JP3970433B2 - Olefin polymerization catalyst comprising transition metal compound and polymerization method - Google Patents
Olefin polymerization catalyst comprising transition metal compound and polymerization method Download PDFInfo
- Publication number
- JP3970433B2 JP3970433B2 JP24507298A JP24507298A JP3970433B2 JP 3970433 B2 JP3970433 B2 JP 3970433B2 JP 24507298 A JP24507298 A JP 24507298A JP 24507298 A JP24507298 A JP 24507298A JP 3970433 B2 JP3970433 B2 JP 3970433B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- compound
- transition metal
- component
- atom
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 0 CCCCC(*1)(*2)C1(C)OOc1c2c(*)c(*)c(*)c1*C(CC)C=* Chemical compound CCCCC(*1)(*2)C1(C)OOc1c2c(*)c(*)c(*)c1*C(CC)C=* 0.000 description 3
Images
Landscapes
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は該遷移金属化合物からなるオレフィン重合用触媒、ならびに該オレフィン重合用触媒を用いたオレフィンの重合方法に関する。
【0002】
【発明の技術的背景】
オレフィン重合用触媒としては、いわゆるカミンスキー触媒がよく知られている。この触媒は非常に重合活性が高く、分子量分布が狭い重合体が得られるという特徴がある。このようなカミンスキー触媒に用いられる遷移金属化合物としては、たとえばビス(シクロペンタジエニル)ジルコニウムジクロリド(特開昭58ー19309号公報参照)や、エチレンビス(4,5,6,7-テトラヒドロインデニル)ジルコニウムジクロリド(特開昭61−130314号公報参照)などが知られている。また重合に用いる遷移金属化合物が異なると、オレフィン重合活性や得られたポリオレフィンの性状が大きく異なることも知られている。さらに最近新しいオレフィン重合用触媒としてジイミン構造の配位子を持った遷移金属化合物(国際公開特許第9623010号参照)が提案されている。
【0003】
ところで一般にポリオレフィンは、機械的特性などに優れているため、各種成形体用など種々の分野に用いられているが、近年ポリオレフィンに対する物性の要求が多様化しており、様々な性状のポリオレフィンが望まれている。また生産性の向上も課題である。
【0004】
このような状況のもと、オレフィン重合活性に優れ、しかも優れた性状を有するポリオレフィンを製造しうるようなオレフィン重合用触媒の出現が望まれている。
【0005】
【発明が解決しようとする課題】
本発明は、遷移金属化合物からなる優れたオレフィン重合活性を有するオレフィン重合用触媒、および該触媒を用いるオレフィンの重合方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
【0007】
本発明は、(A)下記一般式(I)で表される遷移金属化合物と、
(B)(B-1a) 一般式 Ra mAl(ORb)nHpXq
(式中、RaおよびRbは、互いに同一でも異なっていてもよい炭素原子数が1〜15、好ましくは1〜4の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である。)で表される有機アルミニウム化合物、
(B-2) 有機アルミニウムオキシ化合物、および
(B-3) 一般式(I)で表される遷移金属化合物と反応してイオン対を形成する化合物
よりなる群から選ばれる少なくとも1種の化合物と、
からなることを特徴とするオレフィン重合用触媒を提供する。
【0008】
【化3】
(式中、Mは、周期律表第4族の遷移金属原子を示し、mは、1〜2の整数を表し、Aは、酸素原子またはイオウを表し、Dは、−CO−または−C(R7)(R8)−を示し、R1〜R4、R7、R8およびR12は、互いに同一でも異なっていてもよく、水素原子または炭化水素基を示し、mが2のときは、一つの配位子に含まれるR1〜R4、R7、R8、R12のうちの1個の基と、他の配位子に含まれるR1〜R4、R7、R8、R12のうちの1個の基とが結合されていてもよく、R1同士、R2同士、R3同士、R4同士、R7同士、R8同士、R12同士は互いに同一でも異なっていてもよく、nは、Mの価数を満たす数であり、Xは、水素原子、ハロゲン原子または炭化水素基を示し、nが2以上の場合は、Xで示される複数の基は互いに同一でも異なっていてもい。)
【0009】
また本発明は、(A)下記一般式(III)で表される遷移金属化合物と、
(B)(B-1a) 一般式 Ra mAl(ORb)nHpXq
(式中、RaおよびRbは、互いに同一でも異なっていてもよい炭素原子数が1〜15、好ましくは1〜4の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である。)で表される有機アルミニウム化合物、
(B-2) 有機アルミニウムオキシ化合物、および
(B-3) 一般式( III )で表される遷移金属化合物と反応してイオン対を形成する化合物
よりなる群から選ばれる少なくとも1種の化合物と、
からなることを特徴とするオレフィン重合用触媒。
【化3】
【0010】
(式中、Mは、周期律表第4族の遷移金属原子を示し、mは、1〜2の整数を表し、Aは、酸素原子またはイオウを表し、Dは、−CO−または−C(R7)(R8)−を示し、R1〜R4、R7、R8およびR12は、互いに同一でも異なっていてもよく、水素原子または炭化水素基を示し、mが2のときは、一つの配位子に含まれるR1〜R4、R7、R8、R12のうちの1個の基と、他の配位子に含まれるR1〜R4、R7、R8、R12のうちの1個の基とが結合されていてもよく、R1同士、R2同士、R3同士、R4同士、R7同士、R8同士、R12同士は互いに同一でも異なっていてもよく、nは、Mの価数を満たす数であり、Xは、水素原子、ハロゲン原子または炭化水素基を示し、nが2以上の場合は、Xで示される複数の基は互いに同一でも異なっていてもい。)
【0011】
本発明に係るオレフィンの重合方法は、前記のような触媒の存在下に、オレフィンを重合または共重合させることを特徴としている。
【0012】
【発明の実施の形態】
以下、本発明の遷移金属化合物、およびこの遷移金属化合物からなるオレフィン重合用触媒ならびにこの触媒を用いたオレフィンの重合方法について具体的に説明する。
なお、本明細書において「重合」という語は、単独重合だけでなく、共重合をも包含した意味で用いられることがあり、「重合体」という語は、単独重合体だけでなく、共重合体をも包含した意味で用いられることがある。
【0013】
本発明に係る遷移金属化合物は、前記式(a)〜(d)で表される化合物と、前記式(e)で表される金属化合物とを結合反応させて得られるものである。
【0014】
また、本発明に係る第1の遷移金属化合物は、前記式(I)で表され、本発明に係る第2の遷移金属化合物は、前記式(III)で表される。
【0015】
さらに、本発明のオレフィン重合用触媒は、
(A)前記遷移金属化合物と、
(B)(B-1a) 一般式 Ra mAl(ORb)nHpXq
(式中、RaおよびRbは、互いに同一でも異なっていてもよい炭素原子数が1〜15、好ましくは1〜4の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である。)で表される有機アルミニウム化合物、
(B-2) 有機アルミニウムオキシ化合物、および
(B-3) 前記遷移金属化合物と反応してイオン対を形成する化合物
よりなる群から選ばれる少なくとも1種の化合物とから形成されている。
まず、本発明の遷移金属化合物(A)とともに、それからなるオレフィン重合用触媒を形成する各触媒成分について説明する。
【0016】
(A)遷移金属化合物
本発明で用いられる上記遷移金属化合物(I)および(III)は、それぞれ下記式(a)で表される第1の化合物、および(c)で表わされる第2の化合物と、下記式(e)で表される金属化合物とを結合反応させて得ることができる。
【0017】
第1の化合物は次式(a)で表わされる。
【化5】
【0018】
式(a)中、Aは、酸素原子またはイオウを示す。
Dは、−C(R7)(R8)−または−CO−を示す(ここで、−は単結合を表す。)。
R1〜R4、R7、R8、R12は、互いに同一でも異なっていてもよい水素原子または炭化水素基を示す。但しR12は水素原子以外のものであることが望ましい。
【0019】
より具体的には、R1〜R4、R7、R8、R12が水素原子または炭化水素基であることが好ましい。但しR12は水素原子以外のものであることが望ましい。
【0020】
炭化水素基として具体的には、メチル、エチル、n-ブロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、 tert-ブチル、ネオペンチル、n-ヘキシルなどの炭素原子数が1〜30、好ましくは1〜20の直鎖状または分岐状のアルキル基;ビニル、アリル(allyl)、イソプロペニルなどの炭素原子数が2〜30、好ましくは2〜20の直鎖状または分岐状のアルケニル基;エチニル、プロパルギルなど炭素原子数が2〜30、好ましくは2〜20の直鎖状または分岐状のアルキニル基;シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、アダマンチルなどの炭素原子数が3〜30、好ましくは3〜20の環状飽和炭化水素基;シクロペンタジエニル、インデニル、フルオレニルなどの炭素数5〜30の環状不飽和炭化水素基;フェニル、ベンジル、ナフチル、ビフェニル、ターフェニル、フェナントリル、アントラセニルなどの炭素原子数が6〜30、好ましくは6〜20のアリール(aryl)基;トリル、iso-プロピルフェニル、t-ブチルフェニル、ジメチルフェニル、ジ-t-ブチルフェニルなどのアルキル置換アリール基などが挙げられる。
【0021】
上記炭化水素基は、水素原子がハロゲンで置換されていてもよく、たとえば、トリフルオロメチル、ペンタフルオロフェニル、クロロフェニルなどの炭素原子数1〜30、好ましくは1〜20のハロゲン化炭化水素基が挙げられる。
また、上記炭化水素基は、水素原子が他の炭化水素基で置換されていてもよく、例えばベンジル、クミルなどのアリール基置換アルキル基などが挙げられる。
【0022】
これらのうち、特に、メチル、エチル、n-ブロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、t-ブチル、ネオペンチル、n-ヘキシルなどの炭素原子数1〜30、好ましくは1〜20の直鎖状または分岐状のアルキル基;フェニル、ナフチル、ビフェニル、ターフェニル、フェナントリル、アントラセニルなどの炭素原子数6〜30、好ましくは6〜20のアリール基;これらのアリール基にハロゲン原子、炭素原子数1〜30、好ましくは1〜20のアルキル基またはアルコキシ基、炭素原子数6〜30、好ましくは6〜20のアリール基またはアリーロキシ基等の置換基が1〜5個置換した置換アリール基などが好ましい。
【0023】
Dは、−C(R7)(R8)−または−CO−を示す。
−C(R7)(R8)−の好ましい例としては、上記以外にも、メチレン、1,1-シクロヘキシレン、ジメチルメチレン、フェニルメチルメチレン、ジフェニルメチレンなどの基が挙げられる。−Si(R9)(R10)−としては、メチルシリレン、ジメチルシリレン、ジエチルシリレン、ジ(n-ブロピル)シリレン、ジ(i-プロピル)シリレン、ジ(シクロヘキシル)シリレン、メチルフェニルシリレン、ジフェニルシリレン、ジ(p-トリル)シリレン、ジ(p-クロロフェニル)シリレンなどのアルキルシリレン基が挙げられる。また、−P(O)(OR11)−中のR11の好ましい例としては、メチル基、フェニル基が挙げられる。
【0024】
上記式(a)の第1の化合物と結合反応させる金属化合物は次式(e)で表わされる。
MXk (e)
【0025】
式(e)中、Mは周期律表第4族の遷移金属原子である。具体的には、チタン、ジルコニウム、ハフニウムである。
【0026】
kは、Mの価数を満たす数で、具体的には0〜6の整数である。例えば2価金属ではk=2、3価金属ではk=3、4価金属ではk=4、5価金属ではk=5、6価金属ではk=6である。例えばTi(IV)の場合k=4、Ti(III)の場合k=3である。
【0027】
Xは、水素原子、ハロゲン原子または炭化水素基を示す。これらのなかでは、ハロゲン原子が好ましく、とくにCl、Brが好ましい。
【0028】
ここで、ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる。
炭化水素基としては、前記式(a)のR1〜R12で例示したものと同様のものが挙げられる。具体的には、メチル、エチル、プロピル、ブチル、ヘキシル、オクチル、ノニル、ドデシル、アイコシルなどのアルキル基;シクロペンチル、シクロヘキシル、ノルボルニル、アダマンチルなどの炭素原子数が3〜30のシクロアルキル基;ビニル、プロペニル、シクロヘキセニルなどのアルケニル基;ベンジル、フェニルエチル、フェニルプロピルなどのアリールアルキル基;フェニル、トリル、ジメチルフェニル、トリメチルフェニル、エチルフェニル、プロピルフェニル、ビフェニル、ナフチル、メチルナフチル、アントリル、フェナントリルなどのアリール基などが挙げられるが、これらに限定されるものではない。また、これらの炭化水素基には、ハロゲン化炭化水素、具体的には炭素原子数1〜20の炭化水素基の少なくとも一つの水素がハロゲンに置換した基も含まれる。これらのうち、炭素原子数が1〜20のものが好ましい。
【0029】
なお、kが2以上の場合は、Xで示される複数の基は互いに同一でも異なっていてもよく、またXで示される複数の基は互いに結合して環を形成してもよい。
【0030】
前記(e)式のMXkの具体例として、TiCl3、TiCl4、TiBr3、TiBr4、ZrCl4、ZrBr4、HfBr4、HfCl4、VCl4、VCl5、VBr4、VBr5、NbCl5、NbBr5、TaCl5、TaBr4、Ti(acac)4、Ti(acac)3、ZrCl4のTHF(テトラヒドロフラン)錯体などが挙げられる。
【0031】
前記式(a)で表される化合物と、前記式(e)で表される金属化合物とを反応させて得られる遷移金属化合物では、金属原子と、該金属原子に結合する前記式(a)化合物に由来する配位子とのモル比が1〜6であることが好ましい。
この反応生成物のモル比は、単離された遷移金属化合物の元素分析およびマススペクトルで分析することにより確認することができる。
【0032】
第2の化合物は次式(c)で表わされる。
【化6】
式(c)中、Aは、酸素原子またはイオウを示す。
Dは、−C(R7)(R8)−または−CO−を示す。これらの中では、−C(R7)(R8)−、−CO−が好ましい。Dの具体例は、前記式(a)におけるDと同様の基が挙げられる。
R1〜R4、R7、R8は、互いに同一でも異なっていてもよい水素原子または炭化水素基を示す。
R1〜R4、R7、R8は、具体的には前記式(a)におけるR1〜R4、R7、R8、R12と同様の基が挙げられる。
【0033】
前記式(c)で表される化合物と、前記式(e)で表される金属化合物とを反応させて得られる遷移金属化合物では、金属原子と、該金属原子に結合する前記式(c)化合物に由来する配位子とのモル比が1〜3であることが好ましい。
【0034】
前記式(a)、(c)で表される配位子と前記式(e)で表される金属化合物との反応方法は、特に制限されるものではないが、例えば、後に記載する様に、式(a)、(c)の化合物をそのまま(e)式の金属化合物と反応させるか、または、式(a)、(c)の化合物を塩基と反応させてアニオンとした後(e)式の金属化合物と反応させる方法などによって行われる。
【0035】
本発明に係る第1の遷移金属化合物は下記式(I)で表される化合物である。
【化7】
上式においてO……Mにおける原子間の……は、配位結合していることを示すが、本発明では、配位結合していないものも含む。
【0036】
式(I)中、Mは、周期律表第4族の遷移金属原子を示し、mは、1〜2の整数を表し、Aは、酸素原子またはイオウを表し、Dは、−CO−または−C(R7)(R8)−を示し、R1〜R4、R7、R8およびR12は、互いに同一でも異なっていてもよく、水素原子または炭化水素基を示し、mが2のときは、一つの配位子に含まれるR1〜R4、R7、R8、R12のうちの1個の基と、他の配位子に含まれるR1〜R4、R7、R8、R12のうちの1個の基とが結合されていてもよく、R1同士、R2同士、R3同士、R4同士、R7同士、R8同士、R12同士は互いに同一でも異なっていてもよく、nは、Mの価数を満たす数であり、Xは、水素原子、ハロゲン原子または炭化水素基を示し、nが2以上の場合は、Xで示される複数の基は互いに同一でも異なっていてもい。
【0037】
前記一般式(I)で表される遷移金属化合物において、mが2であり、一つの配位子に含まれるR1〜R4、R7、R8、R12のうちの1個の基と、他の配位子に含まれるR1〜R4、R7、R8、R12のうちの1個の基とが連結されている化合物は、たとえば下記一般式(I-a)で表される化合物である。
【0038】
【化8】
【0039】
式(I-a)中、A、D、R1〜R12、M、Xは、それぞれ前記一般式(I)のA、D、R1〜R12、M、Xと同じであり、A'はAと同一でも異なっていてもよい酸素原子、イオウ原子、セレン原子、または、結合基として−R5'を有する窒素原子を示す。D'はDと同一でも異なっていてもよく、−C(R7')(R8')−、−CO−を示す。R1'〜R12'はそれぞれR1〜R12と同じであり、特に好ましくは以下のような基が挙げられる。
【0040】
R1'〜R12'は、互いに同一でも異なっていてもよく、水素原子または炭化水素基を示し、具体的には前記式(a)のR1〜R12と同様の原子または基を示す。R1'〜R12'のうちの2個以上の基、好ましくは隣接する基は互いに連結して脂肪族環、芳香族環または窒素原子などの異原子を含む炭化水素環を形成していてもよい。但しR12'は水素原子以外のものであることが望ましい。
【0041】
Yは、R1〜R12から選ばれる少なくとも1以上の基と、R1'〜R12'から選ばれる少なくとも1以上の基とを結合する結合基または単結合である。結合基は特に制限されるものではないが、好ましくは主鎖が原子3個以上、より好ましくは4個以上20個以下、特に好ましくは4個以上10個以下で構成された構造を有する。なお、この結合基は置換基を有していてもよい。
【0042】
Yで示される結合基としては、酸素、イオウ、炭素、窒素、リン、ケイ素、セレン、スズ、ホウ素などの中から選ばれる少なくとも1種の元素を含む基が挙げられ、具体的には−O−、−S−、−Se−などのカルコゲン原子含有基;−NH−、−N(CH3)2−、−PH−、−P(CH3)2−などの窒素またはリン原子含有基;−CH2−、−CH2−CH2−、−C(CH3)2−などの炭素原子数が1〜20の炭化水素基;ベンゼン、ナフタレン、アントラセンなどの炭素原子数が6〜20の環状不飽和炭化水素残基;ピリジン、キノリン、チオフェン、フランなどのヘテロ原子を含む炭素原子数が3〜20のヘテロ環式化合物残基;−SiH2−、−Si(CH3)2−などのケイ素原子含有基、−SnH2−、−Sn(CH3)2−などのスズ原子含有基;−BH−、−B(CH3)−、−BF−などのホウ素原子含有基など、または単結合が挙げられる。
【0043】
以下に、前記式(I)で表される遷移金属化合物の具体的な例を示すが、これらに限定されるものではない。
なお、下記具体例においてMは周期律表第4族の遷移金属原子であり、具体例としてはチタン、ジルコニウム、ハフニウムである。
【0044】
Xは、Cl、Br等のハロゲン、もしくはメチル等のアルキル基を示すが、これらに限定されるものではない。また、Xが複数ある場合は、これらは同じであっても、異なっていてもよい。
【0045】
nは金属Mの価数により決定される。例えば、2個のモノアニオン種が金属に結合している場合、2価金属ではn=0、3価金属ではn=1、4価金属ではn=2、5価金属ではn=3になる。例えば金属MがTi(IV)の場合は、n=2となり、Zr(IV)の場合は、n=2となり、Hf(IV)の場合は、n=2となる。
【0046】
また、化合物の例示中、Meはメチル基、Etはエチル基、iPrはi-プロピル基、tBuはtert-ブチル基、Phはフェニル基を示す。
【化9】
【0047】
本発明の第2の遷移金属化合物は、下記式(III)で表される化合物である。
【化10】
【0048】
式(III)中、Mは、周期律表第4族の遷移金属原子を示し、mは、1〜2の整数を表し、Aは、酸素原子またはイオウを表し、Dは、−CO−または−C(R7)(R8)−を示し、R1〜R4、R7、R8およびR12は、互いに同一でも異なっていてもよく、水素原子または炭化水素基を示し、mが2のときは、一つの配位子に含まれるR1〜R4、R7、R8、R12のうちの1個の基と、他の配位子に含まれるR1〜R4、R7、R8、R12のうちの1個の基とが結合されていてもよく、R1同士、R2同士、R3同士、R4同士、R7同士、R8同士、R12同士は互いに同一でも異なっていてもよく、nは、Mの価数を満たす数であり、Xは、水素原子、ハロゲン原子または炭化水素基を示し、nが2以上の場合は、Xで示される複数の基は互いに同一でも異なっていてもい。
【0049】
M、Xは、前記式(e)のM、Xと同じ意味を表わし、
nは、Mの価数を満たす数であり、nが2以上の場合は、Xで示される複数の基は互いに同一でも異なっていてもよく、またXで示される複数の基は互いに結合して環を形成してもよい。
【0050】
以下に、前記式(III)で表される遷移金属化合物の具体的な例を示すが、これらに限定されるものではない。
なお、下記具体例においてMは周期律表第4族の遷移金属原子であり、具体例としてはチタン、ジルコニウム、ハフニウムである。
【0051】
Xは、Cl、Br等のハロゲン、もしくはメチル等のアルキル基を示すが、これらに限定されるものではない。また、Xが複数ある場合は、これらは同じであっても、異なっていてもよい。
【0052】
nは、金属Mの価数により決定される。1種の配位子が金属に結合している場合、2価金属ではn=0、3価金属ではn=1、4価金属ではn=2、5価金属ではn=3である。例えば、金属MがTi(IV)ではn=2、Zr(IV)ではn=2、Hf(IV)ではn=2となる。
【0053】
【化11】
【0054】
以上のような遷移金属化合物(A)は、1種単独または2種以上組み合わせて用いられる。
また、本発明のオレフィン重合用触媒には、上記遷移金属化合物(A)とともに他の遷移金属化合物、例えば窒素、酸素、イオウ、ホウ素またはリンなどのヘテロ原子を含有する配位子からなる公知の遷移金属化合物を組み合わせて用いることもできる。
以下、組み合わせて用いることのできる他の遷移金属化合物について説明する。
【0055】
他の遷移金属化合物
上記遷移金属化合物(A)以外の遷移金属化合物として、具体的には、下記のような遷移金属化合物を用いることができる。ただし、これらに限定されるものではない。
【0056】
(a-1) 下記式で表される遷移金属イミド化合物:
【化12】
式中、Mは、周期表第8〜10族の遷移金属原子を示し、好ましくはニッケル、パラジウムまたは白金である。
【0057】
R21〜R24は、互いに同一でも異なっていてもよい炭素数1〜50の炭化水素基、炭素数1〜50のハロゲン化炭化水素基、炭化水素置換シリル基または窒素、酸素、リン、イオウおよびケイ素から選ばれる少なくとも1種の元素を含む置換基で置換された炭化水素基を示す。
R21〜R24で表される基は、これらのうちの2個以上、好ましくは隣接する基が互いに連結して環を形成していてもよい。
【0058】
Xは、水素原子、ハロゲン原子、炭素原子数1〜20の炭化水素基、炭素原子数1〜20のハロゲン化炭化水素基、酸素含有基、イオウ含有基、ケイ素含有基または窒素含有基を示し、qは、0〜4の整数である。qが2以上の場合には、Xで示される複数の基は互いに同一であっても異なっていてもよい。
【0059】
(a-2) 下記式で表される遷移金属アミド化合物:
【化13】
式中、Mは、周期表第3〜6族の遷移金属原子を示し、チタン、ジルコニウムまたはハフニウムであることが好ましい。
【0060】
R’およびR”は、互いに同一でも異なっていてもよく、水素原子、炭素数1〜50の炭化水素基、炭素数1〜50のハロゲン化炭化水素基、炭化水素置換シリル基、または、窒素、酸素、リン、硫黄およびケイ素から選ばれる少なくとも1種の元素を有する置換基を示す。
【0061】
Aは、周期表第13〜16族の原子を示し、具体的には、ホウ素、炭素、窒素、酸素、ケイ素、リン、硫黄、ゲルマニウム、セレン、スズなどが挙げられ、炭素またはケイ素であることが好ましい。
mは、0〜2の整数であり、nは、1〜5の整数である。nが2以上の場合には、複数のAは、互いに同一でも異なっていてもよい。
【0062】
Eは、炭素、水素、酸素、ハロゲン、窒素、硫黄、リン、ホウ素およびケイ素から選ばれる少なくとも1種の元素を有する置換基である。mが2の場合、2個のEは、互いに同一でも異なっていてもよく、あるいは互いに連結して環を形成していてもよい。
【0063】
Xは、水素原子、ハロゲン原子、炭素原子数が1〜20の炭化水素基、炭素原子数が1〜20のハロゲン化炭化水素基、酸素含有基、イオウ含有基、ケイ素含有基または窒素含有基を示し、pは、0〜4の整数である。pが2以上の場合には、Xで示される複数の基は互いに同一でも異なっていてもよい。
これらのうち、Xはハロゲン原子、炭素原子数が1〜20の炭化水素基またはスルホネート基であることが好ましい。
【0064】
(a-3) 下記式で表される遷移金属ジフェノキシ化合物:
【化14】
式中、Mは周期律表第3〜11族の遷移金属原子を示し、lおよびmはそれぞれ0または1の整数であり、AおよびA’は炭素原子数1〜50の炭化水素基、炭素原子数1〜50のハロゲン化炭化水素、または、酸素、硫黄またはケイ素を含有する置換基を持つ炭化水素基、または炭素原子数1〜50のハロゲン化炭化水素基であり、AとA’は同一でも異なっていてもよい。
【0065】
Bは、炭素原子数0〜50の炭化水素基、炭素原子数1〜50のハロゲン化炭化水素基、R1R2Zで表される基、酸素または硫黄であり、ここで、R1およびR2は炭素原子数1〜20の炭化水素基または少なくとも1個のヘテロ原子を含む炭素原子数1〜20の炭化水素基であり、Zは炭素、窒素、硫黄、リンまたはケイ素を示す。
【0066】
nは、Mの価数を満たす数である。
Xは、水素原子、ハロゲン原子、炭素原子数1〜20の炭化水素基、炭素原子数1〜20のハロゲン化炭化水素基、酸素含有基、イオウ含有基、ケイ素含有基または窒素含有基を示し、nが2以上の場合は、Xで示される複数の基は互いに同一でも異なっていてもよく、或いは互いに結合して環を形成していてもよい。
【0067】
(a-4) 下記式で表される少なくとも1個のヘテロ原子を含むシクロペンタジエニル骨格を有する配位子を含む遷移金属化合物:
【化15】
式中、Mは周期律表3〜11族の遷移金属原子を示す。
Xは、周期律表第13、14または15族の原子を示し、Xのうちの少なくとも1つは炭素以外の元素である。
【0068】
Rは、互いに同一でも異なっていてもよい水素原子、ハロゲン原子、炭化水素基、ハロゲン化炭化水素基、炭化水素基置換シリル基、又は窒素、酸素、リン、イオウおよびケイ素から選ばれる少なくとも1種の元素を含む置換基で置換された炭化水素基を示し、2個以上のRが互いに連結して環を形成していてもよい。
aは、0または1であり、bは、1〜4の整数であり、bが2以上の場合、各[((R)a)5−X5]基は同一でも異なっていてもよく、さらにR同士が架橋していてもよい。
【0069】
cは、Mの価数を満たす数である。
Yは、水素原子、ハロゲン原子、炭素原子数1〜20の炭化水素基、炭素原子数1〜20のハロゲン化炭化水素基、酸素含有基、イオウ含有基、ケイ素含有基または窒素含有基を示す。cが2以上の場合は、Yで示される複数の基は互いに同一でも異なっていてもよく、また、Yで示される複数の基は互いに結合して環を形成してもよい。
【0070】
(a-5) 式 RB(Pz)3MXnで表される遷移金属化合物:
式中、Mは周期律表3〜11族遷移金属化合物を示し、Rは水素原子、炭素原子数1〜20の炭化水素基または炭素原子数1〜20のハロゲン化炭化水素基を示し、Pzはピラゾイル基または置換ピラゾイル基を示す。
【0071】
nは、Mの価数を満たす数である。
Xは、水素原子、ハロゲン原子、炭素原子数1〜20の炭化水素基、炭素原子数1〜20のハロゲン化炭化水素基、酸素含有基、イオウ含有基、ケイ素含有基または窒素含有基を示し、nが2以上の場合は、Xで示される複数の基は互いに同一でも異なっていてもよく、あるいは互いに結合して環を形成してもよい。
【0072】
(a-6) 下記式で示される遷移金属化合物:
【化16】
【0073】
式中、Y1およびY3は、互いに同一であっても異なっていてもよい周期律表第15族の元素であり、Y2は周期律表第16族の元素である。
R21〜R28は、互いに同一でも異なっていてもよい水素原子、ハロゲン原子、炭素原子数1〜20の炭化水素基、炭素原子数1〜20のハロゲン化炭化水素基、酸素含有基、イオウ含有基またはケイ素含有基を示し、これらのうち2個以上が互いに連結して環を形成していてもよい。
【0074】
(a-7) 下記式で表される化合物とVIII族の遷移金属原子との化合物:
【化17】
式中、R31〜R34は、互いに同一でも異なっていてもよい水素原子、ハロゲン原子、炭素原子数1〜20の炭化水素基または炭素原子数1〜20のハロゲン化炭化水素基であり、これらのうち2個以上が互いに連結して環を形成していてもよい。
【0075】
(a-8) 下記式で示される遷移金属化合物:
【化18】
式中、Mは、周期律表第3〜11族の遷移金属原子を示し、
mは、0〜3の整数であり、nは、0または1の整数であり、pは、1〜3の整数であり、qは、Mの価数を満たす数である。
【0076】
R41〜R48は、互いに同一でも異なっていてもよい水素原子、ハロゲン原子、炭素原子数1〜20の炭化水素基、炭素原子数1〜20のハロゲン化炭化水素基、酸素含有基、イオウ含有基、ケイ素含有基または窒素含有基を示し、これらのうちの2個以上が互いに連結して環を形成していてもよい。
【0077】
Xは、水素原子、ハロゲン原子、炭素原子数1〜20の炭化水素基、炭素原子数1〜20のハロゲン化炭化水素基、酸素含有基、イオウ含有基、ケイ素含有基または窒素含有基を示し、qが2以上の場合は、Xで示される複数の基は互いに同一でも異なっていてもよく、またはXで示される複数の基は互いに結合して環を形成してもよい。
【0078】
Yは、ボラータベンゼン環を架橋する基であり、炭素、ケイ素またはゲルマニウムを示す。
Aは、周期律表第14、15または16族の元素を示す。
【0079】
(a-9) 前記(a-4)以外のシクロペンタジエニル骨格を有する配位子を含む遷移金属化合物。
(a-10) マグネシウム、チタン、ハロゲンを必須成分とする化合物。
【0080】
次に、(B)成分の各化合物について説明する。
(B-1) 有機金属化合物
本発明で用いられる(B-1)有機金属化合物として、具体的には下記のような有機アルミニウム化合物が用いられる。
【0081】
(B-1a) 一般式 Ra mAl(ORb)nHpXq
(式中、RaおよびRbは、互いに同一でも異なっていてもよい炭素原子数が1〜15、好ましくは1〜4の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である。)で表される有機アルミニウム化合物。
【0082】
前記の(B-1a)に属する有機アルミニウム化合物としては、次のような化合物を例示できる。
一般式 Ra mAl(ORb)3-m
(式中、RaおよびRbは、互いに同一でも異なっていてもよい炭素原子数が1〜15、好ましくは1〜4の炭化水素基を示し、mは、好ましくは1.5≦m≦3の数である。)で表される有機アルミニウム化合物、
一般式 Ra mAlX3-m
(式中、Raは炭素原子数が1〜15、好ましくは1〜4の炭化水素基を示し、Xはハロゲン原子を示し、mは好ましくは0<m<3である。)で表される有機アルミニウム化合物、
【0083】
一般式 Ra mAlH3-m
(式中、Raは炭素原子数が1〜15、好ましくは1〜4の炭化水素基を示し、mは好ましくは2≦m<3である。)で表される有機アルミニウム化合物、
一般式 Ra mAl(ORb)nXq
(式中、RaおよびRbは、互いに同一でも異なっていてもよい炭素原子数が1〜15、好ましくは1〜4の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、qは0≦q<3の数であり、かつm+n+q=3である。)で表される有機アルミニウム化合物。
【0084】
(B-1a)に属する有機アルミニウム化合物として、より具体的には、
トリメチルアルミニウム、トリエチルアルミニウム、トリn-ブチルアルミニウム、トリプロピルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウム、トリデシルアルミニウムなどのトリn-アルキルアルミニウム;
トリイソプロピルアルミニウム、トリイソブチルアルミニウム、トリsec-ブチルアルミニウム、トリtert-ブチルアルミニウム、トリ2-メチルブチルアルミニウム、トリ3-メチルブチルアルミニウム、トリ2-メチルペンチルアルミニウム、トリ3-メチルペンチルアルミニウム、トリ4-メチルペンチルアルミニウム、トリ2-メチルヘキシルアルミニウム、トリ3-メチルヘキシルアルミニウム、トリ2-エチルヘキシルアルミニウムなどのトリ分岐鎖アルキルアルミニウム;
【0085】
トリシクロヘキシルアルミニウム、トリシクロオクチルアルミニウムなどのトリシクロアルキルアルミニウム;
トリフェニルアルミニウム、トリトリルアルミニウムなどのトリアリールアルミニウム;
ジイソブチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライドなどのジアルキルアルミニウムハイドライド;
(i-C4H9)xAly(C5H10)z(式中、x、y、zは正の数であり、z≧2xである。)などで表されるトリイソプレニルアルミニウムなどのトリアルケニルアルミニウム;
【0086】
イソブチルアルミニウムメトキシド、イソブチルアルミニウムエトキシド、イソブチルアルミニウムイソプロポキシドなどのアルキルアルミニウムアルコキシド;
ジメチルアルミニウムメトキシド、ジエチルアルミニウムエトキシド、ジブチルアルミニウムブトキシドなどのジアルキルアルミニウムアルコキシド;
エチルアルミニウムセスキエトキシド、ブチルアルミニウムセスキブトキシドなどのアルキルアルミニウムセスキアルコキシド;
【0087】
Ra 2.5Al(ORb)0.5などで表される平均組成を有する部分的にアルコキシ化されたアルキルアルミニウム;
ジエチルアルミニウムフェノキシド、ジエチルアルミニウム(2,6-ジ-t-ブチル-4-メチルフェノキシド)、エチルアルミニウムビス(2,6-ジ-t-ブチル-4-メチルフェノキシド)、ジイソブチルアルミニウム(2,6-ジ-t- ブチル-4-メチルフェノキシド)、イソブチルアルミニウムビス(2,6-ジ-t-ブチル-4-メチルフェノキシド)などのジアルキルアルミニウムアリーロキシド;
ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、ジブチルアルミニウムクロリド、ジエチルアルミニウムブロミド、ジイソブチルアルミニウムクロリドなどのジアルキルアルミニウムハライド;
エチルアルミニウムセスキクロリド、ブチルアルミニウムセスキクロリド、エチルアルミニウムセスキブロミドなどのアルキルアルミニウムセスキハライド;
エチルアルミニウムジクロリド、プロピルアルミニウムジクロリド、ブチルアルミニウムジブロミドなどのアルキルアルミニウムジハライドなどの部分的にハロゲン化されたアルキルアルミニウム;
【0088】
ジエチルアルミニウムヒドリド、ジブチルアルミニウムヒドリドなどのジアルキルアルミニウムヒドリド;
エチルアルミニウムジヒドリド、プロピルアルミニウムジヒドリドなどのアルキルアルミニウムジヒドリドなどその他の部分的に水素化されたアルキルアルミニウム;
エチルアルミニウムエトキシクロリド、ブチルアルミニウムブトキシクロリド、エチルアルミニウムエトキシブロミドなどの部分的にアルコキシ化およびハロゲン化されたアルキルアルミニウムなどが挙げられる。
【0089】
また(B-1a)に類似する化合物も使用することができ、たとえば窒素原子を介して2以上のアルミニウム化合物が結合した有機アルミニウム化合物も挙げるられる。このような化合物として、具体的には、
(C2H5)2AlN(C2H5)Al(C2H5)2などが挙げられる。
【0090】
前記(B-1b)に属する化合物としては、
LiAl(C2H5)4、LiAl(C7H15)4などが挙げられる。
【0091】
またその他にも、(B-1)有機金属化合物としては、メチルリチウム、エチルリチウム、プロピルリチウム、ブチルリチウム、メチルマグネシウムブロミド、メチルマグネシウムクロリド、エチルマグネシウムブロミド、エチルマグネシウムクロリド、プロピルマグネシウムブロミド、プロピルマグネシウムクロリド、ブチルマグネシウムブロミド、ブチルマグネシウムクロリド、ジメチルマグネシウム、ジエチルマグネシウム、ジブチルマグネシウム、ブチルエチルマグネシウムなどを使用することもできる。
【0092】
また重合系内で上記有機アルミニウム化合物が形成されるような化合物、たとえばハロゲン化アルミニウムとアルキルリチウムとの組合せ、またはハロゲン化アルミニウムとアルキルマグネシウムとの組合せなどを使用することもできる。
(B-1)有機金属化合物のなかでは、有機アルミニウム化合物が好ましい。
上記のような(B-1)有機金属化合物は、1種単独でまたは2種以上組み合わせて用いられる。
【0093】
(B-2) 有機アルミニウムオキシ化合物
本発明で用いられる(B-2)有機アルミニウムオキシ化合物は、従来公知のアルミノキサンであってもよく、また特開平2−78687号公報に例示されているようなベンゼン不溶性の有機アルミニウムオキシ化合物であってもよい。
【0094】
従来公知のアルミノキサンは、たとえば下記のような方法によって製造することができ、通常、炭化水素溶媒の溶液として得られる。
(1)吸着水を含有する化合物または結晶水を含有する塩類、たとえば塩化マグネシウム水和物、硫酸銅水和物、硫酸アルミニウム水和物、硫酸ニッケル水和物、塩化第1セリウム水和物などの炭化水素媒体懸濁液に、トリアルキルアルミニウムなどの有機アルミニウム化合物を添加して、吸着水または結晶水と有機アルミニウム化合物とを反応させる方法。
【0095】
(2)ベンゼン、トルエン、エチルエーテル、テトラヒドロフランなどの媒体中で、トリアルキルアルミニウムなどの有機アルミニウム化合物に直接水、氷または水蒸気を作用させる方法。
(3)デカン、ベンゼン、トルエンなどの媒体中でトリアルキルアルミニウムなどの有機アルミニウム化合物に、ジメチルスズオキシド、ジブチルスズオキシドなどの有機スズ酸化物を反応させる方法。
【0096】
なお該アルミノキサンは、少量の有機金属成分を含有してもよい。また回収された上記のアルミノキサンの溶液から溶媒または未反応有機アルミニウム化合物を蒸留して除去した後、溶媒に再溶解またはアルミノキサンの貧溶媒に懸濁させてもよい。
【0097】
アルミノキサンを調製する際に用いられる有機アルミニウム化合物として具体的には、前記(B-1a)に属する有機アルミニウム化合物として例示したものと同様の有機アルミニウム化合物が挙げられる。
これらのうち、トリアルキルアルミニウム、トリシクロアルキルアルミニウムが好ましく、トリメチルアルミニウムが特に好ましい。
上記のような有機アルミニウム化合物は、1種単独でまたは2種以上組み合せ
て用いられる。
【0098】
アルミノキサンの調製に用いられる溶媒としては、ベンゼン、トルエン、キシレン、クメン、シメンなどの芳香族炭化水素、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、ヘキサデカン、オクタデカンなどの脂肪族炭化水素、シクロペンタン、シクロヘキサン、シクロオクタン、メチルシクロペンタンなどの脂環族炭化水素、ガソリン、灯油、軽油などの石油留分または上記芳香族炭化水素、脂肪族炭化水素、脂環族炭化水素のハロゲン化物とりわけ、塩素化物、臭素化物などの炭化水素溶媒が挙げられる。さらにエチルエーテル、テトラヒドロフランなどのエーテル類を用いることもできる。これらの溶媒のうち特に芳香族炭化水素または脂肪族炭化水素が好ましい。
【0099】
また本発明で用いられるベンゼン不溶性の有機アルミニウムオキシ化合物は、60℃のベンゼンに溶解するAl成分がAl原子換算で通常10%以下、好ましくは5%以下、特に好ましくは2%以下であるもの、すなわちベンゼンに対して不溶性または難溶性であるものが好ましい。
【0100】
本発明で用いられる有機アルミニウムオキシ化合物の例としては、下記一般式(i)で表されるボロンを含んだ有機アルミニウムオキシ化合物が挙げられる。
【化19】
式中、R20は炭素原子数が1〜10の炭化水素基を示す。
R21は、互いに同一でも異なっていてもよい水素原子、ハロゲン原子、炭素原子数が1〜10の炭化水素基を示す。
【0101】
前記一般式(i)で表されるボロンを含んだ有機アルミニウムオキシ化合物は、下記一般式(ii)で表されるアルキルボロン酸と、
R20−B−(OH)2 (ii)
(式中、R20は上記と同じ基を示す。)
有機アルミニウム化合物とを、不活性ガス雰囲気下に不活性溶媒中で、−80℃〜室温の温度で1分〜24時間反応させることにより製造できる。
【0102】
前記一般式(ii)で表されるアルキルボロン酸の具体的なものとしては、メチルボロン酸、エチルボロン酸、イソプロピルボロン酸、n-ブロピルボロン酸、n-ブチルボロン酸、イソブチルボロン酸、n-ヘキシルボロン酸、シクロヘキシルボロン酸、フェニルボロン酸、3,5-ジフルオロボロン酸、ペンタフルオロフェニルボロン酸、3,5-ビス(トリフルオロメチル)フェニルボロン酸等が挙げられる。これらの中では、メチルボロン酸、n-ブチルボロン酸、イソブチルボロン酸、3,5-ジフルオロフェニルボロン酸、ペンタフルオロフェニルボロン酸が好ましい。
これらは1種単独でまたは2種以上組み合わせて用いられる。
【0103】
このようなアルキルボロン酸と反応させる有機アルミニウム化合物として具体的には、前記(B-1a)に属する有機アルミニウム化合物として例示したものと同様の有機アルミニウム化合物が挙げられる。
これらのうち、トリアルキルアルミニウム、トリシクロアルキルアルミニウムが好ましく、特にトリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウムが好ましい。これらは1種単独でまたは2種以上組み合わせて用いられる。
【0104】
上記のような (B-2)有機アルミニウムオキシ化合物は、1種単独でまたは2種以上組み合せて用いられる。
【0105】
(B-3) 遷移金属化合物と反応してイオン対を形成する化合物
本発明で用いられる遷移金属化合物と反応してイオン対を形成する化合物(B-3)(以下、「イオン化イオン性化合物」という。)は、前記一般式(I)または一般式 (III) で表される遷移金属化合物と反応してイオン対を形成する化合物である。従って、少なくとも前記遷移金属化合物と接触させてイオン対を形成するものは、この化合物に含まれる。
このような化合物としては、特開平1−501950号公報、特開平1−502036号公報、特開平3−179005号公報、特開平3−179006号公報、特開平3−207703号公報、特開平3−207704号公報、USP−5321106号などに記載されたルイス酸、イオン性化合物、ボラン化合物およびカルボラン化合物などが挙げられる。さらに、ヘテロポリ化合物およびイソポリ化合物もあげることができる。
【0106】
具体的には、ルイス酸としては、BR3(Rは、フッ素、メチル基、トリフルオロメチル基などの置換基を有していてもよいフェニル基またはフッ素である。)で示される化合物が挙げられ、たとえば、トリフルオロボロン、トリフェニルボロン、トリス(4-フルオロフェニル)ボロン、トリス(3,5-ジフルオロフェニル)ボロン、トリス(4-フルオロメチルフェニル)ボロン、トリス(ペンタフルオロフェニル)ボロン、トリス(p-トリル)ボロン、トリス(o-トリル)ボロン、トリス(3,5-ジメチルフェニル)ボロンなどが挙げられる。
【0107】
イオン性化合物としては、たとえば下記一般式(VI)で表される化合物が挙げ
られる。
【化20】
【0108】
式中、R22としては、H+、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプチルトリエニルカチオン、遷移金属を有するフェロセニウムカチオンなどが挙げられる。
R23〜R26は、互いに同一でも異なっていてもよい有機基、好ましくはアリール基または置換アリール基である。
【0109】
前記カルボニウムカチオンとして具体的には、トリフェニルカルボニウムカチオン、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオンなどの三置換カルボニウムカチオンなどが挙げられる。
前記アンモニウムカチオンとして具体的には、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン、トリ(n-ブチル)アンモニウムカチオンなどのトリアルキルアンモニウムカチオン;N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N-2,4,6-ペンタメチルアニリニウムカチオンなどのN,N-ジアルキルアニリニウムカチオン;ジ(イソプロピル)アンモニウムカチオン、ジシクロヘキシルアンモニウムカチオンなどのジアルキルアンモニウムカチオンなどが挙げられる。
【0110】
前記ホスホニウムカチオンとして具体的には、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオンなどのトリアリールホスホニウムカチオンなどが挙げられる。
【0111】
R22としては、カルボニウムカチオン、アンモニウムカチオンなどが好ましく、特にトリフェニルカルボニウムカチオン、N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオンが好ましい。
【0112】
またイオン性化合物として、トリアルキル置換アンモニウム塩、N,N-ジアルキルアニリニウム塩、ジアルキルアンモニウム塩、トリアリールホスフォニウム塩なども挙げられる。
【0113】
トリアルキル置換アンモニウム塩として具体的には、たとえばトリエチルアンモニウムテトラ(フェニル)ホウ素、トリプロピルアンモニウムテトラ(フェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(フェニル)ホウ素、トリメチルアンモニウムテトラ(p-トリル)ホウ素、トリメチルアンモニウムテトラ(o-トリル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(ペンタフルオロフェニル)ホウ素、トリプロピルアンモニウムテトラ(o,p-ジメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(m,m-ジメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(p-トリフルオロメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(3,5-ジトリフルオロメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(o-トリル)ホウ素などが挙げられる。
【0114】
N,N-ジアルキルアニリニウム塩として具体的には、たとえばN,N-ジメチルアニリニウムテトラ(フェニル)ホウ素、N,N-ジエチルアニリニウムテトラ(フェニル)ホウ素、N,N-2,4,6-ペンタメチルアニリニウムテトラ(フェニル)ホウ素などが挙げられる。
ジアルキルアンモニウム塩として具体的には、たとえばジ(1-プロピル)アンモニウムテトラ(ペンタフルオロフェニル)ホウ素、ジシクロヘキシルアンモニウムテトラ(フェニル)ホウ素などが挙げられる。
【0115】
さらにイオン性化合物として、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、フェロセニウムテトラ(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムペンタフェニルシクロペンタジエニル錯体、N,N-ジエチルアニリニウムペンタフェニルシクロペンタジエニル錯体、下記式(VII )または(VIII)で表されるホウ素化合物なども挙げられる。
【0116】
【化21】
(式中、Etはエチル基を示す。)
【化22】
【0117】
ボラン化合物として具体的には、たとえば
デカボラン(14);
ビス〔トリ(n-ブチル)アンモニウム〕ノナボレート、ビス〔トリ(n-ブチル)アンモニウム〕デカボレート、ビス〔トリ(n-ブチル)アンモニウム〕ウンデカボレート、ビス〔トリ(n-ブチル)アンモニウム〕ドデカボレート、ビス〔トリ(n-ブチル)アンモニウム〕デカクロロデカボレート、ビス〔トリ(n-ブチル)アンモニウム〕ドデカクロロドデカボレートなどのアニオンの塩;
トリ(n-ブチル)アンモニウムビス(ドデカハイドライドドデカボレート)コバルト酸塩(III)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ドデカハイドライドドデカボレート)ニッケル酸塩(III)などの金属ボランアニオンの塩などが挙げられる。
【0118】
カルボラン化合物として具体的には、たとえば
4-カルバノナボラン(14)、1,3-ジカルバノナボラン(13)、6,9-ジカルバデカボラン(14)、ドデカハイドライド-1-フェニル-1,3- ジカルバノナボラン、ドデカハイドライド-1-メチル-1,3-ジカルバノナボラン、ウンデカハイドライド-1,3-ジメチル-1,3-ジカルバノナボラン、7,8-ジカルバウンデカボラン(13)、2,7-ジカルバウンデカボラン(13)、ウンデカハイドライド-7,8-ジメチル-7,8-ジカルバウンデカボラン、ドデカハイドライド-11-メチル-2,7-ジカルバウンデカボラン、トリ(n-ブチル)アンモニウム1-カルバデカボレート、トリ(n-ブチル)アンモニウム1-カルバウンデカボレート、トリ(n-ブチル)アンモニウム1-カルバドデカボレート、トリ(n-ブチル)アンモニウム1-トリメチルシリル-1-カルバデカボレート、トリ(n-ブチル)アンモニウムブロモ-1-カルバドデカボレート、トリ(n-ブチル)アンモニウム6-カルバデカボレート(14)、トリ(n-ブチル)アンモニウム6-カルバデカボレート(12)、トリ(n-ブチル)アンモニウム7-カルバウンデカボレート(13)、トリ(n-ブチル)アンモニウム7,8-ジカルバウンデカボレート(12)、トリ(n-ブチル)アンモニウム2,9-ジカルバウンデカボレート(12)、トリ(n-ブチル)アンモニウムドデカハイドライド-8-メチル-7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-8- エチル-7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-8- ブチル-7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-8- アリル-7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-9-トリメチルシリル-7,8-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-4,6-ジブロモ-7-カルバウンデカボレートなどのアニオンの塩;
【0119】
トリ(n-ブチル)アンモニウムビス(ノナハイドライド-1,3-ジカルバノナボレート)コバルト酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8- ジカルバウンデカボレート)鉄酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8- ジカルバウンデカボレート)コバルト酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8- ジカルバウンデカボレート)ニッケル酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8- ジカルバウンデカボレート)銅酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8- ジカルバウンデカボレート)金酸塩(III)、トリ(n-ブチル)アンモニウムビス(ノナハイドライド-7,8- ジメチル-7,8- ジカルバウンデカボレート)鉄酸塩(III)、トリ(n-ブチル)アンモニウムビス(ノナハイドライド-7,8- ジメチル-7,8- ジカルバウンデカボレート)クロム酸塩(III)、トリ(n-ブチル)アンモニウムビス(トリブロモオクタハイドライド-7,8- ジカルバウンデカボレート)コバルト酸塩(III)、トリス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7- カルバウンデカボレート)クロム酸塩(III)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7- カルバウンデカボレート)マンガン酸塩(IV)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7- カルバウンデカボレート)コバルト酸塩(III)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7- カルバウンデカボレート)ニッケル酸塩(IV)などの金属カルボランアニオンの塩などが挙げられる。
【0120】
ヘテロポリ化合物は、ケイ素、リン、チタン、ゲルマニウム、ヒ素もしくは錫からなる原子と、バナジウム、ニオブ、モリブデンおよびタングステンから選ばれる1種または2種以上の原子からなっている。具体的には、リンバナジン酸、ゲルマノバナジン酸、ヒ素バナジン酸、リンニオブ酸、ゲルマノニオブ酸、シリコノモリブデン酸、リンモリブデン酸、チタンモリブデン酸、ゲルマノモリブデン酸、ヒ素モリブデン酸、錫モリブデン酸、リンタングステン酸、ゲルマノタングステン酸、錫タングステン酸、リンモリブドバナジン酸、リンタングストバナジンン酸、ゲルマノタングストバナジンン酸、リンモリブドタングストバナジン酸、ゲルマノモリブドタングストバナジン酸、リンモリブドタングステン酸、リンモリブドニオブ酸、これらの酸の塩、例えば周期律表第Ia族またはIIa族の金属、具体的には、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等との塩、およびトリフェニルエチル塩等の有機塩、およびイソポリ化合物を使用できるが、この限りではない。
【0121】
ヘテロポリ化合物およびイソポリ化合物としては、上記の化合物の中の1種に限らず、2種以上用いることができる。
上記のような (B-3)イオン化イオン性化合物は、1種単独でまたは2種以上組み合せて用いられる。
【0122】
本発明に係る遷移金属化合物を触媒とする場合、助触媒成分としてのメチルアルミノキサンなどの有機アルミニウムオキシ化合物(B-2)とを併用すると、オレフィン化合物に対して非常に高い重合活性を示す。また助触媒成分としてトリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレートなどのイオン化イオン性化合物(B-3)を用いると、良好な活性で非常に分子量の高いオレフィン重合体が得られる。
【0123】
また、本発明に係るオレフィン重合用触媒は、前記遷移金属化合物(A)、(B-1)有機金属化合物、(B-2)有機アルミニウムオキシ化合物、および(B-3)イオン化イオン性化合物から選ばれる少なくとも1種の化合物(B)とともに、必要に応じて後述するような担体(C)を用いることもできる。
【0124】
(C)担体
本発明で用いられる(C)担体は、無機または有機の化合物であって、顆粒状ないしは微粒子状の固体である。
このうち無機化合物としては、多孔質酸化物、無機塩化物、粘土、粘土鉱物またはイオン交換性層状化合物が好ましい。
【0125】
多孔質酸化物として、具体的にはSiO2、Al2O3、MgO、ZrO、TiO2、B2O3、CaO、ZnO、BaO、ThO2など、またはこれらを含む複合物または混合物を使用、例えば天然または合成ゼオライト、SiO2−MgO、SiO2−Al2O3、SiO2−TiO2、SiO2−V2O5、SiO2−Cr2O3、SiO2−TiO2−MgOなどを使用することができる。これらのうち、SiO2および/またはAl2O3を主成分とするものが好ましい。
【0126】
なお、上記無機酸化物は、少量のNa2CO3、K2CO3、CaCO3、MgCO3、Na2SO4、Al2(SO4)3、BaSO4、KNO3、Mg(NO3)2、Al(NO3)3、Na2O、K2O、Li2Oなどの炭酸塩、硫酸塩、硝酸塩、酸化物成分を含有していても差し支ない。
【0127】
このような多孔質酸化物は、種類および製法によりその性状は異なるが、本発明に好ましく用いられる担体は、粒径が10〜300μm、好ましくは20〜200μmであって、比表面積が50〜1000m2/g、好ましくは100〜700m2/gの範囲にあり、細孔容積が0.3〜3.0cm3/gの範囲にあることが望ましい。このような担体は、必要に応じて100〜1000℃、好ましくは150〜700℃で焼成して使用される。
【0128】
無機塩化物としては、MgCl2、MgBr2、MnCl2、MnBr2等が用いられる。無機塩化物は、そのまま用いてもよいし、ボールミル、振動ミルにより粉砕した後に用いてもよい。また、アルコールなどの溶媒に無機塩化物を溶解させた後、析出剤によってを微粒子状に析出させたものを用いることもできる。
【0129】
本発明で担体として用いられる粘土は、通常粘土鉱物を主成分として構成される。また、本発明で担体として用いられるイオン交換性層状化合物は、イオン結合などによって構成される面が互いに弱い結合力で平行に積み重なった結晶構造を有する化合物であり、含有するイオンが交換可能なものである。大部分の粘土鉱物はイオン交換性層状化合物である。また、これらの粘土、粘土鉱物、イオン交換性層状化合物としては、天然産のものに限らず、人工合成物を使用することもできる。
また、粘土、粘土鉱物またはイオン交換性層状化合物として、粘土、粘土鉱物、また、六方細密パッキング型、アンチモン型、CdCl2 型、CdI2型などの層状の結晶構造を有するイオン結晶性化合物などを例示することができる。
【0130】
このような粘土、粘土鉱物としては、カオリン、ベントナイト、木節粘土、ガイロメ粘土、アロフェン、ヒシンゲル石、パイロフィライト、ウンモ群、モンモリロナイト群、バーミキュライト、リョクデイ石群、パリゴルスカイト、カオリナイト、ナクライト、ディッカイト、ハロイサイトなどが挙げられ、イオン交換性層状化合物としては、α−Zr(HAsO4)2・H2O、α−Zr(HPO4)2、α−Zr(KPO4)2・3H2O、α−Ti(HPO4)2、α−Ti(HAsO4)2・H2O、α−Sn(HPO4)2・H2O、γ―Zr(HPO4)2、γ−Ti(HPO4)2、γ−Ti(NH4PO4)2・H2Oなどの多価金属の結晶性酸性塩などが挙げられる。
【0131】
このような粘土、粘土鉱物またはイオン交換性層状化合物は、水銀圧入法で測定した半径20オングストローム以上の細孔容積が0.1cc/g以上のものが好ましく、0.3〜5cc/gのものが特に好ましい。ここで、細孔容積は、水銀ポロシメーターを用いた水銀圧入法により、細孔半径20〜3×104オングストロームの範囲について測定される。
半径20オングストローム以上の細孔容積が0.1cc/gより小さいものを担体として用いた場合には、高い重合活性が得られにくい傾向がある。
【0132】
本発明で用いられる粘土、粘土鉱物には、化学処理を施すことも好ましい。化学処理としては、表面に付着している不純物を除去する表面処理、粘土の結晶構造に影響を与える処理など、何れも使用できる。化学処理として具体的には、酸処理、アルカリ処理、塩類処理、有機物処理などが挙げられる。酸処理は、表面の不純物を取り除くほか、結晶構造中のAl、Fe、Mgなどの陽イオンを溶出させることによって表面積を増大させる。アルカリ処理では粘土の結晶構造が破壊され、粘土の構造の変化をもたらす。また、塩類処理、有機物処理では、イオン複合体、分子複合体、有機誘導体などを形成し、表面積や層間距離を変えることができる。
【0133】
本発明で用いられるイオン交換性層状化合物は、イオン交換性を利用し、層間の交換性イオンを別の大きな嵩高いイオンと交換することにより、層間が拡大した状態の層状化合物であってもよい。このような嵩高いイオンは、層状構造を支える支柱的な役割を担っており、通常、ピラーと呼ばれる。また、このように層状化合物の層間に別の物質を導入することをインターカレーションという。インターカレーションするゲスト化合物としては、TiCl4、ZrCl4などの陽イオン性無機化合物、Ti(OR)4、Zr(OR)4、PO(OR)3、B(OR)3などの金属アルコキシド(Rは炭化水素基など)、[Al13O4(OH)24]7+、[Zr4(OH)14]2+、[Fe3O(OCOCH3)6]+などの金属水酸化物イオンなどが挙げられる。
【0134】
これらの化合物は単独でまたは2種以上組み合わせて用いられる。
また、これらの化合物をインターカレーションする際に、Si(OR)4、Al(OR)3、Ge(OR)4などの金属アルコキシド(Rは炭化水素基など)などを加水分解して得た重合物、SiO2などのコロイド状無機化合物などを共存させることもできる。また、ピラーとしては、上記金属水酸化物イオンを層間にインターカレーションした後に加熱脱水することにより生成する酸化物などが挙げられる。
【0135】
本発明で用いられる粘土、粘土鉱物、イオン交換性層状化合物は、そのまま用いてもよく、またボールミル、ふるい分けなどの処理を行った後に用いてもよい。また、新たに水を添加吸着させ、あるいは加熱脱水処理した後に用いてもよい。さらに、単独で用いても、2種以上を組み合わせて用いてもよい。
【0136】
これらのうち、好ましいものは粘土または粘土鉱物であり、特に好ましいものはモンモリロナイト、バーミキュライト、ヘクトライト、テニオライトおよび合成雲母である。
【0137】
有機化合物としては、粒径が10〜300μmの範囲にある顆粒状ないしは微粒子状固体を挙げることができる。具体的には、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテンなどの炭素原子数が2〜14のα−オレフィンを主成分として生成される(共)重合体またはビニルシクロヘキサン、スチレンを主成分として生成される(共)重合体、およびびそれらの変成体を例示することができる。
【0138】
本発明に係るオレフイン重合用触媒は、前記遷移金属化合物(A)、(B-1)有機金属化合物、(B-2)有機アルミニウムオキシ化合物、および(B-3)イオン化イオン性化合物から選ばれる少なくとも1種の化合物(B)、必要に応じて担体(C)と共に、さらに必要に応じて後述するような特定の有機化合物(D)を含むこともできる。
【0139】
(D)有機化合物成分
本発明において、(D)有機化合物成分は、必要に応じて、重合性能および生成ポリマーの物性を向上させる目的で使用される。このような有機化合物としては、アルコール類、フェノール性化合物、カルボン酸、リン化合物およぴスルホン酸塩等が挙げられるが、これに限られるものではない。
【0140】
アルコール類およびフェノール性化合物としては、通常、R31−OHで表されるものが使用され(ここで、R31は炭素原子数1〜50の炭化水素基または炭素原子数1〜50のハロゲン化炭化水素基を示す。)、アルコール類としては、R31がハロゲン化炭化水素のものが好ましい。また、フェノール性化合物としては、水酸基のα,α’-位が炭素数1〜20の炭化水素で置換されたものが好ましい。
【0141】
カルボン酸としては、通常、R32−COOHで表されるものが使用される。R32は炭素原子数1〜50の炭化水素基または炭素原子数1〜50のハロゲン化炭化水素基を示し、特に炭素原子数1〜50のハロゲン化炭化水素基が好ましい。
リン化合物としては、P−O−H結合を有するリン酸類、P−OR、P=O結合を有するホスフェート、ホスフィンオキシド化合物が好ましく使用される。
【0142】
スルホン酸塩としては、下記一般式(IX)で表されるものが使用される。
【化23】
式中、Mは周期律表1〜14族の元素である。
R33は水素、炭素原子数1〜20の炭化水素基または炭素原子数1〜20のハロゲン化炭化水素基である。
Xは水素原子、ハロゲン原子、炭素原子数が1〜20の炭化水素基、炭素原子数が1〜20のハロゲン化炭化水素基である。
mは1〜7の整数であり、nは1≦n≦7である。
【0143】
図1に、本発明に係るオレフイン重合触媒の調製工程を示す。
【0144】
次に、オレフイン重合方法について説明する。
本発明に係るオレフイン重合方法は、上記の触媒の存在下にオレフインを(共)重合させることからなる。
重合の際、各成分の使用法、添加順序は任意に選ばれるが、以下のような方法が例示される。
(1) 成分(A)と、(B-1)有機金属化合物、(B-2)有機アルミニウムオキシ化合物および(B-3) イオン化イオン性化合物から選ばれる少なくとも1種の成分(B)(以下単に「成分(B)」という。)とを任意の順序で重合器に添加する方法。
(2) 成分(A)と成分(B)とを予め接触させた触媒を重合器に添加する方法。
(3) 成分(A)と成分(B)を予め接触させた触媒成分、およぴ成分(B)を任意の順序で重合器に添加する方法。この場合、成分(B)は、同一でも異なっていてもよい。
【0145】
(4) 成分(A)を担体(C)に担持した触媒成分、および成分(B)を任意の順序で重合器に添加する方法。
(5) 成分(A)と成分(B)とを担体(C)に担持した触媒を重合器に添加する方法。
(6) 成分(A)と成分(B)とを担体(C)に担持した触媒成分、および成分(B)を任意の順序で重合器に添加する方法。この場合、成分(B)は、同一でも異なっていてもよい。
【0146】
(7) 成分(B)を担体(C)に担持した触媒成分、および成分(A)を任意の順序で重合器に添加する方法。
(8) 成分(B)を担体(C)に担持した触媒成分、成分(A)、および成分(B)を任意の順序で重合器に添加する方法。この場合、成分(B)は、同一でも異なっていてもよい。
(9) 成分(A)を担体(C)に担持した成分、および成分(B)を担体(C)に担持した成分を任意の順序で重合器に添加する方法。
【0147】
(10) 成分(A)を担体(C)に担持した成分、成分(B)を担体(C)に担持した成分、および成分(B)を任意の順序で重合器に添加する方法。この場合、成分(B)は、同一でも異なっていてもよい。
(11) 成分(A)、成分(B)、および有機化合物成分(D)を任意の順序で重合器に添加する方法。
(12) 成分(B)と成分(D)をあらかじめ接触させた成分、およぴ成分(A)を任意の順序で重合器に添加する方法。
【0148】
(13) 成分(B)と成分(D)を担体(C)に担持した成分、および成分(A)を任意の順序で重合器に添加する方法。
(14) 成分(A)と成分(B)を予め接触させた触媒成分、および成分(D)を任意の順序で重合器に添加する方法。
(15) 成分(A)と成分(B)を予め接触させた触媒成分、および成分(B)、成分(D)を任意め順序で重合器に添加する方法。
【0149】
(16) 成分(A)と成分(B)を予め接触させた触媒成分、およぴ成分(B)と成分(D)をあらかじめ接触させた成分を任意の順序で重合器に添加する方法。
(17) 成分(A)を担体(C)に担持した成分、成分(B)、および成分(D)を任意の順序で重合器に添加する方法。
(18) 成分(A)を担体(C)に担持した成分、および成分(B)と成分(D)をあらかじめ接触させた成分を任意の順序で重合器に添加する方法。
【0150】
(19) 成分(A)と成分(B)と成分(D)を予め任意の順序で接触させた触媒成分を重合器に添加する方法。
(20) 成分(A)と成分(B)と成分(D)を予め接触させた触媒成分、および成分(B)を任意の順序で重合器に添加する方法。この場合、成分(B)は、同一でも異なっていてもよい。
(21) 成分(A)と成分(B)と成分(D)を担体(C)に担持した触媒を重合器に添加する方法。
(22) 成分(A)と成分(B)と成分(D)を担体(C)に担持した触媒成分、およぴ成分(B)を任意の順序で重合器に添加する方法。この場合、成分(B)は、同一でも異なっていてもよい。
【0151】
上記の担体(C)に成分(A)および成分(B)が担持された固体触媒成分はオレフインが予備重合されていてもよい。
【0152】
本発明に係るオレフインの重合方法では、上記のようなオレフイン重合触媒の存在下に、オレフインを重合または共重合することによりオレフイン重合体を得る。本発明では、重合は溶解重合、懸濁重合などの液相重合法または気相重合法のいずれにおいても実施できる。
【0153】
液相重合法において用いられる不活性炭化水素媒体として具体的には、プロパン、ブタン、ペンタン、ヘキサン、へプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素;シクロペンタン、シクロへキサン、メチルシクロペンタンなどの脂肪族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;エチレンクロリド、クロルベンゼン、ジクロロメタンなどのハロゲン化炭化水素またはこれらの混合物などを挙げることができ、オレフイン自身を溶媒として用いることもできる。
【0154】
上記のようなオレフイン重合用触媒を用いて、オレフインの重合を行うに際して、成分(A)は、反応容積1リットル当り、通常10-12〜10-2モル、好ましくは10-10〜10-3モルとなるような量で用いられる。本発明では、成分(A)を、比較的薄い濃度で用いた場合であっても、高い重合活性でオレフインを重合することができる。
【0155】
成分(B-1)は、成分(B-1)と、成分(A)中の遷移金属原子(M)とのモル比〔(B-1)/M〕が、通常0.01〜100000、好ましくは0.05〜50000となるような量で用いられる。
成分(B-2)は、成分(B-2)中のアルミニウム原子と、成分(A)中の遷移金属原子(M)とのモル比〔(B-2)/M〕が、通常10〜500000、好ましくは20〜100000となるような量で用いられる。
成分(B-3)は、成分(B-3)と、成分(A)中の遷移金属原子(M)とのモル比〔(B-3)/M〕が、通常1〜10、好ましくは1〜5となるような量で用いられる。
【0156】
成分(D)は、成分(B)に対して、成分(B-1)の場合、モル比〔(D)/(B-1)〕が通常0.01〜10、好ましくは0.1〜5となるような量で、成分(B-2)の場合、成分(D)と成分(B-2)中のアルミニウム原子とのモル比〔(D)/(B-2)〕が通常0.001〜2、好ましくは0.005〜1となるような量で、成分(B-3)の場合、モル比〔(D)/(B-3)〕が通常0.01〜10、好ましくは0.1〜5となるような量で用いられる。
【0157】
また、このようなオレフィン重合触媒を用いたオレフィンの重合温度は、通常、−50〜200℃、好ましくは0〜170℃の範囲である。重合圧力は、通常、常圧〜100kg/cm2、好ましくは常圧〜50kg/cm2の条件であり、重合反応は、回分式、半連続式、連続式のいずれの方法においても行うことができる。さらに重合を反応条件の異なる2段以上に分けて行うことも可能である。
【0158】
得られるオレフィン重合体の分子量は、重合系に水素を存在させるか、または重合温度を変化させることによって調節することができる。
さらに、使用する成分(B)の違いにより調節することもできる。
【0159】
このようなオレフィン重合触媒により重合することができるオレフィンとしては、炭素原子数が2〜20のα−オレフィン、たとえばエチレン、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン;
炭素原子数が3〜20の環状オレフィン、たとえばシクロペンテン、シクロヘプテン、ノルボルネン、5-メチル-2-ノルボルネン、テトラシクロドデセン、2-メチル1,4,5,8-ジメタノ-1,2,3,4,4a,5,8,8a-オクタヒドロナフタレン;
【0160】
極性モノマー、たとえば、アクリル酸、メタクリル酸、フマル酸、無水マレイン酸、イタコン酸、無水イタコン酸、ビシクロ[2.2.1]-5-ヘプテン-2,3-ジカルボン酸などのα,β−不飽和カルボン酸、およびこれらのナトリウム塩、カリウム塩、リチウム塩、亜鉛塩、マグネシウム塩、カルシウム塩などの金属塩;アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸 tert-ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチルなどのα,β−不飽和カルボン酸エステル;
酢酸ビニル、プロピオン酸ビニル、カプロン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、トリフルオロ酢酸ビニルなどのビニルエステル類;アクリル酸グリシジル、メタクリル酸グリシジル、イタコン酸モノグリシジルエステルなどの不飽和グリシジルなどが挙げられる。
【0161】
さらにビニルシクロヘキサン、ジエンまたはポリエンなどを用いることもできる。
このジエンまたはポリエンとしては、炭素原子数4〜30、好ましくは4〜20で二個以上の二重結合を有する環状又は鎖状の化合物である。具体的には、ブタジエン、イソプレン、4-メチル-1,3- ペンタジエン、1,3-ペンタジエン、1,4-ペンタジエン、1,5-ヘキサジエン、1,4-ヘキサジエン、1,3-ヘキサジエン、1,3-オクタジエン、1,4-オクタジエン、1,5-オクタジエン、1,6-オクタジエン、1,7-オクタジエン、エチリデンノルボルネン、ビニルノルボルネン、ジシクロペンタジエン;
7-メチル-1,6-オクタジエン、4−エチリデン-8-メチル-1,7-ノナジエン、5,9-ジメチル-1,4,8-デカトリエン;
【0162】
さらに芳香族ビニル化合物、例えばスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o,p-ジメチルスチレン、o-エチルスチレン、m−エチルスチレン、p-エチルスチレンなどのモノもしくはポリアルキルスチレン;
メトキシスチレン、エトキシスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルベンジルアセテート、ヒドロキシスチレン、o-クロロスチレン、p-クロロスチレン、ジビニルベンゼンなどの官能基含有スチレン誘導体;および
3-フェニルプロピレン、4-フェニルプロピレン、α-メチルステレンなどが挙げられる。
【0163】
本発明に係るオレフィン重合用触媒は、高い重合活性を示し、また分子量分布の狭い重合体を得ることができる。さらに、2種以上のオレフィンを共重合したときに、組成分布が狭いオレフィン共重合体を得ることができる。
【0164】
また、本発明に係るオレフィン重合用触媒は、α−オレフィンと共役ジエンとの共重合に用いることもできる。
ここで用いられるα−オレフィンとしては、上記と同様の炭素原子数が2〜30、好ましくは2〜20の直鎖状または分岐状のα−オレフィンが挙げられる。なかでもエチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン、1−オクテンが好ましく、エチレン、プロピレンが特に好ましい。これらのα−オレフィンは、1種単独でまたは2種以上組合わせて用いることができる。
【0165】
また共役ジエンとしては、たとえば1,3−ブタジエン、イソプレン、クロロプレン、1,3−シクロヘキサジエン、1,3−ペンタジエン、4−メチル−1,3−ペンタジエン、1,3−ヘキサジエン、1,3−オクタジエンなどの炭素原子数が4〜30、好ましくは4〜20の脂肪族共役ジエンが挙げられる。
これらの共役ジエンは、1種単独でまたは2種以上組合わせて用いることができる。
【0166】
本発明では、さらに、α−オレフィンと非共役ジエンまたはポリエンを共重合させることも出来る。用いられる非共役ジエンまたはポリエンとしては、1,4−ペンタジエン、1,5−ヘキサジエン、1,4−ヘキサジエン、1,4−オクタジエン、1,5−オクタジエン、1,6−オクタジエン、1,7−オクタジエン、エチリデンノルボルネン、ビニルノルボルネン、ジシクロペンタジエン、7−メチル−1,6−オクタジエン、4−エチリデン−8−メチル−1,7−ノナジエン、5,9−ジメチル-1,4,8-デカトリエン等を挙げることができる。
【0167】
次に、遷移金属化合物の製造方法について説明する。
遷移金属化合物の製造方法
本発明に係る遷移金属化合物は、特に限定されることなく、たとえば以下のようにして製造することができる。
【0168】
<配位子前駆体の合成>
A部が酸素原子で、Dが−CO−の場合、サリチル酸類またはその誘導体を原料とし、必要に応じてA部に置換基を導入して、電荷を調整することで対応する配位子前駆体を合成することができる。
【0169】
<遷移金属化合物の合成>
次に、こうして得られた配位子前駆体を遷移金属M含有化合物と反応させることで、対応する遷移金属化合物を合成することができる。具体的には、合成した配位子前駆体を溶媒に溶解し、必要に応じて塩基と接触させて、Aが酸素原子である場合フェノキサイド塩を、Aがイオウ原子である場合チオフェノキサイド塩を、AがR6を有する窒素原子である場合配位子の窒素アニオンの塩を調製した後、金属ハロゲン化物、金属アルキル化物等の金属化合物と低温下で混合し、−78℃から室温、もしくは還流条件下で、約1〜48時間攪拌する。溶媒としては、このような反応に普通のものを使用できるが、なかでもエーテル、テトラヒドロフラン(THF)等の極性溶媒、トルエン等の炭化水素溶媒などが好ましく使用される。また、フェノキサイド塩などの配位子の塩を調製する際に使用する塩基としては、n-ブチルリチウム等のリチウム塩、水素化ナトリウム等のナトリウム塩等の金属塩や、トリエチルアミン、ピリジン等の有機塩基が好ましいが、この限りではない。
【0170】
また、A部がR6を有する酸素原子、Dが−CO−でR12がHの場合、合成した配位子前駆体を溶媒に溶解し、必要に応じて塩基と接触させて、カルボキシレートなど−D−O-アニオンの塩を調製した後、金属ハロゲン化物、金属アルキル化物等の金属化合物と低温下で混合し、−78℃から室温、もしくは還流条件下で、約1〜48時間攪拌する。溶媒としては、このような反応に普通のものを使用できるが、なかでもエーテル、テトラヒドロフラン(THF)等の極性溶媒、トルエン等の炭化水素溶媒などが好ましく使用される。また、カルボキシレートなど−D−O-アニオンの塩を調製する際に使用する塩基としては、n-ブチルリチウム等のリチウム塩、水素化ナトリウム等のナトリウム塩等の金属塩や、トリエチルアミン、ピリジン等の有機塩基が好ましいが、この限りではない。
【0171】
反応する配位子の数は、遷移金属M含有化合物と配位子前駆体との仕込み比を変えることにより調整することが出来る
また、化合物の性質によっては、フェノキサイド塩などの配位子の塩やカルボキシレートなど−D−O-アニオンの塩の調製を経由せず、配位子前駆体と金属化合物とを直接反応させることで、対応する遷移金属化合物を合成することもできる。たとえば、前記式(a)〜(c)の化合物と塩基とを反応させて塩を生成させたのち、遷移金属ハロゲン化物と反応させて調製する。また、前記(a)〜(d)式、特に(d)式の化合物を直接遷移金属ハロゲン化物と反応させて調製することもできる。
【0172】
さらに、合成した遷移金属化合物中の金属Mを、常法により別の遷移金属と交換することも可能である。また、例えばR1〜R12の何れかが水素原子である場合には、合成の任意の段階において、水素原子以外の置換基を導入することができる。
【0173】
【発明の効果】
本発明により、オレフィン重合用触媒として有用な新規な遷移金属錯体が提供される。また、本発明に係るオレフィン重合用触媒は、オレフィンに対して高い重合活性を有する。さらに、本発明に係るオレフィンの重合方法によれば、高い重合活性でオレフィン(共)重合体を製造できる。
【0174】
【実施例】
以下、実施例に基づいて本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。
合成実施例で得られた化合物の構造は、270MHz 1H−NMR(日本電子 GSH−270型)、FT−IR(SHIMAZU FTIR−8200D型)、FD−質量分析(日本電子 SX−102A型)、金属含有量分析(乾式灰化・希硝酸溶解後ICP法により分析、機器:SHIMAZU ICPS−8000型)、炭素、水素、窒素含有量分析(ヘラウス社 CHNO型)等を用いて決定した。また、極限粘度[η]は、135℃デカリン中で測定した。
【0175】
以下に本発明に係る遷移金属化合物の具体的な合成例を示す。
(合成例1)
<化合物B-1の合成>
充分に乾燥、アルゴン置換した100mlの反応器に、3,5-ジ−t-ブチルサリチル酸メチル0.78g(2.95mmol)とジエチルエーテル15mlを仕込み、-78℃に冷却し、攪拌した。これにn-ブチルリチウム2.Oml(1.54mmol/ml-nヘキサン溶液、3.08mmol)を5分かけて滴下し、その後ゆっくりと室温まで昇温し、室温で4時間攪拌を続け、リチウム塩溶液を調製した。この溶液を、-78℃に冷却した四塩化ジルコニウム0.35g(1.50mmol)のTHF15ml溶液に徐々に滴下した。滴下終了後、ゆっくりと室温まで昇温しながら攪拌を続けた。
さらに室温で8時間攪拌した後、反応液を減圧濃縮し、析出した固体を塩化メチレン30mlに溶解し、不溶物を除去した。得られたろ液を減圧濃縮し、析出した固体をジエチルエーテルと塩化メチレンの混合溶液で洗浄、さらにヘキサンでリスラリーし、これを減圧乾燥させることにより下記式B-1で示される鮮黄色粉末の化合物を0.70g(収率68%)得た。
【0176】
【化24】
FD-質量分析:(M+)688
元素分析 : Zr;13.3%(13.2) ( )内は計算値
【0177】
(合成例2)
<化合物A-2の合成>
充分に乾燥、アルゴン置換した100mlの反応器に、3,5-ジ-t-ブチルサリチル酸フェニル0.65g(1.50mmol)とジエチルエーテル15mlを仕込み、−78℃に冷却し、攪拌した。これにn-ブチルリチウム1.Oml(1.54mmol/ml-nヘキサン溶液、1.54mmol)を5分かけて滴下し、その後ゆっくりと室温まで昇温し、室温で4時間攪拌を続け、リチウム塩溶液を調製した。
この溶液を−78℃に冷却した四塩化チタン溶液1.40ml(0.5mmol/ml-ヘプタン溶液、0.70mmol)に徐々に滴下した。滴下終了後、ゆっくりと室温まで昇温しながら攪拌を続けた。さらに室温で4時間攪拌した後、反応液を減圧濃縮し、析出した固体を塩化メチレン30mlに溶解し、不溶物を除去した。得られたろ液を減圧濃縮し、析出した固体をジエチルエーテルと塩化メチレンの混合溶液で洗浄、さらにヘキサンでリスラリーし、これを減圧乾燥させることにより下記式A−2で示される茶褐色粉末の化合物を0.15g(収率28%)得た。
【0178】
【化25】
FD・質量分析:(M+)769
元素分析 : Ti;6.0%(6.2) …( )内は計算値
【0179】
(合成例3)
<配位子下記式A-3の合成>
充分に乾燥、アルゴン置換した100mlの反応器に、3,5-ジ-t-ブチルサリチル酸;0.51g(2.Ommol)とジエチルエーテル15mlを仕込み、−78℃に冷却し攪拌した。これにn-ブチルリチウム2.9ml(1.54mmol/ml-nヘキサン溶液、4.5mmol)を5分かけて滴下し、その後ゆっくりと室温まで昇温し、室温で4時間攪拌を続け、リチウム塩溶液を調製した。
この溶液を−78℃に冷却した四塩化チタン溶液4.Oml(0.5mmol/ml-ヘブタン溶液、2.Ommol)に徐々に滴下した。滴下終了後、ゆっくりと室温まで昇温しながら攪拌を続けた。さらに還流下で4時間攪拌した後、反応液を減圧濃縮し、析出した固体を塩化メチレン30mlに溶解し、不溶物を除去した。得られたろ液を減圧濃縮し、析出した固体をジエチルエーテルーヘキサンの混合溶液で洗浄、さらにヘキサンでリスラリー洗浄し、これを減圧乾燥させることにより下記式A-3で示される赤茶色粉末の化合物を0.35g(収率48%)得た。
【0180】
【化26】
FD・質量分析:(M+)366
元素分析 : Ti;12.8%(13.2) …( )内は計算値
【0181】
(合成例4)
<化合物B-3の合成>
充分に乾燥、アルゴン置換した100mlの反応器に、3,5-ジ−t-ブチルサリチル酸;1.00g(4.Ommol)とテトラヒドロフラン15mlを仕込み、−78℃に冷却し、攪拌した。これにn-ブチルリチウム5.5ml(1.54mmol/ml-n-ヘキサン溶液、8.5mmol)を5分かけて滴下し、その後ゆっくりと室温まで昇温し、室温で4時間攪拌を続け、リチウム塩溶液を調製した。
この溶液を−78℃に冷却し、四塩化ジルコニウム0.93g(4.00mmol)を徐々に添加した。滴下終了後、ゆっくりと室温まで昇温しながら攪拌を続けた。さらに室温で8時間攪拌した後、反応液を減圧濃縮し、析出した固体を塩化メチレン30mlに溶解し、不溶物を除去した。得られたろ液を減圧濃解し、析出した固体をジエチルエーテルと塩化メチレンの混合溶液で再結晶、さらにヘキサンでリスラリー洗浄し、これを減圧乾燥させることにより下記式B−3で示される黄白色粉末の化合物を1.09g(収率66%)得た。
【0182】
【化27】
FD-質量分析:(M+)410
元素分析 : Zr;21.8%(22.2) …( )内は計算値
【0183】
(合成例5)
トルエン中、0℃で3,5-ジ-t-ブチルサリチル酸メチル:1.Og(3.78mmol)にフェニルマグネシウムプロミド(10mmol)を作用させることにより、対応する配位子下記式L4が得られた。(収率39%)
ここで得られた配位子L4:0.58g(1.49mmol)を用い、合成例3と同様の方法で、下記式A−4で示される緑褐色の粉末を0.08g(収率11%)得た。
【0184】
【化28】
【0185】
【化29】
FD−質量分析:(M+)504
元素分析 : Ti; 9.4%(9.5) …( )内は計算値
【0186】
(合成例6)
1mol%のNi(acac)2触媒存在下、THF中0℃でアントラニル:2.Og(16.8mmol)にフェニル亜鉛クロリド(34mmol)を作用させることにより、対応する配位子下記式L5が得られた。(収率20%)
【0187】
【化30】
ここで得られた配位子L5:0.80g(2.28mmol)と四塩化バナジウム0.46g(2.40mmol)を用い、合成例3と同様の方法で下記式C−5で示される緑黒色の粉末を0.05g(収率5%)得た。
【0188】
【化31】
FD-質量分析:(M+)471
元素分析 : V;10.7% (10.8) …( )内は計算値
【0189】
(実施例1)
充分に窒素置換した内容積500mlのガラス製オートクレーブにトルエン250mlを装入し、エチレン100リットル/hrで液相および気相をエチレンで飽和させる。その後、メチルアルミノキサン(MAO)をアルミニウム原子換算で1.1875mmol、引き続き、合成例1で得られた化合物B−1を0.005mmol加え重合を開始する。常圧のエチレンガス雰囲気下、25℃で30分間反応させた後、少量のイソブタノールを添加することにより重合を停止した。重合終了後、反応物を大量のメタノールに投入してポリマーを全量析出させた後、塩酸を加えてグラスフィルターで濾過した。ポリマーを80℃、10時間で減圧乾燥した後、ポリエチレンを0.02g得た。ジルコニウム1molあたりの重合活性は8kg/mol・hであった。
【0190】
(実施例2)
合成例2得られた化合物A-2を用い、実施例1と同様の条件で重合反応を行った結果、ポリエチレンを0.02g得た。チタン1molあたりの重合活性は8kg/mol・hであった。
【0191】
(実施例3)
合成例3で得られた化合物A−3を用い、実施例1と同様の条件で重合反応を行った結果、ポリエチレンを0.19g得た。
チタン1molあたりの重合活性は76kg/mol・hであり、得られたポリエチレンの極限粘度[η]は6.9dl/gであった。
【0192】
(実施例4)
合成例4で得られた化合物B−3を用い、実施例1と同様の条件で重合反応を行った結果、ポリエチレンを0.12g得た。
ジルコニウム1molあたりの重合活性は48kg/mol・hであり、得られたポリエチレンの極限粘度[η]は12.5dl/gであった。
【0193】
(実施例5)
合成例5で得られた化合物A−4を用い、実施例1と同様の条件で重合反応を行った結果、ポリエチレンを0.04g得た。チタン1molあたりの重合活性は16kg/mol・hであった。
【0194】
(実施例6)
充分に窒素置換した内容積500mlのガラス製オートクレープにトルエン250mlを装入し、液相および気相をエチレン100リットル/hrで飽和させる。その後、トリイソブチルアルミニウム(TIBA)を0.25mmol、引き続き合成例6で得られた化合物C−5を0.005mmol、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート(TrB)を0.006mmol加え重合を開始する。常圧のエチレンガス雰囲気下、25℃で1時間反応させた後、少量のイソブタノールを添加することにより重合を停止する。重合終了後、反応物を大量のメタノールに投入してポリマーを全量析出させた後、塩酸を加えてグラスフィルターで濾過した。ポリマーを80℃、10時間で減圧乾燥すると、ポリエチレンが得られた。
【図面の簡単な説明】
【図1】 本発明に係るオレフィン重合用触媒の調製工程を示す説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an olefin polymerization catalyst comprising the transition metal compound and an olefin polymerization method using the olefin polymerization catalyst.
[0002]
TECHNICAL BACKGROUND OF THE INVENTION
A so-called Kaminsky catalyst is well known as an olefin polymerization catalyst. This catalyst is characterized by extremely high polymerization activity and a polymer having a narrow molecular weight distribution. Examples of the transition metal compound used in such a Kaminsky catalyst include bis (cyclopentadienyl) zirconium dichloride (see Japanese Patent Application Laid-Open No. 58-19309) and ethylene bis (4,5,6,7-tetrahydro). Indenyl) zirconium dichloride (see Japanese Patent Application Laid-Open No. 61-130314) is known. It is also known that the olefin polymerization activity and the properties of the resulting polyolefin differ greatly when the transition metal compound used in the polymerization is different. Recently, a transition metal compound having a diimine structure ligand (see International Patent No. 9623010) has been proposed as a new olefin polymerization catalyst.
[0003]
By the way, polyolefins are generally used in various fields such as for various molded products because they are excellent in mechanical properties. However, in recent years, physical property requirements for polyolefins are diversified, and polyolefins having various properties are desired. ing. Improvement of productivity is also an issue.
[0004]
Under such circumstances, the appearance of an olefin polymerization catalyst capable of producing a polyolefin having excellent olefin polymerization activity and excellent properties is desired.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide an olefin polymerization catalyst comprising a transition metal compound and having excellent olefin polymerization activity, and an olefin polymerization method using the catalyst.
[0006]
[Means for Solving the Problems]
[0007]
The present invention includes (A) a transition metal compound represented by the following general formula (I):
(B) (B-1a) General formula Ra mAl (ORb)nHpXq
(Wherein RaAnd RbRepresents a hydrocarbon group having 1 to 15, preferably 1 to 4 carbon atoms which may be the same or different from each other, X represents a halogen atom, m is 0 <m ≦ 3, and n is 0 ≦ n. <3, p is a number 0 ≦ p <3, q is a number 0 ≦ q <3, and m + n + p + q = 3. An organoaluminum compound represented by
(B-2) an organoaluminum oxy compound, and
(B-3)Represented by general formula (I)Transition metal compoundThings andCompounds that react to form ion pairs
At least one compound selected from the group consisting of:
An olefin polymerization catalyst is provided.
[0008]
[Chemical 3]
(In the formula, M represents a transition metal atom of Group 4 of the periodic table, m represents an integer of 1 to 2, A represents an oxygen atom or sulfur, and D represents -CO- or -C. (R7) (R8)-And R1~ R4, R7, R8And R12May be the same or different and each represents a hydrogen atom or a hydrocarbon group. When m is 2, R contained in one ligand is1~ R4, R7, R8, R12R in other groups and one group of1~ R4, R7, R8, R12One of the groups may be bonded, and R1R, R2R, RThreeR, RFourR, R7R, R8R, R12May be the same or different from each other, n is a number satisfying the valence of M, X is a hydrogen atom, a halogen atom or a hydrocarbon group, and when n is 2 or more, it is indicated by X The plurality of groups may be the same or different from each other. )
[0009]
The present invention also includes (A) a transition metal compound represented by the following general formula (III):
(B) (B-1a) General formula Ra mAl (ORb)nHpXq
(Wherein RaAnd RbRepresents a hydrocarbon group having 1 to 15, preferably 1 to 4 carbon atoms which may be the same or different from each other, X represents a halogen atom, m is 0 <m ≦ 3, and n is 0 ≦ n. <3, p is a number 0 ≦ p <3, q is a number 0 ≦ q <3, and m + n + p + q = 3. An organoaluminum compound represented by
(B-2) an organoaluminum oxy compound, and
(B-3)General formula ( III )Transition metal compoundThings andCompounds that react to form ion pairs
At least one compound selected from the group consisting of:
An olefin polymerization catalyst comprising:
[Chemical 3]
[0010]
(In the formula, M represents a transition metal atom of Group 4 of the periodic table, m represents an integer of 1 to 2, A represents an oxygen atom or sulfur, and D represents -CO- or -C. (R7) (R8)-And R1~ R4, R7, R8And R12May be the same or different and each represents a hydrogen atom or a hydrocarbon group. When m is 2, R contained in one ligand is1~ R4, R7, R8, R12R in other groups and one group of1~ R4, R7, R8, R12One of the groups may be bonded, and R1R, R2R, RThreeR, RFourR, R7R, R8R, R12May be the same or different from each other, n is a number satisfying the valence of M, X is a hydrogen atom, a halogen atom or a hydrocarbon group, and when n is 2 or more, it is indicated by X The plurality of groups may be the same or different from each other. )
[0011]
The olefin polymerization method according to the present invention is characterized in that an olefin is polymerized or copolymerized in the presence of the catalyst as described above.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the transition metal compound of the present invention, an olefin polymerization catalyst comprising the transition metal compound, and an olefin polymerization method using the catalyst will be specifically described.
In the present specification, the term “polymerization” is sometimes used in the meaning including not only homopolymerization but also copolymerization, and the term “polymer” refers not only to homopolymer but also to copolymerization. It may be used in the meaning that also includes coalescence.
[0013]
The transition metal compound according to the present invention is obtained by subjecting the compounds represented by the formulas (a) to (d) and the metal compound represented by the formula (e) to a bonding reaction.
[0014]
In addition, the first transition metal compound according to the present invention is represented by the formula (I), and the second transition metal compound according to the present invention is represented by the formula (III).
[0015]
Furthermore, the catalyst for olefin polymerization of the present invention is
(A) the transition metal compound;
(B) (B-1a) General formula Ra mAl (ORb)nHpXq
(Wherein RaAnd RbRepresents a hydrocarbon group having 1 to 15, preferably 1 to 4 carbon atoms which may be the same or different from each other, X represents a halogen atom, m is 0 <m ≦ 3, and n is 0 ≦ n. <3, p is a number 0 ≦ p <3, q is a number 0 ≦ q <3, and m + n + p + q = 3. An organoaluminum compound represented by
(B-2) an organoaluminum oxy compound, and
(B-3)SaidTransition metal compoundThings andCompounds that react to form ion pairs
And at least one compound selected from the group consisting of:
First, each catalyst component which forms the catalyst for olefin polymerization which consists of it with the transition metal compound (A) of this invention is demonstrated.
[0016]
(A) Transition metal compound
The transition metal compounds (I) and (III) used in the present invention include a first compound represented by the following formula (a), a second compound represented by (c), and the following formula (e And a metal compound represented by the following formula:
[0017]
The first compound is represented by the following formula (a).
[Chemical formula 5]
[0018]
In the formula (a), A represents an oxygen atom or sulfur.
D is -C (R7) (R8)-Or -CO- (wherein-represents a single bond).
R1~ R4, R7, R8, R12Represents a hydrogen atom or a hydrocarbon group which may be the same as or different from each other. However, R12Is preferably other than a hydrogen atom.
[0019]
More specifically, R1~ R4, R7, R8, R12Is preferably a hydrogen atom or a hydrocarbon group. However, R12Is preferably other than a hydrogen atom.
[0020]
Specifically, the hydrocarbon group has 1 to 30 carbon atoms such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, neopentyl, n-hexyl, preferably A linear or branched alkyl group having 1 to 20; a linear or branched alkenyl group having 2 to 30, preferably 2 to 20 carbon atoms such as vinyl, allyl, isopropenyl, etc .; A linear or branched alkynyl group having 2 to 30 carbon atoms, preferably 2 to 20 carbon atoms such as propargyl; 3-30 carbon atoms such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, adamantyl, preferably 3 -20 cyclic saturated hydrocarbon groups; C5-C30 cyclic unsaturated hydrocarbon groups such as cyclopentadienyl, indenyl, fluorenyl, etc. Aryl groups having 6 to 30, preferably 6 to 20 carbon atoms, such as phenyl, benzyl, naphthyl, biphenyl, terphenyl, phenanthryl, anthracenyl; tolyl, iso-propylphenyl, t-butylphenyl, dimethylphenyl And alkyl-substituted aryl groups such as di-t-butylphenyl.
[0021]
In the above hydrocarbon group, a hydrogen atom may be substituted with a halogen. For example, a halogenated hydrocarbon group having 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms such as trifluoromethyl, pentafluorophenyl, chlorophenyl and the like. Can be mentioned.
In the hydrocarbon group, a hydrogen atom may be substituted with another hydrocarbon group, and examples thereof include aryl group-substituted alkyl groups such as benzyl and cumyl.
[0022]
Of these, in particular, 1-30 carbon atoms, preferably 1-20, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, neopentyl, n-hexyl, etc. Linear or branched alkyl groups; aryl groups having 6 to 30 carbon atoms, preferably 6 to 20 carbon atoms such as phenyl, naphthyl, biphenyl, terphenyl, phenanthryl, anthracenyl; halogen atoms and carbon atoms for these aryl groups A substituted aryl group substituted with 1 to 5 substituents such as an alkyl group or an alkoxy group having 1 to 30, preferably 1 to 20 carbon atoms, an aryl group or an aryloxy group having 6 to 30 carbon atoms, preferably 6 to 20 carbon atoms, etc. Is preferred.
[0023]
D is -C (R7) (R8)-Or -CO-.
-C (R7) (R8In addition to the above, preferred examples of)-include groups such as methylene, 1,1-cyclohexylene, dimethylmethylene, phenylmethylmethylene, and diphenylmethylene. -Si (R9) (RTen)-Is methylsilylene, dimethylsilylene, diethylsilylene, di (n-propyl) silylene, di (i-propyl) silylene, di (cyclohexyl) silylene, methylphenylsilylene, diphenylsilylene, di (p-tolyl) silylene And alkylsilylene groups such as di (p-chlorophenyl) silylene. Also, -P (O) (OR11R in11Preferred examples of are a methyl group and a phenyl group.
[0024]
The metal compound to be bonded and reacted with the first compound of the above formula (a) is represented by the following formula (e).
MXk (e)
[0025]
In formula (e), M is a transition metal atom of Group 4 of the periodic table. Specifically, titanium, zirconium, and hafnium.
[0026]
k is a number satisfying the valence of M, specifically an integer of 0-6. For example, k = 2 for divalent metals, k = 3 for trivalent metals, k = 4 for tetravalent metals, k = 5 for pentavalent metals, and k = 6 for hexavalent metals. For example, k = 4 for Ti (IV) and k = 3 for Ti (III).
[0027]
X represents a hydrogen atom, a halogen atom or a hydrocarbon group. Among these, a halogen atom is preferable, and Cl and Br are particularly preferable.
[0028]
Here, examples of the halogen atom include fluorine, chlorine, bromine, and iodine.
Examples of the hydrocarbon group include R in the formula (a).1~ R12The thing similar to what was illustrated by (1) is mentioned. Specifically, alkyl groups such as methyl, ethyl, propyl, butyl, hexyl, octyl, nonyl, dodecyl, and eicosyl; cycloalkyl groups having 3 to 30 carbon atoms such as cyclopentyl, cyclohexyl, norbornyl, adamantyl; vinyl, Alkenyl groups such as propenyl and cyclohexenyl; arylalkyl groups such as benzyl, phenylethyl, and phenylpropyl; phenyl, tolyl, dimethylphenyl, trimethylphenyl, ethylphenyl, propylphenyl, biphenyl, naphthyl, methylnaphthyl, anthryl, phenanthryl, and the like Examples include, but are not limited to, an aryl group. These hydrocarbon groups also include halogenated hydrocarbons, specifically, groups in which at least one hydrogen of a hydrocarbon group having 1 to 20 carbon atoms is substituted with halogen. Of these, those having 1 to 20 carbon atoms are preferred.
[0029]
When k is 2 or more, a plurality of groups represented by X may be the same as or different from each other, and a plurality of groups represented by X may be bonded to each other to form a ring.
[0030]
As a specific example of MXk in the formula (e), TiClThreeTiClFour, TiBrThree, TiBrFour, ZrClFour, ZrBrFour, HfBrFour, HfClFour, VClFour, VClFive, VBrFour, VBrFive, NbClFive, NbBrFive, TaClFive, TaBrFour, Ti (acac)Four, Ti (acac)Three, ZrClFourAnd the THF (tetrahydrofuran) complex.
[0031]
In the transition metal compound obtained by reacting the compound represented by the formula (a) with the metal compound represented by the formula (e), the formula (a) bonded to the metal atom and the metal atom. It is preferable that molar ratio with the ligand derived from a compound is 1-6.
The molar ratio of the reaction product can be confirmed by elemental analysis and mass spectrum analysis of the isolated transition metal compound.
[0032]
The second compound is represented by the following formula (c).
[Chemical 6]
In formula (c), A represents an oxygen atom or sulfur.
D is -C (R7) (R8)-Or -CO-. Among these, -C (R7) (R8)-And -CO- are preferred. Specific examples of D include the same groups as D in the formula (a).
R1~ R4, R7, R8Represents a hydrogen atom or a hydrocarbon group which may be the same as or different from each other.
R1~ R4, R7, R8Specifically, R in the formula (a)1~ R4, R7, R8, R12The same group is mentioned.
[0033]
In the transition metal compound obtained by reacting the compound represented by the formula (c) with the metal compound represented by the formula (e), the formula (c) bonded to the metal atom and the metal atom. It is preferable that molar ratio with the ligand derived from a compound is 1-3.
[0034]
Although the reaction method of the ligand represented by the formulas (a) and (c) and the metal compound represented by the formula (e) is not particularly limited, for example, as described later The compounds of the formulas (a) and (c) are reacted with the metal compound of the formula (e) as they are, or the compounds of the formulas (a) and (c) are reacted with a base to form an anion (e). It is performed by a method of reacting with a metal compound of the formula.
[0035]
The first transition metal compound according to the present invention is a compound represented by the following formula (I).
[Chemical 7]
In the above formula, O... Between atoms in M indicates a coordinate bond, but in the present invention, those that do not have a coordinate bond are also included.
[0036]
In formula (I), M represents a transition metal atom of Group 4 of the periodic table, m represents an integer of 1 to 2, A represents an oxygen atom or sulfur, and D represents —CO— or -C (R7) (R8)-And R1~ R4, R7, R8And R12May be the same or different and each represents a hydrogen atom or a hydrocarbon group. When m is 2, R contained in one ligand is1~ R4, R7, R8, R12R in other groups and one group of1~ R4, R7, R8, R12One of the groups may be bonded, and R1R, R2R, RThreeR, RFourR, R7R, R8R, R12May be the same or different from each other, n is a number satisfying the valence of M, X is a hydrogen atom, a halogen atom or a hydrocarbon group, and when n is 2 or more, it is indicated by X The plurality of groups may be the same or different from each other.
[0037]
In the transition metal compound represented by the general formula (I), m is 2, and R contained in one ligand1~ R4, R7, R8, R12R in other groups and one group of1~ R4, R7, R8, R12A compound to which one of the groups is linked is, for example, a compound represented by the following general formula (Ia).
[0038]
[Chemical 8]
[0039]
In formula (I-a), A, D, R1~ R12, M, and X are A, D, and R in the general formula (I), respectively.1~ R12, M and X, and A ′ may be the same as or different from A, an oxygen atom, a sulfur atom, a selenium atom, or —R as a linking groupFiveA nitrogen atom having a 'is shown. D ′ may be the same as or different from D, and —C (R7') (R8')-And -CO-. R1'~ R12'Is R1~ R12The following groups are particularly preferable.
[0040]
R1'~ R12'May be the same as or different from each other, and represents a hydrogen atom or a hydrocarbon group, specifically, R in the formula (a)1~ R12Represents the same atom or group. R1'~ R12Two or more groups of ′, preferably adjacent groups, may be linked to each other to form an aliphatic ring, an aromatic ring, or a hydrocarbon ring containing a hetero atom such as a nitrogen atom. However, R12'Is preferably other than a hydrogen atom.
[0041]
Y is R1~ R12At least one group selected from R, and R1'~ R12A linking group or a single bond that binds to at least one group selected from '; The bonding group is not particularly limited, but preferably has a structure in which the main chain is composed of 3 or more atoms, more preferably 4 or more and 20 or less, and particularly preferably 4 or more and 10 or less. In addition, this bonding group may have a substituent.
[0042]
Examples of the linking group represented by Y include a group containing at least one element selected from oxygen, sulfur, carbon, nitrogen, phosphorus, silicon, selenium, tin, boron, and the like. -, -S-, -Se- and other chalcogen atom-containing groups; -NH-, -N (CHThree)2-, -PH-, -P (CHThree)2A nitrogen or phosphorus atom containing group such as -CH2-, -CH2-CH2-, -C (CHThree)2A hydrocarbon group having 1 to 20 carbon atoms such as —; a cyclic unsaturated hydrocarbon residue having 6 to 20 carbon atoms such as benzene, naphthalene and anthracene; and a heteroatom such as pyridine, quinoline, thiophene and furan. A heterocyclic compound residue containing 3 to 20 carbon atoms;2-, -Si (CHThree)2Silicon atom-containing groups such as -SnH2-, -Sn (CHThree)2-Tin atom-containing groups such as -BH-, -B (CHThree)-, -BF- and the like, or a single bond.
[0043]
Specific examples of the transition metal compound represented by the formula (I) are shown below, but are not limited thereto.
In the following specific examples, M is a transition metal atom of Group 4 of the periodic table, and specific examples are titanium, zirconium, and hafnium.
[0044]
X represents a halogen such as Cl and Br, or an alkyl group such as methyl, but is not limited thereto. Further, when there are a plurality of X, these may be the same or different.
[0045]
n is determined by the valence of the metal M. For example, when two monoanion species are bonded to a metal, n = 0 for a divalent metal, n = 1 for a trivalent metal, n = 2 for a tetravalent metal, and n = 3 for a pentavalent metal. . For example, when the metal M is Ti (IV), n = 2, when Zr (IV), n = 2, and when Hf (IV), n = 2.
[0046]
In the examples of compounds, Me represents a methyl group, Et represents an ethyl group, iPr represents an i-propyl group, tBu represents a tert-butyl group, and Ph represents a phenyl group.
[Chemical 9]
[0047]
The second transition metal compound of the present invention is a compound represented by the following formula (III).
[Chemical Formula 10]
[0048]
In formula (III), M represents a transition metal atom of Group 4 of the periodic table, m represents an integer of 1 to 2, A represents an oxygen atom or sulfur, and D represents —CO— or -C (R7) (R8)-And R1~ R4, R7, R8And R12May be the same or different and each represents a hydrogen atom or a hydrocarbon group. When m is 2, R contained in one ligand is1~ R4, R7, R8, R12R in other groups and one group of1~ R4, R7, R8, R12One of the groups may be bonded, and R1R, R2R, RThreeR, RFourR, R7R, R8R, R12May be the same or different from each other, n is a number satisfying the valence of M, X is a hydrogen atom, a halogen atom or a hydrocarbon group, and when n is 2 or more, it is indicated by X The plurality of groups may be the same or different from each other.
[0049]
M and X represent the same meaning as M and X in the formula (e),
n is a number satisfying the valence of M. When n is 2 or more, a plurality of groups represented by X may be the same or different from each other, and a plurality of groups represented by X are bonded to each other. To form a ring.
[0050]
Specific examples of the transition metal compound represented by the formula (III) are shown below, but are not limited thereto.
In the following specific examples, M is a transition metal atom of Group 4 of the periodic table, and specific examples are titanium, zirconium, and hafnium.
[0051]
X represents a halogen such as Cl and Br, or an alkyl group such as methyl, but is not limited thereto. Further, when there are a plurality of X, these may be the same or different.
[0052]
n is determined by the valence of the metal M. When one type of ligand is bonded to a metal, n = 0 for a divalent metal, n = 1 for a trivalent metal, n = 2 for a tetravalent metal, and n = 3 for a pentavalent metal. For example, when the metal M is Ti (IV), n = 2, when Zr (IV) is n = 2, and when Hf (IV) is n = 2.
[0053]
Embedded image
[0054]
The above transition metal compounds (A) are used singly or in combination of two or more.
The olefin polymerization catalyst of the present invention includes a known transition metal compound (A) and another transition metal compound, for example, a ligand containing a heteroatom such as nitrogen, oxygen, sulfur, boron or phosphorus. Combinations of transition metal compounds can also be used.
Hereinafter, other transition metal compounds that can be used in combination will be described.
[0055]
Other transition metal compounds
Specifically, as the transition metal compound other than the transition metal compound (A), the following transition metal compounds can be used. However, it is not limited to these.
[0056]
(a-1) Transition metal imide compound represented by the following formula:
Embedded image
In the formula, M represents a transition metal atom of Groups 8 to 10 of the periodic table, and is preferably nickel, palladium, or platinum.
[0057]
Rtwenty one~ Rtwenty fourIs selected from a hydrocarbon group having 1 to 50 carbon atoms which may be the same or different from each other, a halogenated hydrocarbon group having 1 to 50 carbon atoms, a hydrocarbon-substituted silyl group or nitrogen, oxygen, phosphorus, sulfur and silicon The hydrocarbon group substituted by the substituent containing an at least 1 sort (s) of element is shown.
Rtwenty one~
[0058]
X represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an oxygen-containing group, a sulfur-containing group, a silicon-containing group or a nitrogen-containing group. , Q is an integer of 0-4. When q is 2 or more, the plurality of groups represented by X may be the same as or different from each other.
[0059]
(a-2) Transition metal amide compound represented by the following formula:
Embedded image
In the formula, M represents a transition metal atom of Groups 3 to 6 of the periodic table, and is preferably titanium, zirconium or hafnium.
[0060]
R ′ and R ″ may be the same or different from each other, and are a hydrogen atom, a hydrocarbon group having 1 to 50 carbon atoms, a halogenated hydrocarbon group having 1 to 50 carbon atoms, a hydrocarbon-substituted silyl group, or nitrogen. And a substituent having at least one element selected from oxygen, phosphorus, sulfur and silicon.
[0061]
A represents atoms in Groups 13 to 16 of the periodic table, and specific examples include boron, carbon, nitrogen, oxygen, silicon, phosphorus, sulfur, germanium, selenium, tin, and the like, which is carbon or silicon. Is preferred.
m is an integer of 0 to 2, and n is an integer of 1 to 5. When n is 2 or more, the plurality of A may be the same as or different from each other.
[0062]
E is a substituent having at least one element selected from carbon, hydrogen, oxygen, halogen, nitrogen, sulfur, phosphorus, boron and silicon. When m is 2, two Es may be the same as or different from each other, or may be connected to each other to form a ring.
[0063]
X represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an oxygen-containing group, a sulfur-containing group, a silicon-containing group or a nitrogen-containing group. P is an integer of 0-4. When p is 2 or more, the plurality of groups represented by X may be the same as or different from each other.
Among these, X is preferably a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a sulfonate group.
[0064]
(a-3) Transition metal diphenoxy compound represented by the following formula:
Embedded image
In the formula, M represents a transition metal atom of Groups 3 to 11 of the periodic table, l and m are each an integer of 0 or 1, A and A ′ are a hydrocarbon group having 1 to 50 carbon atoms, carbon A halogenated hydrocarbon having 1 to 50 atoms, a hydrocarbon group having a substituent containing oxygen, sulfur or silicon, or a halogenated hydrocarbon group having 1 to 50 carbon atoms, and A and A ′ are It may be the same or different.
[0065]
B is a hydrocarbon group having 0 to 50 carbon atoms, a halogenated hydrocarbon group having 1 to 50 carbon atoms, R1R2A group represented by Z, oxygen or sulfur, wherein R1And R2Is a hydrocarbon group having 1 to 20 carbon atoms or a hydrocarbon group having 1 to 20 carbon atoms containing at least one hetero atom, and Z represents carbon, nitrogen, sulfur, phosphorus or silicon.
[0066]
n is a number satisfying the valence of M.
X represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an oxygen-containing group, a sulfur-containing group, a silicon-containing group or a nitrogen-containing group. , N is 2 or more, the plurality of groups represented by X may be the same or different from each other, or may be bonded to each other to form a ring.
[0067]
(a-4) Transition metal compound containing a ligand having a cyclopentadienyl skeleton containing at least one heteroatom represented by the following formula:
Embedded image
In the formula, M represents a transition metal atom of Groups 3 to 11 of the periodic table.
X represents an atom of Group 13, 14 or 15 of the periodic table, and at least one of X is an element other than carbon.
[0068]
R is a hydrogen atom, halogen atom, hydrocarbon group, halogenated hydrocarbon group, hydrocarbon group-substituted silyl group, which may be the same or different from each other, or at least one selected from nitrogen, oxygen, phosphorus, sulfur and silicon The hydrocarbon group substituted by the substituent containing these elements is shown, and two or more R may mutually connect and may form the ring.
a is 0 or 1, b is an integer of 1 to 4, and when b is 2 or more, each [((R) a)Five-XFive] Groups may be the same or different, and Rs may be cross-linked.
[0069]
c is a number satisfying the valence of M.
Y represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an oxygen-containing group, a sulfur-containing group, a silicon-containing group or a nitrogen-containing group. . When c is 2 or more, a plurality of groups represented by Y may be the same as or different from each other, and a plurality of groups represented by Y may be bonded to each other to form a ring.
[0070]
(a-5) Formula RB (Pz)ThreeTransition metal compound represented by MXn:
In the formula, M represents a group 3 to 11 transition metal compound in the periodic table, R represents a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms or a halogenated hydrocarbon group having 1 to 20 carbon atoms, Pz Represents a pyrazoyl group or a substituted pyrazoyl group.
[0071]
n is a number satisfying the valence of M.
X represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an oxygen-containing group, a sulfur-containing group, a silicon-containing group or a nitrogen-containing group. When n is 2 or more, a plurality of groups represented by X may be the same or different from each other, or may be bonded to each other to form a ring.
[0072]
(a-6) Transition metal compound represented by the following formula:
Embedded image
[0073]
Where Y1And YThreeAre elements of Group 15 of the periodic table, which may be the same or different from each other, and Y2Is an element of Group 16 of the Periodic Table.
Rtwenty one~ R28May be the same or different from each other, a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an oxygen-containing group, a sulfur-containing group or a silicon-containing
[0074]
(a-7) A compound of the following formula and a group VIII transition metal atom:
Embedded image
Where R31~ R34Is a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms or a halogenated hydrocarbon group having 1 to 20 carbon atoms, which may be the same as or different from each other, and two or more of these are mutually They may be linked to form a ring.
[0075]
(a-8) Transition metal compound represented by the following formula:
Embedded image
In the formula, M represents a transition metal atom of Groups 3 to 11 of the periodic table,
m is an integer of 0 to 3, n is an integer of 0 or 1, p is an integer of 1 to 3, and q is a number that satisfies the valence of M.
[0076]
R41~ R48May be the same or different from each other, a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an oxygen-containing group, a sulfur-containing group, or a silicon-containing group. A group or a nitrogen-containing group, and two or more of these may be linked to each other to form a ring.
[0077]
X represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an oxygen-containing group, a sulfur-containing group, a silicon-containing group or a nitrogen-containing group. , Q is 2 or more, a plurality of groups represented by X may be the same or different from each other, or a plurality of groups represented by X may be bonded to each other to form a ring.
[0078]
Y is a group that bridges the boratabenzene ring, and represents carbon, silicon, or germanium.
A represents an element of Group 14, 15 or 16 of the periodic table.
[0079]
(a-9) A transition metal compound containing a ligand having a cyclopentadienyl skeleton other than (a-4).
(a-10) A compound containing magnesium, titanium and halogen as essential components.
[0080]
Next, each compound of (B) component is demonstrated.
(B-1) Organometallic compounds
Specific examples of the organometallic compound (B-1) used in the present invention include the following organoaluminum compounds.
[0081]
(B-1a) General formula Ra mAl (ORb)nHpXq
(Wherein RaAnd RbRepresents a hydrocarbon group having 1 to 15, preferably 1 to 4 carbon atoms which may be the same or different from each other, X represents a halogen atom, m is 0 <m ≦ 3, and n is 0 ≦ n. <3, p is a number 0 ≦ p <3, q is a number 0 ≦ q <3, and m + n + p + q = 3. ) An organoaluminum compound represented by
[0082]
Examples of the organoaluminum compound belonging to (B-1a) include the following compounds.
General formula Ra mAl (ORb)3-m
(Wherein RaAnd RbRepresents a hydrocarbon group having 1 to 15, preferably 1 to 4 carbon atoms which may be the same as or different from each other, and m is preferably a number satisfying 1.5 ≦ m ≦ 3. An organoaluminum compound represented by
General formula Ra mAlX3-m
(Wherein RaRepresents a hydrocarbon group having 1 to 15 carbon atoms, preferably 1 to 4 carbon atoms, X represents a halogen atom, and m is preferably 0 <m <3. An organoaluminum compound represented by
[0083]
General formula Ra mAlH3-m
(Wherein RaRepresents a hydrocarbon group having 1 to 15 carbon atoms, preferably 1 to 4 carbon atoms, and m is preferably 2 ≦ m <3. An organoaluminum compound represented by
General formula Ra mAl (ORb)nXq
(Wherein RaAnd RbRepresents a hydrocarbon group having 1 to 15, preferably 1 to 4 carbon atoms which may be the same or different from each other, X represents a halogen atom, m is 0 <m ≦ 3, and n is 0 ≦ n. <3, q is a number 0 ≦ q <3, and m + n + q = 3. ) An organoaluminum compound represented by
[0084]
As an organoaluminum compound belonging to (B-1a), more specifically,
Tri-n-alkylaluminums such as trimethylaluminum, triethylaluminum, tri-n-butylaluminum, tripropylaluminum, tripentylaluminum, trihexylaluminum, trioctylaluminum, tridecylaluminum;
Triisopropylaluminum, triisobutylaluminum, trisec-butylaluminum, tritert-butylaluminum, tri-2-methylbutylaluminum, tri-3-methylbutylaluminum, tri-2-methylpentylaluminum, tri-3-methylpentylaluminum, tri-4 -Tri-branched alkylaluminums such as methylpentylaluminum, tri-2-methylhexylaluminum, tri-3-methylhexylaluminum, tri-2-ethylhexylaluminum;
[0085]
Tricycloalkylaluminum such as tricyclohexylaluminum, tricyclooctylaluminum;
Triarylaluminums such as triphenylaluminum and tolylylaluminum;
Dialkylaluminum hydrides such as diisobutylaluminum hydride, diisobutylaluminum hydride;
(i-CFourH9)xAly(CFiveHTen)z(Wherein x, y, z are positive numbers, z ≧ 2x) and the like, trialkenylaluminum such as triisoprenylaluminum;
[0086]
Alkyl aluminum alkoxides such as isobutyl aluminum methoxide, isobutyl aluminum ethoxide, isobutyl aluminum isopropoxide;
Dialkylaluminum alkoxides such as dimethylaluminum methoxide, diethylaluminum ethoxide, dibutylaluminum butoxide;
Alkylaluminum sesquialkoxides such as ethylaluminum sesquiethoxide and butylaluminum sesquibutoxide;
[0087]
Ra 2.5Al (ORb)0.5A partially alkoxylated alkylaluminum having an average composition represented by:
Diethylaluminum phenoxide, diethylaluminum (2,6-di-t-butyl-4-methylphenoxide), ethylaluminum bis (2,6-di-t-butyl-4-methylphenoxide), diisobutylaluminum (2,6- Dialkylaluminum aryloxides such as di-t-butyl-4-methylphenoxide), isobutylaluminum bis (2,6-di-t-butyl-4-methylphenoxide);
Dialkylaluminum halides such as dimethylaluminum chloride, diethylaluminum chloride, dibutylaluminum chloride, diethylaluminum bromide, diisobutylaluminum chloride;
Alkylaluminum sesquichlorides such as ethylaluminum sesquichloride, butylaluminum sesquichloride, ethylaluminum sesquibromide;
Partially halogenated alkylaluminums such as alkylaluminum dihalides such as ethylaluminum dichloride, propylaluminum dichloride, butylaluminum dibromide;
[0088]
Dialkylaluminum hydrides such as diethylaluminum hydride, dibutylaluminum hydride;
Other partially hydrogenated alkylaluminums such as alkylaluminum dihydrides such as ethylaluminum dihydride, propylaluminum dihydride;
Examples include partially alkoxylated and halogenated alkylaluminums such as ethylaluminum ethoxychloride, butylaluminum butoxychloride, and ethylaluminum ethoxybromide.
[0089]
A compound similar to (B-1a) can also be used, and examples thereof include an organoaluminum compound in which two or more aluminum compounds are bonded via a nitrogen atom. As such a compound, specifically,
(C2HFive)2AlN (C2HFive) Al (C2HFive)2Etc.
[0090]
As the compound belonging to (B-1b),
LiAl (C2HFive)Four, LiAl (C7H15)FourEtc.
[0091]
In addition, (B-1) organometallic compounds include methyl lithium, ethyl lithium, propyl lithium, butyl lithium, methyl magnesium bromide, methyl magnesium chloride, ethyl magnesium bromide, ethyl magnesium chloride, propyl magnesium bromide, propyl magnesium. Chloride, butyl magnesium bromide, butyl magnesium chloride, dimethyl magnesium, diethyl magnesium, dibutyl magnesium, butyl ethyl magnesium and the like can also be used.
[0092]
A compound that can form the organoaluminum compound in the polymerization system, for example, a combination of aluminum halide and alkyllithium, or a combination of aluminum halide and alkylmagnesium can also be used.
(B-1) Among organometallic compounds, organoaluminum compounds are preferred.
The (B-1) organometallic compounds as described above are used singly or in combination of two or more.
[0093]
(B-2) Organoaluminum oxy compounds
The (B-2) organoaluminum oxy compound used in the present invention may be a conventionally known aluminoxane, or a benzene-insoluble organoaluminum oxy compound exemplified in JP-A-2-78687. May be.
[0094]
A conventionally well-known aluminoxane can be manufactured, for example with the following method, and is normally obtained as a solution of a hydrocarbon solvent.
(1) Compounds containing adsorbed water or salts containing water of crystallization, such as magnesium chloride hydrate, copper sulfate hydrate, aluminum sulfate hydrate, nickel sulfate hydrate, first cerium chloride hydrate, etc. A method of reacting adsorbed water or crystal water with an organoaluminum compound by adding an organoaluminum compound such as trialkylaluminum to the above suspension of the hydrocarbon medium.
[0095]
(2) A method of allowing water, ice or water vapor to act directly on an organoaluminum compound such as trialkylaluminum in a medium such as benzene, toluene, ethyl ether or tetrahydrofuran.
(3) A method in which an organotin oxide such as dimethyltin oxide or dibutyltin oxide is reacted with an organoaluminum compound such as trialkylaluminum in a medium such as decane, benzene, or toluene.
[0096]
The aluminoxane may contain a small amount of an organometallic component. Further, after removing the solvent or the unreacted organoaluminum compound from the recovered aluminoxane solution by distillation, it may be redissolved in a solvent or suspended in a poor aluminoxane solvent.
[0097]
Specific examples of the organoaluminum compound used in preparing the aluminoxane include the same organoaluminum compounds as those exemplified as the organoaluminum compound belonging to the above (B-1a).
Of these, trialkylaluminum and tricycloalkylaluminum are preferable, and trimethylaluminum is particularly preferable.
The above organoaluminum compounds may be used alone or in combination of two or more.
Used.
[0098]
Solvents used for the preparation of aluminoxane include aromatic hydrocarbons such as benzene, toluene, xylene, cumene, and cymene, aliphatic hydrocarbons such as pentane, hexane, heptane, octane, decane, dodecane, hexadecane, and octadecane, and cyclopentane. , Cycloaliphatic hydrocarbons such as cyclohexane, cyclooctane and methylcyclopentane, petroleum fractions such as gasoline, kerosene and light oil, or halides of the above aromatic hydrocarbons, aliphatic hydrocarbons and alicyclic hydrocarbons, especially chlorine And hydrocarbon solvents such as bromide and bromide. Furthermore, ethers such as ethyl ether and tetrahydrofuran can also be used. Of these solvents, aromatic hydrocarbons or aliphatic hydrocarbons are particularly preferable.
[0099]
The benzene-insoluble organoaluminum oxy compound used in the present invention has an Al component dissolved in benzene at 60 ° C. of usually 10% or less, preferably 5% or less, particularly preferably 2% or less in terms of Al atom, That is, those which are insoluble or hardly soluble in benzene are preferred.
[0100]
Examples of the organoaluminum oxy compound used in the present invention include organoaluminum oxy compounds containing boron represented by the following general formula (i).
Embedded image
Where R20Represents a hydrocarbon group having 1 to 10 carbon atoms.
Rtwenty oneRepresents a hydrogen atom, a halogen atom, or a hydrocarbon group having 1 to 10 carbon atoms, which may be the same as or different from each other.
[0101]
The organoaluminum oxy compound containing boron represented by the general formula (i) includes an alkyl boronic acid represented by the following general formula (ii),
R20-B- (OH)2 (Ii)
(Wherein R20Represents the same group as described above. )
It can be produced by reacting an organoaluminum compound in an inert solvent under an inert gas atmosphere at a temperature of −80 ° C. to room temperature for 1 minute to 24 hours.
[0102]
Specific examples of the alkyl boronic acid represented by the general formula (ii) include methyl boronic acid, ethyl boronic acid, isopropyl boronic acid, n-propyl boronic acid, n-butyl boronic acid, isobutyl boronic acid, and n-hexyl boronic acid. Cyclohexylboronic acid, phenylboronic acid, 3,5-difluoroboronic acid, pentafluorophenylboronic acid, 3,5-bis (trifluoromethyl) phenylboronic acid, and the like. Among these, methyl boronic acid, n-butyl boronic acid, isobutyl boronic acid, 3,5-difluorophenyl boronic acid, and pentafluorophenyl boronic acid are preferable.
These may be used alone or in combination of two or more.
[0103]
Specific examples of the organoaluminum compound to be reacted with the alkylboronic acid include the same organoaluminum compounds as those exemplified as the organoaluminum compound belonging to (B-1a).
Of these, trialkylaluminum and tricycloalkylaluminum are preferable, and trimethylaluminum, triethylaluminum, and triisobutylaluminum are particularly preferable. These may be used alone or in combination of two or more.
[0104]
The (B-2) organoaluminum oxy compounds as described above are used singly or in combination of two or more.
[0105]
(B-3) Compounds that react with transition metal compounds to form ion pairs
Transition metal compounds used in the present inventionThings andThe compound (B-3) that reacts to form an ion pair (hereinafter referred to as “ionized ionic compound”)General formula (I) or general formula (III) Represented byTransition metal compoundThings andIt is a compound that reacts to form an ion pair. Therefore, at least the transition metal compoundThings andThose which are brought into contact to form an ion pair are included in this compound.
Examples of such compounds include JP-A-1-501950, JP-A-1-502036, JP-A-3-179905, JP-A-3-179006, JP-A-3-207703, and JP-A-3. And Lewis acids, ionic compounds, borane compounds and carborane compounds described in Japanese Patent No. -207704 and USP-5321106. Furthermore, heteropoly compounds and isopoly compounds can also be mentioned.
[0106]
Specifically, as the Lewis acid, BRThree(R is a phenyl group or fluorine which may have a substituent such as fluorine, methyl group or trifluoromethyl group), and examples thereof include trifluoroboron, triphenylboron, Tris (4-fluorophenyl) boron, Tris (3,5-difluorophenyl) boron, Tris (4-fluoromethylphenyl) boron, Tris (pentafluorophenyl) boron, Tris (p-tolyl) boron, Tris (o- Tolyl) boron and tris (3,5-dimethylphenyl) boron.
[0107]
Examples of the ionic compound include compounds represented by the following general formula (VI).
It is done.
Embedded image
[0108]
Where Rtwenty twoAs H+, Carbonium cation, oxonium cation, ammonium cation, phosphonium cation, cycloheptyltrienyl cation, ferrocenium cation having a transition metal, and the like.
Rtwenty three~ R26Are organic groups which may be the same or different from each other, preferably an aryl group or a substituted aryl group.
[0109]
Specific examples of the carbonium cation include trisubstituted carbonium cations such as triphenylcarbonium cation, tri (methylphenyl) carbonium cation, and tri (dimethylphenyl) carbonium cation.
Specific examples of the ammonium cation include trialkylammonium cations, triethylammonium cations, tripropylammonium cations, tributylammonium cations, tri (n-butyl) ammonium cations, and the like; N, N-dimethylanilinium cations; N, N-diethylanilinium cation, N, N-dialkylanilinium cation such as N, N-2,4,6-pentamethylanilinium cation; dialkylammonium cation such as di (isopropyl) ammonium cation and dicyclohexylammonium cation Etc.
[0110]
Specific examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation.
[0111]
Rtwenty twoFor example, a carbonium cation and an ammonium cation are preferable, and a triphenylcarbonium cation, an N, N-dimethylanilinium cation, and an N, N-diethylanilinium cation are particularly preferable.
[0112]
Examples of the ionic compound include trialkyl-substituted ammonium salts, N, N-dialkylanilinium salts, dialkylammonium salts, and triarylphosphonium salts.
[0113]
Specific examples of the trialkyl-substituted ammonium salt include, for example, triethylammonium tetra (phenyl) boron, tripropylammonium tetra (phenyl) boron, tri (n-butyl) ammonium tetra (phenyl) boron, and trimethylammonium tetra (p-tolyl). Boron, trimethylammonium tetra (o-tolyl) boron, tri (n-butyl) ammonium tetra (pentafluorophenyl) boron, tripropylammonium tetra (o, p-dimethylphenyl) boron, tri (n-butyl) ammonium tetra ( m, m-dimethylphenyl) boron, tri (n-butyl) ammonium tetra (p-trifluoromethylphenyl) boron, tri (n-butyl) ammonium tetra (3,5-ditrifluoromethylphenyl) boron, tri (n -Butyl) Ammoni Mutetora (o- tolyl) such as boron, and the like.
[0114]
Specific examples of N, N-dialkylanilinium salts include N, N-dimethylanilinium tetra (phenyl) boron, N, N-diethylanilinium tetra (phenyl) boron, N, N-2,4,6 -Pentamethylanilinium tetra (phenyl) boron and the like.
Specific examples of the dialkylammonium salt include di (1-propyl) ammonium tetra (pentafluorophenyl) boron and dicyclohexylammonium tetra (phenyl) boron.
[0115]
Further, as ionic compounds, triphenylcarbenium tetrakis (pentafluorophenyl) borate, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, ferrocenium tetra (pentafluorophenyl) borate, triphenylcarbenium pentaphenyl Examples also include cyclopentadienyl complexes, N, N-diethylanilinium pentaphenylcyclopentadienyl complexes, and boron compounds represented by the following formula (VII) or (VIII).
[0116]
Embedded image
(In the formula, Et represents an ethyl group.)
Embedded image
[0117]
Specifically as a borane compound, for example,
Decaborane (14);
Bis [tri (n-butyl) ammonium] nonaborate, bis [tri (n-butyl) ammonium] decaborate, bis [tri (n-butyl) ammonium] undecaborate, bis [tri (n-butyl) ammonium] dodecaborate Salts of anions such as bis [tri (n-butyl) ammonium] decachlorodecaborate and bis [tri (n-butyl) ammonium] dodecachlorododecaborate;
Of metal borane anions such as tri (n-butyl) ammonium bis (dodecahydridododecaborate) cobaltate (III) and bis [tri (n-butyl) ammonium] bis (dodecahydridododecaborate) nickate (III) Examples include salt.
[0118]
Specific examples of carborane compounds include:
4-carbanonaborane (14), 1,3-dicarbanonaborane (13), 6,9-dicarbadecarborane (14), dodecahydride-1-phenyl-1,3-dicarbanonaborane, dodecahydride- 1-methyl-1,3-dicarbanonaborane, undecahydride-1,3-dimethyl-1,3-dicarbanonaborane, 7,8-dicarbaunaborane (13), 2,7-dicarbaun Decaborane (13), undecahydride-7,8-dimethyl-7,8-dicarboundecaborane, dodecahydride-11-methyl-2,7-dicarboundecarborane, tri (n-butyl) ammonium 1- Carbadecaborate, tri (n-butyl) ammonium 1-carbaundecaborate, tri (n-butyl) ammonium 1-carbadodecaborate, tri (n-butyl) ammonium 1-trimethylsilyl-1-carbadecaborate, tri ( n-butyl) ammo Nitrobromo-1-carbadodecaborate, tri (n-butyl) ammonium 6-carbadecaborate (14), tri (n-butyl) ammonium 6-carbadecaborate (12), tri (n-butyl) ammonium 7-cal Bound Decaborate (13), Tri (n-butyl) ammonium 7,8-dicarbaound decaborate (12), Tri (n-butyl) ammonium 2,9-dicarbound decaborate (12), Tri (n-butyl) ) Ammonium dodecahydride-8-methyl-7,9-dicarbaundecaborate, tri (n-butyl) ammonium undecahydride-8-ethyl-7,9-dicarbaundecaborate, tri (n-butyl) ammonium Decahydride-8-butyl-7,9-dicarboundeborate, tri (n-butyl) ammonium undecahydride-8-allyl-7,9-dicarboundeca Borate, tri (n-butyl) ammonium undecahydride-9-trimethylsilyl-7,8-dicarboundecaborate, tri (n-butyl) ammonium undecahydride-4,6-dibromo-7-carbaundecaborate, etc. Anionic salts of
[0119]
Tri (n-butyl) ammonium bis (nonahydride-1,3-dicarbanonaborate) cobaltate (III), tri (n-butyl) ammonium bis (undecahydride-7,8-dicarbaundecaborate) Ferrate (III), tri (n-butyl) ammonium bis (undecahydride-7,8-dicarboundecaborate) cobaltate (III), tri (n-butyl) ammonium bis (undecahydride-7 , 8-Dicarbaundecaborate) nickelate (III), tri (n-butyl) ammonium bis (undecahydride-7,8-dicarbaundecaborate) cuprate (III), tri (n-butyl) Ammonium bis (undecahydride-7,8-dicarbaundecaborate) aurate (III), tri (n-butyl) ammonium bis (nonahydride-7,8-dimethyl-7,8-dicarboundeca Borate) ferrate (III), tri (n-butyl) ammonium bis (nonahydride-7,8-dimethyl-7,8-dicarboundeborate) chromate (III), tri (n-butyl) ammonium Bis (tribromooctahydride-7,8-dicarbaundecaborate) cobaltate (III), tris [tri (n-butyl) ammonium] bis (undecahydride-7-carbaundecaborate) chromate ( III), bis [tri (n-butyl) ammonium] bis (undecahydride-7-carbaundecaborate) manganate (IV), bis [tri (n-butyl) ammonium] bis (undecahydride-7 -Carbaundecaborate) cobaltate (III), bis [tri (n-butyl) ammonium] bis (undecahydride-7-carbaundecaborate) nickelate (IV) And salts of metal carborane anions.
[0120]
The heteropoly compound is composed of atoms composed of silicon, phosphorus, titanium, germanium, arsenic or tin and one or more atoms selected from vanadium, niobium, molybdenum and tungsten. Specifically, phosphovanadic acid, germanovanadic acid, arsenic vanadic acid, phosphoniobic acid, germanoniobic acid, siliconomolybdic acid, phosphomolybdic acid, titanium molybdic acid, germanomolybdic acid, arsenic molybdic acid, tin molybdic acid, phosphorus Tungstic acid, germanotungstic acid, tin tungstic acid, phosphomolybdovanadic acid, phosphotungstovanadic acid, germanotungstovanadic acid, phosphomolybdotungstovanadic acid, germanomolybdo tungstovanadate, phosphomolybdo Tungstic acid, phosphomolybdoniobic acid, salts of these acids, such as metals of group Ia or IIa of the periodic table, specifically lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium , Bariu Salts with equal, and organic salts such as triphenylethyl salts, and an isopoly compound may be used, not limited thereto.
[0121]
The heteropoly compound and the isopoly compound are not limited to one of the above compounds, and two or more of them can be used.
The above (B-3) ionized ionic compounds may be used alone or in combination of two or more.
[0122]
When the transition metal compound according to the present invention is used as a catalyst, when an organoaluminum oxy compound (B-2) such as methylaluminoxane as a co-catalyst component is used in combination, the olefin compound exhibits a very high polymerization activity. When an ionized ionic compound (B-3) such as triphenylcarbonium tetrakis (pentafluorophenyl) borate is used as a promoter component, an olefin polymer having a good activity and a very high molecular weight can be obtained.
[0123]
The catalyst for olefin polymerization according to the present invention comprises the transition metal compound (A), (B-1) an organometallic compound, (B-2) an organoaluminum oxy compound, and (B-3) an ionized ionic compound. A carrier (C) as described later can be used together with the selected at least one compound (B), if necessary.
[0124]
(C) Carrier
The carrier (C) used in the present invention is an inorganic or organic compound and is a granular or particulate solid.
Among these, as the inorganic compound, porous oxides, inorganic chlorides, clays, clay minerals or ion-exchangeable layered compounds are preferable.
[0125]
Specifically, as a porous oxide, SiO2, Al2OThree, MgO, ZrO, TiO2, B2OThree, CaO, ZnO, BaO, ThO2Or using composites or mixtures containing these, eg natural or synthetic zeolites, SiO2-MgO, SiO2-Al2OThree, SiO2-TiO2, SiO2-V2OFive, SiO2-Cr2OThree, SiO2-TiO2-MgO etc. can be used. Of these, SiO2And / or Al2OThreeThe main component is preferred.
[0126]
The inorganic oxide contains a small amount of Na.2COThree, K2COThree, CaCOThree, MgCOThree, Na2SOFour, Al2(SOFour)Three, BaSOFour, KNOThree, Mg (NOThree)2, Al (NOThree)Three, Na2O, K2O, Li2It does not matter even if it contains carbonates such as O, sulfates, nitrates and oxide components.
[0127]
Such porous oxides have different properties depending on the type and production method, but the carrier preferably used in the present invention has a particle size of 10 to 300 μm, preferably 20 to 200 μm, and a specific surface area of 50 to 1000 m.2/ G, preferably 100-700m2/ G and pore volume of 0.3-3.0 cmThree/ G is desirable. Such a carrier is used after being calcined at 100 to 1000 ° C., preferably 150 to 700 ° C., if necessary.
[0128]
As inorganic chloride, MgCl2, MgBr2, MnCl2, MnBr2Etc. are used. The inorganic chloride may be used as it is or after being pulverized by a ball mill or a vibration mill. Moreover, after dissolving inorganic chloride in solvents, such as alcohol, what precipitated with the precipitation agent in the shape of fine particles can also be used.
[0129]
The clay used as a carrier in the present invention is usually composed mainly of a clay mineral. Further, the ion-exchangeable layered compound used as a carrier in the present invention is a compound having a crystal structure in which the surfaces constituted by ionic bonds and the like are stacked in parallel with a weak binding force, and the ions contained can be exchanged It is. Most clay minerals are ion-exchangeable layered compounds. In addition, these clays, clay minerals, and ion-exchange layered compounds are not limited to natural products, and artificial synthetic products can also be used.
Also, as clay, clay mineral or ion-exchange layered compound, clay, clay mineral, hexagonal fine packing type, antimony type, CdCl2 Type, CdI2Examples thereof include ionic crystalline compounds having a layered crystal structure such as a mold.
[0130]
Examples of such clays and clay minerals include kaolin, bentonite, kibushi clay, gyrome clay, allophane, hysinger gel, pyrophyllite, ummo group, montmorillonite group, vermiculite, ryokdeite group, palygorskite, kaolinite, nacrite, dickite , And halloysite, and the ion-exchangeable layered compound includes α-Zr (HAsOFour)2・ H2O, α-Zr (HPOFour)2, Α-Zr (KPOFour)2・ 3H2O, α-Ti (HPOFour)2, Α-Ti (HAsOFour)2・ H2O, α-Sn (HPOFour)2・ H2O, γ-Zr (HPOFour)2, Γ-Ti (HPOFour)2, Γ-Ti (NHFourPOFour)2・ H2Examples thereof include crystalline acidic salts of polyvalent metals such as O.
[0131]
Such a clay, clay mineral or ion-exchange layered compound preferably has a pore volume of not less than 0.1 cc / g and not less than 0.3 cc / g, as measured by mercury porosimetry. Is particularly preferred. Here, the pore volume is determined by a mercury intrusion method using a mercury porosimeter.FourMeasured over a range of angstroms.
When a carrier having a pore volume with a radius of 20 angstroms or more and smaller than 0.1 cc / g is used as a carrier, high polymerization activity tends to be difficult to obtain.
[0132]
The clay and clay mineral used in the present invention are preferably subjected to chemical treatment. As the chemical treatment, any of a surface treatment that removes impurities adhering to the surface and a treatment that affects the crystal structure of clay can be used. Specific examples of the chemical treatment include acid treatment, alkali treatment, salt treatment, and organic matter treatment. In addition to removing impurities on the surface, the acid treatment increases the surface area by eluting cations such as Al, Fe, and Mg in the crystal structure. Alkali treatment destroys the crystal structure of the clay, resulting in a change in the structure of the clay. In the salt treatment and the organic matter treatment, an ion complex, a molecular complex, an organic derivative, and the like can be formed, and the surface area and interlayer distance can be changed.
[0133]
The ion-exchangeable layered compound used in the present invention may be a layered compound in a state where the layers are expanded by exchanging the exchangeable ions between the layers with other large and bulky ions using the ion-exchange property. . Such bulky ions play a role of supporting pillars to support the layered structure and are usually called pillars. Moreover, introducing another substance between the layers of the layered compound in this way is called intercalation. As guest compounds to be intercalated, TiClFour, ZrClFourCationic inorganic compounds such as Ti (OR)Four, Zr (OR)Four, PO (OR)Three, B (OR)ThreeMetal alkoxides (R is a hydrocarbon group, etc.), [Al13OFour(OH)twenty four]7+, [ZrFour(OH)14]2+, [FeThreeO (OCOCHThree)6]+And metal hydroxide ions.
[0134]
These compounds are used alone or in combination of two or more.
In addition, when intercalating these compounds, Si (OR)Four, Al (OR)Three, Ge (OR)FourA polymer obtained by hydrolyzing a metal alkoxide such as R (hydrocarbon group, etc.), SiO2Colloidal inorganic compounds such as can also be present together. Examples of the pillar include oxides generated by heat dehydration after intercalation of the metal hydroxide ions between layers.
[0135]
The clay, clay mineral, and ion-exchangeable layered compound used in the present invention may be used as they are, or may be used after a treatment such as ball milling or sieving. Further, it may be used after newly adsorbing and adsorbing water or after heat dehydration treatment. Furthermore, you may use individually or in combination of 2 or more types.
[0136]
Among these, preferred are clays or clay minerals, and particularly preferred are montmorillonite, vermiculite, hectorite, teniolite and synthetic mica.
[0137]
Examples of the organic compound include granular or fine particle solids having a particle size in the range of 10 to 300 μm. Specifically, a (co) polymer produced mainly from an α-olefin having 2 to 14 carbon atoms such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, vinylcyclohexane, styrene And (co) polymers produced by the main component, and their modified products.
[0138]
The olefin polymerization catalyst according to the present invention is selected from the transition metal compounds (A), (B-1) organometallic compounds, (B-2) organoaluminum oxy compounds, and (B-3) ionized ionic compounds. A specific organic compound (D) as described later can be further contained as required together with at least one compound (B) and, if necessary, the carrier (C).
[0139]
(D) Organic compound component
In the present invention, the organic compound component (D) is used for the purpose of improving the polymerization performance and the physical properties of the produced polymer, if necessary. Examples of such organic compounds include, but are not limited to, alcohols, phenolic compounds, carboxylic acids, phosphorus compounds, and sulfonates.
[0140]
Alcohols and phenolic compounds are usually R31Those represented by —OH are used (where R31Represents a hydrocarbon group having 1 to 50 carbon atoms or a halogenated hydrocarbon group having 1 to 50 carbon atoms. ), As alcohols, R31Are preferably halogenated hydrocarbons. Further, as the phenolic compound, those in which the α, α′-position of the hydroxyl group is substituted with a hydrocarbon having 1 to 20 carbon atoms are preferable.
[0141]
As the carboxylic acid, usually R32Those represented by -COOH are used. R32Represents a hydrocarbon group having 1 to 50 carbon atoms or a halogenated hydrocarbon group having 1 to 50 carbon atoms, and a halogenated hydrocarbon group having 1 to 50 carbon atoms is particularly preferable.
As the phosphorus compound, phosphoric acid having P—O—H bond, P—OR, phosphate having P═O bond, and phosphine oxide compound are preferably used.
[0142]
As the sulfonate, those represented by the following general formula (IX) are used.
Embedded image
In the formula, M is an element of Groups 1-14 of the periodic table.
R33Is hydrogen, a hydrocarbon group having 1 to 20 carbon atoms, or a halogenated hydrocarbon group having 1 to 20 carbon atoms.
X is a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogenated hydrocarbon group having 1 to 20 carbon atoms.
m is an integer of 1 to 7, and n is 1 ≦ n ≦ 7.
[0143]
In FIG. 1, the preparation process of the olefin polymerization catalyst based on this invention is shown.
[0144]
Next, the olefin polymerization method will be described.
The olefin polymerization method according to the present invention consists of (co) polymerizing olefin in the presence of the above catalyst.
In the polymerization, the usage method and the order of addition of each component are arbitrarily selected, and the following methods are exemplified.
(1) Component (A) and at least one component (B) selected from (B-1) an organometallic compound, (B-2) an organoaluminum oxy compound, and (B-3) an ionized ionic compound (below) And simply adding “component (B)”) to the polymerization vessel in any order.
(2) A method in which a catalyst in which the component (A) and the component (B) are contacted in advance is added to the polymerization reactor.
(3) A method in which the catalyst component in which the component (A) and the component (B) are contacted in advance, and the component (B) are added to the polymerization vessel in an arbitrary order. In this case, the component (B) may be the same or different.
[0145]
(4) A method in which the component (A) is supported on the carrier (C) and the component (B) is added to the polymerization vessel in any order.
(5) A method in which a catalyst having components (A) and (B) supported on a carrier (C) is added to a polymerization vessel.
(6) A method in which the component (A) and the component (B) supported on the carrier (C) and the component (B) are added to the polymerization vessel in any order. In this case, the component (B) may be the same or different.
[0146]
(7) A method in which the catalyst component having component (B) supported on carrier (C) and component (A) are added to the polymerization vessel in any order.
(8) A method in which the catalyst component having component (B) supported on carrier (C), component (A), and component (B) are added to the polymerization vessel in any order. In this case, the component (B) may be the same or different.
(9) A method in which the component carrying component (A) on carrier (C) and the component carrying component (B) on carrier (C) are added to the polymerization vessel in any order.
[0147]
(10) A method in which component (A) is supported on carrier (C), component (B) is supported on carrier (C), and component (B) is added to the polymerization vessel in any order. In this case, the component (B) may be the same or different.
(11) A method in which component (A), component (B), and organic compound component (D) are added to the polymerization vessel in any order.
(12) A method in which the component (B) and the component (D) are contacted in advance, and the component (A) are added to the polymerization vessel in an arbitrary order.
[0148]
(13) A method of adding the component (B) and the component (D) supported on the carrier (C) and the component (A) to the polymerization vessel in an arbitrary order.
(14) A method in which the catalyst component in which the component (A) and the component (B) are contacted in advance and the component (D) are added to the polymerization vessel in an arbitrary order.
(15) A method in which the component (A) and the component (B) are contacted in advance, and the component (B) and the component (D) are added to the polymerization vessel in an arbitrary order.
[0149]
(16) A method in which a catalyst component in which the component (A) and the component (B) are previously contacted, and a component in which the component (B) and the component (D) are previously contacted are added to the polymerization vessel in an arbitrary order.
(17) A method of adding the component (A) supported on the carrier (C), the component (B), and the component (D) to the polymerization vessel in an arbitrary order.
(18) A method in which a component having component (A) supported on carrier (C) and a component in which component (B) and component (D) are contacted in advance are added to the polymerization vessel in any order.
[0150]
(19) A method in which a catalyst component obtained by bringing the component (A), the component (B) and the component (D) into contact in advance in an arbitrary order is added to the polymerization vessel.
(20) A method in which the catalyst component in which the component (A), the component (B) and the component (D) are contacted in advance, and the component (B) are added to the polymerization vessel in an arbitrary order. In this case, the component (B) may be the same or different.
(21) A method in which a catalyst having components (A), (B) and (D) supported on a carrier (C) is added to a polymerization vessel.
(22) A method in which the component (A), the component (B) and the component (D) supported on the carrier (C) and the component (B) are added to the polymerization vessel in any order. In this case, the component (B) may be the same or different.
[0151]
The solid catalyst component in which the component (A) and the component (B) are supported on the carrier (C) may be prepolymerized with olefin.
[0152]
In the olefin polymerization method according to the present invention, an olefin polymer is obtained by polymerizing or copolymerizing olefin in the presence of the olefin polymerization catalyst as described above. In the present invention, the polymerization can be carried out by either a liquid phase polymerization method such as solution polymerization or suspension polymerization or a gas phase polymerization method.
[0153]
Specific examples of the inert hydrocarbon medium used in the liquid phase polymerization method include aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane, and kerosene; cyclopentane, cyclohexane, Aliphatic hydrocarbons such as methylcyclopentane; aromatic hydrocarbons such as benzene, toluene, xylene; halogenated hydrocarbons such as ethylene chloride, chlorobenzene, and dichloromethane, or mixtures thereof. Can also be used.
[0154]
When olefin polymerization is carried out using the olefin polymerization catalyst as described above, the component (A) is usually 10 per liter of reaction volume.-12-10-2Moles, preferably 10-Ten-10-3It is used in such an amount that it becomes a mole. In the present invention, olefin can be polymerized with high polymerization activity even when component (A) is used at a relatively low concentration.
[0155]
Component (B-1) has a molar ratio [(B-1) / M] of the component (B-1) and the transition metal atom (M) in the component (A) of usually 0.01 to 100,000, Preferably it is used in an amount of 0.05 to 50000.
Component (B-2) has a molar ratio [(B-2) / M] of the aluminum atom in component (B-2) and the transition metal atom (M) in component (A) usually 10 to 10. The amount used is 500,000, preferably 20 to 100,000.
Component (B-3) has a molar ratio [(B-3) / M] of component (B-3) to transition metal atom (M) in component (A) usually from 1 to 10, preferably It is used in such an amount as to be 1-5.
[0156]
When component (D) is component (B-1), component (B), in the case of component (B-1), the molar ratio [(D) / (B-1)] is usually 0.01 to 10, preferably 0.1 In the case of component (B-2), the molar ratio [(D) / (B-2)] between component (D) and aluminum atom in component (B-2) is usually 0. 0.001 to 2, preferably 0.005 to 1 and in the case of component (B-3), the molar ratio [(D) / (B-3)] is usually 0.01 to 10, preferably Is used in an amount of 0.1-5.
[0157]
Moreover, the polymerization temperature of the olefin using such an olefin polymerization catalyst is -50-200 degreeC normally, Preferably it is the range of 0-170 degreeC. The polymerization pressure is usually normal pressure to 100 kg / cm.2, Preferably normal pressure to 50 kg / cm2The polymerization reaction can be carried out in any of batch, semi-continuous and continuous methods. Furthermore, the polymerization can be performed in two or more stages having different reaction conditions.
[0158]
The molecular weight of the resulting olefin polymer can be adjusted by the presence of hydrogen in the polymerization system or by changing the polymerization temperature.
Furthermore, it can also adjust by the difference in the component (B) to be used.
[0159]
Examples of the olefin that can be polymerized by such an olefin polymerization catalyst include α-olefins having 2 to 20 carbon atoms, such as ethylene, propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1 -Hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene;
Cyclic olefins having 3 to 20 carbon atoms, such as cyclopentene, cycloheptene, norbornene, 5-methyl-2-norbornene, tetracyclododecene, 2-
[0160]
Α, β-unsaturated polar monomers such as acrylic acid, methacrylic acid, fumaric acid, maleic anhydride, itaconic acid, itaconic anhydride, bicyclo [2.2.1] -5-heptene-2,3-dicarboxylic acid Carboxylic acids and their metal salts such as sodium, potassium, lithium, zinc, magnesium and calcium salts; methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-acrylate Α, β such as butyl, isobutyl acrylate, tert-butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate An unsaturated carboxylic acid ester;
Vinyl esters such as vinyl acetate, vinyl propionate, vinyl caproate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl trifluoroacetate; unsaturated glycidyl acrylate, glycidyl methacrylate, monoglycidyl itaconate, etc. Examples include glycidyl.
[0161]
Furthermore, vinylcyclohexane, diene, polyene, etc. can also be used.
The diene or polyene is a cyclic or chain compound having 4 to 30, preferably 4 to 20 carbon atoms and having two or more double bonds. Specifically, butadiene, isoprene, 4-methyl-1,3-pentadiene, 1,3-pentadiene, 1,4-pentadiene, 1,5-hexadiene, 1,4-hexadiene, 1,3-hexadiene, 1 , 3-octadiene, 1,4-octadiene, 1,5-octadiene, 1,6-octadiene, 1,7-octadiene, ethylidene norbornene, vinyl norbornene, dicyclopentadiene;
7-methyl-1,6-octadiene, 4-ethylidene-8-methyl-1,7-nonadiene, 5,9-dimethyl-1,4,8-decatriene;
[0162]
In addition, aromatic or vinyl compounds such as styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene, o, p-dimethyl styrene, o-ethyl styrene, m-ethyl styrene, p-ethyl styrene etc. Alkyl styrene;
Functional group-containing styrene derivatives such as methoxystyrene, ethoxystyrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl benzyl acetate, hydroxystyrene, o-chlorostyrene, p-chlorostyrene, divinylbenzene; and
Examples include 3-phenylpropylene, 4-phenylpropylene, and α-methylsterene.
[0163]
The catalyst for olefin polymerization according to the present invention exhibits a high polymerization activity and can obtain a polymer having a narrow molecular weight distribution. Furthermore, when two or more olefins are copolymerized, an olefin copolymer having a narrow composition distribution can be obtained.
[0164]
The olefin polymerization catalyst according to the present invention can also be used for copolymerization of an α-olefin and a conjugated diene.
Examples of the α-olefin used here include linear or branched α-olefins having 2 to 30 carbon atoms, preferably 2 to 20 carbon atoms, as described above. Of these, ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene and 1-octene are preferable, and ethylene and propylene are particularly preferable. These α-olefins can be used alone or in combination of two or more.
[0165]
Examples of conjugated dienes include 1,3-butadiene, isoprene, chloroprene, 1,3-cyclohexadiene, 1,3-pentadiene, 4-methyl-1,3-pentadiene, 1,3-hexadiene, 1,3- Examples thereof include aliphatic conjugated dienes having 4 to 30, preferably 4 to 20 carbon atoms such as octadiene.
These conjugated dienes can be used alone or in combination of two or more.
[0166]
In the present invention, an α-olefin and a non-conjugated diene or polyene can also be copolymerized. Non-conjugated dienes or polyenes used include 1,4-pentadiene, 1,5-hexadiene, 1,4-hexadiene, 1,4-octadiene, 1,5-octadiene, 1,6-octadiene, 1,7- Octadiene, ethylidene norbornene, vinyl norbornene, dicyclopentadiene, 7-methyl-1,6-octadiene, 4-ethylidene-8-methyl-1,7-nonadiene, 5,9-dimethyl-1,4,8-decatriene, etc. Can be mentioned.
[0167]
Next, the manufacturing method of a transition metal compound is demonstrated.
Process for producing transition metal compound
The transition metal compound according to the present invention is not particularly limited and can be produced, for example, as follows.
[0168]
<Synthesis of ligand precursor>
When A part is an oxygen atom and D is —CO—, the corresponding ligand precursor is prepared by using salicylic acid or a derivative thereof as a raw material and introducing a substituent into A part as necessary to adjust the charge. The body can be synthesized.
[0169]
<Synthesis of transition metal compounds>
Next, the corresponding transition metal compound can be synthesized by reacting the thus obtained ligand precursor with the transition metal M-containing compound. Specifically, the synthesized ligand precursor is dissolved in a solvent and brought into contact with a base as necessary. When A is an oxygen atom, a phenoxide salt is obtained. When A is a sulfur atom, thiophenoxide is obtained. Salt, A is R6After preparing a salt of a ligand nitrogen anion, it is mixed with a metal compound such as a metal halide or metal alkylate at a low temperature, and from −78 ° C. to room temperature or under reflux conditions, Stir for about 1-48 hours. As the solvent, those commonly used for such a reaction can be used. Among them, polar solvents such as ether and tetrahydrofuran (THF), hydrocarbon solvents such as toluene and the like are preferably used. Moreover, as a base used when preparing a salt of a ligand such as a phenoxide salt, a metal salt such as a lithium salt such as n-butyllithium, a sodium salt such as sodium hydride, a triethylamine, pyridine or the like. Organic bases are preferred but not limited.
[0170]
A part is R6An oxygen atom having D, -CO- and R12When H is H, the synthesized ligand precursor is dissolved in a solvent, and contacted with a base as necessary to obtain carboxylate or the like -D-O-After preparing the salt of an anion, it mixes with metal compounds, such as a metal halide and a metal alkylated compound, under low temperature, and stirs for about 1-48 hours from -78 degreeC to room temperature or reflux conditions. As the solvent, those commonly used for such a reaction can be used. Among them, polar solvents such as ether and tetrahydrofuran (THF), hydrocarbon solvents such as toluene and the like are preferably used. In addition, carboxylate and the like -D-O-The base used in preparing the anion salt is preferably a metal salt such as a lithium salt such as n-butyllithium, a sodium salt such as sodium hydride, or an organic base such as triethylamine or pyridine. Absent.
[0171]
The number of ligands to be reacted can be adjusted by changing the charging ratio between the transition metal M-containing compound and the ligand precursor.
Depending on the nature of the compound, a salt of a ligand such as a phenoxide salt or a carboxylate such as -DO-The corresponding transition metal compound can be synthesized by directly reacting the ligand precursor and the metal compound without going through the preparation of the anion salt. For example, it is prepared by reacting a compound of the above formulas (a) to (c) with a base to form a salt and then reacting with a transition metal halide. It can also be prepared by directly reacting the compounds of the formulas (a) to (d), particularly the formula (d), with a transition metal halide.
[0172]
Further, the metal M in the synthesized transition metal compound can be exchanged with another transition metal by a conventional method. For example, R1~ R12When any of these are hydrogen atoms, substituents other than hydrogen atoms can be introduced at any stage of the synthesis.
[0173]
【The invention's effect】
The present invention provides a novel transition metal complex useful as a catalyst for olefin polymerization. The olefin polymerization catalyst according to the present invention has a high polymerization activity for olefins. Furthermore, according to the olefin polymerization method of the present invention, an olefin (co) polymer can be produced with high polymerization activity.
[0174]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.
The structure of the compound obtained in the synthesis example is 270 MHz.1H-NMR (JEOL GSH-270 type), FT-IR (SHIMAZU FTIR-8200D type), FD-mass spectrometry (JEOL SX-102A type), metal content analysis (ICP after dry ashing and dilute nitric acid dissolution) Analyzed by the method, equipment: SHIMAZU ICPS-8000 type), carbon, hydrogen, nitrogen content analysis (Heraus CHNO type) and the like. The intrinsic viscosity [η] was measured in decalin at 135 ° C.
[0175]
Specific synthesis examples of the transition metal compound according to the present invention are shown below.
(Synthesis Example 1)
<Synthesis of Compound B-1>
A 100 ml reactor thoroughly dried and purged with argon was charged with 0.78 g (2.95 mmol) of methyl 3,5-di-t-butylsalicylate and 15 ml of diethyl ether, cooled to -78 ° C, and stirred. To this, 2.Oml of n-butyllithium (1.54mmol / ml-n hexane solution, 3.08mmol) was added dropwise over 5 minutes, then slowly warmed up to room temperature, and stirred at room temperature for 4 hours. Was prepared. This solution was gradually added dropwise to a THF 15 ml solution of 0.35 g (1.50 mmol) of zirconium tetrachloride cooled to −78 ° C. After completion of the dropwise addition, stirring was continued while slowly raising the temperature to room temperature.
After further stirring at room temperature for 8 hours, the reaction solution was concentrated under reduced pressure, and the precipitated solid was dissolved in 30 ml of methylene chloride to remove insoluble matters. The obtained filtrate was concentrated under reduced pressure, and the precipitated solid was washed with a mixed solution of diethyl ether and methylene chloride, reslurried with hexane, and dried under reduced pressure to obtain a bright yellow powder compound represented by the following formula B-1 0.70 g (68% yield) was obtained.
[0176]
Embedded image
FD-mass spectrometry: (M+688
Elemental analysis: Zr; 13.3% (13.2) Figures in parentheses are calculated values
[0177]
(Synthesis Example 2)
<Synthesis of Compound A-2>
A 100 ml reactor thoroughly dried and purged with argon was charged with 0.65 g (1.50 mmol) of phenyl 3,5-di-t-butylsalicylate and 15 ml of diethyl ether, cooled to −78 ° C., and stirred. To this, 1.Oml of n-butyllithium (1.54mmol / ml-n hexane solution, 1.54mmol) was added dropwise over 5 minutes, then slowly warmed to room temperature, and stirred for 4 hours at room temperature. A solution was prepared.
This solution was gradually added dropwise to 1.40 ml of a titanium tetrachloride solution cooled to −78 ° C. (0.5 mmol / ml-heptane solution, 0.70 mmol). After completion of the dropwise addition, stirring was continued while slowly raising the temperature to room temperature. After further stirring at room temperature for 4 hours, the reaction solution was concentrated under reduced pressure, and the precipitated solid was dissolved in 30 ml of methylene chloride to remove insoluble matters. The obtained filtrate was concentrated under reduced pressure, and the precipitated solid was washed with a mixed solution of diethyl ether and methylene chloride, reslurried with hexane, and dried under reduced pressure to obtain a brown powder compound represented by the following formula A-2. 0.15 g (yield 28%) was obtained.
[0178]
Embedded image
FD / mass spectrometry: (M+769
Elemental analysis: Ti; 6.0% (6.2)… () is the calculated value
[0179]
(Synthesis Example 3)
<Synthesis of Ligand Formula A-3>
In a 100 ml reactor thoroughly dried and purged with argon, 3,5-di-t-butylsalicylic acid; 0.51 g (2. Ommol) and 15 ml of diethyl ether were charged, cooled to -78 ° C, and stirred. To this was added 2.9 ml of n-butyllithium (1.54 mmol / ml-n hexane solution, 4.5 mmol) dropwise over 5 minutes, then slowly warmed to room temperature, and continued stirring at room temperature for 4 hours. A salt solution was prepared.
3. Titanium tetrachloride solution cooled to −78 ° C. The solution was gradually added dropwise to Oml (0.5 mmol / ml-hebutane solution, 2.O mmol). After completion of the dropwise addition, stirring was continued while slowly raising the temperature to room temperature. After further stirring under reflux for 4 hours, the reaction solution was concentrated under reduced pressure, and the precipitated solid was dissolved in 30 ml of methylene chloride to remove insoluble matters. The obtained filtrate was concentrated under reduced pressure, and the precipitated solid was washed with a mixed solution of diethyl ether-hexane, further reslurried with hexane, and dried under reduced pressure to give a compound of a red brown powder represented by the following formula A-3 0.35 g (yield 48%) was obtained.
[0180]
Embedded image
FD / mass spectrometry: (M+366
Elemental analysis: Ti; 12.8% (13.2)… () is the calculated value
[0181]
(Synthesis Example 4)
<Synthesis of Compound B-3>
A 100 ml reactor thoroughly dried and purged with argon was charged with 1,5-di-t-butylsalicylic acid; 1.00 g (4.0 mmol) and 15 ml of tetrahydrofuran, cooled to -78 ° C, and stirred. To this, 5.5 ml of n-butyllithium (1.54 mmol / ml-n-hexane solution, 8.5 mmol) was added dropwise over 5 minutes, and then the temperature was slowly raised to room temperature, followed by stirring at room temperature for 4 hours. A lithium salt solution was prepared.
This solution was cooled to −78 ° C., and 0.93 g (4.00 mmol) of zirconium tetrachloride was gradually added. After completion of the dropwise addition, stirring was continued while slowly raising the temperature to room temperature. After further stirring at room temperature for 8 hours, the reaction solution was concentrated under reduced pressure, and the precipitated solid was dissolved in 30 ml of methylene chloride to remove insoluble matters. The obtained filtrate was concentrated under reduced pressure, and the precipitated solid was recrystallized with a mixed solution of diethyl ether and methylene chloride, further reslurried with hexane, and dried under reduced pressure to give a yellowish white color represented by the following formula B-3. 1.09 g (yield 66%) of the powdered compound was obtained.
[0182]
Embedded image
FD-mass spectrometry: (M+410
Elemental analysis: Zr; 21.8% (22.2)… () is the calculated value
[0183]
(Synthesis Example 5)
Methyl 3,5-di-t-butylsalicylate in toluene at 0 ° C .: When phenylmagnesium promide (10 mmol) was allowed to act on Og (3.78 mmol), the corresponding ligand represented by the following formula L4 was obtained. (Yield 39%)
Using the thus obtained ligand L4: 0.58 g (1.49 mmol), 0.08 g (yield 11) of a greenish brown powder represented by the following formula A-4 was produced in the same manner as in Synthesis Example 3. %)Obtained.
[0184]
Embedded image
[0185]
Embedded image
FD-mass spectrometry: (M+504
Elemental analysis: Ti; 9.4% (9.5)… () is the calculated value
[0186]
(Synthesis Example 6)
1mol% Ni (acac)2Anthranils in the presence of catalyst in THF at 0 ° C.:2. When phenylzinc chloride (34 mmol) was allowed to act on Og (16.8 mmol), the corresponding ligand represented by the following formula L5 was obtained. (Yield 20%)
[0187]
Embedded image
Using the obtained ligand L5: 0.80 g (2.28 mmol) and vanadium tetrachloride 0.46 g (2.40 mmol), a green-black color represented by the following formula C-5 by the same method as in Synthesis Example 3 Of 0.05 g (yield 5%) was obtained.
[0188]
Embedded image
FD-mass spectrometry: (M+471
Elemental analysis: V; 10.7% (10.8)… () is the calculated value
[0189]
Example 1
A glass autoclave with an internal volume of 500 ml sufficiently purged with nitrogen is charged with 250 ml of toluene, and the liquid phase and gas phase are saturated with ethylene at 100 liter / hr of ethylene. Thereafter, 1.1875 mmol of methylaluminoxane (MAO) in terms of aluminum atom, and subsequently 0.005 mmol of compound B-1 obtained in Synthesis Example 1 are added to initiate polymerization. After reacting at 25 ° C. for 30 minutes under an atmospheric pressure ethylene gas atmosphere, the polymerization was stopped by adding a small amount of isobutanol. After completion of the polymerization, the reaction product was poured into a large amount of methanol to precipitate the whole amount of the polymer, and then hydrochloric acid was added and filtered through a glass filter. After the polymer was dried under reduced pressure at 80 ° C. for 10 hours, 0.02 g of polyethylene was obtained. The polymerization activity per 1 mol of zirconium was 8 kg / mol · h.
[0190]
(Example 2)
Synthesis Example 2 Using the obtained compound A-2, a polymerization reaction was carried out under the same conditions as in Example 1. As a result, 0.02 g of polyethylene was obtained. The polymerization activity per 1 mol of titanium was 8 kg / mol · h.
[0191]
(Example 3)
The compound A-3 obtained in Synthesis Example 3 was used for the polymerization reaction under the same conditions as in Example 1. As a result, 0.19 g of polyethylene was obtained.
The polymerization activity per 1 mol of titanium was 76 kg / mol · h, and the intrinsic viscosity [η] of the obtained polyethylene was 6.9 dl / g.
[0192]
Example 4
As a result of performing a polymerization reaction under the same conditions as in Example 1 using Compound B-3 obtained in Synthesis Example 4, 0.12 g of polyethylene was obtained.
The polymerization activity per 1 mol of zirconium was 48 kg / mol · h, and the intrinsic viscosity [η] of the obtained polyethylene was 12.5 dl / g.
[0193]
(Example 5)
Using compound A-4 obtained in Synthesis Example 5 and carrying out the polymerization reaction under the same conditions as in Example 1, 0.04 g of polyethylene was obtained. The polymerization activity per 1 mol of titanium was 16 kg / mol · h.
[0194]
(Example 6)
A glass autoclave with an internal volume of 500 ml that has been sufficiently purged with nitrogen is charged with 250 ml of toluene, and the liquid phase and gas phase are saturated with 100 liter / hr of ethylene. Thereafter, 0.25 mmol of triisobutylaluminum (TIBA), 0.005 mmol of compound C-5 obtained in Synthesis Example 6 and 0.006 mmol of triphenylcarbenium tetrakis (pentafluorophenyl) borate (TrB) were added for polymerization. To start. After reacting at 25 ° C. for 1 hour in an atmospheric pressure ethylene gas atmosphere, the polymerization is stopped by adding a small amount of isobutanol. After completion of the polymerization, the reaction product was poured into a large amount of methanol to precipitate the whole amount of the polymer, and then hydrochloric acid was added and filtered through a glass filter. The polymer was dried under reduced pressure at 80 ° C. for 10 hours to obtain polyethylene.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram showing a preparation process of an olefin polymerization catalyst according to the present invention.
Claims (4)
(B)(B-1a) 一般式 Ra mAl(ORb)nHpXq
(式中、RaおよびRbは、互いに同一でも異なっていてもよい炭素原子数が1〜15の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である。)で表される有機アルミニウム化合物、
(B-2) 有機アルミニウムオキシ化合物、および
(B-3) 一般式(I)で表される遷移金属化合物と反応してイオン対を形成する化合物
よりなる群から選ばれる少なくとも1種の化合物と、
からなることを特徴とするオレフィン重合用触媒。
(B) (B-1a) formula R a m Al (OR b) n H p X q
(Wherein R a and R b represent a hydrocarbon group having 1 to 15 carbon atoms which may be the same or different from each other, X represents a halogen atom, m represents 0 <m ≦ 3, n represents 0 ≦ n <3, p is a number of 0 ≦ p <3, q is a number of 0 ≦ q <3, and m + n + p + q = 3).
(B-2) an organoaluminum oxy compound, and
And (B-3) at least one compound the general formula by reacting with the transition metal compounds represented by (I) is selected from the group consisting of compounds that form an ion pair,
An olefin polymerization catalyst comprising:
(B)(B-1a) 一般式 Ra mAl(ORb)nHpXq
(式中、RaおよびRbは、互いに同一でも異なっていてもよい炭素原子数が1〜15の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である。)で表される有機アルミニウム化合物、
(B-2) 有機アルミニウムオキシ化合物、および
(B-3) 一般式( III )で表される遷移金属化合物と反応してイオン対を形成する化合物
よりなる群から選ばれる少なくとも1種の化合物と、
からなることを特徴とするオレフィン重合用触媒。
(B) (B-1a) formula R a m Al (OR b) n H p X q
(Wherein R a and R b represent a hydrocarbon group having 1 to 15 carbon atoms which may be the same or different from each other, X represents a halogen atom, m represents 0 <m ≦ 3, n represents 0 ≦ n <3, p is a number of 0 ≦ p <3, q is a number of 0 ≦ q <3, and m + n + p + q = 3).
(B-2) an organoaluminum oxy compound, and
And (B-3) at least one compound capable of reacting with the general formula (III) transition metal compounds represented by selected from the group consisting of compounds that form an ion pair,
An olefin polymerization catalyst comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24507298A JP3970433B2 (en) | 1997-11-11 | 1998-08-31 | Olefin polymerization catalyst comprising transition metal compound and polymerization method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30839997 | 1997-11-11 | ||
JP9-308399 | 1997-11-11 | ||
JP24507298A JP3970433B2 (en) | 1997-11-11 | 1998-08-31 | Olefin polymerization catalyst comprising transition metal compound and polymerization method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11199593A JPH11199593A (en) | 1999-07-27 |
JP3970433B2 true JP3970433B2 (en) | 2007-09-05 |
Family
ID=26537035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24507298A Expired - Fee Related JP3970433B2 (en) | 1997-11-11 | 1998-08-31 | Olefin polymerization catalyst comprising transition metal compound and polymerization method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3970433B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100844062B1 (en) | 2001-02-21 | 2008-07-07 | 미쓰이 가가쿠 가부시키가이샤 | Catalyst for olefin polymerizaion and method for producing olefin polymers using the catalyst |
JP2008201709A (en) * | 2007-02-20 | 2008-09-04 | Sumitomo Chemical Co Ltd | Vanadium complex, olefin polymerization catalyst and method for producing olefin polymer |
CN103554173B (en) * | 2013-11-05 | 2016-01-27 | 北京理工大学 | The Organotransitionmetal complex of phenoxy group ester coordination and catalytic systems for polymerization of olefins thereof and the application in olefin polymerization of this catalyst system |
ES2767308T3 (en) * | 2014-12-23 | 2020-06-17 | Versalis Spa | Oxo-nitrogenous vanadium complex, catalytic system comprising said oxo-nitrogenous vanadium complex and process for (co) polymerizing conjugated dienes |
CN113880977B (en) * | 2021-10-18 | 2023-07-11 | 万华化学集团股份有限公司 | Olefin polymerization catalyst, preparation method and application |
-
1998
- 1998-08-31 JP JP24507298A patent/JP3970433B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11199593A (en) | 1999-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4108141B2 (en) | Olefin polymerization catalyst and olefin polymerization method | |
US6593266B1 (en) | Olefin polymerization catalyst and polymerization process | |
US6451728B1 (en) | Olefin polymerization catalyst and process for olefin polymerization | |
JP3973765B2 (en) | Olefin polymerization catalyst comprising transition metal compound and polymerization method | |
JP2002020417A (en) | Method for polymerizing olefin | |
JP3964053B2 (en) | Olefin polymerization catalyst comprising transition metal compound and polymerization method | |
JP3970433B2 (en) | Olefin polymerization catalyst comprising transition metal compound and polymerization method | |
JP2000169513A (en) | Olefin polymerization catalyst and process | |
JP3945559B2 (en) | Olefin polymerization catalyst and olefin polymerization method | |
JP3880747B2 (en) | Olefin polymerization catalyst and polymerization method | |
JP3937200B2 (en) | Novel transition metal complex, catalyst for olefin polymerization, and process for olefin polymerization | |
JP3864013B2 (en) | Olefin polymerization catalyst and olefin polymerization method | |
JP2003268030A (en) | Olefin polymerization catalyst and method for polymerizing olefin | |
JP3930197B2 (en) | Olefin polymerization catalyst and polymerization method | |
JP4676219B2 (en) | Olefin polymerization catalyst and olefin polymerization method | |
JP4030473B2 (en) | Rare earth metal-containing compound, olefin polymerization catalyst containing the same, and olefin polymerization method using the polymerization catalyst | |
JP3747354B2 (en) | Transition metal compound, catalyst for olefin polymerization, and polymerization method | |
JP2000063416A (en) | Catalyst for olefin polymerization and method for olefin polymerization | |
JP4606667B2 (en) | Olefin polymerization catalyst and olefin polymerization method | |
JP2000119313A (en) | Polymerization of olefin | |
JP2007297453A (en) | Catalyst for polymerization of olefin and polymerization method for olefin | |
JP2000239313A (en) | Catalyst for polymerizing olefin and polymerization of olefin | |
JP3976971B2 (en) | Olefin polymerization catalyst and polymerization method | |
JP2004231846A (en) | Catalyst for olefin polymerization and method for polymerizing olefin | |
JP2000119316A (en) | Catalyst for olefin polymerization and polymerization of olefin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061114 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070110 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070313 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070509 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070605 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070606 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100615 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110615 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120615 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120615 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130615 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130615 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |