[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3967626B2 - 画像データ圧縮処理方法および画像処理装置 - Google Patents

画像データ圧縮処理方法および画像処理装置 Download PDF

Info

Publication number
JP3967626B2
JP3967626B2 JP2002128748A JP2002128748A JP3967626B2 JP 3967626 B2 JP3967626 B2 JP 3967626B2 JP 2002128748 A JP2002128748 A JP 2002128748A JP 2002128748 A JP2002128748 A JP 2002128748A JP 3967626 B2 JP3967626 B2 JP 3967626B2
Authority
JP
Japan
Prior art keywords
triangle
isosurface
triangles
error
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002128748A
Other languages
English (en)
Other versions
JP2003323637A (ja
JP2003323637A5 (ja
Inventor
章男 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2002128748A priority Critical patent/JP3967626B2/ja
Priority to PCT/JP2003/005427 priority patent/WO2003094117A1/ja
Priority to US10/512,250 priority patent/US20050219237A1/en
Priority to EP03725690A priority patent/EP1510974A1/en
Publication of JP2003323637A publication Critical patent/JP2003323637A/ja
Publication of JP2003323637A5 publication Critical patent/JP2003323637A5/ja
Application granted granted Critical
Publication of JP3967626B2 publication Critical patent/JP3967626B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/001Model-based coding, e.g. wire frame

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Computer Graphics (AREA)
  • Multimedia (AREA)
  • Image Generation (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Processing Or Creating Images (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,医療や産業用のCTあるいはMRIなどから得られる三次元データから、データ量を抑えて正確な立体画像を表示する三角形ポリゴン(等値面)データを得るための画像データ圧縮処理方法および画像処理装置に関するものである。
【0002】
【従来の技術】
医療分野において、X線CTやMRI等によって得られたボリュームデータからの立体画像再構成の手法は、これまでにも数多くなされている。その中で、等値面生成の技術は、三次元画像の世界では多く使われ議論されてきた。等値面とは、3次元フィールドにおいて同じ値を面で表現することであり、ボクセルデータで定義される三次元関数をF(x,y,z)と定数Cにより、式(1)を満たす集合を求めることである。
【0003】
F(x,y,z)=C (1)
このような等値面を用いることにより、解像度の高い三次元画像が高速に取得出来るようになってきた。しかし、等値面生成を行なうと、大量のポリゴンが発生して、CPU処理に時間がかかりまた多量のメモリ資源が消費されることから、対話的処理が困難になりやすい。このため、画像データの圧縮技術に対する強い要望がある。
【0004】
これまでに提案されてきたデータ圧縮手法の中で、QEM( Quadric Error Metrics )は、局所的に平面に近い点を探すもので、高密度なオリジナルメッシュと簡略後のメッシュとの誤差に関するエネルギー最小問題を2次の評価関数を用いて高速に解くもので、エッジ消去を繰り返すことにより三角形を削減していくものである。速度的には有効であるとされてきたが、QEMは等値面で生成されたデータを基に削減していく手法であるために、元々QEMが保持している情報には限界がある。そのため、限界がある中で等値面データを削減することから、元の形状を損なうような削減をしてしまう可能性があった。
【0005】
【発明が解決しょうとする課題】
従来、CTやMRIで計測した三次元画像データ(ベースデータ)から立体画像を形成する場合には、データの一部を削減して、メモリ使用量を軽減するとともに時間の短縮を図ることが行なわれているが、これまでのデータ圧縮手法では、現実的な処理時間で画像化しようとすると、元画像の劣化がある程度大きくなるのを受容せざるを得ないという問題があった。
【0006】
またQEMでは、各エッジを順次削減しながら三角形を削減するが、非常に小さい三角形を大量に含む等値面データの場合は、処理時間が長くなるという問題があった。
【0007】
本発明の課題は、医療や産業用のCTやMRIで取得された三次元データからデータ量を抑えて高速に正確な等値面データを作成できるデータ圧縮手段を実現することにある。
【0008】
【課題を解決するための手段】
小さい三角形を大量に含む等値面データの場合は、従来手法のQEMのようにエッジ単位で削減するよりも、三角形単位で削減した方が効率的である。本発明では、三角形を小さい方から順次選択して削減処理を行ない、等値面が効率的に削減されるようにした。また、削減処理により生じる画像劣化を一定の範囲にとどめるため、誤差の評価を等値面生成に用いたベースデータ上で行なうようにした。従来の手法では、生成された等値面データを元にして削減していたが、本発明では、等値面を削減する際に、等値面生成時のベースデータを参照して誤差を評価し、削減後の定数値を求めることにより、形状の変化を極力抑えながら削減していくことを可能にする。ベースデータとは、等値面を生成する際に必ず必要となる基のデータ(3次元画像、構造格子、非構造格子)である。
【0009】
等値面削減処理では、データの中心値から一定の幅を許容誤差範囲として設定するとともに、小さい方から順次選択した削除候補の三角形について代表点を求め、その代表点で誤差を評価し、三角形の削除可否判定を行なうようにして効率化を図っている。削減処理では、初期値として、等値面を生成して出来た三角形数に応じて全体の目標削減割合を与え、三角形を小さい方、たとえば面積の小さい方あるいは形の細長い方から順次選択して削減の可否を判定し、目標削減割合に達するまで、削減処理を繰り返す。三角形は、点あるいは線にして削除し、削除した三角形に隣接していた三角形も、それに応じて削除あるいは変形する。図1により、本発明による等値面削除処理の原理を具体的に説明する。
【0010】
図1の(a)は、面積の小さい三角形を点にして削減していく手法である。図中の1は、図示されている等値面(ポリゴン)の中で面積がもっとも小さい三角形であり、最初に削除候補として選択される。また2は、三角形1の代表点であり、たとえば重心点が用いられる。この代表点2の座標をベースデータの対応座標に変換して削減時に生じる誤差を評価する。削減可能である場合には、三角形1を削減して、代表点2に点化するとともに、三角形1の三つの辺にそれぞれ辺で隣接していた他の三つの三角形も同時に削除する。また三角形1の三つの頂点に頂点で接していた他の三角形は、三角形1の代表点2へ拡張するように変形する。最大で4つの三角形を一度に削減することになるため、残った三角形の形状は大きく変化する可能性があり、三角形削減と同時に隣接三角形の情報を更新する。
【0011】
図1の(b)は、形の細長い三角形を辺にして削減していく手法である。図中の3,4は、形の細長い三角形の例である。細長い三角形は、三角形の辺の長さがもっとも短いものと、次に短い辺の長さとの差で選択され、この差が大きい順に三角形の削減処理を行なう。三角形3に注目すると、削減される三角形3は、もっとも短い辺の長さを零にすることで線になる。このため、削減される三角形3のもっとも短い辺に辺で隣接する他の三角形4も同時に削除され、三角形は一度に最大2つ削減されることとなる。初期値の与え方、連続的な削減処理に関しては、(a)の面積の小さい三角形の場合と同様である。
【0012】
本発明による画像データ圧縮処理方法および画像処理装置は、以下のように構成できる。
(1) 三次元データに基づいて生成した三角形の等値面を削減する画像データ圧縮処理方法において、生成された等値面について、三角形を小さい方から順次取り出して、その三角形を削減した場合に生じる誤差が許容しうるものかどうかを該三角形の代表点を用いて、上記等値面を生成した三次元データ上で判定し、誤差が許容できる場合に該三角形を削除するとともに隣接する関連三角形を削除あるいは変化させる処理を行ない、また誤差が許容できない場合には該三角形を削除せずに、次の順番の三角形を取り出して同様な処理を繰り返すことを特徴とする画像データ圧縮処理方法の構成。
(2) 三角形を取り出す順序は、面積が小さい方あるいは形が細長い方から行なうことを特徴とする前項(1)に記載の画像データ圧縮処理方法の構成。
(3) 三角形を削減した場合に生じる誤差の判定は、等値面の生成に用いたベースデータ上で行なうことを特徴とする前項(1)または(2)に記載の画像データ圧縮処理方法の構成。
(4) 三角形を削減した場合に生じる誤差の判定は、該三角形の代表点として重心点を用い、ベースデータから、該三角形の重心点の座標を含む立方格子体を取り出してその中心位置を補間し、得られた座標が許容誤差内に入るかどうかにより判定することを特徴とする前項(3)に記載の画像データ圧縮処理方法の構成。
(5) 予め等値面の目標削減率を設定しておき、目標削減率に達するまで三角形の削減処理を繰り返すことを特徴とする前項(1)ないし(4)の何れかに記載の画像データ圧縮処理方法の構成。
(6) 三次元データに基づいて三角形の等値面を生成する機能をもつ三次元画像処理装置において、生成された等値面について、三角形を小さい方から順次取り出して、その三角形を削減した場合に生じる誤差が許容しうるものかどうかを該三角形の代表点を用いて、上記等値面を生成した三次元データ上で判定し、誤差が許容できる場合に該三角形を削除するとともに隣接する関連三角形を削除あるいは変化させる処理を行ない、また誤差が許容できない場合には該三角形を削除せずに、次の順番の三角形を取り出して同様な処理を繰り返す等値面削減処理部を備えていることを特徴とする三次元画像処理装置の構成。
(7) 三角形を取り出す順序は、面積が小さい方あるいは形が細長い方から行なうことを特徴とする前項(6)に記載の三次元画像処理装置の構成。
(8) 三角形を削減した場合に生じる誤差の判定は、等値面の生成に用いたベースデータ上で行なうことを特徴とする前項(6)または(7)に記載の三次元画像処理装置の構成。
・ 三角形を削減した場合に生じる誤差の判定は、該三角形の代表点として重心点を用い、ベースデータから、該三角形の重心点の座標を含む立方格子体を取り出してその中心位置を補間し、得られた座標が許容誤差内に入るかどうかにより判定することを特徴とする前項(8)に記載の三次元画像処理装置の構成。
・ 予め等値面の目標削減率を設定しておき、目標削減率に達するまで三角形の削減処理を繰り返すことを特徴とする前項(6)ないし(9)の何れかに記載の三次元画像処理装置の構成。
【0013】
【作用】
本発明の等値面削減処理は、ベースデータを基本にして行なわれる。等値面の生成処理では、ベースデータを基に等値面(3角形ポリゴン)が生成される。等値面を削減する際にもこのベースデータを使用すれば、正確な情報を得ることが可能となり、従来技術に見られる画像劣化の原因の誤差を無くすことが出来る。誤差が無くなることにより、削減可能な部分とそれ以外の部分とを明確に分けることが可能になる。その結果、削減したにもかかわらず高品質な形状を保持した等値面データが得られる。
【0014】
【発明の実施の形態】
次に図2ないし図6を用いて、本発明の好適な実施の形態について説明する。
【0015】
図2は、本発明による画像処理装置の実施例構成を示す。図中、10はCTやMRIなどから取得されたボクセルデータ形式の原三次元画像データ、11は画像処理装置、12は原三次元画像データに基づいて等値面を生成する等値面生成部、13は生成された等値面データ、14は本発明により等値面削減処理を行なう等値面削減処理部、15は削減結果の等値面データ、16は等値面削減処理で用いられる構造格子データおよび非構造格子データと三次元画像データを含むベースデータである。
【0016】
原三次元画像データ10に基づいて任意の立体画像表示を行なう場合、等値面生成部12は、たとえばMarching Cubesによりボクセルデータから立体の構造格子および非構造格子を作成し、三角形の等値面生成を行なう。生成された等値面データ13は、多量の小さい三角形を含んでいる。等値面データ13のデータ量を削減する場合、等値面削減処理部14が起動される。等値面削減処理部14は、等値面データ13から削減候補の小さい三角形を順次取り出す削減候補選択処理と、取り出した削減候補三角形の削減により生じる誤差量をベースデータ16に基づいて評価する誤差判定処理と、誤差量が許容可能かどうかを評価して三角形の削減可否を判定する削減可否判定処理と、三角形の削減により生じた隣接三角形の変更を計算する変更等値面計算処理を行ない、削減結果の等値面データ15を出力する。
【0017】
本発明の等値面削減処理については、さらに図3の実施例フローを参照して詳述する。以下、フローのステップ(S1)〜(S8)にしたがって、処理内容を順に説明する。なお、小さい三角形の例として、面積の小さい三角形を用いる。(S1): 初期値として削減割合を設定する。等値面生成で得られる三角形の数は画像により異なるため、削減数ではなく削減割合を目標にして削減処理を行なうようにする。
(S2): 小さい三角形を見つける。小さい三角形としては、図1の(a),(b)で述べたように、面積の小さい方あるいは形の細長い方から順に選択する。
(S3): 選択した三角形について、等値面データから誤差を判定するための代表点の座標値を求める。代表点は、たとえば三角形の重心点とする。
(S4): 図4に示すように、等値面データで求めた三角形の代表点(◎)の座標値を含む立方格子体を、ベースデータの構造格子から探し出す。
(S5): ベースデータから取り出した立方格子体により座標値を線形補間する。ベースデータは整数座標値(立方格子体の格子点座標)しか値を持っていないため、計算した代表点(◎)の座標値が整数座標値でないときには、図4のように立方格子体上で線形補間により求める。
(S6): 三角形の削減可否を判定する。図4において、Cは等値面をとった時の座標値であり、eは削減可能幅である。代表点(◎)の座標値が、削減可能幅内に入るかどうかを比較する。座標値Cが、削減可能幅から外れるときは、その三角形の削減をやめて(S2)へ戻り、つぎの小さい三角形を探し出して、同様に削減処理を繰り返す。
(S7): 代表点(◎)の座標値が、削減可能幅内に入ったときは、その三角形を削減して点にする。同時に、隣接する三角形の削除、変形を行ない、関連する各三角形の定数を再計算する。
(S8): 三角形を削減した結果として、目標の削減割合が達成されたかどうかを判定する。目標の削減割合が達成された場合は削減処理を終了し、まだ達成されないばあいは、(S2)へ戻り、つぎの小さい三角形を探し出して、同様に削減処理を繰り返す。
【0018】
図5は、具体例を用いて削減するかどうかの判定の様子を示したものである。case1では、×印がついた点を削減する。case2では、その後に出来る形状で◎の点を、ベースデータを用いて判定する。この場合、判定点は削減可能幅内に含まれており、形状の変化はあまりないとみなして、小さい×印が付いている点は削減されることになる。case3では、小さい×印が削減された時の形状の変化を、同様に◎の点で判定している。この場合削減可能幅の外にあり、×印の点を削減することによって起こる形状の変化が大きいとみなし、×印の点は削減しないことになる。
【0019】
図6は、上記(S7)で三角形の削減が行なわれたとき、削減、変更が必要な三角形の範囲を示す。図の左側のポリゴンの中央の三角形が、削減される三角形であり、その各辺に隣接しているドットパターンの三つの三角形は、付随して削減される三角形である。図6の右側のポリゴン中のドットパターンを付された八つの三角形は、三角形の削減の結果、定数値を再計算する必要のある三角形である。
【0020】
図6に示すように、小さい三角形が削減されることにより、周りの三角形の位置や形状が変わってくる。それらの変形した三角形の重心の定数値は、等値面で生成したときの定数値とは異なっている。この定数値が大きく外れているときは、小さな三角形でも削除によって形状が大きく変化するので、これを繰り返していくと、元の形状データとはかけ離れたものになってしまう。逆に、定数値が等値面を生成したときの定数値とほとんど差がないときには、その三角形を削減しても形状の変化は最小限に抑えられる。この三角形の重心の定数値を求めるときに、ベースデータを使用する。ベースデータには、等値面を生成するために必要な定数値が入っている。しかし、このベースデータは整数座標値しか値を持っていないため、計算した座標値が整数座標値でないときには、線形補間により求める必要がある。具体的には、格子空間として計算するため、その点を含む8点の定数値を使用しまた8点からの距離の比を用いることにより、正確な定数値を求める。線形補間により求めた値が、等値面をとった時の定数値と比較して削減可能幅内であれば、重心をとった三角形を点にする。逆に削減可能幅外の場合は、形状が大きく変化してしまう可能性があるため、三角形を点にする処理をせずに次の小さい三角形を探し出す処理へと進む。また、さらに精度を上げるため、三角形の線分長を基準として決め、線分長が長くなってきた場合には比較する点を増やしていく。削減可能幅は、式(2)により求める。式(2)のeは削減可能幅、Cmax、Cminはそれぞれ定数Cの最大値、最小値である。xは割合であり、5%の削減可能幅にしたいときはx=0.05を代入する。
【0021】
e=((Cmax)−(Cmin))*x (2)
図7は、削減可能幅を変化させたときのポリゴン削減率の変化を示している。データは、Fem128.vo1という人間の大腿骨のデータを使用した。削減可能幅の違いによるポリゴン削減率の変化を示している。凡例部分の等値面数は、削減処理を行っていない標準状態での等値面数を示している。またC=1996とは、このデータでのCの中心値である。
【0022】
削減可能幅が小さければ、それだけ削減される三角形は少なくなり、逆に削減可能幅を大きくすればするだけ、削減率も比例して大きくなっていくことがわかる、データにより削減可能幅を見極めていくことが必要である。
【0023】
図8〜図10は、人間の大腿骨のデータを用いて行なった等値面削減実験の結果の画像例である。図8はC=500のもの、図9および図10はC=300のものである。
【0024】
図8(a)は、削減処理を行わずに等値面をとった標準時のものであり、等値面数は69448ある。図8(b)は、ポリゴン削減率90%を与えて削減したもので、等値面数は、7605となる。図8(c )は、ポリゴン削減率を90%とし、さらに削減可能幅5%を与えた時のものであり、等値面数は、52085となる。図9(a)は、小さい三角形をランダムに30%削減したものである。図9(b)は、削減可能幅5%を与えて30%削減したときのものであり、等値面数は、46926となる。図10(a)は、標準時の画像である。図10(b)は、小さい三角形をランダムに30%削減した画像である。図10(c)は、削減可能幅5%を用いてランダムに30%削減したものである。削減可能幅を用いたものは、細かな筋に関しても無くすことなく削減できていることがわかる。
【0025】
【発明の効果】
本発明によれば、医療や産業用のCTやMRIで取得された三次元データに基づく三角形の等値面データについて、任意に設定された削減率に応じて、削減しても精度にあまり支障が生じないように元の三次元データで検証しつつ、小さい三角形を選択して削減するため、データ量の任意の削減に対応して常に最良の精度で等値面データを生成することができる。このため、三次元画像処理において、必要に応じて少ないデータ量の等値面を用いながら、正確な画像を高速に作成し、処理することができる。
【図面の簡単な説明】
【図1】 本発明による等値面削減処理の原理説明図である。
【図2】 本発明による画像処理装置の実施例構成図である。
【図3】 本発明による等値面削減処理の実施例フロー図である。
【図4】 等値面データで求めた三角形の代表点(◎)の座標値を含む立方格子体の説明図である。
【図5】 具体例を用いて削減するかどうかの判定の様子を示す説明図である。
【図6】 三角形の削減が行なわれたとき、削減、変更が必要な三角形の範囲を例示する説明図である。
【図7】 削減可能幅を変化させたときのポリゴン削減率の変化を示すグラフである。
【図8】 人間の大腿骨のデータを用いて行なった等値面削減実験の結果の画像例(その1)である。
【図9】 人間の大腿骨のデータを用いて行なった等値面削減実験の結果の画像例(その2)である。
【図10】 人間の大腿骨のデータを用いて行なった等値面削減実験の結果の画像例(その3)である。
【符号の説明】
10:CTやMRIなどから取得された原三次元画像データ
11:画像処理装置
12:原三次元画像データに基づいて等値面を生成する等値面生成部
13:生成された等値面データ
14:本発明により等値面削減処理を行なう等値面削減処理部
15:削減結果の等値面データ
16:等値面削減処理で用いられる構造格子データおよび非構造格子データと三次元画像データを含むベースデータ

Claims (10)

  1. 三次元データに基づいて生成した三角形の等値面を削減する画像データ圧縮処理方法において、生成された等値面について、三角形を小さい方から順次取り出して、その三角形を削減した場合に生じる誤差が許容しうるものかどうかを該三角形の代表点を用いて、上記等値面を生成した三次元データ上で判定し、誤差が許容できる場合に該三角形を削除するとともに隣接する関連三角形を削除あるいは変化させる処理を行ない、また誤差が許容できない場合には該三角形を削除せずに、次の順番の三角形を取り出して同様な処理を繰り返すことを特徴とする画像データ圧縮処理方法。
  2. 三角形を取り出す順序は、面積が小さい方あるいは形が細長い方から行なうことを特徴とする請求項1に記載の画像データ圧縮処理方法。
  3. 三角形を削減した場合に生じる誤差の判定は、等値面の生成に用いたベースデータ上で行なうことを特徴とする請求項1または請求項2に記載の画像データ圧縮処理方法。
  4. 三角形を削減した場合に生じる誤差の判定は、該三角形の代表点として重心点を用い、ベースデータから、該三角形の重心点の座標を含む立方格子体を取り出してその中心位置を補間し、得られた座標が許容誤差内に入るかどうかにより判定することを特徴とする請求項3に記載の画像データ圧縮処理方法。
  5. 予め等値面の目標削減率を設定しておき、目標削減率に達するまで三角形の削減処理を繰り返すことを特徴とする請求項1ないし請求項4の何れかに記載の画像データ圧縮処理方法。
  6. 三次元データに基づいて三角形の等値面を生成する機能をもつ三次元画像処理装置において、生成された等値面について、三角形を小さい方から順次取り出して、その三角形を削減した場合に生じる誤差が許容しうるものかどうかを該三角形の代表点を用いて、上記等値面を生成した三次元データ上で判定し、誤差が許容できる場合に該三角形を削除するとともに隣接する関連三角形を削除あるいは変化させる処理を行ない、また誤差が許容できない場合には該三角形を削除せずに、次の順番の三角形を取り出して同様な処理を繰り返す等値面削減処理部を備えていることを特徴とする三次元画像処理装置。
  7. 三角形を取り出す順序は、面積が小さい方あるいは形が細長い方から行なうことを特徴とする請求項6に記載の三次元画像処理装置。
  8. 三角形を削減した場合に生じる誤差の判定は、等値面の生成に用いたベースデータ上で行なうことを特徴とする請求項6または請求項7に記載の三次元画像処理装置。
  9. 三角形を削減した場合に生じる誤差の判定は、該三角形の代表点として重心点を用い、ベースデータから、該三角形の重心点の座標を含む立方格子体を取り出してその中心位置を補間し、得られた座標が許容誤差内に入るかどうかにより判定することを特徴とする請求項8に記載の三次元画像処理装置。
  10. 予め等値面の目標削減率を設定しておき、目標削減率に達するまで三角形の削減処理を繰り返すことを特徴とする請求項6ないし請求項9の何れかに記載の三次元画像処理装置。
JP2002128748A 2002-04-30 2002-04-30 画像データ圧縮処理方法および画像処理装置 Expired - Fee Related JP3967626B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002128748A JP3967626B2 (ja) 2002-04-30 2002-04-30 画像データ圧縮処理方法および画像処理装置
PCT/JP2003/005427 WO2003094117A1 (fr) 2002-04-30 2003-04-28 Procede de compression de donnees image et dispositif de traitement d'image
US10/512,250 US20050219237A1 (en) 2002-04-30 2003-04-28 Image data compression method and image processing device
EP03725690A EP1510974A1 (en) 2002-04-30 2003-04-28 Image data compression method and image processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002128748A JP3967626B2 (ja) 2002-04-30 2002-04-30 画像データ圧縮処理方法および画像処理装置

Publications (3)

Publication Number Publication Date
JP2003323637A JP2003323637A (ja) 2003-11-14
JP2003323637A5 JP2003323637A5 (ja) 2005-05-26
JP3967626B2 true JP3967626B2 (ja) 2007-08-29

Family

ID=29397278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002128748A Expired - Fee Related JP3967626B2 (ja) 2002-04-30 2002-04-30 画像データ圧縮処理方法および画像処理装置

Country Status (4)

Country Link
US (1) US20050219237A1 (ja)
EP (1) EP1510974A1 (ja)
JP (1) JP3967626B2 (ja)
WO (1) WO2003094117A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4959358B2 (ja) * 2007-02-01 2012-06-20 東芝Itコントロールシステム株式会社 Mpr表示装置及びコンピュータ断層撮影装置
JP2010117991A (ja) * 2008-11-14 2010-05-27 Chubu Electric Power Co Inc 画像処理方法、そのプログラム及び画像処理装置
JP6613727B2 (ja) * 2015-08-28 2019-12-04 大日本印刷株式会社 立体物造形用データ削減装置
JP6748368B2 (ja) 2017-01-18 2020-09-02 富士通株式会社 モデリング装置、モデリング方法、およびモデリングプログラム
US11797543B2 (en) * 2018-12-20 2023-10-24 Microsoft Technology Licensing, Llc System and method for cascade elimination of candidates in spatial relation operations
CN110796693B (zh) * 2019-09-11 2023-03-21 重庆大学 一种工业ct切片图像直接生成二维有限元模型的方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5590248A (en) * 1992-01-02 1996-12-31 General Electric Company Method for reducing the complexity of a polygonal mesh
JPH06231276A (ja) * 1993-01-29 1994-08-19 Nippon Steel Corp 3次元物体表示のためのポリゴン生成方法
JP3340198B2 (ja) * 1993-08-12 2002-11-05 株式会社東芝 形状復元装置
JP2583009B2 (ja) * 1993-12-16 1997-02-19 インターナショナル・ビジネス・マシーンズ・コーポレイション 可視化データ生成方法及び装置
JP3514822B2 (ja) * 1994-06-29 2004-03-31 株式会社東芝 画像処理装置
JP3199231B2 (ja) * 1997-05-27 2001-08-13 日本アイ・ビー・エム株式会社 3次元形状モデルへの情報の埋め込み方法及びシステム
US6262737B1 (en) * 1998-01-30 2001-07-17 University Of Southern California 3D mesh compression and coding
JP2000067270A (ja) * 1998-06-12 2000-03-03 Sony Corp 形状デ―タの近似化方法及び情報処理装置並びに媒体
EP1194860A2 (en) * 1999-01-27 2002-04-10 Enbaya Inc. Progressive compression of triangular meshes
GB9929957D0 (en) * 1999-12-17 2000-02-09 Canon Kk Image processing apparatus
JP4192377B2 (ja) * 1999-12-27 2008-12-10 コニカミノルタセンシング株式会社 三次元形状データのデータ削減方法及びデータ削減装置
US6958753B2 (en) * 1999-12-27 2005-10-25 Minolta Co., Ltd. Method and apparatus for reducing three-dimensional shape data
JP3690501B2 (ja) * 2001-02-26 2005-08-31 トヨタ自動車株式会社 3次元モデル化方法
JP2002342785A (ja) * 2001-05-15 2002-11-29 Ricoh Co Ltd 三角形メッシュ簡単化装置およびプログラム

Also Published As

Publication number Publication date
US20050219237A1 (en) 2005-10-06
EP1510974A1 (en) 2005-03-02
WO2003094117A1 (fr) 2003-11-13
JP2003323637A (ja) 2003-11-14

Similar Documents

Publication Publication Date Title
Xia et al. Dynamic view-dependent simplification for polygonal models
Gieng et al. Constructing hierarchies for triangle meshes
Gregory et al. Interactive surface decomposition for polyhedral morphing
Di Angelo et al. A new mesh-growing algorithm for fast surface reconstruction
US20050052452A1 (en) 3D computer surface model generation
Ruprecht et al. Spatial free-form deformation with scattered data interpolation methods
GB2378337A (en) 3D computer modelling apparatus
JP2002501639A (ja) プログレッシブメッシュの適応細分方法および装置
Bronson et al. Lattice cleaving: A multimaterial tetrahedral meshing algorithm with guarantees
US6781582B1 (en) Mesh generator for and method of generating meshes in an extrusion process
JP4252138B2 (ja) 2進コード化データとして記憶されているオブジェクトの表面の滑らかな表面表現を生成するためのコンピュータで実行される方法
KR101592294B1 (ko) 복잡한 3차원 폴리곤 메쉬 데이터의 단순화 방법
JP3967626B2 (ja) 画像データ圧縮処理方法および画像処理装置
CN109983509B (zh) 一种使用几何面的即时布尔运算方法
Bajaj et al. Tetrahedral meshes from planar cross-sections
JP2003323637A5 (ja)
Wu et al. An Accurate Error Measure for Adaptive Subdivision Surfaces.
Lee Automatic metric 3D surface mesh generation using subdivision surface geometrical model. Part 1: Construction of underlying geometrical model
Kaye et al. Strategies for evaluating boundary fractal dimensions by computer aided image analysis
JP2006059061A (ja) 3次元データ処理方法、装置及びプログラム
JP2007102595A (ja) 解析メッシュ生成装置
Jou et al. A fast 3D seed-filling algorithm
Yang et al. Efficient simplification of large vector maps rendered onto 3D landscapes
Boldt et al. Selfintersections with cullide
Kim et al. Polygon reduction of 3D objects using Stokes’ theorem

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees