[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3728122B2 - Absorption air conditioner control device - Google Patents

Absorption air conditioner control device Download PDF

Info

Publication number
JP3728122B2
JP3728122B2 JP36373398A JP36373398A JP3728122B2 JP 3728122 B2 JP3728122 B2 JP 3728122B2 JP 36373398 A JP36373398 A JP 36373398A JP 36373398 A JP36373398 A JP 36373398A JP 3728122 B2 JP3728122 B2 JP 3728122B2
Authority
JP
Japan
Prior art keywords
cold
heating
hot water
absorption
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36373398A
Other languages
Japanese (ja)
Other versions
JP2000186868A (en
Inventor
寿洋 佐藤
尚哉 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Rinnai Corp
Original Assignee
Osaka Gas Co Ltd
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Rinnai Corp filed Critical Osaka Gas Co Ltd
Priority to JP36373398A priority Critical patent/JP3728122B2/en
Publication of JP2000186868A publication Critical patent/JP2000186868A/en
Application granted granted Critical
Publication of JP3728122B2 publication Critical patent/JP3728122B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、臭化リチウムなどの水溶液を吸収液とする吸収サイクルを形成するとともに再生器から蒸発器へ吸収液を供給する暖房用の吸収液流路を設けて、暖房用の吸収液流路中の弁の開閉によって暖房運転と冷房運転とを切替える吸収式空調装置の制御装置に関し、特に、熱源機となる空調機本体と室内機及び床暖房パネルとの間に設けられた冷温水配管(冷温水循環回路)内の冷温水の凍結防止を図るための技術に関する。
【0002】
【従来の技術】
吸収サイクルを用いた吸収式空調装置では、冷房運転時には、吸収サイクルにおいて、再生器でバーナの加熱により沸騰した低濃度吸収液から冷媒蒸気が分離され、冷媒蒸気は凝縮器で冷却されて冷媒液となり蒸発器へ供給される。再生器で冷媒蒸気が分離されて高濃度となった吸収液は、吸収器へ供給される。吸収器と蒸発器とは連通しており、冷媒液は蒸発器で蒸発して熱を奪って冷却源を形成し、蒸発器内に配した冷温水配管内を循環する冷温水を冷却して、室内機の空調用熱交換器に循環させることで、室内の冷房を行う。
吸収液は吸収器で冷媒蒸気(蒸発器で気化したもの)を吸収し、このときの発熱を外部へ排出するために、吸収器内には熱交換用配管が設けられていて、冷却水ポンプによって供給される冷却水の通過によって外部へ排熱される。
【0003】
暖房運転時には、上記構成の吸収サイクルとは別に再生器と蒸発器とを連絡する吸収液流路中の冷暖切替え弁を開弁し、バーナで加熱された吸収液を蒸発器内へ供給することにより、蒸発器内の冷温水配管を通過する冷温水を加熱して室内機及び床暖房パネルへ循環させる。
【0004】
上記構成において、熱源機となる空調機本体と室内機及び床暖房パネルとの間には、空調機本体で冷却又は加熱された冷温水を循環させるための冷温水循環回路が形成されており、各運転において、蒸発器内で冷却或いは加熱された冷温水が室内機等へ供給されて、室内の冷房又は暖房を行う。
【0005】
ここで、空調機本体は、吸収サイクルを形成しているため、ある程度大きな能力を有するものの方が効率が良く、そのため、1台の空調機本体に対して、複数の室内機及び床暖房パネル等の端末を設けることが可能なマルチエアコンとして商品化されている。
【0006】
上記のように、吸収サイクルを用いて冷房運転と暖房運転とを切替えによって行うようにした吸収式空調装置では、熱源機としての空調機本体と室内機等の端末との間は冷温水配管で接続されており、冷温水配管の外側には、熱効率の低下を防止するために、通常の断熱処理が施されている。
このように構成された吸収式空調装置では、冷寒期等の運転停止中において、空調機本体と室内機等の端末との間の冷温水配管内での凍結を防止するために、従来では、冷温水ポンプを駆動することで冷温水配管内で冷温水を流動させることが行われてきた。
【0007】
【発明が解決しようとする課題】
上述のとおり、吸収式空調装置では、室内機及び床暖房パネルなどの複数の端末が接続可能に構成されているが、常時、すべての端末で運転が行われるとは限らない。
従って、冷寒期において、一部の端末のみで暖房運転が行われていても、暖房運転が行われていない端末については、冷温水循環回路内の冷温水が滞留したままであり、熱源機で加熱された冷温水は、運転停止中の端末を結ぶ冷温水循環回路には循環しない。このため、運転停止中の端末へ通じる冷温水循環回路にあっては、凍結を生ずる恐れがある。
【0008】
本発明は、熱源機と室内機との間の冷温水配管内に冷温水を循環させる吸収式空調装置において、運転停止中の端末へ通ずる冷温水循環回路内の冷温水の凍結を防止することを目的とする。
【0009】
【課題を解決するための手段】
本発明請求項1において、冷媒を含む吸収液を加熱手段により加熱して吸収液から冷媒蒸気を分離させる再生器と、該再生器によって分離した前記冷媒蒸気を冷却して凝縮させる凝縮器と、該凝縮器で生じた冷媒液を低圧下で蒸発させる蒸発器と、前記再生器で前記冷媒蒸気が分離された吸収液に、前記蒸発器で蒸発した冷媒蒸気を吸収させる吸収器と、前記吸収器から前記再生器へ吸収液を戻すための吸収液ポンプとから吸収サイクルを形成するとともに、冷暖切替え弁を備えた暖房用吸収液流路により前記再生器と前記蒸発器とを接続し、前記冷暖切替え弁の閉弁時には、前記吸収サイクルの作動により前記蒸発器を冷却源とするとともに、前記冷暖切替え弁の開弁時には、前記再生器で加熱された吸収液を前記蒸発器へ供給して加熱源とする吸収式熱源機と、冷温水を遮断する開閉弁をそれぞれ備えた任意の台数の空調用熱交換器及び床暖房パネルを前記蒸発器内に配した熱交換用配管に対して並列接続可能に設け、前記熱交換用配管で加熱又は冷却された冷温水を冷温水ポンプによって前記空調用熱交換器及び前記床暖房パネルに循環させる冷温水循環回路と、冷房運転時には前記冷暖切替え弁を閉弁制御し、暖房運転時には前記冷暖切替え弁を開弁制御することによって、冷房運転と暖房運転との切替えや運転開始・停止を制御する運転制御手段を具備する吸収式空調装置の制御装置において、前記運転制御手段により暖房運転が行われているとき外気温度を検知する外気温度検知手段と、前記外気温度検知手段によって検知される外気温度が所定温度以下の場合に、暖房運転していない空調用熱交換器又は床暖房パネルに備えられた前記開閉弁を開弁制御する冷温水凍結防止手段とを具備し、該冷温水凍結防止手段は、前記空調用熱交換器又は前記床暖房パネルにそれぞれ備えられた冷温水温度検知手段によって検知される冷温水温度が閉弁温度以上に達したとき、該閉弁温度以上に達した空調用熱交換器又は床暖房パネルの前記開閉弁を閉弁するとともに、閉弁後の所定時間を計時するために備えたタイマにより計時される所定時間経過後に、前記外気温度検知手段によって検知される外気温度を判別することを特徴とする。
【0010】
請求項2の吸収式空調装置の制御装置は、請求項1の構成に加え、前記外気温度検知手段によって検知される外気温度が低いほど前記タイマにより計時される前記所定時間は短く設定されることを特徴とする。
【0012】
【発明の作用・効果】
(請求項1について)
運転制御手段により暖房運転が行われているときには、加熱手段によって再生器で加熱された吸収液が蒸発器へ供給され、蒸発器内に配置された熱交換用配管内を循環する冷温水が加熱される。
加熱された冷温水は、暖房運転中の空調用熱交換器又は床暖房パネルへ供給されて、室内の暖房が行われる。
この暖房運転中に、外気温度検知手段によって検知される外気温度が所定温度以下になると、暖房運転が行われていない空調用熱交換器及び床暖房パネルに備えられた開閉弁が開弁される。
これによって、外気温度が低い場合に、暖房運転が行われていない空調用熱交換器及び床暖房パネルへも加熱された冷温水が供給されて循環するため、暖房運転が行われていない空調用熱交換器及び床暖房パネルと蒸発器内の熱交換用配管との間の冷温水が凍結することがない。
また、空調用熱交換器又は床暖房パネル内にはそれぞれ冷温水温度検知手段が備えられていて、検知される冷温水温度が閉弁温度以上に上昇すると、その温度を検知した空調用熱交換器又は床暖房パネルに備えられた開閉弁が閉弁される。
これによって、加熱された冷温水の熱が、暖房運転を要求されない室内に放出され続けることがなくなり、エネルギーの無駄を防止することができる。
開閉弁の閉弁後には、タイマによって計時される所定時間が経過すると、再び、外気温度が判別され、外気温度が所定温度より低ければ、再度、開閉弁が開弁され、凍結防止が図られる。
【0016】
(請求項2について)
時する所定時間の設定に際しては、計時する所定時間が凍結防止動作の休止時間となるものであるため、請求項のように、外気温度が低い場合には所定時間を短く設定し、外気温度が高めの場合には所定時間を長く設定すれば、冷温水の温度低下の度合いに応じた頻度で凍結が防止される。
【0017】
【発明の実施の形態】
図1は、本発明に関わる吸収式空調装置の実施例を示す。
吸収式空調装置は、吸収式熱源機としての室外機100と複数の室内機RUとからなる。
室外機100は、図2に示すように、熱源機本体101と冷却塔(クーリングタワー)CTとから構成される。なお、空調装置は、制御装置200により制御される。
【0018】
室外機100において、 熱源機本体101は、主にステンレスによって成形され、冷媒及び吸収液としての臭化リチウム水溶液の冷凍用の吸収サイクルを形成するもので、Bは加熱手段としてのガスバーナ、1は高温再生器、2は低温再生器、3は吸収器、4は蒸発器、5は凝縮器であり、吸収液内には、ステンレスと臭化リチウムとの反応による腐食を抑制するためのインヒビターが含まれている。
【0019】
高温再生器1では、加熱タンク11の内部に供給された低濃度吸収液をガスバーナBによって加熱し、中濃度吸収液分離筒12と吸収液仕切り容器13との間に形成された筒状の吸収液上昇流路14を加熱された吸収液が上昇すると、加熱により低濃度吸収液中の冷媒としての水が蒸発して冷媒蒸気(水蒸気)として分離して、冷媒蒸気の蒸発により濃化した中濃度吸収液は、吸収液戻し板15によって内側へ方向を転換されて吸収液仕切り容器13内へ戻される。
【0020】
冷媒が分離されて高濃度化された中濃度吸収液は、吸収液仕切り容器13の側部に開口した中濃度吸収液流路L1から、低温再生器2へ供給される。
また、分離した冷媒蒸気は冷媒回収タンク10で回収されて、冷媒流路L5により凝縮器5へ供給される。
尚、吸収液仕切り容器13の底部には、暖房運転時に、加熱された吸収液を蒸発器4内へ供給するための暖房用吸収液流路L4の流入口が開口している。
【0021】
冷媒回収タンク10内の下部内側には、冷媒仕切り筒17が中濃度吸収液分離筒12に接合されていて、中濃度吸収液分離筒12との間に断熱用間隙17aを形成しているため、中濃度吸収液分離筒12内の熱が遮断され、冷媒回収タンク10内の冷媒が、吸収液上昇流路14内の高温の吸収液によって加熱されることがない。
冷媒回収タンク10は、冷媒仕切り筒17の外側が、分離された冷媒液を貯留する冷媒貯留部10aとなっており、冷媒貯留部10aに貯留された冷媒液は、冷媒流路L5から凝縮器5へ供給される。
【0022】
低温再生器2では、途中に熱交換器Hを通過する中濃度吸収液流路L1によって供給される中濃度吸収液が、低温再生器ケース20の天井から流入して冷媒回収タンク10の外壁を熱源として再加熱され、気液分離部22で冷媒蒸気と高濃度吸収液とに分離され、冷媒蒸気は、冷媒蒸気出口21および隙間5Aから凝縮器ケース50内へ、高濃度吸収液は、高濃度吸収液受け部23に貯留され、高濃度吸収液流路L2により吸収器3へ供給される。
【0023】
尚、中濃度吸収液流路L1中には、吸収液仕切り容器13から低温再生器2へ流れる中濃度吸収液の流量を制限するためのオリフィス(図示なし)が設けられていて、低温再生器ケース20内へは中濃度吸収液分離筒12との圧力差により中濃度吸収液が供給される。(低温再生器ケース20内では、約70mmHg、中濃度吸収液分離筒12内では約700mmHg)
【0024】
吸収器3は、蒸発・吸収ケース30内に銅管を縦型円筒状に巻設され内部を排熱用冷却水が流れる吸収管としてコイル状に巻かれた吸収コイル31が捲回されており、高濃度吸収液流路L2により低温再生器2の高濃度吸収液受け部23から供給される高濃度吸収液が圧力差により流入して、高濃度吸収液散布具32により吸収コイル31の上端に散布され、吸収コイル31の表面に付着して薄膜状になり、重力の作用で下方に流下し、水蒸気を吸収して低濃度吸収液となる。この水蒸気を吸収する際に吸収コイル31の表面で発熱するが、吸収コイル31を循環する排熱用冷却水により冷却される。
尚、吸収液に吸収される水蒸気は、後述する蒸発器4で冷媒蒸気として発生したものである。
【0025】
吸収器3内の低濃度吸収液は、吸収液ポンプP1の作動により、底部33から、熱交換器Hおよび吸収液ポンプP1が装着された低濃度吸収液流路L3によって加熱タンク11内へ供給される。
また吸収コイル31内には、冷房運転時に、冷却塔CTで冷却された排熱用冷却水が、凝縮器5の冷却コイル51を介して循環する。
【0026】
蒸発器4は、蒸発・吸収ケース30内の吸収コイル31の外周に設けた縦型円筒形で多数の連通口(図示なし)付きの仕切り板40の外周に、内部を冷暖房用の冷温水が流れる銅管からなる縦型円筒形の蒸発コイル41を配設し、その上方に冷媒液散布具42を取り付けてなる。尚、蒸発器4の底部43は、電磁式の冷暖切替え弁6を有する暖房用吸収液流路L4により中濃度吸収液分離筒12内の吸収液仕切り容器13の底部と連通している。
【0027】
以上の構成により、蒸発器4では、冷房運転時に冷媒液散布具42より冷媒液(水)を蒸発コイル41の上に流下させると、流下された冷媒液は、表面張力で蒸発コイル41の表面を濡らして膜状となり、重力の作用で下方へ降下しながら低圧(例えば、6.5mmHg)となっている蒸発・吸収ケース30内で蒸発コイル41から気化熱を奪って蒸発し、蒸発コイル41内を流れる空調用の冷温水を冷却する。
【0028】
凝縮器5では、凝縮器ケース50内には、冷却コイル51によって冷却された冷媒蒸気が液化した冷媒液を凝縮器ケース50の底から浮かした位置で受けるための皿状の冷媒液受け部52が設けられていて、冷媒液受け部52は、蒸発器4の冷媒液散布具42の上方に設けられて、供給される冷媒液の自己冷却により冷媒液を冷却させる冷媒冷却器53と、冷媒液供給路L6によって連通して組付けられている。
【0029】
以上の構造を有する凝縮器5は、冷媒流量を制限するためのオリフィス(図示なし)が設けられた冷媒流路L5により冷媒回収タンク10の冷媒貯留部10aと連通するとともに、冷媒蒸気出口21および隙間5Aを介して低温再生器2とも連通しており、いずれも圧力差(凝縮器ケース内では約70mmHg)により冷媒が供給される。
冷房運転時において、凝縮器ケース50内に供給された冷媒蒸気は、冷却コイル51により冷却されて液化し、凝縮器5の下部に設けられた冷媒液受け部52から蒸発器4内に配置された冷媒液冷却器53へ冷媒液供給路L6を介して供給される。
【0030】
冷媒液受け部52をオーバーフローした冷媒液は、凝縮器ケース50の底によって形成される冷媒液貯留部54に貯留され、冷房運転時に吸収サイクルを循環する吸収液の濃度を実質的に高く維持して、冷房性能を確保している。そして、冷媒液貯留部54と冷媒冷却器53とは、冷媒弁7を備えた冷媒液流路L7によって連通しており、冷媒液の凍結の恐れのある場合に、冷媒弁7の開弁制御によって蒸発器4に冷媒液が供給されて、蒸発器4内の蒸気圧を高くすることにより凍結を防止する。
また、暖房運転の開始時にも、冷媒弁7が開弁されて、冷房運転時に冷媒液貯留部54内に貯留された冷媒液が全て蒸発器4内へ供給され、暖房運転時に加熱されて循環する吸収液の濃度を低く維持して晶析が防止される。
【0031】
以上の構成により、冷房運転時において、吸収液は、高温再生器1→中濃度吸収液流路L1→低温再生器2→高濃度吸収液流路L2→高濃度吸収液散布具32→吸収器3→吸収液ポンプP1→低濃度吸収液流路L3→高温再生器1の順に循環する。
また、冷媒は、高温再生器1(冷媒蒸気)→冷媒流路L5(冷媒蒸気)又は低温再生器2(冷媒蒸気)→凝縮器5(冷媒液)→冷媒供給路L6(冷媒液)又は冷媒液流路L7(冷媒液)→冷媒冷却器53→冷媒液散布具42(冷媒液)→蒸発器4(冷媒蒸気)→吸収器3(吸収液)→吸収液ポンプP1→低濃度吸収液流路L3→高温再生器1の順に循環する。
【0032】
上記、吸収液と熱交換する吸収器3の吸収コイル31と凝縮器5の冷却コイル51は、接続されて連続コイルを形成しており、連続コイルは、冷却水流路34によって冷却塔CTと接続されて冷却水循環路を形成している。
この冷却水循環路において、吸収コイル31の入口と冷却塔CTとの間の冷却水流路34には、連続コイル内へ冷却水を送り込むための冷却水ポンプP2が設けられており、冷却水ポンプP2の作動により連続コイルを通過する冷却水は、吸収コイル31で吸収熱を、冷却コイル51で凝縮熱をそれぞれ吸熱して比較的高温となって、冷却塔CTに供給される。
【0033】
上記の構成により、冷房運転時には、冷却水ポンプP2の作動により冷却塔CT内の冷却水が、冷却塔CT→冷却水ポンプP2→吸収コイル31→冷却コイル51→冷却塔CTの順に循環する。
冷却塔CTでは、落下する冷却水を大気中に一部蒸発させて、残りの冷却水を冷却する自己冷却がなされており、冷却水は、大気中に放熱して低温度になる排熱サイクルを形成している。なお、送風機Sからの送風により、水の蒸発を促進させている。
蒸発器4の蒸発コイル41には、室内機RUに設けられた空調熱交換器44が冷温水流路47で連結されていて、冷温水流路47には、冷温水ポンプP3が設けられている。
【0034】
室内機RUには、空調熱交換器44が設けられているとともに、この熱交換器44に対して、室内空気を通過させて再び室内へ吹き出すブロワ46が備えられている。
各室内機RUの空調用熱交換器44の下流側の冷温水流路47には、それぞれモータ駆動の開閉弁48が備えられており、各室内機RUに備えられたリモコンの操作信号に応じて、運転が指示された室内機RUに備えられた開閉弁48のみが開弁駆動され、他の室内機RUの開閉弁48は閉弁されたままとなる。
また、室内機RUには、空調用熱交換器44の上流で、冷温水配管内の冷温水の温度を検知するための冷温水入口サーミスタ49が備えられている。
以上の構成により、蒸発コイル41で低温度となった冷温水は、開閉弁48が開弁駆動された室内機RUについては、蒸発コイル41→冷温水流路47→空調熱交換器44→冷温水流路47→冷温水ポンプP3→蒸発コイル41の順で循環する。
【0035】
暖房用吸収液流路L4および冷暖切替え弁6は暖房運転用に設けられたもので、暖房運転時には冷暖切替え弁6を開弁し、吸収液ポンプP1を作動させる。
これにより、中濃度吸収液分離筒12内の吸収液仕切り容器13内の高温度の中濃度吸収液が蒸発器4内へ流入し、中濃度吸収液の高温蒸気(冷媒蒸気)によって、蒸発コイル41内の冷温水が加熱され、加熱された蒸発コイル41内の冷温水は、冷温水ポンプP3の作動により冷温水流路47から空調用熱交換器44へ供給され、暖房の熱源となる。
蒸発器4内の中濃度吸収液は、仕切り板40の連通口から吸収器3側へ入り、低濃度吸収液流路L3を経て、吸収液ポンプP1により加熱タンク11へ戻される。
【0036】
以上の構成からなる本実施例の空調装置では、吸収サイクルにおいて吸収液を循環させるための吸収液ポンプP1と、蒸発器コイル41で冷却または加熱された冷温水を冷温水流路47によって室内機RUの空調用熱交換器44に循環させるための冷温水ポンプP3とが、同一のモータによって駆動されるタンデムポンプとして構成されていて、常に吸収液ポンプP1と冷温水ポンプP3とが同時に同一回転数で回転する。
【0037】
次に、空調装置を制御する制御装置200の制御動作について説明する。
制御装置200は、ガスバーナBの燃焼制御、吸収液ポンプP1及び冷温水ポンプP3を駆動するタンデムポンプの制御、冷温水ポンプP2の制御、冷却塔CTの送風機Sの回転制御、吸収サイクル内に設けられた各弁6、7の制御等により、空調装置の冷房運転、暖房運転の各制御を行うとともに、各運転の停止中には、室外機100と室内機RUとの間を接続する冷温水流路47内の冷温水の凍結防止のための凍結防止運転を行う。
以下では、暖房運転および凍結防止運転についてのみ説明を行い、冷房運転については説明を省略する。
【0038】
[暖房運転]
暖房運転は、使用者によって室内機RUが設置された室内に設けられたリモコン(図示なし)の暖房運転開始の指示に応じて冷暖切替え弁6を開弁し、吸収液ポンプP1及び冷温水ポンプP3を駆動するタンデムポンプの作動を開始し、ガスバーナBを燃焼して行われる。
この実施例では、暖房運転の対象として、室内機RUのみを設置したものを示しているが、この空調システムでは、図6に示すように、室外機100は、冷温水を床暖房パネル300にも供給可能に構成されており、制御装置200においては、床暖房パネル300が設置されているか否かを、床暖房パネル300に別途備えられる床暖房パネル用リモコン(図示しない)からの操作信号の有無によって判別し、その結果に基づいて、各制御を行う。
以下では、制御装置200の暖房制御について、図3に示すタンデムポンプの制御を参考にして説明する。
【0039】
リモコンから暖房運転の要求信号が送出されると、その信号が床暖房パネル用リモコンからの床暖房運転信号であるか否かを判別し、床暖房運転信号である場合には(ステップ10においてYES)、タンデムポンプの直流モータを制御するインバータを110Hzに制御して(ステップ11)、タンデムポンプの回転数を3300rpmの高回転数で駆動して、大きな揚程・流量を確保する。
【0040】
床暖房運転信号でない場合には(ステップ10においてNO)、室内機RUの暖房運転台数が1台であるかを判別し(ステップ12)、室内機RUの運転台数が2台以上の場合には(ステップ12においてNO)、タンデムポンプの直流モータを制御するインバータを70Hzに制御して(ステップ13)、タンデムポンプの回転数を2100rpmの中回転数で駆動し、室内機RUの運転台数が1台だけの場合には(ステップ12においてYES)、インバータを60Hzに制御して(ステップ14)、タンデムポンプの回転数を1800rpmの低回転数で駆動する。
尚、上記、各回転数に制御されるタンデムポンプの回転数は、室外機100に接続された室内機RUおよび床暖房パネルの端末の台数のみによって固定回転数に制御され、各種のサーミスタの検知温度には依存しない。
【0041】
他方、暖房運転において、ガスバーナBの燃焼量制御では、室内機RUの室外機100への戻り部の冷温水流路47に設けられた冷温水入口サーミスタ49に検知される冷温水温度Twに基づいて、この冷温水温度Twが60℃になるように、1500kcal/h〜8000kcal/hの間でガスバーナBのインプットをガス比例弁によって制御する。
この間、室内機RUでは、供給される冷温水の温度を検知する冷温水入口温度サーミスタ49の検知温度に応じて、ブロワ46の回転数が制御される。
また、冷却水流路34においては、冷却水ポンプP2及び送風機Sを駆動せず、冷却水回路内に設けられた排水弁(図示なし)を開弁して、冷却水回路内の水を全て排水する。
【0042】
上記のとおり行われる暖房運転中において、暖房運転をしていない端末としての室内機RUあるいは床暖房パネル300への冷温水流路47においては、外気温度が低い場合には、冷温水流路47内の冷温水が凍結する恐れがある。
このため、本実施例では、暖房運転中に、運転中でない室内機RU或いは床暖房パネル300への冷温水流路47の凍結を防止するための暖房時凍結防止制御を合わせて行う。
【0043】
以下に、暖房時凍結防止制御を図4に基づいて説明する。
[暖房時凍結防止制御]
暖房運転が行われている場合、室外機100に備えられた外気温度サーミスタ201により検知される外気温度が所定温度(例えば3℃)以下か否かを判別し、所定温度(例えば3℃)より高い場合には(ステップ21においてNO)、そのまま待機する。
外気温度が所定温度(3℃)以下の場合には(ステップ21においてYES)、暖房時凍結防止動作として、運転中でない各室内機RU及び床暖房パネルに設けられた開閉弁48をそれぞれ開弁する(ステップ22)。
これによって運転中でない各室内機RU及び床暖房パネルを含む冷温水流路47内を、暖房用に加熱された高温の冷温水が循環するため、この熱によって、冷温水の凍結を防止することができる。
【0044】
その後、開閉弁48を開弁したままであると、暖房運転が要求されていない室内へ冷温水の熱が過剰に放出されて、エネルギーが無駄になるため、冷温水入口サーミスタ49によって検知される冷温水温度が33℃に達した室内機RU或いは床暖房パネル300については(ステップ23においてYES)、開閉弁48を閉弁する(ステップ24)。
尚、上記ステップ23では、冷温水温度が33℃に達したか否かを判別したが、タイマ(例えば10分)による開弁時間が経過したか否かを判別しても良い。
【0045】
その後は、運転中でないすべての室内機RU或いは床暖房パネル300が備える開閉弁48が閉じられてからの経過時間を計時し、開閉弁48の閉弁後の経過時間が所定時間(例えば15分)を経過した時点で(ステップ25においてYES)、ステップ21へ移行し、再び、外気温度サーミスタ201の検知する外気温度が所定温度(3℃)以下であるか否かを判別し、所定温度以下であれば、上記のとおり、再び、各開閉弁48の開弁動作を行う。
以上のとおり、本発明では、暖房運転中に外気温度が所定温度(3℃)以下の場合には、運転中でない室内機RU或いは床暖房パネル300に付いて、それぞれ開閉弁48を開弁して、暖房用に加熱された高温の冷温水を各冷温水流路47に流すことによって、凍結を防止することができる。
尚、上記では、閉弁後に一定の所定時間(15分)が経過したときに、再び、外気温度を判別して暖房時凍結防止を行うか否かを判断したが、外気温度に応じ、例えば、外気温度が−10℃以下の場合には15分、−10℃〜−5℃の場合には30分、−5℃〜−3℃の場合には60分と、タイマにより計時される所定時間を変更してもよい。
また、この計時時間を変更する場合には、閉弁時の冷温水温度と外気温度との組み合わせにより、所定時間を決めるとよい。
【0046】
次に、暖房運転および冷房運転が行われていない場合における凍結防止運転について、図5に基づいて説明する。
[凍結防止運転]
凍結防止運転は、上記、暖房運転中の暖房時凍結防止制御とは異なり、冷寒期に暖房が行われていない場合に、冷温水流路47内の冷温水が凍結するのを防止するための運転であり、冷房運転及び暖房運転が共に行われていない場合にのみに行われるものである。
【0047】
冷房運転及び暖房運転が共に行われていない場合、室外機100に備えられた外気温度サーミスタ201により検知される外気温度が3℃以下か否かを判別し、3℃より高い場合には(ステップ31においてNO)、そのまま待機する。
外気温度が3℃以下の場合には(ステップ31においてYES)、凍結防止制御を行い(ステップ32)、冷暖切替え弁6を開弁するとともに冷温水ポンプP3を駆動する直流モータを制御して、冷温水ポンプP3を駆動し、各室内機RUに設けられた開閉弁48をそれぞれ開弁する。
【0048】
この凍結防止制御においては、室外機100に接続された室内機RUの台数および床暖房パネルの有無に応じて、床暖房パネルが接続されている場合には大回転数に、また、床暖房パネルが接続されていない場合には、室内機RUの接続台数に応じて、その台数が多いほど大回転数にタンデムポンプの回転数制御を行う。
これによって室内機RUを含む冷温水流路47内を冷温水が循環するため、冷温水の流動によって、冷温水の凍結を防止することができる。また、床暖房パネルが接続されていなくて空調熱交換器44の接続台数の少ない場合には、騒音を抑制できる。
【0049】
凍結防止制御を行っている間に、外気温度が3℃より高くなれば(ステップ33においてNO)、冷暖切替え弁6を閉弁するとともに冷温水ポンプP3を駆動する直流モータを停止して、冷温水ポンプP3を停止し、各室内機RUに設けられた開閉弁48をそれぞれ閉弁する(ステップ34)。
尚、ステップ32における冷暖切替え弁6の開弁制御は、冷温水ポンプP3が吸収液ポンプP1と同一回転するタンデムポンプが構成されているため、吸収サイクル内での吸収液の流路を確保するためである。
【0050】
以上のとおり、本発明によれば、暖房運転時に、外気温度が低い場合に、室外機100に接続された床暖房パネル300及び室内機RUのうち運転されていないものについても、開閉弁48を開弁して冷温水を循環させるため、凍結を防止することができる。
【0051】
上記実施例では、冷温水ポンプP3を吸収液ポンプP1と同一回転するようにタンデムポンプによって構成したが、冷温水ポンプP3と吸収液ポンプP1とを個別に駆動するようにしてもよい。その場合、上記ステップ32における冷暖切替え弁6の開弁動作は、不要になる。
【0052】
室内機RUに空調熱交換器44のみを設けたものを示したが、室内温度を下げないで除湿運転を行うために、空調熱交換器44で一旦冷却した空気を加熱する加熱用熱交換器を空調熱交換器44と並設させるようにしてもよい。
上記実施例では、2重効用式で説明したが、1重効用式でもよい。また、加熱源としては、石油バーナや、電気ヒータを用いてもよい。
【図面の簡単な説明】
【図1】本発明の実施例を示す吸収式空調装置の概略構成図である。
【図2】本発明の実施例を示す室外機の概略構成図である。
【図3】本発明の実施例の制御装置における暖房運転のタンデムポンプの制御動作の概略を説明するための流れ図である。
【図4】本発明の実施例の制御装置の暖房運転時凍結防止制御の概略を説明するための流れ図である。
【図5】本発明の実施例の制御装置における凍結防止運転を説明するための流れ図である。
【図6】本発明の他の実施例を示す吸収式空調装置の概略構成図である。
【符号の説明】
1 高温再生器
2 低温再生器
3 吸収器
4 蒸発器
41 蒸発コイル(熱交換用配管)
44 空調熱交換器(空調用熱交換器)
47 冷温水流路(冷温水循環回路)
48 開閉弁
49 冷温水入口サーミスタ(冷温水温度検知手段)
5 凝縮器
54 冷媒液貯留部
6 冷暖切替え弁
B ガスバーナ(加熱手段)
P1 吸収液ポンプ
P3 冷温水ポンプ
L4 暖房用吸収液流路
RU 室内機
101 熱源機(吸収式熱源機)
100 室外機
200 制御装置(運転制御手段、冷温水凍結防止手段、タイマ)
201 外気温度サーミスタ(外気温度検知手段)
300 床暖房パネル
[0001]
BACKGROUND OF THE INVENTION
The present invention provides an absorption liquid passage for heating that forms an absorption cycle using an aqueous solution of lithium bromide or the like as an absorption liquid and supplies the absorption liquid from the regenerator to the evaporator. The present invention relates to a control device for an absorption air conditioner that switches between heating operation and cooling operation by opening and closing a valve in the inside, and in particular, cold / hot water pipes provided between an air conditioner body serving as a heat source machine and an indoor unit and a floor heating panel ( The present invention relates to a technique for preventing freezing of cold / hot water in a cold / hot water circulation circuit).
[0002]
[Prior art]
In an absorption type air conditioner using an absorption cycle, during cooling operation, the refrigerant vapor is separated from the low-concentration absorption liquid boiled by heating of the burner in the regenerator during the cooling operation, and the refrigerant vapor is cooled by the condenser and is cooled to the refrigerant liquid. And supplied to the evaporator. The absorbing liquid having a high concentration as the refrigerant vapor is separated in the regenerator is supplied to the absorber. The absorber and the evaporator communicate with each other, and the refrigerant liquid evaporates in the evaporator and takes heat to form a cooling source, and cools the cold / hot water circulating in the cold / hot water piping arranged in the evaporator. The indoor unit is cooled by circulating it through the heat exchanger for air conditioning of the indoor unit.
The absorption liquid absorbs the refrigerant vapor (vaporized by the evaporator) with the absorber, and in order to discharge the heat generated at this time to the outside, a heat exchange pipe is provided in the absorber, and the cooling water pump Heat is discharged to the outside by passage of the cooling water supplied by.
[0003]
During heating operation, the cooling / heating switching valve in the absorption liquid flow path connecting the regenerator and the evaporator is opened separately from the absorption cycle configured as described above, and the absorption liquid heated by the burner is supplied into the evaporator. Thus, the cold / hot water passing through the cold / hot water pipe in the evaporator is heated and circulated to the indoor unit and the floor heating panel.
[0004]
In the above configuration, a cold / hot water circulation circuit for circulating cold / hot water cooled or heated by the air conditioner body is formed between the air conditioner body serving as a heat source unit and the indoor unit and the floor heating panel. In operation, cold / hot water cooled or heated in the evaporator is supplied to an indoor unit or the like to cool or heat the room.
[0005]
Here, since the air conditioner main body forms an absorption cycle, it is more efficient to have a certain degree of capacity. Therefore, for a single air conditioner main body, a plurality of indoor units, floor heating panels, etc. It is commercialized as a multi air conditioner that can be equipped with a terminal.
[0006]
As described above, in the absorption type air conditioner that uses the absorption cycle to switch between the cooling operation and the heating operation, a cold / hot water pipe is provided between the air conditioner body as a heat source device and the terminal of the indoor unit or the like. In order to prevent a decrease in thermal efficiency, a normal heat insulation process is performed on the outside of the cold / hot water pipe.
In the absorption-type air conditioner configured in this way, in order to prevent freezing in the cold / hot water pipe between the air conditioner main body and the terminal such as the indoor unit during the operation stop in the cold / cold season or the like, The cold / hot water has been made to flow in the cold / hot water pipe by driving the cold / hot water pump.
[0007]
[Problems to be solved by the invention]
As described above, the absorption air conditioner is configured so that a plurality of terminals such as an indoor unit and a floor heating panel can be connected, but the operation is not always performed on all terminals.
Therefore, even if the heating operation is performed only in some terminals in the cold / cold season, the cold / hot water in the cold / hot water circulation circuit remains in the terminals that are not performing the heating operation. The heated cold / warm water does not circulate in the cold / warm water circulation circuit connecting the terminals that are stopped. For this reason, in the cold / hot water circulation circuit which leads to the terminal which has stopped operation, there is a risk of freezing.
[0008]
The present invention relates to an absorption type air conditioner that circulates cold / hot water in a cold / hot water pipe between a heat source unit and an indoor unit, and prevents freezing of the cold / hot water in a cold / hot water circulation circuit that leads to a terminal that is stopped. Objective.
[0009]
[Means for Solving the Problems]
In Claim 1 of this invention, the regenerator which heats the absorption liquid containing a refrigerant | coolant by a heating means and isolate | separates a refrigerant | coolant vapor | steam from an absorption liquid, The condenser which cools and condenses the said refrigerant | coolant vapor | steam isolate | separated by this regenerator, An evaporator that evaporates the refrigerant liquid generated in the condenser under a low pressure; an absorber that absorbs the refrigerant vapor evaporated in the evaporator into an absorption liquid from which the refrigerant vapor is separated in the regenerator; An absorption cycle is formed from the absorption liquid pump for returning the absorption liquid from the absorber to the regenerator, and the regenerator and the evaporator are connected by a heating absorption liquid flow path provided with a cooling / heating switching valve. When the cooling / heating switching valve is closed, the evaporator is used as a cooling source by the operation of the absorption cycle, and when the cooling / heating switching valve is opened, the absorbing liquid heated by the regenerator is supplied to the evaporator. Heating Parallel connection and the absorption type heat source machine, any air-conditioning heat exchanger and a floor heating panel of number of opening and closing valves provided respectively for blocking the cold and hot water, to the evaporator heat exchange pipe arranged in to A chilled / hot water circulation circuit for circulating the chilled / warm water heated or cooled in the heat exchange pipe to the air conditioning heat exchanger and the floor heating panel by a chill / warm water pump, and the cooling / warming switching valve during cooling operation are closed. In the control device of the absorption type air conditioner comprising the operation control means for controlling the switching between the cooling operation and the heating operation and the operation start / stop by controlling the valve and opening and closing the cooling / heating switching valve at the time of the heating operation, An outside air temperature detecting means for detecting an outside air temperature when heating operation is performed by the operation control means, and an outside air temperature detected by the outside air temperature detecting means is equal to or lower than a predetermined temperature. Comprising a cold water antifreeze means for opening controlling the on-off valve provided in the heating operation and have not air-conditioning heat exchanger or floor heating panel, cold hot antifreeze means, the heat exchanger for the air conditioner Or when the cold / hot water temperature detected by the cold / hot water temperature detection means respectively provided in the floor heating panel reaches the valve closing temperature or higher, the air conditioning heat exchanger or floor heating panel that has reached the valve closing temperature or higher The open / close valve is closed, and after an elapse of a predetermined time measured by a timer provided for measuring a predetermined time after the valve is closed, an outside air temperature detected by the outside air temperature detecting means is determined. To do.
[0010]
Controller of the absorption-type air conditioner according to claim 2, in addition to the configuration of claim 1, wherein the predetermined time when the outside air temperature detected by said outside air temperature detecting means is timed by low as the timer is set shorter Rukoto It is characterized by.
[0012]
[Operation and effect of the invention]
(About claim 1)
When the heating control is performed by the operation control means, the absorbing liquid heated by the regenerator by the heating means is supplied to the evaporator, and the cold / hot water circulating in the heat exchange pipe disposed in the evaporator is heated. Is done.
The heated cold / hot water is supplied to the air conditioner heat exchanger or the floor heating panel during the heating operation, and the room is heated.
During the heating operation, when the outside air temperature detected by the outside air temperature detecting means falls below a predetermined temperature, the air conditioning heat exchanger that is not performing the heating operation and the opening / closing valve provided in the floor heating panel are opened. .
As a result, when the outside air temperature is low, heated and cooled water is supplied and circulated to the air conditioning heat exchanger and the floor heating panel that are not heated. Cold / hot water between the heat exchanger and the floor heating panel and the heat exchange pipe in the evaporator does not freeze.
The air conditioner heat exchanger or floor heating panel is provided with cold / hot water temperature detection means, respectively. When the detected cold / warm water temperature rises above the valve closing temperature, the heat exchange for air conditioning that detects the temperature is detected. The on-off valve provided in the heater or floor heating panel is closed.
Thereby, the heat of the heated cold / hot water is not continuously released into the room where the heating operation is not required, and waste of energy can be prevented.
After the opening / closing valve is closed, when a predetermined time measured by the timer has elapsed, the outside air temperature is determined again. If the outside air temperature is lower than the predetermined temperature, the opening / closing valve is opened again to prevent freezing. .
[0016]
(Claim 2)
In the predetermined time set in a time meter, since they are the predetermined time for counting is downtime antifreezing operation, as claimed in claim 2, set a short predetermined time when the outside air temperature is low, the outside air If the predetermined time is set longer when the temperature is high, freezing is prevented at a frequency corresponding to the degree of the temperature drop of the cold / hot water.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of an absorption air conditioner according to the present invention.
The absorption air conditioner includes an outdoor unit 100 as an absorption heat source unit and a plurality of indoor units RU.
As shown in FIG. 2, the outdoor unit 100 includes a heat source unit main body 101 and a cooling tower (cooling tower) CT. The air conditioner is controlled by the control device 200.
[0018]
In the outdoor unit 100, the heat source unit main body 101 is mainly formed of stainless steel and forms an absorption cycle for freezing a lithium bromide aqueous solution as a refrigerant and an absorbing solution. B is a gas burner as a heating means, A high-temperature regenerator, 2 is a low-temperature regenerator, 3 is an absorber, 4 is an evaporator, and 5 is a condenser. In the absorbent, an inhibitor for inhibiting corrosion due to the reaction between stainless steel and lithium bromide is contained. include.
[0019]
In the high-temperature regenerator 1, the low-concentration absorbing liquid supplied to the inside of the heating tank 11 is heated by the gas burner B, and the cylindrical absorption formed between the medium-concentrating absorbing liquid separating cylinder 12 and the absorbing liquid partition container 13. When the absorption liquid heated through the liquid rising channel 14 rises, the water as the refrigerant in the low-concentration absorption liquid evaporates by heating and is separated as refrigerant vapor (water vapor), and is concentrated by evaporation of the refrigerant vapor. The concentration absorbing liquid is turned inward by the absorbing liquid return plate 15 and returned to the absorbing liquid partition container 13.
[0020]
The medium-concentration absorbing liquid whose concentration has been increased by separating the refrigerant is supplied to the low-temperature regenerator 2 from the medium-concentration absorbing liquid channel L1 opened at the side of the absorbing liquid partitioning container 13.
The separated refrigerant vapor is recovered in the refrigerant recovery tank 10 and supplied to the condenser 5 through the refrigerant flow path L5.
In addition, at the bottom of the absorption liquid partition container 13, an inlet of the heating absorption liquid flow path L <b> 4 for supplying the heated absorption liquid into the evaporator 4 during the heating operation is opened.
[0021]
The refrigerant partition cylinder 17 is joined to the intermediate concentration absorbing liquid separation cylinder 12 inside the lower part of the refrigerant recovery tank 10, and a heat insulating gap 17 a is formed between the intermediate concentration absorbing liquid separation cylinder 12. The heat in the intermediate concentration absorbing liquid separating cylinder 12 is cut off, and the refrigerant in the refrigerant recovery tank 10 is not heated by the high temperature absorbing liquid in the absorbing liquid ascending flow path 14.
In the refrigerant recovery tank 10, the outside of the refrigerant partition cylinder 17 is a refrigerant storage part 10a for storing the separated refrigerant liquid, and the refrigerant liquid stored in the refrigerant storage part 10a is supplied from the refrigerant flow path L5 to the condenser. 5 is supplied.
[0022]
In the low-temperature regenerator 2, the medium-concentration absorbing liquid supplied by the medium-concentration absorbing liquid flow path L 1 that passes through the heat exchanger H in the middle flows from the ceiling of the low-temperature regenerator case 20 and passes through the outer wall of the refrigerant recovery tank 10. Reheated as a heat source, separated into refrigerant vapor and high-concentration absorption liquid by the gas-liquid separator 22, the refrigerant vapor passes from the refrigerant vapor outlet 21 and the gap 5 </ b> A into the condenser case 50, and the high-concentration absorption liquid It is stored in the concentration absorbing liquid receiving portion 23 and supplied to the absorber 3 through the high concentration absorbing liquid channel L2.
[0023]
Note that an orifice (not shown) for limiting the flow rate of the intermediate concentration absorbing liquid flowing from the absorbing liquid partition container 13 to the low temperature regenerator 2 is provided in the intermediate concentration absorbing liquid flow path L1, and the low temperature regenerator is provided. The medium concentration absorbing liquid is supplied into the case 20 due to a pressure difference from the medium concentration absorbing liquid separating cylinder 12. (About 70 mmHg in the low-temperature regenerator case 20 and about 700 mmHg in the medium concentration absorbent separating cylinder 12)
[0024]
In the absorber 3, an absorption coil 31 wound in a coil shape is wound as an absorption tube in which a copper tube is wound in a vertical cylindrical shape inside the evaporation / absorption case 30 and through which the cooling water for exhaust heat flows. The high-concentration absorbent supplied from the high-concentration absorbent receiver 23 of the low-temperature regenerator 2 flows in due to the pressure difference through the high-concentration absorbent flow path L2, and the upper end of the absorption coil 31 is absorbed by the high-concentration absorbent spreader And is deposited on the surface of the absorption coil 31 to form a thin film, which flows downward due to the action of gravity and absorbs water vapor to form a low concentration absorbent. When the water vapor is absorbed, heat is generated on the surface of the absorption coil 31, but it is cooled by the exhaust heat cooling water circulating through the absorption coil 31.
The water vapor absorbed by the absorbing liquid is generated as refrigerant vapor in the evaporator 4 described later.
[0025]
The low concentration absorbent in the absorber 3 is supplied into the heating tank 11 from the bottom 33 through the low concentration absorbent flow path L3 to which the heat exchanger H and the absorbent pump P1 are mounted by the operation of the absorbent pump P1. Is done.
Further, in the absorption coil 31, the exhaust heat cooling water cooled by the cooling tower CT circulates through the cooling coil 51 of the condenser 5 during the cooling operation.
[0026]
The evaporator 4 is a vertical cylindrical shape provided on the outer periphery of the absorption coil 31 in the evaporation / absorption case 30 and has an outer periphery of a partition plate 40 with a large number of communication ports (not shown). A vertical cylindrical evaporation coil 41 made of a flowing copper tube is provided, and a refrigerant liquid spreader 42 is attached above it. The bottom 43 of the evaporator 4 communicates with the bottom of the absorbing liquid partition container 13 in the intermediate concentration absorbing liquid separating cylinder 12 by a heating absorbing liquid flow path L4 having an electromagnetic cooling / heating switching valve 6.
[0027]
With the above configuration, in the evaporator 4, when the refrigerant liquid (water) is caused to flow down on the evaporation coil 41 from the refrigerant liquid spreader 42 during the cooling operation, the refrigerant liquid that has flowed down is brought into the surface of the evaporation coil 41 by surface tension. In the evaporation / absorption case 30 which is lowered to a low pressure (for example, 6.5 mmHg) while being lowered downward due to the action of gravity, the evaporation coil 41 takes away heat of vaporization and evaporates. Cooling hot and cold water for air conditioning flowing inside.
[0028]
In the condenser 5, in the condenser case 50, a dish-shaped refrigerant liquid receiving portion 52 for receiving the refrigerant liquid liquefied by the refrigerant vapor cooled by the cooling coil 51 at a position floating from the bottom of the condenser case 50. The refrigerant liquid receiving part 52 is provided above the refrigerant liquid spraying device 42 of the evaporator 4 and cools the refrigerant liquid by self-cooling of the supplied refrigerant liquid, and the refrigerant The liquid supply path L6 communicates and is assembled.
[0029]
The condenser 5 having the above structure communicates with the refrigerant storage portion 10a of the refrigerant recovery tank 10 through the refrigerant flow path L5 provided with an orifice (not shown) for limiting the refrigerant flow rate, and the refrigerant vapor outlet 21 and The refrigerant communicates with the low-temperature regenerator 2 through the gap 5A, and the refrigerant is supplied by a pressure difference (about 70 mmHg in the condenser case).
During the cooling operation, the refrigerant vapor supplied into the condenser case 50 is cooled and liquefied by the cooling coil 51, and is arranged in the evaporator 4 from the refrigerant liquid receiving portion 52 provided at the lower part of the condenser 5. The refrigerant liquid cooler 53 is supplied via the refrigerant liquid supply path L6.
[0030]
The refrigerant liquid overflowing the refrigerant liquid receiving part 52 is stored in the refrigerant liquid storage part 54 formed by the bottom of the condenser case 50, and the concentration of the absorption liquid circulating in the absorption cycle during cooling operation is maintained substantially high. The cooling performance is ensured. The refrigerant liquid reservoir 54 and the refrigerant cooler 53 communicate with each other through a refrigerant liquid flow path L7 provided with the refrigerant valve 7, and when the refrigerant liquid may be frozen, the valve opening control of the refrigerant valve 7 is performed. As a result, the refrigerant liquid is supplied to the evaporator 4 to prevent the freezing by increasing the vapor pressure in the evaporator 4.
Also, at the start of the heating operation, the refrigerant valve 7 is opened, and all the refrigerant liquid stored in the refrigerant liquid storage unit 54 during the cooling operation is supplied into the evaporator 4 and is heated and circulated during the heating operation. Crystallization is prevented by keeping the concentration of the absorbing solution low.
[0031]
With the above configuration, during cooling operation, the absorption liquid is the high temperature regenerator 1 → the intermediate concentration absorption liquid channel L1 → the low temperature regenerator 2 → the high concentration absorption liquid channel L2 → the high concentration absorption liquid sprayer 32 → the absorber. Circulation is performed in the order of 3 → absorbing liquid pump P1 → low concentration absorbing liquid flow path L3 → high temperature regenerator 1.
Also, the refrigerant is a high temperature regenerator 1 (refrigerant vapor) → refrigerant flow path L5 (refrigerant vapor) or low temperature regenerator 2 (refrigerant vapor) → condenser 5 (refrigerant liquid) → refrigerant supply path L6 (refrigerant liquid) or refrigerant. Liquid flow path L7 (refrigerant liquid) → refrigerant cooler 53 → refrigerant liquid sprayer 42 (refrigerant liquid) → evaporator 4 (refrigerant vapor) → absorber 3 (absorbing liquid) → absorbing liquid pump P1 → low concentration absorbing liquid flow It circulates in order of path L3-> high temperature regenerator 1.
[0032]
The absorption coil 31 of the absorber 3 that exchanges heat with the absorption liquid and the cooling coil 51 of the condenser 5 are connected to form a continuous coil, and the continuous coil is connected to the cooling tower CT by the cooling water channel 34. As a result, a cooling water circulation path is formed.
In this cooling water circulation path, the cooling water flow path 34 between the inlet of the absorption coil 31 and the cooling tower CT is provided with a cooling water pump P2 for feeding cooling water into the continuous coil, and the cooling water pump P2 The cooling water that passes through the continuous coil by the operation of the above absorbs the heat of absorption by the absorption coil 31 and the heat of condensation by the cooling coil 51 and becomes relatively high temperature, and is supplied to the cooling tower CT.
[0033]
With the above configuration, during the cooling operation, the cooling water in the cooling tower CT is circulated in the order of the cooling tower CT → the cooling water pump P2 → the absorption coil 31 → the cooling coil 51 → the cooling tower CT by the operation of the cooling water pump P2.
In the cooling tower CT, the falling cooling water is partially evaporated into the atmosphere and self-cooling is performed to cool the remaining cooling water, and the cooling water dissipates heat into the atmosphere and becomes a low heat exhaust cycle. Is forming. In addition, evaporation of water is promoted by blowing air from the blower S.
An air conditioning heat exchanger 44 provided in the indoor unit RU is connected to the evaporation coil 41 of the evaporator 4 by a cold / hot water flow path 47, and a cold / hot water pump P 3 is provided in the cold / hot water flow path 47.
[0034]
The indoor unit RU is provided with an air conditioning heat exchanger 44 and a blower 46 through which room air is passed and blown out into the room again.
Each cold / hot water flow path 47 on the downstream side of the air conditioner heat exchanger 44 of each indoor unit RU is provided with a motor-driven on-off valve 48, and according to an operation signal of a remote controller provided in each indoor unit RU. Only the open / close valve 48 provided in the indoor unit RU instructed to operate is opened, and the open / close valves 48 of the other indoor units RU remain closed.
Further, the indoor unit RU is provided with a cold / hot water inlet thermistor 49 for detecting the temperature of the cold / hot water in the cold / hot water pipe upstream of the air conditioner heat exchanger 44.
With the above configuration, the cold / hot water having a low temperature in the evaporation coil 41 is the flow of the evaporation coil 41 → cold / hot water channel 47 → air conditioning heat exchanger 44 → cold / warm water flow for the indoor unit RU whose opening / closing valve 48 is driven to open. It circulates in order of path 47-> cold / hot water pump P3-> evaporation coil 41.
[0035]
The heating absorption liquid flow path L4 and the cooling / heating switching valve 6 are provided for heating operation. During the heating operation, the cooling / heating switching valve 6 is opened to operate the absorption liquid pump P1.
As a result, the high-temperature medium-concentration absorption liquid in the absorption liquid partition container 13 in the medium-concentration absorption liquid separation cylinder 12 flows into the evaporator 4 and is evaporated by the high-temperature vapor (refrigerant vapor) of the medium-concentration absorption liquid. The cold / hot water in 41 is heated, and the heated cold / hot water in the evaporation coil 41 is supplied from the cold / hot water flow path 47 to the air-conditioning heat exchanger 44 by the operation of the cold / hot water pump P3, and becomes a heat source for heating.
The medium concentration absorbing liquid in the evaporator 4 enters the absorber 3 through the communication port of the partition plate 40, and returns to the heating tank 11 by the absorbing liquid pump P1 through the low concentration absorbing liquid channel L3.
[0036]
In the air conditioner of the present embodiment configured as described above, the absorption liquid pump P1 for circulating the absorption liquid in the absorption cycle, and the cold / hot water cooled or heated by the evaporator coil 41 are passed through the cold / hot water flow path 47 to the indoor unit RU. The chilled / hot water pump P3 for circulating to the air conditioning heat exchanger 44 is configured as a tandem pump driven by the same motor, and the absorption liquid pump P1 and the chilled / hot water pump P3 are always at the same rotation speed at the same time. Rotate with.
[0037]
Next, the control operation of the control device 200 that controls the air conditioner will be described.
The control device 200 is provided in the combustion control of the gas burner B, the control of the tandem pump that drives the absorption liquid pump P1 and the cold / hot water pump P3, the control of the cold / hot water pump P2, the rotation control of the blower S of the cooling tower CT, and the absorption cycle. The control of each of the valves 6 and 7 etc. controls the cooling operation and the heating operation of the air conditioner, and when the operation is stopped, the cold / hot water flow connecting the outdoor unit 100 and the indoor unit RU Freezing prevention operation for preventing freezing of the cold / hot water in the passage 47 is performed.
Hereinafter, only the heating operation and the freeze prevention operation will be described, and the description of the cooling operation will be omitted.
[0038]
[Heating operation]
In the heating operation, the cooling / heating switching valve 6 is opened in response to an instruction to start the heating operation by a remote controller (not shown) provided in the room where the indoor unit RU is installed by the user, and the absorption liquid pump P1 and the cold / hot water pump The operation of the tandem pump that drives P3 is started, and the gas burner B is burned.
In this embodiment, only the indoor unit RU is installed as a target for heating operation. However, in this air conditioning system, as shown in FIG. 6, the outdoor unit 100 supplies cold / hot water to the floor heating panel 300. In the control device 200, whether or not the floor heating panel 300 is installed is determined based on an operation signal from a floor heating panel remote controller (not shown) separately provided in the floor heating panel 300. It discriminate | determines by the presence or absence and performs each control based on the result.
Below, the heating control of the control apparatus 200 is demonstrated with reference to control of the tandem pump shown in FIG.
[0039]
When a heating operation request signal is sent from the remote control, it is determined whether or not the signal is a floor heating operation signal from the floor heating panel remote control. If it is a floor heating operation signal (YES in step 10). ), The inverter that controls the DC motor of the tandem pump is controlled to 110 Hz (step 11), and the rotational speed of the tandem pump is driven at a high rotational speed of 3300 rpm to ensure a large head and flow rate.
[0040]
If it is not a floor heating operation signal (NO in step 10), it is determined whether the number of indoor units RU that are heated is one (step 12). If the number of indoor units RU that are operated is two or more, (NO in step 12), the inverter that controls the DC motor of the tandem pump is controlled to 70 Hz (step 13), the tandem pump speed is driven at a medium speed of 2100 rpm, and the number of operating indoor units RU is 1. In the case of only the stand (YES in step 12), the inverter is controlled to 60 Hz (step 14), and the rotational speed of the tandem pump is driven at a low rotational speed of 1800 rpm.
The rotational speed of the tandem pump controlled to each rotational speed is controlled to a fixed rotational speed only by the number of indoor units RU and floor heating panel terminals connected to the outdoor unit 100, and is detected by various thermistors. It does not depend on temperature.
[0041]
On the other hand, in the heating operation, in the combustion amount control of the gas burner B, based on the cold / hot water temperature Tw detected by the cold / hot water inlet thermistor 49 provided in the cold / hot water flow path 47 in the return portion of the indoor unit RU to the outdoor unit 100. The input of the gas burner B is controlled by a gas proportional valve between 1500 kcal / h and 8000 kcal / h so that the cold / hot water temperature Tw becomes 60 ° C.
Meanwhile, in the indoor unit RU, the rotation speed of the blower 46 is controlled according to the temperature detected by the cold / hot water inlet temperature thermistor 49 that detects the temperature of the supplied cold / hot water.
Further, in the cooling water passage 34, the cooling water pump P2 and the blower S are not driven, and a drain valve (not shown) provided in the cooling water circuit is opened to drain all the water in the cooling water circuit. To do.
[0042]
During the heating operation performed as described above, in the cold / hot water flow path 47 to the indoor unit RU or the floor heating panel 300 as a terminal that is not performing the heating operation, when the outside air temperature is low, Cold and hot water may freeze.
For this reason, in the present embodiment, during the heating operation, the anti-freezing control during heating for preventing freezing of the cold / hot water flow path 47 to the indoor unit RU or the floor heating panel 300 that is not in operation is also performed.
[0043]
Below, the freezing prevention control at the time of heating is demonstrated based on FIG.
[Freezing prevention control during heating]
When the heating operation is performed, it is determined whether or not the outside temperature detected by the outside temperature thermistor 201 provided in the outdoor unit 100 is equal to or lower than a predetermined temperature (for example, 3 ° C.). If it is higher (NO in step 21), it stands by as it is.
When the outside air temperature is equal to or lower than the predetermined temperature (3 ° C.) (YES in step 21), the open / close valves 48 provided in the indoor units RU and the floor heating panel that are not in operation are opened as the freeze prevention operation during heating. (Step 22).
As a result, the hot / cold hot water heated for heating circulates in the cold / hot water flow path 47 including the indoor units RU and the floor heating panel that are not in operation. This heat prevents the cold / hot water from freezing. it can.
[0044]
After that, if the on-off valve 48 is left open, excessive heat of cold / hot water is released into the room where heating operation is not required, and energy is wasted, so that it is detected by the cold / hot water inlet thermistor 49. For the indoor unit RU or the floor heating panel 300 whose cold / hot water temperature has reached 33 ° C. (YES in step 23), the on-off valve 48 is closed (step 24).
In step 23, it is determined whether or not the cold / hot water temperature has reached 33 ° C., but it may be determined whether or not the valve opening time by a timer (for example, 10 minutes) has elapsed.
[0045]
Thereafter, the elapsed time since the opening / closing valves 48 of all the indoor units RU or the floor heating panel 300 that are not in operation are closed is counted, and the elapsed time after the opening / closing of the opening / closing valves 48 is a predetermined time (for example, 15 minutes). ) Has elapsed (YES in step 25), the process proceeds to step 21, and it is determined again whether or not the outside air temperature detected by the outside air temperature thermistor 201 is equal to or lower than a predetermined temperature (3 ° C.). Then, as described above, the opening / closing operation of each on-off valve 48 is performed again.
As described above, in the present invention, when the outside air temperature is equal to or lower than the predetermined temperature (3 ° C.) during the heating operation, the open / close valve 48 is opened on each of the indoor units RU or the floor heating panel 300 that is not in operation. Thus, freezing can be prevented by flowing high-temperature cold / hot water heated for heating into each cold / hot water channel 47.
In the above description, when a predetermined time (15 minutes) has elapsed after the valve is closed, it is determined again whether or not to prevent freezing during heating by determining the outside air temperature. Depending on the outside air temperature, for example, 15 minutes when the outside air temperature is -10 ° C or lower, 30 minutes when the temperature is -10 ° C to -5 ° C, and 60 minutes when the temperature is -5 ° C to -3 ° C. You may change the time.
Moreover, when changing this time measuring time, it is good to determine predetermined time with the combination of the cold / hot water temperature at the time of valve closing, and external temperature.
[0046]
Next, the freeze prevention operation when the heating operation and the cooling operation are not performed will be described with reference to FIG.
[Anti-freezing operation]
The anti-freezing operation is different from the above-described anti-freezing control during heating operation in order to prevent the cold / hot water in the cold / hot water flow path 47 from freezing when heating is not performed in the cold / cold season. This is an operation and is performed only when neither the cooling operation nor the heating operation is performed.
[0047]
When neither the cooling operation nor the heating operation is performed, it is determined whether or not the outside air temperature detected by the outside temperature thermistor 201 provided in the outdoor unit 100 is 3 ° C. or less. No at 31), and waits as it is.
If the outside air temperature is 3 ° C. or lower (YES in step 31), anti-freezing control is performed (step 32), the cooling / heating switching valve 6 is opened, and the DC motor that drives the cooling / heating water pump P3 is controlled, The cold / hot water pump P3 is driven, and the on-off valve 48 provided in each indoor unit RU is opened.
[0048]
In this anti-freezing control, depending on the number of indoor units RU connected to the outdoor unit 100 and the presence / absence of the floor heating panel, when the floor heating panel is connected, the rotation speed is increased, and the floor heating panel is When not connected, according to the number of connected indoor units RU, the number of rotations of the tandem pump is controlled so as to increase as the number increases.
As a result, since the cold / hot water circulates in the cold / hot water flow path 47 including the indoor unit RU, the cold / hot water can be prevented from freezing by the flow of the cold / hot water. Further, when the floor heating panel is not connected and the number of connected air conditioning heat exchangers 44 is small, noise can be suppressed.
[0049]
If the outside air temperature becomes higher than 3 ° C. during the freeze prevention control (NO in step 33), the cooling / heating switching valve 6 is closed and the direct current motor that drives the cooling / heating water pump P3 is stopped. The water pump P3 is stopped, and the on-off valves 48 provided in each indoor unit RU are closed (step 34).
In the opening / closing control of the cooling / heating switching valve 6 in step 32, the cooling / heating water pump P3 is configured as a tandem pump that rotates in the same manner as the absorption liquid pump P1, and therefore, the flow path of the absorption liquid in the absorption cycle is ensured. Because.
[0050]
As described above, according to the present invention, when the outside air temperature is low during the heating operation, the on-off valve 48 is also provided for the floor heating panel 300 connected to the outdoor unit 100 and the indoor unit RU that are not operated. Since the cold water is circulated by opening the valve, freezing can be prevented.
[0051]
In the above embodiment, the cold / hot water pump P3 is constituted by the tandem pump so as to rotate in the same direction as the absorption liquid pump P1, but the cold / hot water pump P3 and the absorption liquid pump P1 may be driven individually. In that case, the valve opening operation of the cooling / heating switching valve 6 in step 32 is not necessary.
[0052]
Although only the air conditioning heat exchanger 44 is provided in the indoor unit RU, in order to perform the dehumidifying operation without lowering the indoor temperature, the heating heat exchanger that heats the air once cooled by the air conditioning heat exchanger 44 May be juxtaposed with the air conditioning heat exchanger 44.
In the above embodiment, the double-effect formula is described, but a single-effect formula may be used. Moreover, you may use a petroleum burner and an electric heater as a heat source.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an absorption air conditioner showing an embodiment of the present invention.
FIG. 2 is a schematic configuration diagram of an outdoor unit showing an embodiment of the present invention.
FIG. 3 is a flowchart for explaining the outline of the control operation of the tandem pump for heating operation in the control device of the embodiment of the present invention.
FIG. 4 is a flowchart for explaining an outline of freeze prevention control during heating operation of the control device according to the embodiment of the present invention;
FIG. 5 is a flowchart for explaining anti-freezing operation in the control device of the embodiment of the present invention.
FIG. 6 is a schematic configuration diagram of an absorption air conditioner showing another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 2 Low temperature regenerator 3 Absorber 4 Evaporator 41 Evaporation coil (Piping for heat exchange)
44 Air conditioning heat exchanger (Heat exchanger for air conditioning)
47 Cold / hot water flow path (cold / hot water circulation circuit)
48 On-off valve 49 Cold / hot water inlet thermistor (cool / hot water temperature detection means)
5 Condenser 54 Refrigerant liquid storage part 6 Cooling / heating switching valve B Gas burner (heating means)
P1 Absorption liquid pump P3 Cold / hot water pump L4 Absorption liquid flow path RU for heating Indoor unit 101 Heat source machine (absorption heat source machine)
100 outdoor unit 200 control device (operation control means, cold / hot water freeze prevention means, timer)
201 Outside temperature thermistor (outside temperature detection means)
300 Floor heating panel

Claims (2)

冷媒を含む吸収液を加熱手段により加熱して吸収液から冷媒蒸気を分離させる再生器と、
該再生器によって分離した前記冷媒蒸気を冷却して凝縮させる凝縮器と、
該凝縮器で生じた冷媒液を低圧下で蒸発させる蒸発器と、
前記再生器で前記冷媒蒸気が分離された吸収液に、前記蒸発器で蒸発した冷媒蒸気を吸収させる吸収器と、
前記吸収器から前記再生器へ吸収液を戻すための吸収液ポンプとから吸収サイクルを形成するとともに、
冷暖切替え弁を備えた暖房用吸収液流路により前記再生器と前記蒸発器とを接続し、前記冷暖切替え弁の閉弁時には、前記吸収サイクルの作動により前記蒸発器を冷却源とするとともに、前記冷暖切替え弁の開弁時には、前記再生器で加熱された吸収液を前記蒸発器へ供給して加熱源とする吸収式熱源機と、
冷温水を遮断する開閉弁をそれぞれ備えた任意の台数の空調用熱交換器及び床暖房パネルを前記蒸発器内に配した熱交換用配管に対して並列接続可能に設け、前記熱交換用配管で加熱又は冷却された冷温水を冷温水ポンプによって前記空調用熱交換器及び前記床暖房パネルに循環させる冷温水循環回路と、
冷房運転時には前記冷暖切替え弁を閉弁制御し、暖房運転時には前記冷暖切替え弁を開弁制御することによって、冷房運転と暖房運転との切替えや運転開始・停止を制御する運転制御手段を具備する吸収式空調装置の制御装置において、
前記運転制御手段により暖房運転が行われているとき外気温度を検知する外気温度検知手段と、
前記外気温度検知手段によって検知される外気温度が所定温度以下の場合に、暖房運転していない前記空調用熱交換器又は前記床暖房パネルに備えられた前記開閉弁を開弁制御する冷温水凍結防止手段とを具備し、
該冷温水凍結防止手段は、前記空調用熱交換器又は前記床暖房パネルにそれぞれ備えられた冷温水温度検知手段によって検知される冷温水温度が閉弁温度以上に達したとき、該閉弁温度以上に達した前記空調用熱交換器又は前記床暖房パネルの前記開閉弁を閉弁するとともに、
閉弁後の所定時間を計時するために備えたタイマにより計時される所定時間経過後に、前記外気温度検知手段によって検知される外気温度を判別することを特徴とする吸収式空調装置の制御装置。
A regenerator for heating the absorption liquid containing the refrigerant by a heating means to separate the refrigerant vapor from the absorption liquid;
A condenser that cools and condenses the refrigerant vapor separated by the regenerator;
An evaporator for evaporating the refrigerant liquid generated in the condenser under a low pressure;
An absorber that absorbs the refrigerant vapor evaporated by the evaporator into an absorption liquid from which the refrigerant vapor is separated by the regenerator;
While forming an absorption cycle from an absorption liquid pump for returning the absorption liquid from the absorber to the regenerator,
The regenerator and the evaporator are connected by an absorption liquid passage for heating provided with a cooling / heating switching valve, and when the cooling / heating switching valve is closed, the evaporator is used as a cooling source by the operation of the absorption cycle, and When the cooling / heating switching valve is opened, an absorption heat source machine that supplies the absorption liquid heated by the regenerator to the evaporator and uses it as a heating source;
Any air-conditioning heat exchanger and a floor heating panel of number of opening and closing valves provided respectively for blocking the cold and hot water, arranged to be connected in parallel to said evaporator heat exchange pipe which arranged in, for the heat exchanger A cold / hot water circulation circuit for circulating cold / hot water heated or cooled by piping to the heat exchanger for air conditioning and the floor heating panel by a cold / hot water pump;
The cooling / heating switching valve is controlled to be closed during cooling operation, and the cooling / heating switching valve is controlled to be opened during heating operation, thereby providing operation control means for controlling switching between cooling operation and heating operation and starting / stopping operation. In the control device of the absorption type air conditioner,
An outside air temperature detecting means for detecting an outside air temperature when a heating operation is performed by the operation control means;
When the outside air temperature detected by the outside air temperature detecting means is equal to or lower than a predetermined temperature, the hot / cold water freezing that controls the opening / closing of the air conditioning heat exchanger or the floor heating panel that is not in heating operation is controlled. Preventive means ,
When the cold / hot water temperature detected by the cold / hot water temperature detecting means provided in the heat exchanger for air conditioning or the floor heating panel respectively reaches or exceeds the valve closing temperature, the cold / hot water freezing prevention means While closing the on-off valve of the heat exchanger for air conditioning or the floor heating panel that has reached the above,
A control device for an absorption air conditioner , wherein after the predetermined time measured by a timer provided for measuring a predetermined time after the valve is closed, an outside air temperature detected by the outside air temperature detecting means is determined .
請求項2において、
前記外気温度検知手段によって検知される外気温度が低いほど前記タイマにより計時される前記所定時間は短く設定されることを特徴とする吸収式空調装置の制御装置。
In claim 2,
The control device for an absorption air conditioner, wherein the predetermined time measured by the timer is set shorter as the outside air temperature detected by the outside air temperature detecting means is lower .
JP36373398A 1998-12-22 1998-12-22 Absorption air conditioner control device Expired - Fee Related JP3728122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36373398A JP3728122B2 (en) 1998-12-22 1998-12-22 Absorption air conditioner control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36373398A JP3728122B2 (en) 1998-12-22 1998-12-22 Absorption air conditioner control device

Publications (2)

Publication Number Publication Date
JP2000186868A JP2000186868A (en) 2000-07-04
JP3728122B2 true JP3728122B2 (en) 2005-12-21

Family

ID=18480056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36373398A Expired - Fee Related JP3728122B2 (en) 1998-12-22 1998-12-22 Absorption air conditioner control device

Country Status (1)

Country Link
JP (1) JP3728122B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103148553A (en) * 2013-03-22 2013-06-12 李桂杨 Ice storage type water heating cooling and heating central air conditioner

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4933783B2 (en) * 2006-01-18 2012-05-16 大阪瓦斯株式会社 Heat medium supply equipment
JP5774128B2 (en) * 2011-12-16 2015-09-02 三菱電機株式会社 Air conditioner
JP2013164208A (en) * 2012-02-10 2013-08-22 Tokyo Gas Co Ltd Cooling water generator and freeze prevention system
JP2014047976A (en) * 2012-08-31 2014-03-17 Noritz Corp Heating system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103148553A (en) * 2013-03-22 2013-06-12 李桂杨 Ice storage type water heating cooling and heating central air conditioner

Also Published As

Publication number Publication date
JP2000186868A (en) 2000-07-04

Similar Documents

Publication Publication Date Title
JP3728122B2 (en) Absorption air conditioner control device
JP2000018762A (en) Absorption refrigerating machine
JP3728121B2 (en) Absorption air conditioner control device
JP3920997B2 (en) Absorption air conditioner control device
JP3920979B2 (en) Absorption air conditioner control device
JP3318505B2 (en) Control device for absorption air conditioner
JP2002195628A (en) Controller for air conditioner
JP3660493B2 (en) Absorption refrigeration system controller
JP2001099474A (en) Air conditioner
JP2650654B2 (en) Absorption refrigeration cycle device
KR100542461B1 (en) Absorptive refrigerator
JP4494624B2 (en) Air conditioner
JPH09243197A (en) Cooling water temperature controller of absorption cooling and heating machine
JP3837186B2 (en) Absorption refrigerator
JP2003042588A (en) Absorption type cooling and heating machine
JP3920986B2 (en) Absorption air conditioner
JP2839442B2 (en) Absorption refrigeration cycle device
JPH10103808A (en) Air conditioner using absorption type refrigerator
US20220064914A1 (en) Atmospheric water generator with water cooling system
KR100219910B1 (en) Absorption type air conditioner
JP3241623B2 (en) Absorption air conditioner
JP3056990B2 (en) Absorption air conditioner
JP2618192B2 (en) Absorption refrigeration cycle device
JPH11201577A (en) Absorption air conditioner
JP3594453B2 (en) Operating method of air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050930

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees