを前記浮き弁体により遮断できる逆止弁機構を設け、前記暖房運転時に前記蒸発吸収ケースから流入する吸収液の液位を前記吸収液戻し用流路の開口まで維持する不凝縮性ガス貯蔵室とを備えることを技術的手段とする。
【0010】
この構成により、請求項1では、冷房運転が行われると、吸収サイクル内で吸収液が循環し、また、吸収液から分離された冷媒は、凝縮器から蒸発器、吸収器へと循環する。この冷媒の循環路である凝縮器には、凝縮によって生じた冷媒液を貯留する冷媒液貯留部が設けられているため、吸収器から再生器へと戻される吸収液の濃度は、凝縮器の冷媒液貯留部に貯留された冷媒液の分だけ濃縮された状態にある。
蒸発吸収内には、不凝縮性ガスを抽出する不凝縮性ガス抽出装置が設けられており、蒸発吸収ケースの底部で不凝縮性ガス抽出装置を介して不凝縮性ガス貯蔵室と連通しているが、吸収サイクルの作動によって吸収器内の圧力は低くなっているため、蒸発吸収ケース内の吸収液は、不凝縮性ガス貯蔵室内へ流入しない。従って、浮き弁体は、吸収液によって浮き上がることはなく、逆止弁は閉弁状態になる。
この結果、冷房運転時には、凝縮器内に貯留された冷媒液分だけ少なくなって濃縮された吸収液が、吸収サイクル内を循環する。
【0011】
暖房運転が行われた場合には、再生器で加熱された吸収液は、暖房用吸収液流路により再生器から蒸発吸収ケース内の蒸発器へ直接供給されて、吸収器を経て再び再生器へと戻され、凝縮器等の吸収サイクル内を循環しない。従って、暖房運転時には、吸収サイクル内に存在する吸収液は、吸収器および蒸発器と再生器のみの間で循環し、凝縮器へは循環せず、冷媒液貯留部で冷媒液が貯留されないため、あらかじめ装置内に封入された濃度が低く、冷房運転時に比べて多量の吸収液が再生器、蒸発器、吸収器の順で循環することになる。
ここで、蒸発吸収ケースの底部は、不凝縮性ガス貯蔵室と連通しており、蒸発吸収ケース内の圧力は高温の吸収液の蒸気圧によって、不凝縮性ガス貯蔵室内の圧力より高くなっているため、蒸発吸収ケース内の吸収液は、不凝縮性ガス抽出装置を介して不凝縮性ガス貯蔵室内へ流入する。
【0012】
不凝縮性ガス貯蔵室を形成する不凝縮性ガス貯蔵タンク内には、吸収液戻し流路が、不凝縮性ガス抽出装置の気液分離部との接続位置より上方位置で上方に向かって開口して設けられているため、不凝縮性ガス貯蔵タンク内に流入した吸収液の液位が吸収液戻し流路の開口位置より上方まで上昇すると、不凝縮性ガス貯蔵タンク内の吸収液は、吸収液戻し流路の開口から吸い込まれて、吸収液ポンプにより再生器へ戻される。
吸収液戻し流路の開口部の下方には、浮き弁体による逆止弁機構が設けられているため、不凝縮性ガス貯蔵タンク内の吸収液の液位が、開口の位置より上方になる場合には、浮き弁体が吸収液に浮かんで逆止弁機構が開弁し、液位が開口の位置より下がると、浮き弁体が下がって逆止弁機構を閉弁する。従って、不凝縮性ガス貯蔵タンク内の吸収液の液位は、開口の位置に維持され、不凝縮性ガス貯蔵タンク内には、常に、吸収液戻し流路の開口の位置まで分に相当する吸収液が貯留される。
液位が開口より低いときには、逆止弁機構が閉弁するため、タンク内に貯蔵された不凝縮性ガスをポンプの吸引力で逆流させてしまう不具合は生じない。
【0013】
従って、不凝縮性ガス貯蔵タンク内に貯留される分だけ減少した量の吸収液が、再生器→蒸発器→吸収器→再生器の順で循環することになるため、蒸発吸収ケース内の吸収液の液位が低下し蒸発器内の吸収液の液位も低下する。
この結果、蒸発器等の小型化を図って、容積、寸法などを小さくした場合であっても、暖房運転時に再生器から高温の吸収液が蒸発器内へ供給されるとき、供給された吸収液の液面が蒸発器内の熱交換用配管まで達しないから、該熱交換用配管に吸収液が付着することがなく、腐食を防止できる。
また、冷房運転時には、凝縮器内に冷媒液を貯留することによって、吸収サイクル内を循環する吸収液の実質的な濃度を高くすることができるため、冷凍能力が低下することがないとともに、暖房運転時における吸収液の濃度を低くすることができ、吸収液の晶析を招くことがなく、冷房運転時、暖房運転時ともに、それぞれの運転に適した濃度で吸収液を循環させることができる。
【0014】
請求項2では、請求項1において、前記気液分離部は、U字形状のU字管体を有し、該U字管体により前記吸収器ケースの下部と前記不凝縮性ガス貯蔵タンクの下部とを連通させることを技術的手段とする。
【0015】
請求項3では、請求項1から2において、前記吸収液戻し用流路内には、前記吸収液ポンプの吸引力を弱めるためのオリフィスが設けられたことを技術的手段とする。
これにより、請求項3では、吸収液戻し流路における吸い込み力が弱められるため、吸収液戻し流路から吸収液ポンプへ吸い込まれる吸収液によって、逆止弁機構の浮き弁体が吸い付けられることがなくなり、不凝縮性ガス貯蔵タンク内の吸収液の量が増えた場合に浮き弁体を確実に浮かせることができるため、開弁動作を確実にすることができる。
【0016】
請求項4では、請求項1から3において、前記室内機に設けられた前記空調用熱交換器から前記蒸発器内の前記熱交換用配管へ連絡する前記冷温水循環回路の配管を、前記不凝縮性ガス貯蔵タンク内で熱交換可能に貫通させたことを技術的手段とする。
これによって、請求項4では、暖房運転時に、室内温度の急激な低下などによって、室内機の空調用熱交換器から蒸発器内へ戻される冷温水の温度が急激に低下した場合などに、温度が下がった冷温水によって蒸発器内の温度が低下する場合には、同様に、不凝縮性ガス貯蔵タンク内の温度も下げることができる。これによって、温度低下に伴って蒸発器内の圧力が下がっても、同時に、不凝縮性ガス貯蔵タンク内の圧力も下がるため、蒸発器内の圧力低下と不凝縮性ガス貯蔵タンク内の圧力低下との均衡させることができる。従って、暖房運転における負荷の変動時(キャビテーション発生時)に、不凝縮性ガス貯蔵タンク内の吸収液が、蒸発器内に逆流してしまうことがない。
【0017】
請求項5では、請求項1から4において、前記蒸発器における前記暖房用吸収液流路の開口部には、供給される吸収液の噴出を防止するための防止板が設けられたことを技術的手段とする。
これにより、請求項5では、上記蒸発吸収ケース内の吸収液の液位の低下による液面を防止板より低く維持でき、再生器から蒸発器内に供給される高温の吸収液が気泡伴って防止板を越えて飛び散ることがない。この結果、吸収液が蒸発器内の熱交換用配管付着することを防ぎ、熱交換用配管などに対する腐食を防止することができる。
【0018】
【発明の実施の形態】
図1は、本発明に関わる吸収式空調装置の実施例を示す。
吸収式空調装置は、冷凍装置としての室外機100と室内機RUとからなり、室外機100は、冷凍機本体101と冷却塔(クーリングタワー)CTとから構成される。なお、空調装置は、制御装置102により制御される。
【0019】
冷凍機本体101は、主にステンレスによって成形され、冷媒及び吸収液としての臭化リチウム水溶液の吸収サイクルを形成するもので、加熱手段としてのガスバーナBが下方に備えられた高温再生器1と、この高温再生器1の外側に被さるように配置された低温再生器2とからなる二重効用型の再生器と、低温再生器2の外周に順に配置された吸収器3および蒸発器4と、低温再生器2の外周で吸収器3及び蒸発器4の上方に配置された凝縮器5とを、幾つかの通路で接続してなる。なお、吸収液内には、ステンレスと臭化リチウムとの反応による腐食を抑制するためのインヒビター(腐食抑制剤)が含まれている。
【0020】
高温再生器1は、ガスバーナBによって加熱される加熱タンク11の上方に中濃度吸収液分離筒12を延長させて設け、中濃度吸収液分離筒12の上方からその外側に覆い被さるように縦型円筒形の気密性の冷媒回収タンク10が設けられている。
中濃度吸収液分離筒12の内側下方には、中濃度吸収液分離筒12の内壁との間に間隔をおいて配置された吸収液仕切り容器13が、その上縁の数カ所を中濃度吸収液分離筒12の内側に接合させて設けられ、中濃度吸収液分離筒12と吸収液仕切り容器13との間には、加熱タンク11で加熱された吸収液が上昇する筒状の吸収液上昇流路14が形成されている。
【0021】
吸収液仕切り容器13の上方の中濃度吸収液分離筒12内には、吸収液上昇流路14を上昇する吸収液を戻すための吸収液戻し板15が設けられており、上述の中濃度吸収液分離筒12は、この吸収液戻し板15の上方に位置する上方部材と下方に位置する下方部材との上下2つの部材からなるもので、これらが吸収液戻し板15に対して溶接によって接合されたものである。
【0022】
吸収液仕切り容器13の側部には、冷媒が分離されて高濃度化された中濃度吸収液を低温再生器2へ供給するための中濃度吸収液流路L1の流入口が開口しており、吸収液仕切り容器13の底部には、暖房運転時に、加熱された吸収液を蒸発器4内へ供給するための暖房用吸収液流路L4の流入口が開口している。
【0023】
冷媒回収タンク10内の下部内側には、中濃度吸収液分離筒12との間に断熱用間隙17aを形成して冷媒仕切り筒17が中濃度吸収液分離筒12に接合されている。この断熱用間隙17aにより、中濃度吸収液分離筒12内の熱が遮断され、後述する冷媒回収タンク10下方の冷媒貯留部10a内の冷媒が、吸収液上昇流路14内の高温の吸収液によって加熱されることを防止している。
【0024】
以上の構成により、高温再生器1では、加熱タンク11の内部に供給された低濃度吸収液をガスバーナBによって加熱すると、中濃度吸収液分離筒12と吸収液仕切り容器13との間に形成された筒状の吸収液上昇流路14を加熱された吸収液が上昇し、加熱により低濃度吸収液中の冷媒としての水が蒸発して冷媒蒸気(水蒸気)として分離して、冷媒蒸気の蒸発により濃化した中濃度吸収液は、吸収液戻し板15によって内側へ方向を転換されて吸収液仕切り容器13内へ戻される。
【0025】
冷媒が分離されて高濃度化された中濃度吸収液は、吸収液仕切り容器13の側部に開口した中濃度吸収液流路L1から、低温再生器2へ供給される。
冷媒回収タンク10は、冷媒仕切り筒17の外側が、分離された冷媒が貯留する冷媒貯留部10aとなっており、冷媒貯留部10aに貯留された冷媒は、冷媒流路L5から凝縮器5へ供給される。
【0026】
低温再生器2は、冷媒回収タンク10の外周に偏心して設置した縦型円筒形の低温再生器ケース20を有し、低温再生器ケース20の天井の周囲には冷媒蒸気出口21が設けられている。
低温再生器ケース20の天井の頂部は、中濃度吸収液流路L1により熱交換器Hを介して中濃度吸収液分離筒12内の吸収液仕切り容器13内と連結されている。
【0027】
中濃度吸収液流路L1中には、吸収液仕切り容器13から低温再生器2へ流れる中濃度吸収液の流量を制限するためのオリフィス(図示なし)が設けられていて、低温再生器ケース20内へは中濃度吸収液分離筒12との圧力差により中濃度吸収液が供給される。(低温再生器ケース20内では、約70mmHg、中濃度吸収液分離筒12内では約700mmHg)
【0028】
これにより、低温再生器2では、低温再生器ケース20内に供給された中濃度吸収液を、冷媒回収タンク10の外壁を熱源として再加熱し、中濃度吸収液は低温再生器ケース20の上部の気液分離部22で冷媒蒸気と高濃度吸収液とに分離され、高濃度吸収液は、高濃度吸収液受け部23に貯留される。
高濃度吸収液受け部23の底には、吸収器3と連通する高濃度吸収液流路L2の流入口が開口している。
【0029】
低温再生器ケース20の外周には、縦型円筒形で気密性の蒸発・吸収ケース30が下部に、凝縮器ケース50が上部にそれぞれ同心的に配されており、冷媒回収タンク10、低温再生器ケース20、蒸発・吸収ケース30は、底板部18に一体に溶接され、また、底板部18の内側端は、中濃度吸収液分離筒12の下方部材の外周面に溶接されて、冷凍機本体101を形成している。
なお、低温再生器ケース20内は、冷媒蒸気出口21および隙間5Aを介して凝縮器ケース50内と連通している。
【0030】
吸収器3は、蒸発・吸収ケース30内の内側部分に、銅管が縦型円筒状に巻設され内部に排熱用冷却水が流れる吸収管としてコイル状に巻かれた吸収コイル31が配置され、吸収コイル31の上方には、高濃度吸収液を吸収コイル31に散布するための高濃度吸収液散布具32が配置されている。
吸収コイル31は、低温再生器ケース20の外側に、捲回された銅管からなるもので、吸収コイル31の流入口は、冷却水流路34と接続され、吸収コイル31の流出口は、凝縮器5の冷却コイル51の流入口に接続されている。
【0031】
高濃度吸収液散布具32は、熱交換器Hを介して低温再生器2の高濃度吸収液受け部23と連結された高濃度吸収液流路L2を介して供給される高濃度吸収液を受けて溜めることによって自己冷却させる吸収液冷却容器と、吸収液冷却容器で溜められた吸収液を巻設された吸収コイル31の各周上に滴下させる。
【0032】
以上の構成により、吸収器3では、低温再生器2の高濃度吸収液受け部23の高濃度吸収液が圧力差により高濃度吸収液流路L2から流入し、流入した高濃度吸収液は、高濃度吸収液散布具32により吸収コイル31の上端に散布され、吸収コイル31の表面に付着して薄膜状になり、重力の作用で下方に流下し、水蒸気を吸収して低濃度吸収液となる。この水蒸気を吸収する際に吸収コイル31の表面で発熱するが、吸収コイル31を循環する排熱用冷却水により冷却される。尚、吸収液に吸収される水蒸気は、後述する蒸発器4で冷媒蒸気として発生したものである。
【0033】
吸収器3の底部33は、熱交換器Hおよび吸収液ポンプP1が装着された低濃度吸収液流路L3で加熱タンク11の底部と連結されており、吸収液ポンプP1の作動により吸収器3内の低濃度吸収液は加熱タンク11内へ供給される。
また吸収コイル31内には、冷房運転時に、冷却塔CTで冷却された排熱用冷却水が、凝縮器5の冷却コイル51を介して循環する。
【0034】
吸収器3の内部には、吸収サイクル内で発生した不凝縮性ガス(水素ガス)を吸い込むための抽気装置としてのエジェクター80が設けられている。
エジェクター80は、吸収器3内に開口した吸引口81に連続して吸引口81より径が小さい吸導管82を設けるとともに、吸引口81の内側に吸収液ポンプP1の吐出側と連通した吸収液吐出管83を配して、吸収液ポンプP1の吐出圧によって吸収液吐出管83の末端から吸収液が吸引口81に向かって吐出される際に、吸引口81との間の冷媒蒸気および不凝縮性ガス等の気体成分をいわゆるエゼクタ効果によって吸収液内に吸い込み混合するようにした構造である。
【0035】
吸導管82は、吸収器3の底部33に連通して設けられた略J字(又は略U字)形状の有谷管状体からなる気液分離管84の内側に配されて、気液分離管84とともに気液分離器を構成するもので、気液分離管84と同様に略J字(又は略U字)形状を呈し、気液分離管84内の谷部85を経た位置で上向きに開口している。
気液分離器の末端となる気液分離管84の末端には、不凝縮性ガス貯蔵器90が接続されている。
【0036】
不凝縮性ガス貯蔵器90は、気液分離管84の末端が下部で接続されていて、気液分離管84を介して、吸収器3の底部33と連通している。
不凝縮性ガス貯蔵器90内には、吸収液戻し管91が不凝縮性ガス貯蔵器90の底部を貫いて下方から上方へ向かって配置され、吸収液戻し管91の先端は、不凝縮性ガス貯蔵器90内で開口92となっている。
吸収液戻し管91は、暖房運転時に、蒸発・吸収ケース30内と不凝縮性ガス貯蔵器90内との圧力差(蒸発・吸収ケース30内の圧力>不凝縮性ガス貯蔵器90内との圧力)によって吸収器3から不凝縮性ガス貯蔵器90内へ流入する吸収液の量が一定量を越えた場合に、越えた量の吸収液を吸収液ポンプP1によって吸い出して高温再生器1へ戻すための吸収液戻し流路である。ここでは、暖房運転時に臭化リチウムの晶析等が生じないようにするために、吸収液の濃度を低下させるために過剰に吸収サイクル内に封入された冷媒分に相当する量の吸収液を、不凝縮性ガス貯蔵器90内に貯留させ、それ以上の吸収液が不凝縮性ガス貯蔵器90内に貯留されないように、開口92の位置が決められている。
【0037】
吸収液戻し管91は、吸収液戻し用流路として設けられたもので、その開口92の下方近傍には、逆止弁機構93が備えられている。
逆止弁機構93は、吸収液戻し管91の不凝縮性ガス貯蔵器90内に位置する部分である筒状ケース94内に吸収液より比重の小さいシリコンゴムで球体状のフロート弁体95を浮き弁体として配し、筒状ケース94内の下部に弁座96を形成したものである。
冷房運転時には、不凝縮性ガス貯蔵タンクおよび不凝縮性ガス貯蔵室を形成する不凝縮性ガス貯蔵器90内の圧力が蒸発・吸収ケース30内の圧力と同等となり、吸収液が不凝縮性ガス貯蔵器90内に流入しないため、逆止弁機構93のフロート弁体95は吸収液によって浮き上がることがなく、弁座96に着座して開口92を閉弁状態にる。従って、不凝縮性ガス貯蔵器90内に貯蔵された不凝縮性ガスが吸収液ポンプP1の吸引力で逆流することがない。
暖房運転時には、不凝縮性ガス貯蔵器90内に流入する吸収液の液位が開口92を越えるまでは、フロート弁体95は弁座96に着座して開口92を閉弁する。吸収液の液位が開口92を越えると、筒状ケース94内に流入する吸収液によってフロート弁体95が弁座96から浮き上がって開口92を開弁する。この結果、不凝縮性ガス貯蔵器90内の吸収液の液位は、開口92の位置を中心に、それより増えると逆止弁機構93の開弁により吸収液が吸い出されて減少し、開口92に満たない状態では、逆止弁機構93が閉弁して吸収液の量が増加することになって、ほぼ開口92の位置に相当する量が不凝縮性ガス貯蔵器90内に常時貯留されることになる。
【0038】
逆止弁機構93より吸収液ポンプP1側の吸収液戻し管91内には、吸収液ポンプP1の吸引力を弱めるためのオリフィス97が備えられている。これは、閉弁状態において吸収液が開口92位置より増えたとき、吸収液ポンプP1の吸引力によってフロート弁体95が弁座96に吸着したままにならないようにするためのもので、オリフィス97の存在によって吸引力が弱められることによって、筒状ケース94内への吸収液の流入時に、確実にフロート弁体95を吸収液に浮かせて開弁させることができる。
尚、筒状ケース94内には、吸収液に浮かぶフロート弁体95が筒状ケース94から遊離しないようにするための遊離防止棒98が装着されている。
【0039】
エジェクター80及び不凝縮性ガス貯蔵器90は、以上の構成により、吸収液ポンプP1の作動中には、エジェクター80の吸収液吐出管83から吸引口81へ向かって吐出される吸収液のエゼクタ効果によって、吸収器3内の冷媒蒸気および不凝縮性ガスをエジェクター80の吸引口81から吸引し、吸導管82内を吸収液と混合した状態で気液分離管84へ導き、気液分離管84では不凝縮性ガスを吸収液から分離させて、不凝縮性ガス貯蔵器90内に貯蔵する。
尚、吸引された冷媒蒸気は、吸導管82内で吸収液に吸収され、気液分離管84からは、不凝縮性ガスのみが気体として分離する。
【0040】
蒸発器4は、蒸発・吸収ケース30内の吸収コイル31の外周に設けた縦型円筒形で多数の連通口(図示なし)付きの仕切り板40の外周に、内部を冷暖房用の冷温水が流れる銅管からなる縦型円筒形の蒸発コイル41を配設し、その上方に冷媒液散布具42を取り付けてなる。尚、蒸発器4の底部43は、電磁式の冷暖切替え弁6を有する暖房用吸収液流路L4により中濃度吸収液分離筒12内の吸収液仕切り容器13の底部と連通している。
尚、蒸発器4内の暖房用吸収液流路L4の開口部の内側には、暖房運転時に供給される吸収液が、蒸発器4内へ噴出しないようにするために、図4に示すように、防止板(バッフル板)43Aが配されている。
【0041】
以上の構成により、蒸発器4では、冷房運転時に冷媒液散布具42より冷媒液(水)を蒸発コイル41の上に流下させると、流下された冷媒液は、表面張力で蒸発コイル41の表面を濡らして膜状となり、重力の作用で下方へ降下しながら低圧(例えば、6.5mmHg)となっている蒸発・吸収ケース30内で蒸発コイル41から気化熱を奪って蒸発し、蒸発コイル41内を流れる空調用の冷温水を冷却する。
【0042】
凝縮器5は、蒸発・吸収ケース30の上方の開口を塞ぐようにして設けられた凝縮器ケース50の内部に冷却塔CTで冷却された排熱用冷却水が内部を循環する冷却コイル51を配設してなる。
【0043】
凝縮器ケース50内には、冷却コイル51によって冷却された冷媒蒸気が液化した冷媒液を凝縮器ケース50の底から浮かした位置で受けるための皿状の冷媒液受け部52が設けられていて、冷媒液受け部52は、蒸発器4の冷媒液散布具42の上方に設けられて、供給される冷媒液の自己冷却により、冷媒液を冷却させる冷媒冷却器48と、冷媒液供給路L6によって連通している。
以上の構造を有する凝縮器5は、冷媒流量を制限するためのオリフィス(図示なし)が設けられた冷媒流路L5により冷媒回収タンク10の冷媒貯留部10aと連通するとともに、冷媒蒸気出口21および隙間5Aを介して低温再生器2とも連通しており、いずれも圧力差(凝縮器ケース内では約70mmHg)により冷媒が供給される。
【0044】
冷房運転時において、凝縮器ケース50内に供給された冷媒蒸気は、冷却コイル51により冷却されて液化し、凝縮器5の下部に設けられた冷媒液受け部52から蒸発器4内に配置された冷媒冷却器48へ冷媒液供給路L6を介して供給される。
冷媒液受け部52をオーバーフローした冷媒液は,凝縮器ケース50の底によって形成される冷媒液貯留部53に貯留され、冷房運転時に吸収サイクルを循環する吸収液の濃度を実質的に高く維持して、冷房性能を向上させている。そして、冷媒液貯留部53と冷媒冷却器48とは、冷媒弁7を備えた冷媒液流路L7によって連通しており、冷媒液の凍結の恐れのある場合に、冷媒弁7の開弁制御によって蒸発器4に冷媒液が供給されて、蒸発器4内の蒸気圧を高くすることにより凍結を防止する。
また、暖房運転の開始時にも、冷媒弁7が開弁されて、冷房運転時に凝縮器5の冷媒液貯留部53内に貯留された冷媒液が蒸発器4内へ供給され、暖房運転時に加熱され循環する吸収液の濃度を低く維持して、晶析が防止される。
【0045】
以上の構成により、冷房運転時において、吸収液は、高温再生器1→中濃度吸収液流路L1→低温再生器2→高濃度吸収液流路L2→高濃度吸収液散布具32→吸収器3→吸収液ポンプP1→低濃度吸収液流路L3→高温再生器1の順に循環する。
また、冷媒は、高温再生器1(冷媒蒸気)→冷媒流路L5(冷媒蒸気)又は低温再生器2(冷媒蒸気)→凝縮器5(冷媒液)→冷媒供給路L6(冷媒液)又は冷媒液流路L7(冷媒液)→冷媒冷却器48→冷媒液散布具42(冷媒液)→蒸発器4(冷媒蒸気)→吸収器3(吸収液)→吸収液ポンプP1→低濃度吸収液流路L3→高温再生器1の順に循環する。
【0046】
上記、吸収液と熱交換する吸収器3の吸収コイル31と凝縮器5の冷却コイル51は、接続されて連続コイルを形成しており、連続コイルは、冷却水流路34によって冷却塔CTと接続されて冷却水循環路を形成している。
この冷却水循環路において、吸収コイル31の入口と冷却塔CTとの間の冷却水流路34には、連続コイル内へ冷却水を送り込むための冷却水ポンプP2が設けられており、冷却水ポンプP2の作動により連続コイルを通過する冷却水は、吸収コイル31で吸収熱を、冷却コイル51で凝縮熱をそれぞれ吸熱して比較的高温となって、冷却塔CTに供給される。
【0047】
上記の構成により、冷房運転時には、冷却水ポンプP2の作動により冷却塔CT内の冷却水が、冷却塔CT→冷却水ポンプP2→吸収コイル31→冷却コイル51→冷却塔CTの順に循環する。
冷却塔CTでは、落下する冷却水を大気中に一部蒸発させて、残りの冷却水を冷却する自己冷却がなされており、冷却水は、大気中に放熱して低温度になる排熱サイクルを形成している。なお、送風機Sからの送風により、水の蒸発を促進させている。
【0048】
蒸発器4の蒸発コイル41には、室内機RUに設けられた空調熱交換器44が冷温水流路47で連結されていて、冷温水流路47には、冷温水ポンプP3が設けられている。
以上の構成により、蒸発コイル41で低温度となった冷温水は、蒸発コイル41→冷温水流路47→空調熱交換器44→冷温水流路47→冷温水ポンプP3→蒸発コイル41の順で循環する。
【0049】
室内機RUには、空調熱交換器44が設けられているとともに、この熱交換器44に対して、室内空気を通過させて再び室内へ吹き出すブロワ46が備えられている。
【0050】
暖房用吸収液流路L4および冷暖切替え弁6は暖房運転用に設けられたもので、暖房運転時には冷暖切替え弁6を開弁し、吸収液ポンプP1を作動させる。
これにより、中濃度吸収液分離筒12内の吸収液仕切り容器13内の高温度の中濃度吸収液が蒸発器4内へ流入し、中濃度吸収液の高温蒸気(冷媒蒸気)によって蒸発コイル41内の冷温水が加熱され、加熱された蒸発コイル41内の冷温水は、冷温水ポンプP3の作動により冷温水流路47から空調用熱交換器44へ供給され、暖房の熱源となる。
蒸発器4内の中濃度吸収液は、仕切り板40の連通口40aから吸収器3側へ入り、低濃度吸収液流路L3を経て、吸収液ポンプP1により加熱タンク11へ戻される。
【0051】
以上の構成からなる本実施例の空調装置では、吸収サイクルにおいて吸収液を循環させるための吸収液ポンプP1と、蒸発器コイル41で冷却または加熱された冷温水を冷温水流路47によって室内機RUの空調用熱交換器44に循環させるための冷温水ポンプP3とが、同一のモータによって駆動されるタンデムポンプとして構成されていて、常に吸収液ポンプP1と冷温水ポンプP3とが同時に同一回転数で回転する。
【0052】
次に、以上の構成からなる室外機100における不凝縮性ガスの貯蔵動作を説明する。
[冷房運転]
冷房運転では、冷暖切替え弁6が閉弁されており、ガスバーナBが点火され、吸収液ポンプP1及び冷温水ポンプP3が駆動されると、吸収液は、高温再生器1→中濃度吸収液流路L1→低温再生器2→高濃度吸収液流路L2→高濃度吸収液散布具32→吸収器3→吸収液ポンプP1→低濃度吸収液流路L3→高温再生器1の順に循環する。
また、冷媒は、高温再生器1(冷媒蒸気)→冷媒流路L5(冷媒蒸気)又は低温再生器2(冷媒蒸気)→凝縮器5(冷媒液)→冷媒供給路L6(冷媒液)又は冷媒液流路L7(冷媒液)→冷媒冷却器48→冷媒液散布具42(冷媒液)→蒸発器4(冷媒蒸気)→吸収器3(吸収液)→吸収液ポンプP1→低濃度吸収液流路L3→高温再生器1の順に循環する。
【0053】
この循環によって、吸収サイクル内の冷媒は、凝縮器5内の冷媒液貯留部53で貯留されるため、吸収器3および高温再生器1内を循環する吸収液の実質的な濃度は、凝縮器5の冷媒液貯留部53で貯留された冷媒液の分だけ濃縮されて、高濃度になる。従って、吸収サイクル内に封入しておく吸収液の濃度を、予め低くしておくことで、冷房運転時に循環する吸収液の濃度を最適にすることができる。
【0054】
さらに吸収液は、不凝縮性ガス抽出装置であるエジェクター80および不凝縮性ガス貯蔵器90に対して吸収液ポンプP1→低濃度吸収液流路L3→吸収液吐出管83→吸導管82→気液分離管85→不凝縮性ガス貯蔵器90→気液分離管85→吸収器3→吸収液ポンプP1の順で循環する。
この吸収液の循環において、吸収サイクル内で発生した不凝縮性ガスは、エジェクター80によって抽気され、不凝縮性ガス貯蔵器90に流入する。このとき、吸収器3および蒸発器4を形成する蒸発・吸収ケース30内の圧力は、不凝縮性ガス貯蔵器90内の圧力と同程度に低くなるため、図2に示すように、吸収器3内の吸収液は不凝縮性ガス貯蔵器90へ流入しない。従って、このとき、逆止弁機構93のフロート弁体95は、吸収液が流入していないために、吸収液ポンプP1の吸引力によって吸引されて、筒状ケース94内で弁座96に着座して、逆止弁機構93は閉弁状態にある。
この結果、不凝縮性ガス貯蔵器90内には、エジェクター80及び気液分離管84によって分離された不凝縮性ガスが、吸収液ポンプP1の吸引力で逆流されることなく次第に貯蔵される。
【0055】
[暖房運転]
暖房運転では、冷暖切替え弁6が開弁される。従って、ガスバーナBが点火され、吸収液ポンプP1及び冷温水ポンプP3の駆動されると、吸収液は、高温再生器1→暖房用吸収液流路L4→蒸発器4→吸収器3→吸収液ポンプP1→低濃度吸収液流路L3→高温再生器1の順に循環する。
暖房運転では、冷却水ポンプP2は駆動されず、凝縮器5で冷媒液は生成されず、また、暖房運転の開始時に、冷媒弁7が開弁して凝縮器5の冷媒液貯留部53内に貯留された冷媒液は全て冷媒液流路L7を介して蒸発器4内へ戻されるため、蒸気暖房運転時の吸収液の循環では、予め設定された低濃度の吸収液が循環する。従って、吸収液が高温になっていても、循環流路中で、吸収液が晶析することがない。
【0056】
また、暖房運転においても、吸収液は、不凝縮性ガス抽出装置であるエジェクター80および不凝縮性ガス貯蔵器90に対して吸収液ポンプP1→低濃度吸収液流路L3→吸収液吐出管83→吸導管82→気液分離管85→不凝縮性ガス貯蔵器90→気液分離管85→吸収器3→吸収液ポンプP1の順で循環する。
この吸収液の循環において、吸収サイクル内で発生した不凝縮性ガスは、エジェクター80によって抽気され、不凝縮性ガス貯蔵器90に流入する。
このとき、吸収器3および蒸発器4を形成する蒸発・吸収ケース30内の圧力は、不凝縮性ガス貯蔵器90内の圧力に対して高くなっている(例えば、200〜250mmHg)ため、図3に示すように、吸収器3内の吸収液が、より低圧の不凝縮性ガス貯蔵器90へ流入する。
【0057】
不凝縮性ガス貯蔵器90へ流入した吸収液によって、不凝縮性ガス貯蔵器90内の吸収液の液位が吸収液戻し管91の先端の開口92の位置まで上昇すると、開口92から逆止弁機構93の筒状ケース94内へ流入し、内側のフロート弁体95を浮き上がらせる。
これによって、逆止弁機構93は開弁し、不凝縮性ガス貯蔵器90内の開口92より上方部分まで増加した吸収液は、吸収液ポンプP1によって、開弁状態の逆止弁機構93及び吸収液戻し管91を介して吸引されて、不凝縮性ガス貯蔵器90から高温再生器1へと戻され、不凝縮性ガス貯蔵器90内の吸収液は、開口92の位置でその液位を維持する。
【0058】
この結果、不凝縮性ガス貯蔵器90内には開口92の位置での液位に相当する吸収液が充満し、この分、蒸発・吸収ケース30内の吸収液が減少する。従って、凝縮器5内の冷媒液貯留部53に冷却液が貯留されていないため冷房運転時より多くなっていた吸収液の過剰分が、不凝縮性ガス貯蔵器90内に貯留することによって、暖房運転時においても、蒸発・吸収ケース30内の吸収液の液面が高くならず、しかも、低濃度で循環させることができる。
暖房運転中にも、不凝縮性ガスはエジェクター80によって抽出され、不凝縮性ガス貯蔵器90へ導かれて、貯蔵される。
【0059】
図5に本発明の第2実施例を示す。
第2実施例では、室内機RUに設けられた空調熱交換器44から蒸発・吸収ケース30内の蒸発コイル41へ連絡する冷温水の戻り側の冷温水流路47の冷温水戻し配管48を、不凝縮性ガス貯蔵器90内で熱交換可能な状態で貫通させている。
これによって、暖房運転時に、室内機RUにおいて、戸、窓等の開閉に伴う外気の流入などによって、暖房負荷が大きくなったりしたような場合に、室内機RUの空調熱交換器44内を通過した冷温水の温度が急激に低下したとき、蒸発・吸収ケース30内へ低温の冷温水の流入によって蒸発・吸収ケース30でキャビテーションが発生しても、同じく低温の冷温水が熱交換用配管48を通過することによって不凝縮性ガス貯蔵器90内が冷却されて不凝縮性ガス貯蔵器90内の圧力が低下するため、不凝縮性ガス貯蔵器90内の吸収液が蒸発・吸収ケース30内へ逆流することがない。
また、冷温水熱交換用配管の代わりに、吸収液戻し管にオリフィスを設ける構造としてもよい。(液逆流の時間稼ぎ)
【0060】
図6に本発明の第3実施例を示す。
上記各実施例では、吸収サイクル内で発生した不凝縮性ガスを分離するための構造として、エジェクター80を用いたが、第3実施例では、第1、2実施例のエジェクター80の代わりにサイホン容器800を用いている。
サイホン容器800は、吸収器3の下部に開口した不凝縮性ガス導入管801をサイホン容器800内の中間部に連通させるとともに、サイホン容器800内の下部には、逆U字(又は逆J字)状の有山管状体からなりサイホン管を形成する吸収液排出管802を配している。
【0061】
高濃度吸収液流路L2によって低温再生器2から供給される高濃度吸収液を吸収コイル31へ滴下するための高濃度吸収液散布具32内の高濃度吸収液を、サイホン容器800の上方より導入し、サイホン容器800内の吸収液位が、吸収液排出管802の山部803より高くなると、サイホン容器800内の吸収液を吸収液排出管802から排出する。その際に、排出される吸収液によって吸収液排出管802の山部803に入り込んでいた不凝縮性ガスが押し込まれて排出されるとともに、不凝縮性ガス導入管801から吸収器3内の蒸気冷媒および不凝縮性ガスを吸入する。
【0062】
吸収液排出管802は、上記実施例と同様に有谷管状体からなる気液分離管84の内側に配されて気液分離器を形成しており、谷部85を通過した吸収液内に混ざった不凝縮性ガスは、気液置換により上方に貯蔵される。
なお、この実施例では、サイホン容器800内の蒸気冷媒を吸収液に吸収させる補助吸収器を形成している。
【0063】
【発明の効果】
以上のとおり、本発明によれば、吸収サイクルにおいて、凝縮器5内の冷媒液貯留部53に冷媒液を貯留することによって、冷房運転時には、吸収サイクルのうち吸収器3及び高温再生器1内の吸収液の濃度を、冷房運転に適した濃度にして冷房性能を確保することができるとともに、暖房運転時は、吸収液の濃度が高くならないため、晶析を防止することができる。
また、吸収液ポンプP1の吸引側に連通した吸収液戻し管91を不凝縮性ガス貯蔵器90内で上方に向かって設けて、不凝縮性ガス貯蔵器90内へ流入した吸収液の液位がその開口92を越えた場合に、吸収液ポンプP1によって吸引するようにし、暖房運転時には、開口92に相当する液位までの吸収液を不凝縮性ガス貯蔵器90内に貯留させることができるため、暖房運転時には、この容積分だけ、吸収液を吸収器3等の循環路から減らすことができる。従って、蒸発・吸収ケース30内つまりは蒸発器4内の吸収液の液位を下げることができ、高温再生器1から蒸発器4内へ供給される吸収液の液面と蒸発コイル41との間には、隙間M(図4参照)が確保され吸収液は蒸発コイル41に接触しない。また、防止板43Aと液面との間には、隙間Kが確保され、この隙間Kを通って高温再生器1から供給される高温の吸収液内の蒸気が上方に抜けるため、蒸気の混じった吸収液の噴き上げは防止板43Aで阻止され吸収液が蒸発器4内で飛散することがない。従って、室外機100の小型化を図って蒸発器4等の容積が小さくなった場合でも、蒸発コイル41に吸収液が付着し、腐食することを防止できる。
【0064】
上記実施例では、室外機100に対して、単一の室内機RUのみを設けたものを示したが、複数の室内機RUを室外機100の蒸発コイル41に対して並列に接続してもよい。
上記各実施例では、冷却水流路34の冷却塔CTを、冷却水の一部を蒸発させて冷却水を自己冷却する開放式のものとしたが、冷却水流路34を循環する冷却水が、大気に開放されていない密閉回路を形成した水冷装置でもよい。
上記実施例では、室内機RUに空調熱交換器44のみを設けたものを示したが、室内温度を下げないで除湿運転を行うために、空調熱交換器44で一旦冷却した空気を加熱する加熱用熱交換器を空調熱交換器44と並設させるようにしてもよい。
上記実施例では、2重効用式で説明したが、1重効用式でもよい。また、加熱源としては、石油バーナや、電気ヒータを用いてもよい。
【図面の簡単な説明】
【図1】本発明の第1実施例を示す空調装置の概略構成図である。
【図2】第1実施例における冷房運転時の不凝縮性ガス貯蔵器の状態を説明するための部分断面図である。
【図3】第1実施例における暖房運転時の不凝縮性ガス貯蔵器の状態を説明するための部分断面図である。
【図4】実施例における暖房運転時の蒸発・吸収ケース内の吸収液の状態を説明するための部分断面図である。
【図5】本発明の第2実施例を示す不凝縮性ガス貯蔵器の断面図である。
【図6】本発明の第3実施例を示す空調装置の概略構成図である。
【符号の説明】
1 高温再生器
2 低温再生器
3 吸収器
30 蒸発・吸収ケー
33 底部(吸収器の底部)
4 蒸発器
41 蒸発コイル(熱交換用配管)
43A 防止板
44 空調熱交換器(空調用熱交換器)
47 冷温水流路(冷温水循環回路)
48 冷温水戻し配管(冷温水循環回路の配管)
5 凝縮器
52 冷媒液受け部
53 冷媒液貯留部
6 冷暖切替え弁
80 エジェクター(不凝縮性ガス抽出装置)
81 吸引口(抽出部)
84 気液分離管(気液分離部)
90 不凝縮性ガス貯蔵器(不凝縮性ガス貯蔵タンク、不凝縮性ガス貯蔵室
91 吸収液戻し管(吸収液戻し用流路)
92 吸収液戻し管の
93 逆止弁機構
95 フロート弁体(浮き弁体)
97 オリフィス
102 制御装置(運転制御手段)
B ガスバーナ(加熱手段)
L4 暖房用吸収液流路
P1 吸収液ポンプ
RU 室内機
[0001]
BACKGROUND OF THE INVENTION
The present invention provides an absorption liquid passage for heating that forms an absorption cycle using an aqueous solution of lithium bromide or the like as an absorption liquid and supplies the absorption liquid from the regenerator to the evaporator. More particularly, the present invention relates to a storage structure for non-condensable gas generated in an absorption cycle.
[0002]
[Prior art]
In an absorption type air conditioner using an absorption cycle, during cooling operation, the refrigerant vapor is separated from the low-concentration absorption liquid boiled by heating of the burner in the regenerator during the cooling operation, and the refrigerant vapor is cooled by the condenser and is cooled to And supplied to the evaporator. The absorbing liquid having a high concentration as the refrigerant vapor is separated in the regenerator is supplied to the absorber. The absorber and the evaporator are in communication with each other, and the refrigerant liquid evaporates in the evaporator and becomes a cooling source that takes heat away. The cold / hot water circulating in the cold / hot water pipe arranged in the evaporator is cooled, The room is cooled by circulating it to the heat exchanger for air conditioning.
The absorption liquid absorbs the refrigerant vapor evaporated by the evaporator at the absorber, and in order to discharge the heat generated at this time to the outside, a heat exchange pipe is provided in the absorber and is supplied by the cooling water pump. Heat is discharged to the outside by passing the cooling water.
[0003]
During heating operation, the cooling / heating switching valve in the absorption liquid flow path connecting the regenerator and the evaporator is opened separately from the absorption cycle configured as described above, and the absorption liquid heated by the burner is supplied into the evaporator. Thus, the cold / hot water passing through the cold / hot water pipe in the evaporator is heated and circulated to the indoor unit, and the absorption liquid supplied to the evaporator is returned to the regenerator via the absorber.
[0004]
With the above-described configuration, in the absorption type air conditioner configured to switch between the cooling operation and the heating operation, when the heating operation is performed with the absorption liquid concentration optimal for the cooling operation, the heated absorption liquid circulates the absorption liquid. There is a risk of crystallization at various points on the road. For this reason, conventionally, the amount of water that is the refrigerant in the absorption liquid is increased, and the concentration of the absorption liquid is kept lower than the optimum concentration during the cooling operation in the entire absorption cycle, and is cooled by the condenser during the cooling operation. A container-like refrigerant liquid storage part is provided in the condenser so that the generated refrigerant liquid can be temporarily stored in the condenser.
[0005]
As a result, when the absorption liquid circulates in the absorption cycle during the cooling operation, the refrigerant liquid generated by cooling with the condenser is not supplied to the evaporator as it is, but a part of the refrigerant liquid is stored in the condenser. As a result, the substantial absorption liquid concentration in the absorption cycle at the time of cooling operation is increased to ensure cooling performance, and at the time of heating operation, the refrigerant liquid flow path in which the refrigerant liquid storage unit and the evaporator are communicated with each other is secured. By opening the refrigerant valve, all the refrigerant liquid in the refrigerant liquid storage section is supplied into the evaporator, and the concentration of the absorption liquid in the absorber and the regenerator is lowered to prevent the crystallization.
[0006]
On the other hand, during the heating operation, it is necessary to prevent the high-temperature absorption liquid directly supplied from the regenerator into the evaporator from adhering to the evaporation coil. Is provided with a prevention plate (baffle plate) below the evaporation coil for preventing the discharged high-temperature absorbing liquid from being ejected into the evaporator.
Furthermore, in the above-described configuration, stainless steel material and copper material, which have strong corrosion resistance against lithium bromide, are used for each appliance and piping such as a regenerator constituting the absorption cycle, and in the absorbing liquid, Inhibitors (corrosion inhibitors) are included to prevent corrosion of each instrument.
However, it is not possible to completely eliminate the chemical reaction in each device and pipe in the absorption cycle, and non-condensable gas (specifically hydrogen gas) is generated by the chemical reaction between the absorbent and each component device. And accumulates in the absorption cycle during prolonged use.
For this reason, a non-condensable gas extraction device for extracting the non-condensable gas generated in the absorption cycle in the evaporative absorption case during operation is provided and stored in a gas storage chamber (gas storage tank). .
[0007]
[Problems to be solved by the invention]
In the absorption type air conditioner configured as described above, during the heating operation, the refrigerant liquid stored during the cooling operation is returned to reduce the concentration of the absorbing liquid and prevent crystallization as described above. The absolute amount of absorbing liquid circulated during operation increases, the liquid level of the high-temperature absorbing liquid that has been supplied from the regenerator into the evaporator increases and reaches the evaporation coil. The liquid surface of the high-temperature absorbing liquid staying at the bottom exceeds the prevention plate provided in the evaporator.
If the liquid level of the absorbing liquid is higher than the prevention plate, it occurs due to the boiling of the absorbing liquid heated in the regenerator even if a prevention plate for preventing the absorption liquid from blowing out during heating operation is provided in the evaporator. Since the bubbles of refrigerant vapor mixed into the absorption liquid, when the absorption liquid is discharged into the evaporator, the absorption liquid in the evaporator is scattered over the prevention plate by the discharge of the bubbles, and the scattered absorption liquid is The trouble which adheres to an evaporation coil arises and causes the corrosion of an evaporation coil.
It should be noted that setting the evaporation coil and the prevention plate sufficiently high from the bottom surface of the evaporator increases the size of the apparatus, which is against the demand for downsizing.
[0008]
An object of the present invention is to prevent the absorption liquid from adhering to the evaporation coil by appropriately maintaining the liquid level of the absorption liquid in the absorber and the evaporator during heating operation while reducing the size of the apparatus. .
[0009]
[Means for Solving the Problems]
  The present inventionIn claim 1 ofIs a regenerator that heats the absorbing liquid containing refrigerant by heating means to separate the refrigerant vapor from the absorbing liquid, and cools and condenses the refrigerant vapor separated by the regenerator, A condenser provided with a refrigerant liquid storage section for storing; an evaporator configured to evaporate the refrigerant liquid stored in the refrigerant liquid storage section of the condenser under a low pressure to serve as a cooling source; and to communicate with the evaporator And an absorber for absorbing the refrigerant vapor evaporated by the evaporator into an absorption liquid from which the refrigerant vapor has been separated by the regenerator, and an absorption liquid for returning the absorption liquid from the absorber to the regenerator A heat exchange pipe forming a cold / hot water circulation circuit for forming cold / hot water circulation between the pump and the air conditioner heat exchanger provided in the indoor unit is arranged in the evaporator. , Cooling operation and heating operation An absorption type air conditioner in which the regenerator and the evaporator are connected by a heating absorption liquid passage having a cooling / heating switching valve for switching, and the cooling / heating switching valve is controlled to be closed during cooling operation, and heating operation is performed. Sometimes in an absorption air conditioner equipped with operation control means for controlling the opening and closing of the cooling / heating switching valve, the evaporator andSaidProvided in communication with the extraction part for extracting noncondensable gas in the evaporative absorption case forming the absorber and the bottom part of the evaporative absorption case,A non-condensable gas extraction device comprising a gas-liquid separation unit for separating the non-condensable gas extracted by the extraction unit from the absorption liquid, and an end of the gas-liquid separation unit of the non-condensable gas extraction device at a lower end Non-condensable gas connected and extracted by the non-condensable gas extraction deviceAnd an absorption liquid from the evaporative absorption caseA non-condensable gas storage tank that opens upward in the non-condensable gas storage tank located above the connection position with the gas-liquid separator.,An absorption liquid return passage that communicates the non-condensable gas storage tank and the suction side of the absorption liquid pump is arranged, and the inside of the non-condensable gas storage tankLocated inOpening the absorption liquid return channelTo mouthThe floating valve body has a floating valve body that floats on the absorbing liquid, and the non-condensable gas from the noncondensable gas storage tank to the absorbing liquid pump is blocked by the floating valve body.CanA check valve mechanism is provided.The level of the absorbing liquid flowing in from the evaporative absorption case during the heating operation is maintained up to the opening of the absorbing liquid returning channel.With non-condensable gas storage roomPrepareThis is a technical measure.
[0010]
With this configuration, in claim 1, when the cooling operation is performed, the absorption liquid circulates in the absorption cycle, and the refrigerant separated from the absorption liquid circulates from the condenser to the evaporator and the absorber. The condenser, which is the refrigerant circulation path, is provided with a refrigerant liquid storage section for storing the refrigerant liquid generated by the condensation, so that the concentration of the absorption liquid returned from the absorber to the regenerator is the concentration of the condenser. The refrigerant liquid is concentrated by the amount of the refrigerant liquid stored in the refrigerant liquid storage unit.
In the evaporative absorption, a non-condensable gas extraction device for extracting non-condensable gas is provided, and communicated with the non-condensable gas storage chamber via the non-condensable gas extraction device at the bottom of the evaporative absorption case. However, since the pressure in the absorber is lowered by the operation of the absorption cycle, the absorption liquid in the evaporative absorption case does not flow into the non-condensable gas storage chamber. Therefore, the floating valve body is not lifted by the absorbing liquid, and the check valve is closed.
As a result, during the cooling operation, the absorption liquid concentrated by being reduced by the refrigerant liquid stored in the condenser circulates in the absorption cycle.
[0011]
When heating operation is performed, the absorption liquid heated in the regenerator is directly supplied from the regenerator to the evaporator in the evaporation absorption case through the heating absorption liquid flow path, and again through the absorber, the regenerator It does not circulate in the absorption cycle such as a condenser. Therefore, during heating operation, the absorption liquid existing in the absorption cycle circulates only between the absorber and the evaporator and the regenerator, does not circulate to the condenser, and the refrigerant liquid is not stored in the refrigerant liquid storage part. The concentration enclosed in the apparatus in advance is low, and a large amount of absorbing liquid circulates in the order of the regenerator, the evaporator, and the absorber as compared with the cooling operation.
Here, the bottom of the evaporative absorption case communicates with the non-condensable gas storage chamber, and the pressure in the evaporative absorption case becomes higher than the pressure in the non-condensable gas storage chamber due to the vapor pressure of the high-temperature absorbing liquid. Therefore, the absorption liquid in the evaporative absorption case flows into the non-condensable gas storage chamber via the non-condensable gas extraction device.
[0012]
In the non-condensable gas storage tank forming the non-condensable gas storage chamber, the absorption liquid return flow path opens upward at a position above the connection position with the gas-liquid separation part of the non-condensable gas extraction device. Therefore, when the liquid level of the absorbing liquid flowing into the non-condensable gas storage tank rises above the opening position of the absorbing liquid return flow path, the absorbing liquid in the non-condensable gas storage tank is It is sucked in from the opening of the absorption liquid return flow path and returned to the regenerator by the absorption liquid pump.
Since a check valve mechanism using a floating valve body is provided below the opening of the absorption liquid return flow path, the liquid level of the absorption liquid in the non-condensable gas storage tank is above the position of the opening. In this case, when the floating valve body floats on the absorbing liquid and the check valve mechanism opens, and when the liquid level falls below the position of the opening, the floating valve body moves down and closes the check valve mechanism. Therefore, the liquid level of the absorbing liquid in the non-condensable gas storage tank is maintained at the position of the opening, and in the non-condensable gas storage tank, it always corresponds to the opening position of the absorbing liquid return flow path. Absorbing liquid is stored.
When the liquid level is lower than the opening, the check valve mechanism closes, so that the problem of causing the non-condensable gas stored in the tank to flow backward by the suction force of the pump does not occur.
[0013]
Therefore, the amount of absorption liquid reduced by the amount stored in the non-condensable gas storage tank circulates in the order of regenerator → evaporator → absorber → regenerator. The liquid level is lowered and the liquid level of the absorbing liquid in the evaporator is also lowered.
As a result, even if the evaporator is downsized and the volume, dimensions, etc. are reduced, when the high-temperature absorbing liquid is supplied from the regenerator into the evaporator during heating operation, the supplied absorption Since the liquid level does not reach the heat exchange pipe in the evaporator, the absorbing liquid does not adhere to the heat exchange pipe, and corrosion can be prevented.
Further, during the cooling operation, by storing the refrigerant liquid in the condenser, the substantial concentration of the absorption liquid circulating in the absorption cycle can be increased, so that the refrigerating capacity is not lowered and heating is performed. The concentration of the absorbing liquid during operation can be lowered, the crystallization of the absorbing liquid is not caused, and the absorbing liquid can be circulated at a concentration suitable for each operation during cooling operation and heating operation. .
[0014]
In Claim 2, in Claim 1, the said gas-liquid separation part has a U-shaped U-shaped pipe body, The lower part of the said absorber case and the said non-condensable gas storage tank by this U-shaped pipe body. The technical means is to communicate with the lower part.
[0015]
According to a third aspect of the present invention, in the first or second aspect, the technical means is that an orifice for weakening the suction force of the absorbent pump is provided in the absorbent return channel.
As a result, in claim 3, since the suction force in the absorption liquid return flow path is weakened, the floating valve body of the check valve mechanism is sucked by the absorption liquid sucked into the absorption liquid pump from the absorption liquid return flow path. When the amount of the absorbing liquid in the non-condensable gas storage tank is increased, the floating valve body can be surely floated, so that the valve opening operation can be ensured.
[0016]
According to a fourth aspect of the present invention, in the first to third aspects, a pipe of the cold / hot water circulation circuit communicating from the air conditioning heat exchanger provided in the indoor unit to the heat exchange pipe in the evaporator is connected to the non-condensing The technical means is to allow heat exchange in the property gas storage tank.
Thus, in claim 4, when the temperature of the cold / warm water returned from the air conditioning heat exchanger of the indoor unit to the evaporator is drastically decreased due to a rapid decrease in the room temperature during the heating operation, In the case where the temperature in the evaporator is lowered by the cold / warm water having lowered, the temperature in the non-condensable gas storage tank can be lowered as well. As a result, even if the pressure in the evaporator decreases as the temperature decreases, the pressure in the non-condensable gas storage tank also decreases, so the pressure drop in the evaporator and the pressure drop in the non-condensable gas storage tank Can be balanced. Therefore, the absorption liquid in the non-condensable gas storage tank does not flow back into the evaporator when the load fluctuates during heating operation (when cavitation occurs).
[0017]
  A fifth aspect of the present invention is the technology according to any one of the first to fourth aspects, wherein an opening of the heating absorbent liquid flow path in the evaporator is provided with a prevention plate for preventing ejection of the supplied absorbent liquid. As a means.
  Accordingly, in claim 5, the liquid level due to the decrease in the liquid level of the absorption liquid in the evaporation absorption case is lower than the prevention plate.MaintainThe high-temperature absorption liquid supplied from the regenerator into the evaporatorTheAccompanied by scattering over the prevention plateThere is nothing to do. As a result, the absorption liquidHeat exchange piping in the evaporatorWhatAdheringAgainst heat exchange piping, etc.Prevent corrosionTo doit can.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of an absorption air conditioner according to the present invention.
The absorption air conditioner includes an outdoor unit 100 and an indoor unit RU as a refrigeration apparatus. The outdoor unit 100 includes a refrigerator main body 101 and a cooling tower (cooling tower) CT. The air conditioner is controlled by the control device 102.
[0019]
The refrigerator main body 101 is mainly formed of stainless steel to form an absorption cycle of a lithium bromide aqueous solution as a refrigerant and an absorption liquid, and a high-temperature regenerator 1 provided with a gas burner B as a heating means below, A double-effect regenerator comprising a low-temperature regenerator 2 disposed so as to cover the outside of the high-temperature regenerator 1, an absorber 3 and an evaporator 4 sequentially disposed on the outer periphery of the low-temperature regenerator 2, A condenser 5 disposed above the absorber 3 and the evaporator 4 on the outer periphery of the low temperature regenerator 2 is connected through several passages. In addition, the inhibitor (corrosion inhibitor) for suppressing the corrosion by reaction of stainless steel and lithium bromide is contained in the absorbing solution.
[0020]
The high-temperature regenerator 1 is a vertical type that extends from a heating tank 11 heated by a gas burner B and extends a medium-concentration absorbing liquid separation cylinder 12 and covers the medium-concentration absorbing liquid separation cylinder 12 from the upper side to the outside thereof. A cylindrical airtight refrigerant recovery tank 10 is provided.
Below the inner side of the intermediate concentration absorbing liquid separating cylinder 12, an absorbing liquid partitioning container 13 arranged at an interval from the inner wall of the intermediate concentration absorbing liquid separating cylinder 12 has several upper edge portions of the intermediate concentration absorbing liquid. A cylindrical absorbent rising flow in which the absorbing liquid heated in the heating tank 11 rises between the intermediate concentration absorbing liquid separating cylinder 12 and the absorbing liquid partition container 13. A path 14 is formed.
[0021]
An absorption liquid return plate 15 for returning the absorption liquid rising through the absorption liquid ascending flow path 14 is provided in the intermediate concentration absorption liquid separation cylinder 12 above the absorption liquid partition container 13, and the above-described intermediate concentration absorption is performed. The liquid separation cylinder 12 is composed of two members, an upper member located above the absorbent return plate 15 and a lower member located below, and these are joined to the absorbent return plate 15 by welding. It has been done.
[0022]
An inlet of a medium concentration absorption liquid flow path L1 for supplying the medium concentration absorption liquid, which has been separated from the refrigerant and increased in concentration, to the low temperature regenerator 2 is opened at the side of the absorption liquid partition container 13. The inlet of the heating absorbent liquid flow path L4 for supplying the heated absorbent to the evaporator 4 is opened at the bottom of the absorbent liquid partition container 13 during the heating operation.
[0023]
Inside the lower part of the refrigerant recovery tank 10, a heat insulating gap 17 a is formed between the refrigerant tank 10 and the intermediate concentration absorbing liquid separating cylinder 12, and the refrigerant partition cylinder 17 is joined to the intermediate concentration absorbing liquid separating cylinder 12. The heat in the intermediate concentration absorbing liquid separation cylinder 12 is blocked by the heat insulating gap 17a, and the refrigerant in the refrigerant storage section 10a below the refrigerant recovery tank 10 described later becomes a high temperature absorbing liquid in the absorbing liquid ascending channel 14. To prevent heating.
[0024]
With the above configuration, in the high-temperature regenerator 1, when the low-concentration absorbent supplied to the inside of the heating tank 11 is heated by the gas burner B, it is formed between the medium-concentration absorbent separation cylinder 12 and the absorbent partition container 13. The absorption liquid heated through the cylindrical absorption liquid ascending flow path 14 rises, and the water as the refrigerant in the low-concentration absorption liquid evaporates and separates as refrigerant vapor (water vapor) by heating, and the refrigerant vapor evaporates. The medium-concentrated absorbent liquid concentrated by the above is changed inward by the absorbent liquid return plate 15 and returned to the absorbent liquid partition container 13.
[0025]
The medium-concentration absorbing liquid whose concentration has been increased by separating the refrigerant is supplied to the low-temperature regenerator 2 from the medium-concentration absorbing liquid channel L1 opened at the side of the absorbing liquid partitioning container 13.
In the refrigerant recovery tank 10, the outside of the refrigerant partition cylinder 17 is a refrigerant storage unit 10 a that stores the separated refrigerant, and the refrigerant stored in the refrigerant storage unit 10 a is transferred from the refrigerant flow path L 5 to the condenser 5. Supplied.
[0026]
The low-temperature regenerator 2 has a vertical cylindrical low-temperature regenerator case 20 installed eccentrically on the outer periphery of the refrigerant recovery tank 10, and a refrigerant vapor outlet 21 is provided around the ceiling of the low-temperature regenerator case 20. Yes.
The top part of the ceiling of the low-temperature regenerator case 20 is connected to the inside of the absorbing liquid partition container 13 in the intermediate concentration absorbing liquid separating cylinder 12 through the heat exchanger H by the intermediate concentration absorbing liquid flow path L1.
[0027]
An orifice (not shown) for limiting the flow rate of the intermediate concentration absorbing liquid flowing from the absorbing liquid partition container 13 to the low temperature regenerator 2 is provided in the intermediate concentration absorbing liquid channel L1, and the low temperature regenerator case 20 is provided. The medium concentration absorbing liquid is supplied into the inside due to the pressure difference from the medium concentration absorbing liquid separating cylinder 12. (About 70 mmHg in the low-temperature regenerator case 20 and about 700 mmHg in the medium concentration absorbent separating cylinder 12)
[0028]
As a result, in the low temperature regenerator 2, the medium concentration absorbing liquid supplied into the low temperature regenerator case 20 is reheated using the outer wall of the refrigerant recovery tank 10 as a heat source, and the medium concentration absorbing liquid is at the top of the low temperature regenerator case 20. The gas-liquid separation unit 22 separates the refrigerant vapor and the high-concentration absorption liquid, and the high-concentration absorption liquid is stored in the high-concentration absorption liquid receiver 23.
At the bottom of the high concentration absorbent receiving part 23, an inlet of the high concentration absorbent channel L2 communicating with the absorber 3 is opened.
[0029]
On the outer periphery of the low temperature regenerator case 20, a vertical cylindrical airtight evaporation / absorption case 30 is concentrically disposed at the lower part and a condenser case 50 is concentrically disposed at the upper part. The vessel case 20 and the evaporation / absorption case 30 are integrally welded to the bottom plate portion 18, and the inner end of the bottom plate portion 18 is welded to the outer peripheral surface of the lower member of the intermediate concentration absorbent separation tube 12 to form a refrigerator. A main body 101 is formed.
Note that the inside of the low temperature regenerator case 20 communicates with the inside of the condenser case 50 via the refrigerant vapor outlet 21 and the gap 5A.
[0030]
The absorber 3 has an absorption coil 31 wound in a coil shape as an absorption tube through which a copper tube is wound in a vertical cylindrical shape and cooling water for exhaust heat flows inside in an inner portion of the evaporation / absorption case 30. Above the absorption coil 31, a high-concentration absorption liquid spreader 32 for distributing the high-concentration absorption liquid to the absorption coil 31 is disposed.
The absorption coil 31 is made of a copper tube wound outside the low-temperature regenerator case 20. The inlet of the absorption coil 31 is connected to the cooling water flow path 34, and the outlet of the absorption coil 31 is condensed. It is connected to the inlet of the cooling coil 51 of the vessel 5.
[0031]
The high-concentration absorbing liquid sprayer 32 receives the high-concentration absorbing liquid supplied through the high-concentration absorbing liquid channel L2 connected to the high-concentration absorbing liquid receiving part 23 of the low-temperature regenerator 2 through the heat exchanger H. The absorption liquid cooling container which is self-cooled by receiving and collecting the liquid and the absorption liquid stored in the absorption liquid cooling container are dropped on each circumference of the wound absorption coil 31.
[0032]
With the above configuration, in the absorber 3, the high concentration absorbent in the high concentration absorbent receiver 23 of the low temperature regenerator 2 flows in from the high concentration absorbent flow path L2 due to the pressure difference. It is spread on the upper end of the absorption coil 31 by the high concentration absorbent spreader 32, adheres to the surface of the absorption coil 31, becomes a thin film, flows downward by the action of gravity, absorbs water vapor, and becomes a low concentration absorbent. Become. When the water vapor is absorbed, heat is generated on the surface of the absorption coil 31, but it is cooled by the exhaust heat cooling water circulating through the absorption coil 31. Note that the water vapor absorbed by the absorbing liquid is generated as refrigerant vapor in the evaporator 4 described later.
[0033]
The bottom 33 of the absorber 3 is connected to the bottom of the heating tank 11 by a low-concentration absorbent liquid flow path L3 to which the heat exchanger H and the absorbent liquid pump P1 are attached, and the absorber 3 is activated by the operation of the absorbent liquid pump P1. The low concentration absorption liquid is supplied into the heating tank 11.
Further, in the absorption coil 31, the exhaust heat cooling water cooled by the cooling tower CT circulates through the cooling coil 51 of the condenser 5 during the cooling operation.
[0034]
Inside the absorber 3 is provided an ejector 80 as a bleeder for sucking incondensable gas (hydrogen gas) generated in the absorption cycle.
The ejector 80 is provided with a suction pipe 82 having a diameter smaller than that of the suction port 81 continuously to the suction port 81 opened in the absorber 3, and an absorption liquid communicating with the discharge side of the absorption liquid pump P <b> 1 inside the suction port 81. When the discharge pipe 83 is provided and the absorption liquid is discharged from the end of the absorption liquid discharge pipe 83 toward the suction port 81 by the discharge pressure of the absorption liquid pump P1, the refrigerant vapor and the non-removal between the suction port 81 and This is a structure in which a gas component such as a condensable gas is sucked and mixed into the absorption liquid by a so-called ejector effect.
[0035]
The suction pipe 82 is disposed inside a gas-liquid separation tube 84 made of a substantially J-shaped (or substantially U-shaped) valley-shaped tubular body provided in communication with the bottom 33 of the absorber 3, and gas-liquid separation is performed. It constitutes a gas-liquid separator together with the tube 84, has a substantially J-shape (or substantially U-shape) like the gas-liquid separation tube 84, and upwards at a position through the valley 85 in the gas-liquid separation tube 84. It is open.
A non-condensable gas reservoir 90 is connected to the end of the gas-liquid separation tube 84 which is the end of the gas-liquid separator.
[0036]
The non-condensable gas reservoir 90 is connected to the bottom 33 of the absorber 3 through the gas-liquid separation tube 84 with the end of the gas-liquid separation tube 84 connected at the lower part.
In the non-condensable gas reservoir 90, an absorbing liquid return pipe 91 is disposed from the bottom to the top through the bottom of the non-condensable gas reservoir 90, and the tip of the absorbing liquid return pipe 91 is non-condensable. An opening 92 is formed in the gas reservoir 90.
During the heating operation, the absorption liquid return pipe 91 has a pressure difference between the evaporation / absorption case 30 and the non-condensable gas reservoir 90 (pressure in the evaporation / absorption case 30> non-condensable gas reservoir 90). When the amount of absorbing liquid flowing from the absorber 3 into the non-condensable gas reservoir 90 exceeds a certain amount due to the pressure), the excess amount of absorbing liquid is sucked out by the absorbing liquid pump P1 to the high temperature regenerator 1. It is the absorption liquid return flow path for returning. Here, in order to prevent crystallization of lithium bromide and the like during heating operation, an amount of absorbing liquid corresponding to the amount of refrigerant excessively enclosed in the absorption cycle is used in order to reduce the concentration of the absorbing liquid. The position of the opening 92 is determined so as to store in the non-condensable gas reservoir 90 and prevent further absorption liquid from being stored in the non-condensable gas reservoir 90.
[0037]
  Absorption liquid return pipe 91Is provided as a flow path for absorbing liquid return.A check valve mechanism 93 is provided near the lower portion of the opening 92.
  The check valve mechanism 93 isIt is a part located in the non-condensable gas reservoir 90 of the absorption liquid return pipe 91.Silicon rubber with a specific gravity smaller than the absorbent in the cylindrical case 94MadeWith the spherical float valve body 95As a floating valveThe valve seat 96 is formed in the lower part in the cylindrical case 94.
  During cooling operation,Form non-condensable gas storage tank and non-condensable gas storage chamberSince the pressure in the non-condensable gas reservoir 90 is equivalent to the pressure in the evaporation / absorption case 30 and the absorbing liquid does not flow into the non-condensable gas reservoir 90, the float valve body 95 of the check valve mechanism 93 is Sit on the valve seat 96 without being lifted by the absorbentOpen 92In the closed stateYouThe Therefore, the non-condensable gas stored in the non-condensable gas reservoir 90 does not flow backward by the suction force of the absorption liquid pump P1.
  During the heating operation, until the liquid level of the absorbing liquid flowing into the non-condensable gas reservoir 90 exceeds the opening 92, the float valve body 95 isTo valve seat 96Sit downOpen 92Valve closingTo do.When the liquid level of the absorbent exceeds the opening 92, the float valve body 95 is caused by the absorbent flowing into the cylindrical case 94.From valve seat 96The rise isOpen the opening 92Open the valve. As a result, the liquid level of the absorbing liquid in the non-condensable gas reservoir 90 decreases with the absorption liquid being sucked out by opening the check valve mechanism 93 when the level increases from the position of the opening 92. In a state where the opening 92 is not reached, the check valve mechanism 93 is closed and the amount of the absorbing liquid is increased, so that an amount substantially corresponding to the position of the opening 92 is obtained.In the non-condensable gas reservoir 90It is always stored.
[0038]
In the absorption liquid return pipe 91 on the absorption liquid pump P1 side from the check valve mechanism 93, an orifice 97 for weakening the suction force of the absorption liquid pump P1 is provided. This is to prevent the float valve element 95 from being adsorbed on the valve seat 96 by the suction force of the absorption liquid pump P1 when the absorption liquid increases from the position of the opening 92 in the valve closed state. When the suction force is weakened by the presence of the liquid, the float valve body 95 can be reliably floated on the absorption liquid and opened when the absorption liquid flows into the cylindrical case 94.
In addition, a release prevention rod 98 for preventing the float valve body 95 floating in the absorbing liquid from being released from the cylindrical case 94 is mounted in the cylindrical case 94.
[0039]
The ejector 80 and the non-condensable gas reservoir 90 are configured as described above, and the ejector effect of the absorption liquid discharged from the absorption liquid discharge pipe 83 of the ejector 80 toward the suction port 81 during the operation of the absorption liquid pump P1. As a result, the refrigerant vapor and the non-condensable gas in the absorber 3 are sucked from the suction port 81 of the ejector 80 and guided to the gas-liquid separation tube 84 in a state where the inside of the suction pipe 82 is mixed with the absorption liquid. Then, the non-condensable gas is separated from the absorbing liquid and stored in the non-condensable gas reservoir 90.
The sucked refrigerant vapor is absorbed by the absorption liquid in the suction pipe 82, and only non-condensable gas is separated from the gas-liquid separation pipe 84 as a gas.
[0040]
The evaporator 4 is a vertical cylindrical shape provided on the outer periphery of the absorption coil 31 in the evaporation / absorption case 30 and has an outer periphery of a partition plate 40 with a large number of communication ports (not shown). A vertical cylindrical evaporation coil 41 made of a flowing copper tube is provided, and a refrigerant liquid spreader 42 is attached above it. The bottom 43 of the evaporator 4 communicates with the bottom of the absorbing liquid partition container 13 in the intermediate concentration absorbing liquid separating cylinder 12 by a heating absorbing liquid flow path L4 having an electromagnetic cooling / heating switching valve 6.
As shown in FIG. 4, the absorption liquid supplied during the heating operation is not injected into the evaporator 4 inside the opening of the heating absorption liquid flow path L <b> 4 in the evaporator 4. In addition, a prevention plate (baffle plate) 43A is arranged.
[0041]
With the above configuration, in the evaporator 4, when the refrigerant liquid (water) is caused to flow down on the evaporation coil 41 from the refrigerant liquid spreader 42 during the cooling operation, the refrigerant liquid that has flowed down is brought into the surface of the evaporation coil 41 by surface tension. In the evaporation / absorption case 30 which is lowered to a low pressure (for example, 6.5 mmHg) while being lowered downward due to the action of gravity, the evaporation coil 41 takes away heat of vaporization and evaporates. Cooling hot and cold water for air conditioning flowing inside.
[0042]
The condenser 5 includes a cooling coil 51 in which the exhaust heat cooling water cooled by the cooling tower CT is circulated inside the condenser case 50 provided so as to close the opening above the evaporation / absorption case 30. It is arranged.
[0043]
In the condenser case 50, there is provided a dish-shaped refrigerant liquid receiving portion 52 for receiving the refrigerant liquid liquefied by the refrigerant vapor cooled by the cooling coil 51 at a position floating from the bottom of the condenser case 50. The refrigerant liquid receiving part 52 is provided above the refrigerant liquid spraying device 42 of the evaporator 4 and cools the refrigerant liquid by self-cooling of the supplied refrigerant liquid, and the refrigerant liquid supply path L6. Communicated by
The condenser 5 having the above structure communicates with the refrigerant storage portion 10a of the refrigerant recovery tank 10 through the refrigerant flow path L5 provided with an orifice (not shown) for limiting the refrigerant flow rate, and the refrigerant vapor outlet 21 and The refrigerant communicates with the low-temperature regenerator 2 through the gap 5A, and the refrigerant is supplied by a pressure difference (about 70 mmHg in the condenser case).
[0044]
During the cooling operation, the refrigerant vapor supplied into the condenser case 50 is cooled and liquefied by the cooling coil 51, and is arranged in the evaporator 4 from the refrigerant liquid receiving portion 52 provided at the lower part of the condenser 5. The refrigerant is supplied to the refrigerant cooler 48 via the refrigerant liquid supply path L6.
The refrigerant liquid overflowing the refrigerant liquid receiving part 52 is stored in the refrigerant liquid storage part 53 formed by the bottom of the condenser case 50, and the concentration of the absorption liquid circulating in the absorption cycle during cooling operation is maintained substantially high. The cooling performance is improved. The refrigerant liquid storage unit 53 and the refrigerant cooler 48 communicate with each other through a refrigerant liquid flow path L7 provided with the refrigerant valve 7. When there is a risk of freezing of the refrigerant liquid, the valve opening control of the refrigerant valve 7 is performed. As a result, the refrigerant liquid is supplied to the evaporator 4 to prevent the freezing by increasing the vapor pressure in the evaporator 4.
In addition, the refrigerant valve 7 is opened at the start of the heating operation, and the refrigerant liquid stored in the refrigerant liquid storage section 53 of the condenser 5 is supplied into the evaporator 4 during the cooling operation, and is heated during the heating operation. In addition, the concentration of the circulating absorbent is kept low to prevent crystallization.
[0045]
With the above configuration, during cooling operation, the absorption liquid is the high temperature regenerator 1 → the intermediate concentration absorption liquid channel L1 → the low temperature regenerator 2 → the high concentration absorption liquid channel L2 → the high concentration absorption liquid sprayer 32 → the absorber. Circulation is performed in the order of 3 → absorbing liquid pump P1 → low concentration absorbing liquid flow path L3 → high temperature regenerator 1.
Also, the refrigerant is a high temperature regenerator 1 (refrigerant vapor) → refrigerant flow path L5 (refrigerant vapor) or low temperature regenerator 2 (refrigerant vapor) → condenser 5 (refrigerant liquid) → refrigerant supply path L6 (refrigerant liquid) or refrigerant. Liquid flow path L7 (refrigerant liquid) → refrigerant cooler 48 → refrigerant liquid sprayer 42 (refrigerant liquid) → evaporator 4 (refrigerant vapor) → absorber 3 (absorbing liquid) → absorbing liquid pump P1 → low concentration absorbing liquid flow It circulates in order of path L3-> high temperature regenerator 1.
[0046]
The absorption coil 31 of the absorber 3 that exchanges heat with the absorption liquid and the cooling coil 51 of the condenser 5 are connected to form a continuous coil, and the continuous coil is connected to the cooling tower CT by the cooling water channel 34. As a result, a cooling water circulation path is formed.
In this cooling water circulation path, the cooling water flow path 34 between the inlet of the absorption coil 31 and the cooling tower CT is provided with a cooling water pump P2 for feeding cooling water into the continuous coil, and the cooling water pump P2 The cooling water that passes through the continuous coil by the operation of the above absorbs the heat of absorption by the absorption coil 31 and the heat of condensation by the cooling coil 51 and becomes relatively high temperature, and is supplied to the cooling tower CT.
[0047]
With the above configuration, during the cooling operation, the cooling water in the cooling tower CT is circulated in the order of the cooling tower CT → the cooling water pump P2 → the absorption coil 31 → the cooling coil 51 → the cooling tower CT by the operation of the cooling water pump P2.
In the cooling tower CT, the falling cooling water is partially evaporated into the atmosphere and self-cooling is performed to cool the remaining cooling water, and the cooling water dissipates heat into the atmosphere and becomes a low heat exhaust cycle. Is forming. In addition, evaporation of water is promoted by blowing air from the blower S.
[0048]
An air conditioning heat exchanger 44 provided in the indoor unit RU is connected to the evaporation coil 41 of the evaporator 4 by a cold / hot water flow path 47, and a cold / hot water pump P 3 is provided in the cold / hot water flow path 47.
With the above configuration, the cold / hot water having a low temperature in the evaporation coil 41 circulates in the order of the evaporation coil 41 → the cold / hot water flow path 47 → the air conditioning heat exchanger 44 → the cold / hot water flow path 47 → the cold / hot water pump P3 → the evaporation coil 41. To do.
[0049]
The indoor unit RU is provided with an air conditioning heat exchanger 44 and a blower 46 through which room air is passed and blown out into the room again.
[0050]
The heating absorption liquid flow path L4 and the cooling / heating switching valve 6 are provided for heating operation. During the heating operation, the cooling / heating switching valve 6 is opened to operate the absorption liquid pump P1.
As a result, the high-temperature medium-concentration absorption liquid in the absorption liquid partition container 13 in the medium-concentration absorption liquid separation cylinder 12 flows into the evaporator 4, and the evaporation coil 41 is heated by the high-temperature vapor (refrigerant vapor) of the medium-concentration absorption liquid. The cold / hot water in the inside is heated, and the heated / cold water in the evaporation coil 41 is supplied from the cold / hot water flow path 47 to the air-conditioning heat exchanger 44 by the operation of the cold / hot water pump P3 and becomes a heat source for heating.
The medium concentration absorption liquid in the evaporator 4 enters the absorber 3 through the communication port 40a of the partition plate 40, and returns to the heating tank 11 by the absorption liquid pump P1 through the low concentration absorption liquid flow path L3.
[0051]
In the air conditioner of the present embodiment configured as described above, the absorption liquid pump P1 for circulating the absorption liquid in the absorption cycle, and the cold / hot water cooled or heated by the evaporator coil 41 are passed through the cold / hot water flow path 47 to the indoor unit RU. The chilled / hot water pump P3 for circulating to the air conditioning heat exchanger 44 is configured as a tandem pump driven by the same motor, and the absorption liquid pump P1 and the chilled / hot water pump P3 are always simultaneously rotated at the same rotational speed. Rotate with.
[0052]
Next, the non-condensable gas storage operation in the outdoor unit 100 configured as described above will be described.
[Cooling operation]
In the cooling operation, when the cooling / heating switching valve 6 is closed, the gas burner B is ignited, and the absorption liquid pump P1 and the cold / hot water pump P3 are driven, the absorption liquid is the high temperature regenerator 1 → the intermediate concentration absorption liquid flow. It circulates in order of path L1-> low temperature regenerator 2-> high concentration absorption liquid channel L2-> high concentration absorption liquid sprayer 32-> absorber 3-> absorption liquid pump P1-> low concentration absorption liquid channel L3-> high temperature regenerator 1.
Also, the refrigerant is a high temperature regenerator 1 (refrigerant vapor) → refrigerant flow path L5 (refrigerant vapor) or low temperature regenerator 2 (refrigerant vapor) → condenser 5 (refrigerant liquid) → refrigerant supply path L6 (refrigerant liquid) or refrigerant. Liquid flow path L7 (refrigerant liquid) → refrigerant cooler 48 → refrigerant liquid sprayer 42 (refrigerant liquid) → evaporator 4 (refrigerant vapor) → absorber 3 (absorbing liquid) → absorbing liquid pump P1 → low concentration absorbing liquid flow It circulates in order of path L3-> high temperature regenerator 1.
[0053]
Due to this circulation, the refrigerant in the absorption cycle is stored in the refrigerant liquid storage section 53 in the condenser 5, so that the substantial concentration of the absorption liquid circulating in the absorber 3 and the high-temperature regenerator 1 is the condenser. As a result, the refrigerant liquid is concentrated by the amount of the refrigerant liquid stored in the refrigerant liquid storage unit 53, and the concentration becomes high. Therefore, by reducing the concentration of the absorbing solution sealed in the absorption cycle in advance, the concentration of the absorbing solution circulated during the cooling operation can be optimized.
[0054]
Further, the absorption liquid is supplied to the ejector 80, which is a non-condensable gas extraction device, and the non-condensable gas reservoir 90. The absorption liquid pump P1, the low-concentration absorption liquid flow path L3, the absorption liquid discharge pipe 83, the suction pipe 82, and the air. It circulates in the order of the liquid separation pipe 85 → noncondensable gas reservoir 90 → gas-liquid separation pipe 85 → absorber 3 → absorption liquid pump P1.
In the circulation of the absorption liquid, the noncondensable gas generated in the absorption cycle is extracted by the ejector 80 and flows into the noncondensable gas reservoir 90. At this time, since the pressure in the evaporation / absorption case 30 forming the absorber 3 and the evaporator 4 becomes as low as the pressure in the non-condensable gas reservoir 90, as shown in FIG. 3 does not flow into the non-condensable gas reservoir 90. Therefore, at this time, the float valve body 95 of the check valve mechanism 93 is sucked by the suction force of the absorption liquid pump P1 because the absorption liquid does not flow in, and is seated on the valve seat 96 in the cylindrical case 94. The check valve mechanism 93 is in a closed state.
As a result, the non-condensable gas separated by the ejector 80 and the gas-liquid separation tube 84 is gradually stored in the non-condensable gas reservoir 90 without being backflowed by the suction force of the absorption liquid pump P1.
[0055]
[Heating operation]
In the heating operation, the cooling / heating switching valve 6 is opened. Accordingly, when the gas burner B is ignited and the absorption liquid pump P1 and the cold / hot water pump P3 are driven, the absorption liquid is the high temperature regenerator 1 → the absorption liquid flow path L4 for heating → the evaporator 4 → the absorber 3 → the absorption liquid. It circulates in order of pump P1-> low concentration absorption liquid channel L3-> high temperature regenerator 1.
In the heating operation, the cooling water pump P2 is not driven, the refrigerant liquid is not generated in the condenser 5, and the refrigerant valve 7 is opened at the start of the heating operation, and the refrigerant liquid storage unit 53 of the condenser 5 is opened. Since all of the refrigerant liquid stored in is returned to the evaporator 4 via the refrigerant liquid flow path L7, a preset low-concentration absorption liquid circulates in the circulation of the absorption liquid during the steam heating operation. Therefore, even if the absorbing solution is at a high temperature, the absorbing solution does not crystallize in the circulation channel.
[0056]
Further, in the heating operation, the absorbing liquid is absorbed into the absorbing liquid pump P1 → the low concentration absorbing liquid flow path L3 → the absorbing liquid discharge pipe 83 with respect to the ejector 80 and the noncondensable gas reservoir 90 which are noncondensable gas extraction devices. → Suction conduit 82 → Gas-liquid separation pipe 85 → Non-condensable gas reservoir 90 → Gas-liquid separation pipe 85 → Absorber 3 → Absorbing liquid pump P1 is circulated in this order.
In the circulation of the absorption liquid, the noncondensable gas generated in the absorption cycle is extracted by the ejector 80 and flows into the noncondensable gas reservoir 90.
At this time, the pressure in the evaporation / absorption case 30 forming the absorber 3 and the evaporator 4 is higher than the pressure in the non-condensable gas reservoir 90 (for example, 200 to 250 mmHg). As shown in FIG. 3, the absorbing liquid in the absorber 3 flows into the lower pressure non-condensable gas reservoir 90.
[0057]
When the liquid level of the absorbing liquid in the non-condensable gas reservoir 90 rises to the position of the opening 92 at the tip of the absorbing liquid return pipe 91 due to the absorbing liquid flowing into the non-condensable gas reservoir 90, a check is made from the opening 92. It flows into the cylindrical case 94 of the valve mechanism 93, and the inner float valve body 95 is lifted.
As a result, the check valve mechanism 93 is opened, and the absorption liquid that has increased up to the portion above the opening 92 in the non-condensable gas reservoir 90 is absorbed by the absorption liquid pump P1 and the check valve mechanism 93 in the open state. The liquid is sucked through the absorption liquid return pipe 91 and returned from the non-condensable gas reservoir 90 to the high-temperature regenerator 1, and the absorption liquid in the non-condensable gas reservoir 90 is at the level of the opening 92. To maintain.
[0058]
As a result, the non-condensable gas reservoir 90 is filled with the absorbing liquid corresponding to the liquid level at the position of the opening 92, and the absorbing liquid in the evaporation / absorbing case 30 is reduced accordingly. Therefore, by storing the excess amount of the absorbing liquid in the refrigerant liquid storage unit 53 in the condenser 5 in the non-condensable gas reservoir 90 because the excessive amount of the absorbing liquid that has been increased since the cooling operation is stored. Even during the heating operation, the liquid level of the absorbing liquid in the evaporation / absorption case 30 does not increase, and it can be circulated at a low concentration.
Even during the heating operation, the non-condensable gas is extracted by the ejector 80 and led to the non-condensable gas reservoir 90 to be stored.
[0059]
FIG. 5 shows a second embodiment of the present invention.
In the second embodiment, the cold / hot water return pipe 48 of the cold / hot water flow channel 47 on the return side of the cold / hot water communicating from the air conditioning heat exchanger 44 provided in the indoor unit RU to the evaporation coil 41 in the evaporation / absorption case 30 is provided, The non-condensable gas reservoir 90 is penetrated in a heat exchangeable state.
As a result, during heating operation, the indoor unit RU passes through the air conditioning heat exchanger 44 of the indoor unit RU when the heating load increases due to the inflow of outside air accompanying opening and closing of doors, windows, etc. Even if cavitation occurs in the evaporation / absorption case 30 due to the inflow of the low-temperature cold / warm water into the evaporation / absorption case 30 when the temperature of the cold / warm water suddenly drops, the low-temperature cold / warm water is also used as the heat exchange pipe 48. Since the inside of the non-condensable gas reservoir 90 is cooled and the pressure inside the non-condensable gas reservoir 90 decreases, the absorption liquid in the non-condensable gas reservoir 90 is evaporated in the evaporation / absorption case 30. There is no backflow.
Moreover, it is good also as a structure which provides an orifice in an absorption liquid return pipe instead of the pipe for cold / hot water heat exchange. (Liquid backflow time earning)
[0060]
FIG. 6 shows a third embodiment of the present invention.
In each of the above embodiments, the ejector 80 is used as a structure for separating the non-condensable gas generated in the absorption cycle, but in the third embodiment, a siphon is used instead of the ejector 80 of the first and second embodiments. A container 800 is used.
The siphon container 800 communicates a non-condensable gas introduction pipe 801 opened at the lower part of the absorber 3 to an intermediate part in the siphon container 800, and an inverted U-shaped (or inverted J-shaped) is formed at the lower part in the siphon container 800. The absorption liquid discharge pipe 802 is formed, which is formed of a) -shaped mountain-shaped tubular body and forms a siphon pipe.
[0061]
From the upper part of the siphon container 800, the high-concentration absorption liquid in the high-concentration absorption liquid spreader 32 for dropping the high-concentration absorption liquid supplied from the low-temperature regenerator 2 to the absorption coil 31 by the high-concentration absorption liquid flow path L2. When the absorption liquid level in the siphon container 800 becomes higher than the peak portion 803 of the absorption liquid discharge pipe 802, the absorption liquid in the siphon container 800 is discharged from the absorption liquid discharge pipe 802. At that time, the non-condensable gas that has entered the peak portion 803 of the absorption liquid discharge pipe 802 is pushed and discharged by the discharged absorption liquid, and the vapor in the absorber 3 is discharged from the non-condensable gas introduction pipe 801. Inhale refrigerant and noncondensable gas.
[0062]
The absorption liquid discharge pipe 802 is arranged inside the gas-liquid separation pipe 84 made of a valley-like tubular body in the same manner as in the above embodiment to form a gas-liquid separator, and in the absorption liquid that has passed through the valley portion 85. The mixed non-condensable gas is stored upward by gas-liquid replacement.
In this embodiment, an auxiliary absorber that absorbs the vapor refrigerant in the siphon container 800 by the absorbing liquid is formed.
[0063]
【The invention's effect】
As described above, according to the present invention, in the absorption cycle, the refrigerant liquid is stored in the refrigerant liquid storage unit 53 in the condenser 5, so that during the cooling operation, in the absorber 3 and the high-temperature regenerator 1 in the absorption cycle. The concentration of the absorbing solution can be adjusted to a concentration suitable for the cooling operation to ensure cooling performance, and during heating operation, the concentration of the absorbing solution does not increase, so that crystallization can be prevented.
Further, an absorption liquid return pipe 91 communicating with the suction side of the absorption liquid pump P1 is provided upward in the non-condensable gas reservoir 90, and the liquid level of the absorption liquid flowing into the non-condensable gas reservoir 90 is provided. Is absorbed by the absorbing liquid pump P1 when the opening 92 is exceeded, and the absorbing liquid up to the liquid level corresponding to the opening 92 can be stored in the non-condensable gas reservoir 90 during heating operation. Therefore, during heating operation, the absorption liquid can be reduced from the circulation path such as the absorber 3 by this volume. Therefore, the liquid level of the absorbing liquid in the evaporation / absorption case 30, that is, the evaporator 4 can be lowered, and the liquid level of the absorbing liquid supplied from the high-temperature regenerator 1 into the evaporator 4 and the evaporation coil 41 can be reduced. A gap M (see FIG. 4) is secured between them, and the absorbing liquid does not contact the evaporation coil 41. In addition, a gap K is secured between the prevention plate 43A and the liquid surface, and the steam in the high-temperature absorbing liquid supplied from the high-temperature regenerator 1 passes through the gap K, so that steam is mixed. Spouting of the absorbed liquid is prevented by the prevention plate 43 </ b> A, and the absorbed liquid does not scatter in the evaporator 4. Therefore, even when the size of the outdoor unit 100 is reduced and the volume of the evaporator 4 or the like is reduced, it is possible to prevent the absorbing liquid from adhering to the evaporation coil 41 and being corroded.
[0064]
In the above embodiment, only the single indoor unit RU is provided for the outdoor unit 100, but a plurality of indoor units RU may be connected in parallel to the evaporation coil 41 of the outdoor unit 100. Good.
In each of the above embodiments, the cooling tower CT of the cooling water flow path 34 is an open type that evaporates a part of the cooling water to self-cool the cooling water, but the cooling water circulating through the cooling water flow path 34 is A water-cooling device that forms a sealed circuit that is not open to the atmosphere may be used.
In the above embodiment, only the air conditioning heat exchanger 44 is provided in the indoor unit RU. However, in order to perform the dehumidifying operation without lowering the indoor temperature, the air once cooled by the air conditioning heat exchanger 44 is heated. A heating heat exchanger may be provided in parallel with the air conditioning heat exchanger 44.
In the above embodiment, the double-effect formula is described, but a single-effect formula may be used. Moreover, you may use a petroleum burner and an electric heater as a heat source.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an air conditioner showing a first embodiment of the present invention.
FIG. 2 is a partial cross-sectional view for explaining the state of the non-condensable gas reservoir during the cooling operation in the first embodiment.
FIG. 3 is a partial cross-sectional view for explaining the state of the non-condensable gas reservoir during the heating operation in the first embodiment.
FIG. 4 is a partial cross-sectional view for explaining the state of the absorbing liquid in the evaporation / absorption case during heating operation in the embodiment.
FIG. 5 is a cross-sectional view of a non-condensable gas reservoir showing a second embodiment of the present invention.
FIG. 6 is a schematic configuration diagram of an air conditioner showing a third embodiment of the present invention.
[Explanation of symbols]
  1 High temperature regenerator
  2 LowTemperature regenerator
  3 absorber
  30 Evaporation / absorption cellThe
  33 Bottom (the bottom of the absorber)
  4 Evaporator
  41 Evaporation coil (Piping for heat exchange)
  43A prevention plate
  44 Air conditioning heat exchanger (Heat exchanger for air conditioning)
  47 Cold / hot water flow path (cold / hot water circulation circuit)
  48 Cold / hot water return piping (piping for cold / hot water circulation circuit)
  5 Condenser
  52 Refrigerant liquid receiver
  53 Refrigerant liquid storage part
  6 Cooling / heating switching valve
  80 Ejector (Non-condensable gas extraction device)
  81 Suction port (extraction unit)
  84 Gas-liquid separator (gas-liquid separator)
  90 Non-condensable gas storage tank (non-condensable gas storage tank, Non-condensable gas storage room)
  91 Absorbing liquid return pipe (Flow path for absorbing liquid return)
  92Absorption liquid return pipeOpenmouth
  93 Check valvemechanism
  95 Float valve (floating valve)
  97 Orifice
  102 Control device (operation control means)
  B Gas burner (heating means)
  L4 Absorption liquid flow path for heating
  P1 Absorption liquid pump
  RU indoor unit

Claims (5)

冷媒を含む吸収液を加熱手段により加熱して吸収液から冷媒蒸気を分離させる再生器と、
該再生器によって分離した前記冷媒蒸気を冷却して凝縮させるとともに、凝縮によって生じた冷媒液を貯留する冷媒液貯留部が設けられた凝縮器と、
該凝縮器の前記冷媒液貯留部に貯留された冷媒液を低圧下で蒸発させて冷却源とする蒸発器と、
前記蒸発器と連通して設けられ、前記再生器で前記冷媒蒸気が分離された吸収液に、前記蒸発器で蒸発した冷媒蒸気を吸収させる吸収器と、
前記吸収器から前記再生器へ吸収液を戻すための吸収液ポンプとから吸収サイクルを形成し、
室内機に設けられた空調用熱交換器との間で冷温水を循環させるための冷温水循環回路を形成した熱交換用配管を前記蒸発器内に配するとともに、
冷房運転と暖房運転とを切り替えるための冷暖切替え弁を備えた暖房用吸収液流路により前記再生器と前記蒸発器とを接続した吸収式空調装置であって、
冷房運転時には前記冷暖切替え弁を閉弁制御し、暖房運転時には前記冷暖切替え弁を開弁制御する運転制御手段を具備した吸収式空調装置において、
前記蒸発器及び前記吸収器を形成する蒸発吸収ケース内の不凝縮性ガスを抽出する抽出部および前記蒸発吸収ケースの底部と連通して設けられ前記抽出部で抽出された不凝縮性ガスを吸収液から分離する気液分離部とからなる不凝縮性ガス抽出装置と、
該不凝縮性ガス抽出装置の前記気液分離部の端が下端に接続され、前記不凝縮性ガス抽出装置によって抽出される不凝縮性ガスとともに、前記蒸発吸収ケースからの吸収液を貯蔵する不凝縮性ガス貯蔵タンクであって、前記気液分離部との接続位置より上方に位置する該不凝縮性ガス貯蔵タンク内で上方に向かって開口し該不凝縮性ガス貯蔵タンクと前記吸収液ポンプの吸引側とを連通する吸収液戻し用流路を配するとともに、前記不凝縮性ガス貯蔵タンク内に位置する前記吸収液戻し用流路の開口に、吸収液に浮かぶ浮き弁体を有し前記不凝縮性ガス貯蔵タンクから前記吸収液ポンプへ向かう不凝縮性ガスを前記浮き弁体により遮断できる逆止弁機構を設け、前記暖房運転時に前記蒸発吸収ケースから流入する吸収液の液位を前記吸収液戻し用流路の開口まで維持する不凝縮性ガス貯蔵室とを備えることを特徴とする吸収式空調装置。
A regenerator for heating the absorbing liquid containing the refrigerant by a heating means to separate the refrigerant vapor from the absorbing liquid;
A condenser provided with a refrigerant liquid storage section for cooling and condensing the refrigerant vapor separated by the regenerator, and storing refrigerant liquid generated by the condensation;
An evaporator that evaporates the refrigerant liquid stored in the refrigerant liquid storage section of the condenser under a low pressure to serve as a cooling source;
An absorber that is provided in communication with the evaporator and that absorbs the refrigerant vapor evaporated by the evaporator into an absorption liquid from which the refrigerant vapor is separated by the regenerator;
Forming an absorption cycle with an absorption liquid pump for returning the absorption liquid from the absorber to the regenerator,
While arranging a heat exchange pipe forming a cold / hot water circulation circuit for circulating cold / hot water between the air conditioner heat exchanger provided in the indoor unit in the evaporator,
An absorption-type air conditioner in which the regenerator and the evaporator are connected by an absorption liquid passage for heating provided with a cooling / heating switching valve for switching between cooling operation and heating operation,
In the absorption type air conditioner provided with operation control means for controlling the closing of the cooling / heating switching valve during cooling operation, and opening the cooling / heating switching valve during heating operation,
The evaporator and provided through the bottom and the communication of the extraction section and the evaporative absorber case of extracting the non-condensable gas in the evaporator absorbing case of forming the absorber, a non-condensable gas which is extracted by the extraction unit A non-condensable gas extraction device comprising a gas-liquid separation unit that separates from the absorbing liquid;
An end of the gas-liquid separation part of the non-condensable gas extraction device is connected to the lower end, and stores the absorption liquid from the evaporative absorption case together with the non-condensable gas extracted by the non-condensable gas extraction device. a condensable gas storage tank, the gas-liquid in said non-condensable gas storage tank which is located above the connecting position of the separation portion upwardly opening, the absorbing solution and said non-condensable gas storage tank a suction side of the pump with placing the absorption liquid returning flow path communicated, the the open port of the absorption liquid returning flow channel located non-condensable gas storage tank, the float valve body floating in the absorbing solution having said check valve mechanism that can be interrupted by non-condensable gas storage going from the tank to the absorption liquid pump incondensable gases the float valve body is provided, of the absorbing liquid flowing from the evaporative absorber casing during the heating operation Liquid level of the absorbing liquid Absorption air conditioning apparatus characterized by comprising a non-condensable gas storage chamber to maintain up to the opening of the flow path to.
前記気液分離部は、U字形状のU字管体を有し、該U字管体により前記蒸発吸収ケースの下部と前記不凝縮性ガス貯蔵タンクの下部とを連通させることを特徴とする請求項1に記載の吸収式空調装置。  The gas-liquid separator has a U-shaped U-shaped tube, and the U-shaped tube communicates the lower part of the evaporation absorption case and the lower part of the non-condensable gas storage tank. The absorption air conditioner according to claim 1. 前記吸収液戻し用流路内には、前記吸収液ポンプの吸引力を弱めるためのオリフィスが設けられたことを特徴とする請求項1または2のいずれかに記載の吸収式空調装置。  The absorption air conditioner according to claim 1, wherein an orifice for weakening a suction force of the absorption liquid pump is provided in the absorption liquid return flow path. 前記室内機に設けられた前記空調用熱交換器から前記蒸発器内の前記熱交換用配管へ連絡する前記冷温水循環回路の配管を、前記不凝縮性ガス貯蔵タンク内で熱交換可能に貫通させたことを特徴とする請求項1から3のいずれかに記載の吸収式空調装置。  A pipe of the cold / hot water circulation circuit communicating from the air conditioner heat exchanger provided in the indoor unit to the heat exchange pipe in the evaporator is penetrated through the non-condensable gas storage tank so as to allow heat exchange. The absorption air conditioner according to any one of claims 1 to 3, wherein 前記蒸発器における前記暖房用吸収液流路の開口部には、供給される吸収液の噴出を防止するための防止板が設けられたことを特徴とする請求項1から4のいずれかに記載の吸収式空調装置。  5. The prevention plate for preventing ejection of the supplied absorbing liquid is provided at an opening of the heating absorbing liquid channel in the evaporator. 6. Absorption type air conditioner.
JP01542798A 1998-01-28 1998-01-28 Absorption air conditioner Expired - Fee Related JP3911335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01542798A JP3911335B2 (en) 1998-01-28 1998-01-28 Absorption air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01542798A JP3911335B2 (en) 1998-01-28 1998-01-28 Absorption air conditioner

Publications (2)

Publication Number Publication Date
JPH11211289A JPH11211289A (en) 1999-08-06
JP3911335B2 true JP3911335B2 (en) 2007-05-09

Family

ID=11888492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01542798A Expired - Fee Related JP3911335B2 (en) 1998-01-28 1998-01-28 Absorption air conditioner

Country Status (1)

Country Link
JP (1) JP3911335B2 (en)

Also Published As

Publication number Publication date
JPH11211289A (en) 1999-08-06

Similar Documents

Publication Publication Date Title
JP3911335B2 (en) Absorption air conditioner
JP3920978B2 (en) Absorption air conditioner
JP3209927B2 (en) Absorption refrigeration equipment
JP3728122B2 (en) Absorption air conditioner control device
JP3790360B2 (en) Absorption refrigeration system
WO1998019116A1 (en) Liquid refrigerant dropping apparatus for absorption type refrigerators
JP3226460B2 (en) Regenerator for absorption refrigeration system
JP3408116B2 (en) Absorption refrigeration equipment
JP3920979B2 (en) Absorption air conditioner control device
JP2994253B2 (en) Absorption air conditioner
JP3660493B2 (en) Absorption refrigeration system controller
JP3209945B2 (en) Absorption air conditioner
JP3017056B2 (en) Cooling and heating system using absorption refrigeration system
JP3904726B2 (en) Absorption refrigeration system
JP4139068B2 (en) Absorption refrigeration system
KR100306036B1 (en) Absorption refrigerating apparatus
JPH109707A (en) Absorption type refrigerating device
JP3321013B2 (en) Control device of absorption refrigeration system
JP3790355B2 (en) Absorption refrigeration unit regenerator
JP3113195B2 (en) Bleeding device for absorption refrigeration system
JP3321012B2 (en) Control device of absorption refrigeration system
JPH061140B2 (en) Absorption heat pump non-condensable gas discharge device
JP2000186866A (en) Absorption refrigeration apparatus
JP2000220920A (en) Absorptive freezer
JP2000220918A (en) Absorptive freezer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees