JP3987240B2 - Infrared light absorbing film and method for producing the same - Google Patents
Infrared light absorbing film and method for producing the same Download PDFInfo
- Publication number
- JP3987240B2 JP3987240B2 JP18993299A JP18993299A JP3987240B2 JP 3987240 B2 JP3987240 B2 JP 3987240B2 JP 18993299 A JP18993299 A JP 18993299A JP 18993299 A JP18993299 A JP 18993299A JP 3987240 B2 JP3987240 B2 JP 3987240B2
- Authority
- JP
- Japan
- Prior art keywords
- infrared light
- resin
- infrared
- light absorbing
- absorbing film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Paints Or Removers (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、特定の赤外光吸収色素を含有する赤外光吸収膜およびその製造方法に関する。
【0002】
【従来の技術】
最近は窓を大きく取った解放的なビルなどの建築物や自動車などが増加し、夏期の日照による温度上昇対策としてのエアコンの電力消費量増加が二酸化炭素対策や省エネルギーの点から問題となっている。また、農業用の温室やビニールハウスでは夏期の温度上昇が作物の生育や作業環境の悪化を招くため、その対策が求められている。さらに、近年、半導体レーザやLEDなどの近赤外光源を用いるバーコードリーダー、近赤外光通信、リモコンの普及により、プラズマディスプレイ等、誤動作の原因となる赤外光の発熱体からの赤外光遮断対策強く求められるようになった。太陽光や種々の発熱体からの熱線である赤外光の遮断対策としては、従来からあるカーテンやブラインド等による遮光の他に、赤外光を吸収し、可視光を透過する赤外光吸収層により赤外光を遮断する方法や、ガラスやフィルム上に金属を蒸着し赤外光を反射する層を形成し赤外光を反射して遮光する方法が開発されている。さらに最近は、バーコード等の情報信号の読みとりを誤動作防止やセキュリティを目的としたり、バーコードなどの印刷物を目立たなくする目的で赤外光により行うことが増加している。このような目的にも赤外吸収層がバーコード等の種々の信号形態として使用されている。
しかしながら、赤外光吸収層に用いられる多くの有機色素では、吸収スペクトル幅が狭く赤外光の遮断効果が不十分であったり、耐光堅牢度が劣り寿命が短いなどの問題があり、耐久性があり赤外光吸収効果に優れた赤外光吸収層の開発が望まれている。
【0003】
【発明が解決しようとする課題】
本発明の課題は赤外光吸収効果に優れ耐光性の良好な赤外光吸収膜を提供することである。
【0004】
【課題を解決するための手段】
本発明者らは上記課題を解決するために鋭意検討した結果、有機溶媒溶解性の赤外光吸収色素を微粒子分散状態で含有させることにより、赤外光吸収層が該色素が溶解状態で含まれている赤外光吸収膜に比べ大幅に耐光性が向上し、しかも赤外吸収能に優れるることを見出し、本発明を完成するに至った。
すなわち、本願発明の要旨は、有機溶媒溶解性の赤外光吸収色素であるジインモニウム塩を、微粒子分散状態で樹脂中に分散含有することを特徴とする赤外光吸収膜、およびその製造方法である。
【0005】
赤外光吸収色素としては、数多くの種類の色素が開発され、熱線遮断や信号読みとり、あるいは光ディスクなどの光記録用途に使用されている(色材協会誌、1988年、61巻、4号、215頁〜226頁)。しかし、これらの色素は可視光に吸収があったり、耐光性に劣るなどの欠点があり、赤外光吸収色素として満足できる性能の色素が強く求められている。既存の赤外吸収色素の内、いくつかの色素は可視光の吸収が少なく赤外光領域に幅広い吸収を有しているが、いずれも有機溶剤に溶解し、バインダー樹脂中でも溶解状態で使用するように置換基が工夫されていることが多いが、これらの赤外色素は耐光性が著しく劣るものが多く、実用化の障害となっている。
本発明者らは、可視光領域に吸収があり着色の大きいフタロシアニンやナフタロシアニン化合物を含有する熱遮断有機膜により、耐光性が改善できることを既に提案している(特願平10−142530号)。
【0006】
さらに、本発明者らは赤外光を吸収する代表的な既存赤外光吸収色素の耐光性を調べたところ、ポリメチン塩、アミニウム塩、ジインモニウム塩などのアミン化合物のイオン性タイプの色素とチオール化合物の金属錯体は、樹脂中に溶解している状態に比べて微粒子分散の状態では大幅に耐光性が向上する事を見出した。
この様な微粒子分散状態での優れた性能に関しては知られておらず、逆に、今まではこれらの赤外色素を用いる際には微粒子で使用するよりは、効果の点と調製の容易さから有機溶剤に溶解して使用するほうがより好ましいされていた(特開平9ー310031号公報)。また水溶媒にて分散微粒子化し塗布する方法も提案されているが(特開平11−109126号公報)、バインダー樹脂が水溶性樹脂に限定される点や、このバインダー樹脂と塗布される基板樹脂との密着性等が劣る問題点がある。
【0007】
本願発明は、このような今までの常識に反し、実質的に難溶性有機溶媒を用いることによって、一般的な樹脂を用いて赤外光吸収色素の分散安定性が良好な微粒子分散液を得ることが可能で、これを塗布等によって容易に耐光性に優れた赤外光吸収膜を得ることができ、赤外光吸収色素を微粒子状態にすることにより、優れた耐光性が得られるとともに、吸収スペクトルが幅広くなり、溶解状態で用いるよりもスペクトル幅の広い赤外光を吸収できることことを見出したのである。
【0008】
本発明に用いられる赤外光吸収色素としてはまず、アミン化合物のイオン性タイプの色素であるアミニウム塩とジインモニウム塩が挙げられる。代表例として下記一般式(1)および下記一般式(2)で示される化合物が挙げられる。
【0009】
【化1】
【0010】
上記一般式(1)、(2)に於いて、Aはベンゼン、ビフェニルなどの芳香族化合物から誘導される2価または4価の基を表し、R1 、R2 は炭素数1〜12の直鎖または分岐のアルキル基を示し、フェニル基などの芳香族基やモルホリンやピペリジンなどのヘテロ環から誘導される基が置換していても良い。Xは無機または有機の陰イオンを表す。具体例としては上記の色材協会誌に記載されている化合物が挙げられる。
【0011】
本発明に用いられる別の赤外光吸収色素はチオール化合物の金属錯体である。代表例を下記一般式(3)に示す。
【0012】
【化2】
【0013】
上記一般式(3)に於いて、R1 とR2 は置換基を有していても良いフェニル基などのアリール基を表し、かつ、R1 とR2 が連結基を介してつながり、芳香環を形成しても良い。Xは硫黄原子、酸素原子、窒素原子のいずれかを表し、Mはニッケルまたは銅の金属イオンを表す。
一般式(3)の錯体は、中性またはホスホニウムや、アンモニウムイオンと組み合わせたイオン性の錯体のいずれでも良い。具体例としては、「染料と薬品」第35巻第5号126頁〜137頁(1990年)に記載されている化合物が挙げられる。
この他にもポリメチン色素であるシアニン色素、スクワリリウム系色素、クロコニウム系色素、ピリリウム、チオピリリウム系色素等の有機溶媒溶解性の赤外光吸収色素をあげることができる。これらの具体例としては、前記の色材協会誌あるいは、「色材協会誌」第60巻第4号212頁〜224頁(1987年)に記載されている化合物が挙げられる。
【0014】
赤外光吸収膜を形成するために使用される樹脂としては、可視光に対し透過性で色素微粒子が安定に分散され実質的に溶解しない樹脂が用いられる。樹脂としては公知の種々の樹脂を用いることができるが、特に、ポリエチレン樹脂やポリプロピレン樹脂のようなポリオレフィン樹脂、ポリカーボネート樹脂、ポリメタアクリレート樹脂のようなポリメタアクリレート樹脂、ポリエステル樹脂及びこれらの共重合体樹脂等、フィルムやシートに成形しやすく、かつ耐久性に優れた熱可塑性樹脂が好ましい。また、赤外光吸収膜表面の機械的強度の向上のためには、樹脂を硬化することが望ましい。熱可塑性樹脂の内、上記色素微粒子の分散安定性の向上及び硬化反応の点からは水酸基及びまたはカルボキシル基を有する熱可塑性樹脂が適している。具体例を挙げれば、ポリエステル樹脂、ポリカーボネート樹脂、ポリビニルアルコール樹脂、ポリビニルブチラールやポリビニルフェニルアセタールなどのポリビニルアセタール樹脂、セルロースアセテートブチレートや酢酸セルロースあるいはエチルセルロース等のセルロース樹脂、あるいは側鎖に水酸基やカルボキシル基を有するモノマー成分との共重合体としてのポリアクリル樹脂、メタアクリル樹脂、ポリ酢酸ビニル樹脂、フッ素樹脂、ポリエーテル樹脂、エポキシ樹脂、ポリウレタン樹脂、アルキッド樹脂等が挙げられる。これらはモノマー成分中に水酸基やカルボキシル基を有するほか、側鎖や末端に未反応や加水分解等の反応により生成した水酸基やカルボキシル基を有する樹脂も含まれる。これらは種々の共重合成分の調整によりいずれも多くの要求特性を満足した樹脂として使用できるが、ポリエステルフィルムなどの透明基体との接着性の点でポリエステル樹脂が、赤外光吸収色素の微粒子分散性と透明基体との接着性の点でポリビニールアセタール樹脂が好ましい。
【0015】
樹脂を硬化するために用いられる硬化剤としては、穏やかな条件で硬化が可能なイソシアネート化合物が好ましい。イソシアネート化合物としてはジイソシアネートやトリイソシアネートなどのポリイソシアネート類が用いられる。パラフェニレンジイソシアネート、トルエンジイソシアネート、トリフェニルメタントリイソシアネートなどの芳香族ポリイソシアネートを用いることができるが、長期露光下での黄変が少ないヘキサメチレンジイソシアネート等の脂肪族ジイソシアネートあるいは脂環式ジイソシアネートが好ましい。これらには種々の変性されたものが知られており、ビュレット変性、イソシアヌレート変性、ウレタン変性など硬化膜の要求物性に合わせて選択することができる。
【0016】
これらの硬化剤の添加量は、樹脂中の水酸基及びまたはカルボキシル基のモル数がイソシアネート化合物のNCO基1モル当たり0.8〜2.0モルとなる量が適当であるが、効果の程度により、イソシアネート化合物はより少ない添加量でも良い。イソシアネート基による硬化反応には、反応触媒を添加することができる。このような反応触媒としては例えばトリエチレンジアミンのようなアミン類やジブチルチンラウレートの様なスズ系化合物が用いられ、これらの触媒の添加量は通常数10〜数100ppm程度で、硬化速度により選択される。硬化は通常50〜150℃で1分程度から数時間で完了するが、数日間エージングする事により硬化を完了してもよい。
【0017】
本発明の赤外光吸収膜を形成するには、樹脂に赤外光吸収色素の微粒子を混合し、分散させて種々の方法により膜を形成することにより得られる。
その方法として、射出成形や押出成形可能な樹脂を用いた場合には、樹脂と色素を混合し混練機により加熱混練りを行い混合分散した後、射出成形、押出成形等の成形加工法によりシートやフィルム等を形成することができる。また、溶媒に溶解可能な樹脂を用いる場合では、樹脂を有機溶媒に溶解した樹脂溶液中に、色素を分散した分散液を透明基体上に塗布乾燥し、赤外光吸収膜を形成する方法等があげられる。前者の方法による赤外光吸収膜はガラスや透明な樹脂シート、フィルム等の基体上に積層して用いることも出来る。ポリビニルブチラール樹脂を用いれば、積層ガラスの接着層として用いることができる。成形加工の場合には、微粒子分散状態を損なわないために成形温度は赤外光吸収色素の融点以下で行う。後者の塗布膜は基体から剥離して独立したフィルムとして用いることもできる。赤外光吸収膜の厚さは、独立したシートあるいはフィルムとして用いる場合は5μm〜30mm、好ましくは10μm〜10mmであり、透明基体上に形成して赤外線吸収フィルターとして用いてもよく、その場合は0.1 〜100μm、好ましくは1〜50μmである。
【0018】
組成物中の赤外光吸収色素の量は可視光および赤外光の透過率の必要量により決められるが、使用する層の厚さによっても異なり、一般的には、0.01〜10g/m2である。バインダー樹脂100重量部に対しては、それぞれの色素の量は0.1 〜50重量部である。
赤外光吸収色素を微粒子分散するために用いる溶剤としては、該赤外光吸収色素に難溶性の有機溶剤を用いる。かかる有機溶剤の選択に当たっては、有機溶剤中で微粒子化せず溶解した存在する赤外光吸収色素が吸収特性や耐光性等の性能に対し実質的に影響がない程度に低い溶剤が選択される。具体的には用いる赤外吸収色素の20℃における溶解度が5%重量%以下、好ましくは2重量%以下の有機溶剤を単独あるいは配合して用いることができる。また塗布により層を形成する際、樹脂を溶解する溶剤も同様に実質的に難溶性であって、用いる赤外吸収色素の溶解度が5重量%以下、好ましくは2重量%以下の有機溶剤を選択して単独あるいは配合して用いる。
【0019】
また有機溶剤としては収沸点が50℃以上200℃以下の溶剤が好ましく、メタノール、エタノール、2−プロパノール等のアルコール類、ジメトキシエタン、テトラヒドロフラン等のエーテル類、酢酸エチル、酢酸ブチル等のエステル類、トルエン、キシレン等の芳香族炭化水素、ヘプタン、オクタン、等の炭化水素類、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、ジメチルホルムアミド、アセトニトリル等の非プロトン系極性溶剤およびこれらの混合物が代表例として挙げられるが、これらに限定されるものではない。溶剤の使用量は塗布の条件や塗布により形成される層の厚さ等により任意に設定されるが、通常は溶剤100重量部に対し固形分が5〜100重量部になるように選択される。
微粒子の粒径は大きすぎると異物として赤外光吸収膜の欠陥の原因となったり、光の散乱の原因となり透過率や透明性の低下を引き起こすため、なるべく小さい粒径が好ましい。具体的には5μm以下、好ましくは90体積%以上が3μm以下の粒度分布になるように微粒子化するのが望ましい。
【0020】
本発明の赤外光吸収膜には、その性能を損なわない範囲で、この他に種々の添加物を加えることができる。例えば、赤外光吸収色素微粒子の分散性を向上させる目的で、分散剤を必要に応じて添加することができる。このような分散剤としてはノニオン系、カチオン系、アニオン系の界面活性剤が用いられる。脂肪酸のポリグリコールエステルのようなノニオン系分散剤、ポリカルボン酸系、ポリスルホン酸系のアニオン系分散剤、脂肪族アンモニウム塩等のカチオン系分散剤あるいはこれらの高分子系分散剤が用いられる。分散剤の添加量は色素に対し0.01重量%から10重量%以下で用いられる。さらに、色素の耐光性を向上させるために公知の紫外線吸収剤や酸化防止剤、種々の光安定剤を添加することができる。また機械物性向上のために数μm以下の酸化チタン、シリカゲルなどの無機微粒子や樹脂微粒子を添加することもできる。さらに、塗布により本発明の赤外光吸収層を形成するために消泡剤やレベリング剤を添加することもできる。また、着色調整のための顔料や色素を添加することもできる。
【0021】
【実施例】
以下、実施例により本願発明をさらに詳細に説明するが、本願発明はその要旨を超えない限り実施例に限定されるものではない。実施例に於ける「部」は「重量部」を、「%」は「重量%」を意味する。
[実施例1]
日本化薬社製ジインモニウム色素IRG−22 0.1 g、トルエン 1.9 g 及び粒径0.8mm のガラスビーズ2mlを 20ml のガラス容器に添加し、ペイントシェーカーで1時間振とうした後に、ガラスビーズを濾別し、IRG−22の微粒子分散液を作成し、この分散液の粒度分布をマイクロトラック9340UPA(日機装(株)社製)にて測定した。この時の平均粒径は1.96μmであった。この結果を図1に示す。
【0022】
さらに、ブチラール樹脂(積水化学社製、エスレック BLー1)の20%2−プロパノール溶液2gの固形分に対し、IRG−22が 1.0重量%になるようにIRG−22の微粒子分散液を添加して塗布液を作製した。この液を100μm の膜厚のポリエステルフィルム上に乾燥後、約 5μmの厚さになるようにバーコータにて塗布、乾燥し、赤外線吸収フィルターを得た。
この赤外線吸収フィルターの赤外光吸収膜のみの分光特性を日立分光光度計(U-3 5 0 0) にて可視部〜近赤外光域を(380nm〜2100nm)測定した。また耐光堅牢度を、JIS−L0843に従って、キセノンフェードメータ40時間照射後のABS(λmax )が照射前を 100とした時のABSを計算し色素残存率として併せて表−1に示した。この結果を図2及び表―1に示す。
【0023】
[実施例2]
実施例1の日本化薬社製IRG−22に代えて日本化薬社製ジインモニウム色素 IRG−23とし、樹脂をポリメチルメタクリレート樹脂(三菱レーヨン社製、ダイヤナール BRー80)の20%トルエン溶液に代えた以外は実施例1と同様にして赤外線吸収フィルターを調製し、実施例1と同様に評価を行った。結果を図3及び表―1に示す。
【0024】
[比較例A]
実施例1の日本化薬社製IRG−22に代えて下記構造式で表される日本感光色素研究所社製シアニン色素NK−125を、樹脂をポリメチルメタクリレート樹脂(三菱レーヨン社製、ダイヤナール BRー80)の20%トルエン溶液に代えた以外は実施例1と同様にして赤外線吸収フィルターを調製し、実施例1と同様に評価を行った。結果を図4及び表−1に示す。
【0025】
【化3】
【0026】
[比較例B]
実施例1の日本化薬社製IRG−22に代えて東京化成社製チオール錯体系色素BTDTを用い、分散溶媒を2−プロパノールに代えた以外は他は、実施例1と同様にして、微粒子分散液を作成し、粒度分布をマイクロトラック9340UPA(日機装(株)社製)にて測定した。この時の平均粒径は1.90μmであった。さらに実施例1と同様にして赤外線吸収フィルター作製し、実施例1と同様にして評価を行った。結果を図5及び表−1に示す。
BTDT: Tetra-nButyl Phosphonium Bis(Toluene-3,4- dithiolate)Nickel(III)complex
【0027】
[比較例1−1]
日本化薬社製 IRG−22 0.1 gをメチルエチルケトン溶媒 1.9 gに溶解しIRG−22溶解液を作成し、さらに、ポリエステル樹脂(東洋紡社製、バイロン200)の20%溶解液(トルエン/メチルエチルケトン=1:1)2gの固形分に対し1重量%になるようにIRG−22の溶解液を添加して塗布液を作製した。
この液を100μm の膜厚のポリエステルフィルム上に乾燥後、約 5μmの厚さになるようにバーコータにて塗布、乾燥し赤外線吸収フィルターを得た。このフィルター塗布樹脂層のみの分光特性を日立分光光度計(U-3 5 0 0) にて実施例1と同様にして可視部〜近赤外光域を(380nm〜2100nm)測定と耐光堅牢度測定を行った。この結果を表―1に示す。
【0028】
[比較例1−2]
日本化薬社製 IRG−22 0.1 gをメチルエチルケトン 1.9 gに溶解してIRG−22溶解液を作成し、さらに、ポリメチルメタクリレート樹脂(三菱レーヨン社製、ダイヤナール BR−80)の20%溶解液(トルエン/メチルエチルケトン=1:1)2gの固形分に対し1重量%となるように、IRG−22の溶解液を添加して塗布液を作製した。この塗布液を比較例 1-1と同様にして赤外線吸収フィルターを作製し、比較例1-1 と同様に評価した。この結果を図2および表―1に示す。
【0029】
[比較例2]
比較例1-1の日本化薬社製IRG−22に代えて日本化薬社製IRG−23を用いた以外は 比較例1-1と同様にして塗布液を作製した。この塗布液を比較例1-1と同様にして赤外線吸収フィルターを作製し、比較例1-1 と同様に評価した。結果を図3及び表―1に示す。
【0030】
[比較例3]
比較例1-1の日本化薬社製IRG−22に代えて日本触媒社製NK−125に、樹脂をポリメチルメタクリレート樹脂(三菱レーヨン社製、ダイヤナール BR−80)の20%溶液(トルエン/メチルエチルケトン=1:1)にした以外は比較例1-1と同様にして塗布液を作製した。この塗布液を比較例 1- 1と同様にして赤外線吸収フィルターを作製し、比較例1-1 と同様に評価した。結果を図4及び表―1に示す。
【0031】
[比較例4]
比較例1-1の日本化薬社製IRG−22に代えて東京化成社製BTDTに、樹脂をポリエステル樹脂(東洋紡社製、バイロン200)の20%溶液(トルエン/メチルエチルケトン=1:1)にした以外は比較例1-1と同様にして塗布液を作製した。この塗布液を比較例1-1と同様にして赤外線吸収フィルターを作製し、比較例1-1 と同様に評価した。この結果を図5及び表―1に示す。
【0032】
【表1】
【0033】
【0034】
(溶解度測定条件)
赤外光吸収色素50mgを溶媒1.950gに添加し、超音波洗浄機にて約30分間処理、冷却後、ミリポアフィルター0.2μmで室温にて加圧濾過し濾液を計量後、溶媒をドライアップし、20℃にてこの赤外吸収色素の可溶溶媒で溶解調整して検量線よりその溶剤溶解度を求めた。各赤外光吸収色素のトルエンと2−プロパノールに対する溶解度は、表−2に示す結果である。
【0035】
【表2】
【0036】
表−1から明らかなように、本願発明の実施例1〜2の粒子分散状態の色素は、比較例1〜4の溶解状態の赤外色素に比べ赤外域の吸収半値幅が広く赤外光の遮蔽には極めて良好であり、且つ耐光堅牢度も実施例1〜2の粒子分散状態の色素は、比較例1〜4の溶解状態の赤外吸収色素に比べ極めて良好である。
【0037】
【発明の効果】
従来の有機溶媒溶解系の赤外光吸収色素は近赤外領域での吸収幅が狭く赤外線の遮蔽には不向きであり、また耐光堅牢度が劣り実用性に問題があったが、本願発明によれば赤外吸収色素を微粒子分散状態で樹脂中に分散含有することにより、近赤外領域での吸収幅が極めて広く、且つ耐光堅牢度を著しく改善することにより、実用可能な優れた赤外吸収膜を得ることができる。
【図面の簡単な説明】
【図1】 実施例1の微粒子分散液における赤外光吸収色素の粒度分布
【図2】 実施例1および比較例1-2 の赤外線吸収フイルターにおける赤外光吸収膜の分光特性
【図3】 実施例2及び比較例2の赤外線吸収フイルターにおける赤外光吸収膜の分光特性
【図4】 比較例A及び比較例3の赤外線吸収フイルターにおける赤外光吸収膜の分光特性
【図5】 比較例B及び比較例4の赤外線吸収フイルターにおける赤外光吸収膜の分光特性[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an infrared light absorbing film containing a specific infrared light absorbing dye and a method for producing the same.
[0002]
[Prior art]
Recently, buildings such as open buildings with large windows and automobiles have increased, and the increase in power consumption of air conditioners as a countermeasure against temperature rise due to summer sunshine has become a problem from the standpoint of measures against carbon dioxide and energy conservation. Yes. In addition, in greenhouses and greenhouses for agriculture, a rise in temperature in the summer leads to the growth of crops and the deterioration of the working environment, so countermeasures are required. Furthermore, in recent years, infrared from a heating element of infrared light that causes a malfunction, such as a plasma display, due to the spread of bar code readers using near infrared light sources such as semiconductor lasers and LEDs, near infrared light communication, and remote control. There is a strong demand for light blocking measures. Measures against blocking infrared light that is sunlight or heat rays from various heating elements include absorption of infrared light and transmission of visible light in addition to conventional shielding by curtains and blinds. A method of blocking infrared light by a layer, and a method of depositing a metal on glass or a film to form a layer that reflects infrared light and reflecting and shielding infrared light have been developed. More recently, reading of information signals such as barcodes has been increasingly performed with infrared light for the purpose of preventing malfunctions and security, and making printed matter such as barcodes inconspicuous. For this purpose, the infrared absorption layer is used as various signal forms such as a barcode.
However, many organic dyes used in infrared light absorption layers have problems such as a narrow absorption spectrum width and insufficient infrared light blocking effect, inferior light fastness and short life, and durability. Therefore, development of an infrared light absorbing layer having an excellent infrared light absorbing effect is desired.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide an infrared light absorbing film excellent in infrared light absorbing effect and having good light resistance.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have incorporated an organic solvent-soluble infrared light absorbing dye in a fine particle dispersed state, so that the infrared light absorbing layer is contained in a dissolved state. As a result, the inventors have found that the light resistance is significantly improved as compared with the infrared light absorbing film, and the infrared absorbing ability is excellent, and the present invention has been completed.
That is, the gist of the present invention is an infrared light absorbing film characterized in that diimmonium salt, which is an organic solvent-soluble infrared light absorbing dye, is dispersed and contained in a resin in a fine particle dispersed state, and a method for producing the same. is there.
[0005]
As the infrared light absorbing dye, many kinds of dyes have been developed and used for heat ray blocking, signal reading, or optical recording applications such as an optical disk (Color Material Association, 1988, Vol. 61, No. 4, Pp. 215-226). However, these dyes have drawbacks such as absorption in visible light and inferior light resistance, and there is a strong demand for dyes having performance satisfactory as infrared light absorption dyes. Among existing infrared absorbing dyes, some dyes absorb little visible light and have a wide absorption in the infrared region, but all of them are soluble in organic solvents and used in a binder resin in a dissolved state. As described above, substituents are often devised, but these infrared dyes are often inferior in light resistance, which is an obstacle to practical use.
The present inventors have already proposed that light resistance can be improved by a heat-shielding organic film containing a phthalocyanine or naphthalocyanine compound that absorbs in the visible light region and is highly colored (Japanese Patent Application No. 10-142530). .
[0006]
Furthermore, the present inventors investigated the light resistance of typical existing infrared light absorbing dyes that absorb infrared light, and found that ionic type dyes of amine compounds such as polymethine salts, aminium salts, and diimmonium salts and thiols. It has been found that the light resistance of the compound metal complex is greatly improved in the state of fine particle dispersion as compared with the state in which the compound is dissolved in the resin.
It is not known about the excellent performance in such a fine particle dispersion state, and conversely, when using these infrared dyes, the point of effect and the ease of preparation are less than when used with fine particles. It is more preferable to use it by dissolving it in an organic solvent (Japanese Patent Laid-Open No. 9-310031). In addition, a method of applying dispersed fine particles in an aqueous solvent has also been proposed (Japanese Patent Laid-Open No. 11-109126). However, the binder resin is limited to a water-soluble resin, and the substrate resin to be applied with the binder resin There is a problem that the adhesiveness of the resin is inferior.
[0007]
The present invention is contrary to such common sense so far, and by using a substantially poorly soluble organic solvent, a fine particle dispersion having good dispersion stability of the infrared light absorbing dye is obtained using a general resin. It is possible to obtain an infrared light absorbing film excellent in light resistance easily by coating or the like, and by making the infrared light absorbing dye in a fine particle state, excellent light resistance can be obtained, It has been found that the absorption spectrum is broad and that infrared light having a wider spectrum width can be absorbed than used in a dissolved state.
[0008]
Examples of the infrared light absorbing dye used in the present invention include an aminium salt and a diimmonium salt which are ionic type dyes of amine compounds. Representative examples include compounds represented by the following general formula (1) and the following general formula (2).
[0009]
[Chemical 1]
[0010]
In the above general formulas (1) and (2), A represents a divalent or tetravalent group derived from an aromatic compound such as benzene and biphenyl, and R 1 and R 2 have 1 to 12 carbon atoms. A linear or branched alkyl group, which may be substituted with an aromatic group such as a phenyl group or a group derived from a heterocycle such as morpholine or piperidine. X represents an inorganic or organic anion. Specific examples include compounds described in the above-mentioned Color Material Association.
[0011]
Another infrared light absorbing dye used in the present invention is a metal complex of a thiol compound. A typical example is shown in the following general formula (3).
[0012]
[Chemical 2]
[0013]
In the general formula (3), R 1 and R 2 represent an aryl group such as a phenyl group which may have a substituent, and R 1 and R 2 are connected via a linking group, A ring may be formed. X represents a sulfur atom, an oxygen atom, or a nitrogen atom, and M represents a nickel or copper metal ion.
The complex of the general formula (3) may be neutral or ionic complex combined with phosphonium or ammonium ion. Specific examples include the compounds described in "Dyes and Drugs" Vol. 35, No. 5, pages 126 to 137 (1990).
In addition, organic solvent-soluble infrared light absorbing dyes such as cyanine dyes, squarylium dyes, croconium dyes, pyrylium, and thiopyrylium dyes, which are polymethine dyes, can be used. Specific examples thereof include compounds described in the aforementioned Color Material Association Journal or “Color Material Association Journal” Vol. 60, No. 4, pages 212 to 224 (1987).
[0014]
As the resin used to form the infrared light absorbing film, a resin that is transparent to visible light, stably disperse the pigment fine particles, and does not substantially dissolve is used. Various known resins can be used as the resin. In particular, polyolefin resins such as polyethylene resins and polypropylene resins, polymethacrylate resins such as polycarbonate resins and polymethacrylate resins, polyester resins, and their co-polymers. A thermoplastic resin that is easy to be formed into a film or sheet and excellent in durability, such as a coalesced resin, is preferable. In addition, it is desirable to cure the resin in order to improve the mechanical strength of the infrared light absorbing film surface. Among the thermoplastic resins, a thermoplastic resin having a hydroxyl group and / or a carboxyl group is suitable from the viewpoint of improving the dispersion stability of the fine pigment particles and the curing reaction. Specific examples include polyester resins, polycarbonate resins, polyvinyl alcohol resins, polyvinyl acetal resins such as polyvinyl butyral and polyvinyl phenyl acetal, cellulose resins such as cellulose acetate butyrate, cellulose acetate, and ethyl cellulose, or hydroxyl groups and carboxyl groups in side chains. Polyacrylic resin, methacrylic resin, polyvinyl acetate resin, fluororesin, polyether resin, epoxy resin, polyurethane resin, alkyd resin and the like as a copolymer with the monomer component having These include hydroxyl groups and carboxyl groups in the monomer component, as well as resins having hydroxyl groups and carboxyl groups generated by reactions such as unreacted or hydrolyzed side chains and terminals. These resins can be used as resins that satisfy many of the required properties by adjusting various copolymer components, but polyester resins are used to disperse fine particles of infrared-absorbing dyes in terms of adhesion to transparent substrates such as polyester films. Polyvinyl acetal resin is preferable from the viewpoints of adhesion and adhesion to a transparent substrate.
[0015]
As the curing agent used for curing the resin, an isocyanate compound that can be cured under mild conditions is preferable. As the isocyanate compound, polyisocyanates such as diisocyanate and triisocyanate are used. Aromatic polyisocyanates such as paraphenylene diisocyanate, toluene diisocyanate, and triphenylmethane triisocyanate can be used, but aliphatic diisocyanates such as hexamethylene diisocyanate and alicyclic diisocyanates that cause little yellowing under long-term exposure are preferred. Various modified ones are known, and can be selected according to the required physical properties of the cured film such as burette modification, isocyanurate modification, and urethane modification.
[0016]
The amount of these curing agents added is suitably such that the number of moles of hydroxyl groups and / or carboxyl groups in the resin is 0.8 to 2.0 moles per mole of NCO groups of the isocyanate compound, depending on the degree of effect. The isocyanate compound may be added in a smaller amount. A reaction catalyst can be added to the curing reaction with an isocyanate group. As such a reaction catalyst, for example, amines such as triethylenediamine and tin compounds such as dibutyltin laurate are used, and the addition amount of these catalysts is usually several tens to several hundred ppm, and is selected according to the curing rate. Is done. Curing is usually completed in about 1 minute to several hours at 50 to 150 ° C., but curing may be completed by aging for several days.
[0017]
The infrared light absorbing film of the present invention can be formed by mixing the fine particles of the infrared light absorbing dye in the resin and dispersing them to form the film by various methods.
As a method, when a resin that can be injection molded or extruded is used, the resin and the pigment are mixed, heated and kneaded by a kneader, mixed and dispersed, and then subjected to a molding process such as injection molding or extrusion. A film or the like can be formed. In the case of using a resin that can be dissolved in a solvent, a method in which an infrared light absorbing film is formed by applying and drying a dispersion in which a pigment is dispersed in a resin solution in which the resin is dissolved in an organic solvent. Can be given. The infrared light absorbing film obtained by the former method can be used by being laminated on a substrate such as glass, a transparent resin sheet, or a film. If polyvinyl butyral resin is used, it can be used as an adhesive layer of laminated glass. In the case of molding processing, the molding temperature is not higher than the melting point of the infrared light absorbing dye so as not to impair the fine particle dispersion state. The latter coating film can be peeled off from the substrate and used as an independent film. The thickness of the infrared light absorbing film is 5 μm to 30 mm, preferably 10 μm to 10 mm when used as an independent sheet or film, and may be formed on a transparent substrate and used as an infrared absorbing filter. The thickness is 0.1 to 100 μm, preferably 1 to 50 μm.
[0018]
The amount of the infrared light-absorbing dye in the composition is determined by the required amount of visible light and infrared light transmittance, but also depends on the thickness of the layer used, and is generally 0.01 to 10 g / m 2 . With respect to 100 parts by weight of the binder resin, the amount of each pigment is 0.1 to 50 parts by weight.
As a solvent used to disperse the infrared light absorbing dye in fine particles, an organic solvent hardly soluble in the infrared light absorbing dye is used. In selecting such an organic solvent, a solvent is selected that is low enough that the existing infrared light-absorbing dye dissolved in the organic solvent without being atomized does not substantially affect the performance such as absorption characteristics and light resistance. . Specifically, an organic solvent having an infrared absorbing dye used having a solubility at 20 ° C. of 5% by weight or less, preferably 2% by weight or less can be used alone or in combination. In addition, when the layer is formed by coating, a solvent for dissolving the resin is also substantially hardly soluble, and an organic solvent having a solubility of the infrared absorbing dye to be used of 5% by weight or less, preferably 2% by weight or less is selected. And used alone or in combination.
[0019]
The organic solvent is preferably a solvent having a boiling point of 50 ° C. or more and 200 ° C. or less, alcohols such as methanol, ethanol and 2-propanol, ethers such as dimethoxyethane and tetrahydrofuran, esters such as ethyl acetate and butyl acetate, Typical examples include aromatic hydrocarbons such as toluene and xylene, hydrocarbons such as heptane and octane, ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, aprotic polar solvents such as dimethylformamide and acetonitrile, and mixtures thereof. However, it is not limited to these. The amount of the solvent used is arbitrarily set depending on the coating conditions and the thickness of the layer formed by coating, but is usually selected so that the solid content is 5 to 100 parts by weight with respect to 100 parts by weight of the solvent. .
If the particle size of the fine particles is too large, it may cause defects in the infrared light absorption film as foreign matter, or cause light scattering, leading to a decrease in transmittance and transparency. Specifically, it is desirable to form fine particles so that the particle size distribution is 5 μm or less, preferably 90% by volume or more and 3 μm or less.
[0020]
In addition to this, various additives can be added to the infrared light absorbing film of the present invention as long as the performance is not impaired. For example, a dispersant can be added as necessary for the purpose of improving the dispersibility of the infrared light absorbing dye fine particles. As such a dispersant, nonionic, cationic or anionic surfactants are used. Nonionic dispersants such as polyglycol esters of fatty acids, polycarboxylic acid-based and polysulfonic acid-based anionic dispersants, cationic dispersants such as aliphatic ammonium salts, or polymer-based dispersants thereof are used. The dispersant is used in an amount of 0.01 to 10% by weight based on the pigment. Furthermore, in order to improve the light resistance of a pigment | dye, a well-known ultraviolet absorber, antioxidant, and various light stabilizers can be added. In order to improve mechanical properties, inorganic fine particles such as titanium oxide and silica gel having a thickness of several μm or less, and resin fine particles can be added. Furthermore, an antifoaming agent or a leveling agent can be added to form the infrared light absorbing layer of the present invention by coating. In addition, pigments and dyes for color adjustment can be added.
[0021]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to an Example, unless the summary is exceeded. In the examples, “part” means “part by weight”, and “%” means “% by weight”.
[Example 1]
Nippon Kayaku Co., Ltd. diimmonium dye IRG-22 0.1 g, toluene 1.9 g, and 2 ml of glass beads with a particle size of 0.8 mm are added to a 20 ml glass container, shaken for 1 hour with a paint shaker, and the glass beads are filtered off. A fine particle dispersion of IRG-22 was prepared, and the particle size distribution of this dispersion was measured with Microtrac 9340UPA (manufactured by Nikkiso Co., Ltd.). The average particle size at this time was 1.96 μm. The result is shown in FIG.
[0022]
Furthermore, a fine particle dispersion of IRG-22 was added so that IRG-22 was 1.0% by weight with respect to the solid content of 2 g of a 20% 2-propanol solution of butyral resin (Sekisui Chemical Co., Ltd., ESREC BL-1). A coating solution was prepared. This solution was dried on a polyester film having a thickness of 100 μm, and then applied with a bar coater to a thickness of about 5 μm and dried to obtain an infrared absorption filter.
The spectral characteristics of the infrared absorption film alone of this infrared absorption filter were measured with a Hitachi spectrophotometer (U-3500) in the visible region to the near infrared region (380 nm to 2100 nm). Further, the light fastness is shown in Table 1 together with the dye residual rate calculated according to JIS-L0843 when ABS (λmax) after 40 hours of irradiation with xenon fade meter is 100 before irradiation. The results are shown in FIG. 2 and Table-1.
[0023]
[Example 2]
Instead of IRG-22 manufactured by Nippon Kayaku Co., Ltd. in Example 1, diimmonium dye IRG-23 manufactured by Nippon Kayaku Co., Ltd. was used, and the resin was a 20% toluene solution of polymethyl methacrylate resin (Mitsubishi Rayon Co., Ltd., Dianar BR-80). An infrared absorption filter was prepared in the same manner as in Example 1 except that it was replaced with and evaluated in the same manner as in Example 1. The results are shown in FIG. 3 and Table-1.
[0024]
[ Comparative Example A ]
In place of IRG-22 manufactured by Nippon Kayaku Co., Ltd. in Example 1, cyanine dye NK-125 manufactured by Nippon Photosensitizer Laboratories Co., Ltd. represented by the following structural formula was replaced with polymethyl methacrylate resin (Mitsubishi Rayon Co., Ltd., Dianal). An infrared absorption filter was prepared in the same manner as in Example 1 except that the 20% toluene solution of BR-80) was used, and evaluation was performed in the same manner as in Example 1. The results are shown in FIG. 4 and Table-1.
[0025]
[Chemical 3]
[0026]
[ Comparative Example B ]
Fine particles were obtained in the same manner as in Example 1 except that the thiol complex dye BTDT manufactured by Tokyo Chemical Industry Co., Ltd. was used instead of IRG-22 manufactured by Nippon Kayaku Co., Ltd. in Example 1, and the dispersion solvent was changed to 2-propanol. A dispersion was prepared, and the particle size distribution was measured with Microtrac 9340UPA (manufactured by Nikkiso Co., Ltd.). The average particle size at this time was 1.90 μm. Further, an infrared absorption filter was produced in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in FIG. 5 and Table-1.
BTDT: Tetra-n Butyl Phosphonium Bis (Toluene-3,4-dithiolate) Nickel (III) complex
[0027]
[Comparative Example 1-1]
IRG-22 0.1 g manufactured by Nippon Kayaku Co., Ltd. is dissolved in 1.9 g of methyl ethyl ketone solvent to prepare an IRG-22 solution, and a 20% solution (toluene / methyl ethyl ketone = 1) of a polyester resin (Byron 200, manufactured by Toyobo Co., Ltd.) 1) A coating solution was prepared by adding a solution of IRG-22 to 1 wt% with respect to 2 g of solid content.
This solution was dried on a polyester film having a thickness of 100 μm, and then applied with a bar coater to a thickness of about 5 μm and dried to obtain an infrared absorption filter. The spectral characteristics of only this filter-coated resin layer were measured with the Hitachi spectrophotometer (U-3500) in the same manner as in Example 1 in the visible region to the near infrared region (380 nm to 2100 nm) and light fastness. Measurements were made. The results are shown in Table-1.
[0028]
[Comparative Example 1-2]
IRG-22 0.1 g made by Nippon Kayaku Co., Ltd. was dissolved in 1.9 g methyl ethyl ketone to prepare an IRG-22 solution, and a 20% solution of polymethyl methacrylate resin (Mitsubishi Rayon, Dianar BR-80) was prepared. (Toluene / methyl ethyl ketone = 1: 1) A coating solution was prepared by adding a solution of IRG-22 so as to be 1% by weight based on 2 g of solid content. An infrared absorption filter was produced from this coating solution in the same manner as in Comparative Example 1-1 and evaluated in the same manner as in Comparative Example 1-1. The results are shown in FIG. 2 and Table-1.
[0029]
[Comparative Example 2]
A coating solution was prepared in the same manner as Comparative Example 1-1 except that IRG-23 manufactured by Nippon Kayaku Co., Ltd. was used instead of IRG-22 manufactured by Nippon Kayaku Co., Ltd. of Comparative Example 1-1. An infrared absorption filter was produced from this coating solution in the same manner as in Comparative Example 1-1, and evaluated in the same manner as in Comparative Example 1-1. The results are shown in FIG. 3 and Table-1.
[0030]
[Comparative Example 3]
Instead of IRG-22 manufactured by Nippon Kayaku Co., Ltd. in Comparative Example 1-1, NK-125 manufactured by Nippon Shokubai Co., Ltd. was replaced with a 20% solution (toluene) of polymethylmethacrylate resin (Mitsubishi Rayon Co., Ltd., Dialnal BR-80). / Methyl ethyl ketone = 1: 1) A coating solution was prepared in the same manner as Comparative Example 1-1. An infrared absorption filter was produced from this coating solution in the same manner as in Comparative Example 1-1, and evaluated in the same manner as in Comparative Example 1-1. The results are shown in FIG. 4 and Table-1.
[0031]
[Comparative Example 4]
In place of IRG-22 manufactured by Nippon Kayaku Co., Ltd. in Comparative Example 1-1, BTDT manufactured by Tokyo Chemical Industry Co., Ltd., and resin in a 20% solution (toluene / methyl ethyl ketone = 1: 1) of a polyester resin (Toyobo Co., Ltd., Byron 200) A coating solution was prepared in the same manner as in Comparative Example 1-1 except that. An infrared absorption filter was produced from this coating solution in the same manner as in Comparative Example 1-1, and evaluated in the same manner as in Comparative Example 1-1. The results are shown in FIG. 5 and Table-1.
[0032]
[Table 1]
[0033]
[0034]
(Solubility measurement conditions)
Add 50 mg of infrared light-absorbing dye to 1.950 g of solvent, treat with an ultrasonic cleaner for about 30 minutes, cool, press and filter with 0.2 μm Millipore filter at room temperature, weigh the filtrate, and dry the solvent. The solubility of the infrared absorbing dye was adjusted with a soluble solvent at 20 ° C., and the solvent solubility was determined from a calibration curve. The solubility of each infrared light absorbing dye in toluene and 2-propanol is the result shown in Table-2.
[0035]
[Table 2]
[0036]
As is apparent from Table 1, the pigments in the particle dispersion state of Examples 1 and 2 of the present invention have a wide absorption half width in the infrared region compared to the infrared pigments in the dissolved state of Comparative Examples 1 to 4, and infrared light. The pigment in the particle dispersion state of Examples 1 and 2 is very good as compared with the infrared absorption pigment in the dissolved state of Comparative Examples 1 to 4.
[0037]
【The invention's effect】
Conventional organic solvent-soluble infrared light-absorbing dyes have a narrow absorption width in the near-infrared region and are unsuitable for shielding infrared rays, and have poor light fastness and problems in practicality. According to the present invention, the infrared absorbing dye is dispersed and contained in the resin in the form of fine particles, so that the absorption width in the near infrared region is extremely wide and the light fastness is remarkably improved, so that the practical infrared An absorption film can be obtained.
[Brief description of the drawings]
1 is a particle size distribution of an infrared light absorbing dye in the fine particle dispersion of Example 1. FIG. 2 is a spectral characteristic of an infrared light absorbing film in the infrared absorbing filter of Example 1 and Comparative Example 1-2. spectral characteristics [5] Comparative example of the spectral characteristic [4] Comparative examples a and the infrared light absorbing film in the infrared absorption filter of Comparative example 3 of the infrared light absorbing film in the infrared absorption filter in example 2 and Comparative example 2 Spectral Characteristics of Infrared Light Absorbing Films in B and Comparative Example 4 Infrared Absorption Filters
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18993299A JP3987240B2 (en) | 1999-07-05 | 1999-07-05 | Infrared light absorbing film and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18993299A JP3987240B2 (en) | 1999-07-05 | 1999-07-05 | Infrared light absorbing film and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001019898A JP2001019898A (en) | 2001-01-23 |
JP3987240B2 true JP3987240B2 (en) | 2007-10-03 |
Family
ID=16249632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18993299A Expired - Lifetime JP3987240B2 (en) | 1999-07-05 | 1999-07-05 | Infrared light absorbing film and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3987240B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110119799A (en) | 2009-02-20 | 2011-11-02 | 닛뽕 카릿또 가부시키가이샤 | Near infrared absorbent dye and near infrared shielding filter |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1894314A (en) | 2003-12-15 | 2007-01-10 | 纳幕尔杜邦公司 | Process for preparing polymeric films useful for blocking the transmission of near infra red light |
JP2006341204A (en) * | 2005-06-09 | 2006-12-21 | Hitachi Maxell Ltd | Method for manufacturing near infrared ray shielding body and plate-like body for display |
JP2010018773A (en) * | 2008-06-12 | 2010-01-28 | Nippon Shokubai Co Ltd | Near-infrared ray absorbing pressure-sensitive adhesive composition |
WO2010095349A1 (en) * | 2009-02-20 | 2010-08-26 | 株式会社日本触媒 | Near-infrared absorbing pressure-sensitive adhesive composition |
KR20120030347A (en) * | 2009-04-24 | 2012-03-28 | 니폰 쇼쿠바이 컴파니 리미티드 | Method for storing or transporting composition containing diimonium dye |
US8772376B2 (en) | 2009-08-18 | 2014-07-08 | International Business Machines Corporation | Near-infrared absorbing film compositions |
JP5601163B2 (en) * | 2009-11-18 | 2014-10-08 | 日油株式会社 | Near-infrared absorbing adhesive and its use |
KR102012642B1 (en) * | 2012-11-29 | 2019-08-21 | 엘지이노텍 주식회사 | Nir film, method for manufacturing the same, and camera module having the same |
KR102012641B1 (en) * | 2012-12-13 | 2019-08-21 | 엘지이노텍 주식회사 | NEAR INFRa RED FILTER FILM |
WO2019167876A1 (en) | 2018-02-27 | 2019-09-06 | Jsr株式会社 | Optical filter and device using optical filter |
-
1999
- 1999-07-05 JP JP18993299A patent/JP3987240B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110119799A (en) | 2009-02-20 | 2011-11-02 | 닛뽕 카릿또 가부시키가이샤 | Near infrared absorbent dye and near infrared shielding filter |
Also Published As
Publication number | Publication date |
---|---|
JP2001019898A (en) | 2001-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1564260B1 (en) | Coloring matter absorbing near-infrared ray and filter for cutting off near-infrared ray | |
JP3987240B2 (en) | Infrared light absorbing film and method for producing the same | |
JP5414127B2 (en) | Diimonium compounds | |
EP1720918B1 (en) | Adhesive film functionalizing color compensation and near infrared ray (nir) blocking and plasma display panel filter using the same | |
DE69517778T2 (en) | Near infrared absorber, its manufacturing process and its use | |
DE60016515T2 (en) | Phthalocyanine compound, process for its preparation and near-infrared absorbing dye containing this compound | |
JP3226504B2 (en) | Phthalocyanine compound, its production method and its use | |
DE69909345T2 (en) | Phthalocyanine compound, its manufacturing process and use | |
KR101411899B1 (en) | Optical filter | |
KR100745728B1 (en) | Pressure sensitive adhesive layer functionalizing the color compensation and the near infrared (NIR) ray blocking for plasma display filter | |
EP1403666A1 (en) | DIIMONIUM SALT COMPOUND, AND NEAR−INFRARED RAY ABSORBING FILTER AND OPTICAL INFORMATION RECORDING MEDIUM | |
CN102656245A (en) | Near-infrared absorptive coloring matter and near-infrared absorptive composition | |
JP2016104839A (en) | Infrared absorption dye composition, infrared absorption film and laminate | |
JP2000044883A (en) | Heat ray-shielding organic film and its production | |
US6863845B2 (en) | Organic metal complex, infrared-absorbing dye and infrared absorption filter containing it, and filter for plasma display panel | |
JP5289813B2 (en) | Phthalocyanine compounds | |
DE3706266A1 (en) | RECORD CARRIER FOR OPTICAL INFORMATION | |
WO2007097368A1 (en) | Diimmonium salt compound, near-infrared absorbing composition containing same, near-infrared absorbing filter and front plate for display | |
JP3565071B2 (en) | Phthalocyanine compound, intermediate thereof, method for producing the compound and use thereof | |
US20050227164A1 (en) | Near infrared absorbing film and plasma display filter comprising the same | |
JPH0770363A (en) | Infrared cutting-off material | |
JPH10279936A (en) | Benzene thiol copper complex phtostabilizer, optical recording medium and ink composition containing the same | |
JP2001247526A (en) | Near infrared absorption compound composition and near infrared absorption filter | |
US20070264499A1 (en) | Adhesive film functionalizing color compensation and near infrared ray (NIR) blocking and plasma display panel filter using the same | |
JP4793977B2 (en) | Near infrared absorption filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041021 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041207 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050202 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20070226 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20070316 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070710 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070712 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3987240 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100720 Year of fee payment: 3 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050202 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100720 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100720 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100720 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100720 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100720 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100720 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110720 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110720 Year of fee payment: 4 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110720 Year of fee payment: 4 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110720 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110720 Year of fee payment: 4 |
|
S202 | Request for registration of non-exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R315201 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110720 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110720 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110720 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120720 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120720 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130720 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |