[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3994390B2 - Alkaline solution for semiconductor wafer processing and its manufacturing method - Google Patents

Alkaline solution for semiconductor wafer processing and its manufacturing method Download PDF

Info

Publication number
JP3994390B2
JP3994390B2 JP2003162829A JP2003162829A JP3994390B2 JP 3994390 B2 JP3994390 B2 JP 3994390B2 JP 2003162829 A JP2003162829 A JP 2003162829A JP 2003162829 A JP2003162829 A JP 2003162829A JP 3994390 B2 JP3994390 B2 JP 3994390B2
Authority
JP
Japan
Prior art keywords
semiconductor wafer
solution
silicon
boron
wafer processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003162829A
Other languages
Japanese (ja)
Other versions
JP2004363497A (en
Inventor
雅史 則本
勇一 柿園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2003162829A priority Critical patent/JP3994390B2/en
Publication of JP2004363497A publication Critical patent/JP2004363497A/en
Application granted granted Critical
Publication of JP3994390B2 publication Critical patent/JP3994390B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Weting (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体ウェーハのアルカリ処理技術、詳しくは半導体ウェーハをアルカリ溶液を使用して処理する際、アルカリ溶液中に溶解した金属不純物による半導体ウェーハの汚染を防止する半導体ウェーハのアルカリ処理技術に関する。
【0002】
【従来の技術】
従来のシリコンウェーハの製造では、インゴットをスライスしてシリコンウェーハを作製した後、シリコンウェーハに対して面取り、ラッピング、酸エッチング、鏡面研磨、仕上げ洗浄の各工程が順次施される。
このうち、酸エッチング工程では、ラッピング後のシリコンウェーハを混酸(フッ酸、硝酸、酢酸)などの酸性エッチング液に浸漬し、ラッピング時の加工ダメージ、面取り時の加工ダメージを除去している。酸エッチングは、シリコンウェーハとの反応性が高く、エッチング速度が比較的速いという利点を有する一方、エッチング中に多量の気泡が発生し、その影響でシリコンウェーハの表裏両面に、周期0.2〜20mmくらい、高さ数十〜数百nmくらいのうねりが生じ、ウェーハ表面の平坦性が低下していた。
【0003】
そこで、これを解消するため、近年、酸性エッチング液に代えて高濃度のアルカリ性エッチング液によるアルカリエッチングが採用されている。
しかしながら、アルカリ性エッチング液中にはニッケル、クロム、鉄、銅などが溶解しやすい。そのため、エッチング時において、アルカリ性エッチング液に溶解した金属不純物がシリコンウェーハの露出面に吸着され、その金属不純物がウェーハ内部まで拡散してウェーハの品質を劣化させていた。
【0004】
従来、この問題を解消する方法として、例えば特許文献1のようなものが知られている。従来法は、アルカリ性エッチング液中に、その液中に存在する金属イオンの可逆電位よりも卑な酸化電位を有する還元剤(亜二チオン酸塩など)を溶解することで、金属イオンを非イオン化する方法である。これにより、アルカリ性エッチング液中の金属不純物が除去され、エッチング時の金属不純物によるシリコンウェーハの品質の劣化が防止される。
【特許文献1】
特開平10−310883号公報
【0005】
【発明が解決しようとする課題】
しかしながら、このような従来法を採用した場合でも、近年、デバイスの高集積化に伴うデバイスメーカーからのウェーハに対する高清浄度の要求に、十分に対応することはできなかった。すなわち、従来法は、ニッケルなどの金属不純物のウェーハ内部への拡散を効果的に防止しているとは言い難かった。
【0006】
【発明の目的】
そこで、本発明は、アルカリ溶液中に溶解した金属不純物による半導体ウェーハの汚染を低コストで、しかも効果的に防止することができる半導体ウェーハのアルカリ処理技術を提供することをその目的としている。
【0007】
【課題を解決するための手段】
請求項1に記載の発明は、半導体ウェーハをアルカリ処理する際に使用される半導体ウェーハ処理用のアルカリ溶液において、20重量%以上の濃度の水酸化ナトリウム溶液中に、ボロンを500〜2000ppb、シリコンを0.25g/リットル以上含有させた半導体ウェーハ処理用のアルカリ溶液である。
半導体ウェーハのアルカリ処理としては、アルカリ性エッチング液によるエッチング、アルカリ性エッチング液と酸性エッチング液との混酸によるエッチングが挙げられる。その他、アルカリ性エッチング液を含む洗浄液による洗浄が挙げられる。
【0008】
ボロンの添加により半導体ウェーハへの吸着を抑制できる不純物金属としては、ニッケル、銅、クロム、鉄などが挙げられる。その中でも、シリコン結晶中での拡散速度が大きいニッケルの除去が、シリコンウェーハの品質向上を図る上では最も重要となる。
【0009】
0.25g/リットル未満では、半導体ウェーハへの不純物金属の吸着、拡散を抑制できない。好ましいシリコンの含有量は1〜80g/リットルである。
【0010】
水酸化ナトリウム溶液の濃度が20重量%未満ではシリコンウェーハ表裏面の粗さが大きくなる。水酸化ナトリウム溶液の好ましい濃度は43重量%以上である。
【0011】
請求項2に記載の発明は、上記シリコンの含有量は1〜80g/リットルである請求項1に記載の半導体ウェーハ処理用のアルカリ溶液である。
【0012】
請求項3に記載の発明は、20重量%以上の濃度の水酸化ナトリウム溶液中に、ボロンを500〜2000ppb、シリコンを0.25g/リットル以上含有させ、半導体ウェーハをアルカリ処理する際に使用される半導体ウェーハ処理用のアルカリ溶液の製法であって、上記水酸化ナトリウム溶液中に、ボロンが所定濃度にドープされたシリコン素材を溶解した半導体ウェーハ処理用のアルカリ溶液の製法である。
シリコン素材は、例えば所定量のボロンがドープされたシリコンウェーハでもよいし、その基材となるシリコンインゴットの破片などでもよい。
【0013】
20重量%未満では、当該溶液を用いてエッチングした際の半導体ウェーハの表裏面粗さが大きくなるため、別途濃縮処理を必要とする。
【0014】
【作用】
この発明によれば、ボロンが溶解されたアルカリ溶液を使用し、半導体ウェーハの処理(例えばエッチング)を施すと、アルカリ溶液中に溶解した金属不純物による半導体ウェーハの汚染が、低コストでかつ効果的に防止される。
【0015】
【発明の実施の形態】
以下、この発明の一実施例を表1を参照して説明する。
市販の高濃度の水酸化ナトリウム溶液(51重量%、5リットル、80℃)中に、ボロンをドープしたp型のシリコンウェーハ(試験例1〜7)を所定量だけ溶解した。その後、この水酸化ナトリウム溶液をアルカリ性エッチング液とし、CZ法により引き上げられ、ウェーハ加工された面方位(100)のp型シリコンウェーハ(抵抗率0.01〜0.02Ωcm)を10分間、アルカリ性エッチング液を攪拌しながらアルカリエッチングした。エッチング後、シリコンウェーハを5分間、流水中でリンスした。
【0016】
リンス後、シリコンウェーハのニッケルによる汚染量を、全溶解法により分析して評価した。全溶解法とは、フッ酸と過酸化水素水との混合液を用いてシリコンウェーハ最表面に付着した金属不純物を取り除いた後、フッ酸と硝酸との蒸気を使用してシリコンウェーハを全て溶解し、その残留物を分析することで、シリコンウェーハに吸着・拡散した金属汚染物を評価する方法である。その結果を表1に示す。
試験例1〜4は、溶解に用いたシリコンウェーハに対するボロンのドープ量が異なる。また、試験例5〜7は、溶解に用いたシリコンウェーハに対するボロンのドープ量は同じだが、このシリコンウェーハの溶解量を異ならせている。比較例1として、ボロンおよびシリコンを含まない水酸化ナトリウム溶液を使用し、同様の試験を行った。
【0017】
【表1】

Figure 0003994390
【0018】
表1から明らかなように、ボロンまたはボロンを含むシリコンを溶解させた試験例1〜7は、これらが含まれない比較例1に比べて、ニッケルの汚染量が低いことが分かった。
【0019】
【発明の効果】
この発明によれば、アルカリ溶液中にボロンを溶解したので、低コストで、アルカリ溶液中に溶解した金属不純物による半導体ウェーハの汚染を、効果的に防止することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor wafer alkali treatment technique, and more particularly to a semiconductor wafer alkali treatment technique for preventing contamination of a semiconductor wafer by metal impurities dissolved in the alkali solution when the semiconductor wafer is treated using an alkali solution.
[0002]
[Prior art]
In conventional silicon wafer manufacturing, a silicon wafer is manufactured by slicing an ingot, and then the silicon wafer is sequentially subjected to chamfering, lapping, acid etching, mirror polishing, and finish cleaning.
Among these, in the acid etching process, the lapped silicon wafer is immersed in an acidic etching solution such as mixed acid (hydrofluoric acid, nitric acid, acetic acid) to remove the processing damage at the time of lapping and the processing damage at the time of chamfering. Acid etching has the advantage of high reactivity with a silicon wafer and a relatively high etching rate, while a large amount of bubbles are generated during the etching. Waves of about 20 mm and heights of several tens to several hundreds of nanometers occurred, and the flatness of the wafer surface was reduced.
[0003]
In order to solve this problem, alkali etching using a high-concentration alkaline etching solution has been adopted in recent years in place of the acidic etching solution.
However, nickel, chromium, iron, copper and the like are easily dissolved in the alkaline etching solution. Therefore, at the time of etching, metal impurities dissolved in the alkaline etching solution are adsorbed on the exposed surface of the silicon wafer, and the metal impurities diffuse to the inside of the wafer to deteriorate the quality of the wafer.
[0004]
Conventionally, as a method for solving this problem, for example, the one disclosed in Patent Document 1 is known. In the conventional method, metal ions are deionized by dissolving a reducing agent (such as dithionite) that has a base oxidation potential lower than the reversible potential of the metal ions present in the alkaline etching solution. It is a method to do. Thereby, metal impurities in the alkaline etching solution are removed, and deterioration of the quality of the silicon wafer due to metal impurities during etching is prevented.
[Patent Document 1]
Japanese Patent Laid-Open No. 10-310883
[Problems to be solved by the invention]
However, even when such a conventional method is adopted, in recent years, it has not been possible to sufficiently meet the demand for high cleanliness for wafers from device manufacturers due to high integration of devices. That is, it has been difficult to say that the conventional method effectively prevents the diffusion of metal impurities such as nickel into the wafer.
[0006]
OBJECT OF THE INVENTION
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor wafer alkali treatment technique that can effectively prevent contamination of a semiconductor wafer by metal impurities dissolved in an alkaline solution at low cost.
[0007]
[Means for Solving the Problems]
According to the first aspect of the present invention, in an alkaline solution for semiconductor wafer processing used for alkali treatment of a semiconductor wafer, boron is added to 500 to 2000 ppb, silicon in a sodium hydroxide solution having a concentration of 20 wt% or more Is an alkaline solution for processing semiconductor wafers containing 0.25 g / liter or more.
Examples of the alkali treatment of the semiconductor wafer include etching with an alkaline etching solution and etching with a mixed acid of an alkaline etching solution and an acidic etching solution. In addition, cleaning with a cleaning solution containing an alkaline etching solution can be given.
[0008]
Examples of the impurity metal that can suppress adsorption to the semiconductor wafer by adding boron include nickel, copper, chromium, and iron. Among these, removal of nickel having a high diffusion rate in the silicon crystal is most important for improving the quality of the silicon wafer.
[0009]
If it is less than 0.25 g / liter, adsorption and diffusion of impurity metals on the semiconductor wafer cannot be suppressed. A preferable silicon content is 1 to 80 g / liter.
[0010]
When the concentration of the sodium hydroxide solution is less than 20% by weight, the roughness of the front and back surfaces of the silicon wafer increases. A preferred concentration of the sodium hydroxide solution is 43% by weight or more.
[0011]
The invention according to claim 2 is the alkaline solution for semiconductor wafer processing according to claim 1, wherein the silicon content is 1 to 80 g / liter.
[0012]
The invention according to claim 3 is used when a semiconductor wafer is alkali-treated by containing boron in a concentration of 20% by weight or more in a sodium hydroxide solution of 500 to 2000 ppb and silicon of 0.25 g / liter or more. This is a method for producing an alkaline solution for semiconductor wafer processing, in which a silicon material doped with boron at a predetermined concentration is dissolved in the sodium hydroxide solution.
The silicon material may be, for example, a silicon wafer doped with a predetermined amount of boron, or a piece of silicon ingot serving as the base material.
[0013]
If it is less than 20% by weight, the roughness of the front and back surfaces of the semiconductor wafer when etched using the solution increases, and therefore a separate concentration treatment is required.
[0014]
[Action]
According to the present invention, when an alkali solution in which boron is dissolved is used and a semiconductor wafer is processed (for example, etching), contamination of the semiconductor wafer by metal impurities dissolved in the alkali solution is low-cost and effective. To be prevented.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below with reference to Table 1.
A predetermined amount of p-type silicon wafer doped with boron (Test Examples 1 to 7) was dissolved in a commercially available high-concentration sodium hydroxide solution (51 wt%, 5 liters, 80 ° C.). Then, this sodium hydroxide solution was used as an alkaline etching solution, and the p-type silicon wafer (resistivity 0.01 to 0.02 Ωcm) with a surface orientation (100) that was pulled up and processed by the CZ method was subjected to alkaline etching for 10 minutes. Alkaline etching was performed while stirring the liquid. After etching, the silicon wafer was rinsed in running water for 5 minutes.
[0016]
After rinsing, the amount of nickel contamination of the silicon wafer was analyzed and evaluated by the total dissolution method. The total dissolution method uses a mixed solution of hydrofluoric acid and hydrogen peroxide solution to remove metal impurities adhering to the outermost surface of the silicon wafer, and then dissolves the entire silicon wafer using vapors of hydrofluoric acid and nitric acid. Then, by analyzing the residue, the metal contaminant adsorbed and diffused on the silicon wafer is evaluated. The results are shown in Table 1.
Test Examples 1 to 4 differ in boron dope amount with respect to the silicon wafer used for dissolution. In Test Examples 5 to 7, the boron dope amount for the silicon wafer used for dissolution is the same, but the silicon wafer dissolution amount is different. As Comparative Example 1, a similar test was performed using a sodium hydroxide solution containing neither boron nor silicon.
[0017]
[Table 1]
Figure 0003994390
[0018]
As is clear from Table 1, it was found that Test Examples 1 to 7 in which boron or silicon containing boron was dissolved had a lower amount of nickel contamination than Comparative Example 1 in which these were not included.
[0019]
【The invention's effect】
According to this invention, since boron is dissolved in the alkaline solution, contamination of the semiconductor wafer by the metal impurities dissolved in the alkaline solution can be effectively prevented at low cost.

Claims (3)

半導体ウェーハをアルカリ処理する際に使用される半導体ウェーハ処理用のアルカリ溶液において、In the alkaline solution for semiconductor wafer processing used when alkali treating semiconductor wafers,
20重量%以上の濃度の水酸化ナトリウム溶液中に、ボロンを500〜2000ppb、シリコンを0.25g/リットル以上含有させた半導体ウェーハ処理用のアルカリ溶液。  An alkaline solution for semiconductor wafer processing, in which boron is contained at 500 to 2000 ppb and silicon is contained at 0.25 g / liter or more in a sodium hydroxide solution having a concentration of 20% by weight or more.
上記シリコンの含有量は1〜80g/リットルである請求項1に記載の半導体ウェーハ処理用のアルカリ溶液。The alkali solution for semiconductor wafer processing according to claim 1, wherein the silicon content is 1 to 80 g / liter. 20重量%以上の濃度の水酸化ナトリウム溶液中に、ボロンを500〜2000ppb、シリコンを0.25g/リットル以上含有させ、半導体ウェーハをアルカリ処理する際に使用される半導体ウェーハ処理用のアルカリ溶液の製法であって、An alkali solution for processing a semiconductor wafer used when alkali treatment of a semiconductor wafer is carried out by containing boron in a concentration of 20% by weight or more in a sodium hydroxide solution of 500 to 2000 ppb and silicon of 0.25 g / liter or more. A manufacturing method,
上記水酸化ナトリウム溶液中に、ボロンが所定濃度にドープされたシリコン素材を溶解した半導体ウェーハ処理用のアルカリ溶液の製法。  A method for producing an alkaline solution for semiconductor wafer processing, wherein a silicon material doped with boron at a predetermined concentration is dissolved in the sodium hydroxide solution.
JP2003162829A 2003-06-06 2003-06-06 Alkaline solution for semiconductor wafer processing and its manufacturing method Expired - Fee Related JP3994390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003162829A JP3994390B2 (en) 2003-06-06 2003-06-06 Alkaline solution for semiconductor wafer processing and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003162829A JP3994390B2 (en) 2003-06-06 2003-06-06 Alkaline solution for semiconductor wafer processing and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2004363497A JP2004363497A (en) 2004-12-24
JP3994390B2 true JP3994390B2 (en) 2007-10-17

Family

ID=34054862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003162829A Expired - Fee Related JP3994390B2 (en) 2003-06-06 2003-06-06 Alkaline solution for semiconductor wafer processing and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3994390B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090266414A1 (en) * 2006-05-02 2009-10-29 Mimasu Semiconductor Industry Co., Ltd. Process for producing semiconductor substrate, semiconductor substrate for solar application and etching solution

Also Published As

Publication number Publication date
JP2004363497A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
JP2010093126A (en) Alkaline aqueous solution composition for substrate processing
US8298437B2 (en) Alkali etching liquid for silicon wafer and etching method using same
US5964953A (en) Post-etching alkaline treatment process
JP2599021B2 (en) Silicon wafer etching method and cleaning method
EP1956641A1 (en) Method for grinding surface of semiconductor wafer and method for manufacturing semiconductor wafer
JP5216749B2 (en) Processing method of silicon wafer
JP3994390B2 (en) Alkaline solution for semiconductor wafer processing and its manufacturing method
JP3456466B2 (en) Polishing agent for silicon wafer and polishing method therefor
US6530381B1 (en) Process for the wet-chemical surface treatment of a semiconductor wafer
JP4857738B2 (en) Semiconductor wafer cleaning method and manufacturing method
JP4271073B2 (en) Substrate processing method and substrate processing liquid
JPH11186202A (en) Abrasive for polishing semiconductor silicon wafer and method of polishing
JP2002100599A (en) Washing method for silicon wafer
JPH0583520B2 (en)
JP2000173956A (en) Polishing agent for semiconductor silicon wafer and polishing method
JP2001326209A (en) Method for treating surface of silicon substrate
JP2010027949A (en) Etchant for silicon wafer and method of manufacturing silicon wafer
JP3198878B2 (en) Surface treatment composition and substrate surface treatment method using the same
JP2005086107A (en) Alkali treatment technique of silicon object
JP4026384B2 (en) Semiconductor substrate cleaning method
JP2005158759A (en) Alkaline processing technique for silicon material
JPH0691061B2 (en) Silicon wafer cleaning method
US6416391B1 (en) Method of demounting silicon wafers after polishing
JP2006134906A (en) Method of storing silicon wafer
JPH11274129A (en) Cleaning of semiconductor substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3994390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees