JP3941369B2 - ガスシールドアーク溶接用鋼ワイヤ - Google Patents
ガスシールドアーク溶接用鋼ワイヤ Download PDFInfo
- Publication number
- JP3941369B2 JP3941369B2 JP2000303409A JP2000303409A JP3941369B2 JP 3941369 B2 JP3941369 B2 JP 3941369B2 JP 2000303409 A JP2000303409 A JP 2000303409A JP 2000303409 A JP2000303409 A JP 2000303409A JP 3941369 B2 JP3941369 B2 JP 3941369B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- welding
- less
- steel wire
- gas shielded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Arc Welding In General (AREA)
Description
【発明の属する技術分野】
本発明は、シールドガスとしてArを60〜95体積%含有し、残部がCO2 −O2 を主成分とする混合ガスを用い、ワイヤを正極(マイナス側)とする正極性混合ガスシールドアーク溶接に好適なガスシールドアーク溶接用鋼ワイヤに関する。
【0002】
【従来の技術】
シールドガスとして、CO2 ガス、あるいはArガスとCO2 ガスやO2 ガスとの混合ガス等の酸化性ガス(活性ガス)を用いるMAG溶接法は、もっとも普及した溶接法である。なかでもAr−CO2 −O2 の混合ガスを用いるガスシールドアーク溶接は、高品位な溶接が得られることから、鉄鋼材料の溶接に広く利用されている。特に自動溶接の急速な普及により、造船,建築,橋梁,自動車,建築機械等の分野で広く使用されるようになっている。造船,建築,橋梁を中心とする分野では、厚鋼板の高電流多層溶接に使用され、一方、自動車,建築機械を中心とする分野では、薄鋼板の隅肉溶接に使用されることが多い。
【0003】
自動車,建築機械を中心とする分野では、軽量化を目的として、高強度薄鋼板の使用が増加している。被溶接材である鋼板の薄肉化は、被溶接材の厚さに対するギャップ率の増加を意味し、そのため溶落ちによる欠陥率の増加を招くという問題がある。このようなことから、薄鋼板への熱影響が小さく、耐ギャップ溶接性に優れた新しい溶接方法が要望されている。
【0004】
従来からガスシールドアーク溶接では、消耗電極であるワイヤをプラス側(逆極)とする逆極性の直流溶接法が、低電流域から高電流域までアークが安定しているので、広く実用化されている。逆極性の直流溶接法では、マイナス側である鋼板側への熱影響が大きく、鋼板の溶込みが深いという特徴があり、厚鋼板の多層溶接に好適である。しかし薄鋼板の隅肉溶接に逆極性の直流溶接法を適用すると、鋼板側への熱影響が大きく鋼板の溶込みが深いので、溶落ちによる溶接欠陥が発生しやすいという問題がある。薄鋼板の隅肉溶接では、溶落ちによる溶接欠陥の防止,溶接速度の向上が重要視されており、逆極性直流溶接法を薄鋼板の隅肉溶接に適用するのは問題が残されていた。
【0005】
一方、逆極性とは反対に、ワイヤをマイナス側とする正極性の直流溶接法では、鋼板への熱影響が少なく、鋼板の溶込みが浅くなり、ワイヤの溶融速度が速く溶着量が多いという特徴がある。したがって薄鋼板の溶接に適しており、特にギャップを生じた場合の溶接に適していると考えられる。しかし正極性の直流溶接法では、ワイヤ先端に懸垂する溶滴が粗大で、アークが不安定になりやすいという問題がある。さらに高速溶接においては、溶接ビードのハンピングやビード形状の不揃い等の問題もあり、正極性の直流溶接法は実際に使用されることはなかった。
【0006】
正極性の直流溶接法を利用した溶接は、限られた分野で幾つか提案されている。たとえば特開昭58-84682号公報には、正極性直流溶接法を利用した固定管の高速円周溶接法が提案されている。この溶接法は、固定管をAr−CO2 混合ガスシールド下で円周溶接する際に、初層から希土類元素を添加した活性化ワイヤを正極性で使用して下進振分け溶接し、仕上げ層を逆極性で上進振分け溶接する溶接方法である。この溶接方法では、希土類元素を添加した活性化ワイヤを用いることによって、溶滴が微細化してアークが安定するが、ワイヤの溶融速度が小さく、かつ溶込みが深いという問題があった。
【0007】
また特開昭58-167078 号公報,特開平5-138355号公報には、正極性直流溶接と逆極性直流溶接では溶込み深さと溶融速度が大きく異なることから、正極性直流溶接と逆極性直流溶接の時間割合を制御して溶接する消耗電極式ガスシールドアーク溶接方法が提案されている。しかしながらこれらの溶接方法では、アークの安定性が不十分であり、またワイヤ組成の検討はなされていない。
【0008】
【発明が解決しようとする課題】
上述したように正極性直流溶接法は、溶込みが浅く、溶着量が多いので、薄鋼板の溶接に適しており、特にギャップの大きい継手の溶接に適していると考えられているが、従来の溶接用鋼ワイヤでは、ワイヤ先端に粗大な溶滴が不安定に懸垂するため、アークが不安定となり、スパッタの発生量が多いという問題があった。
【0009】
本発明は上記した従来技術の問題を解消し、正極性直流溶接に好適で、薄鋼板溶接における溶落ち欠陥を防止でき、さらにギャップの大きい継手においても健全な溶接が可能な、耐ギャップ溶接性およびアーク安定性に優れ、スパッタの発生が少ないガスシールドアーク溶接用鋼ワイヤを提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは、正極性直流溶接におけるアークの安定性,耐ギャップ溶接性およびビード形状に対するワイヤ組成の影響を鋭意検討した。その結果、
▲1▼Si,Mn,Ti,Caの含有量、特にTiおよびCaの含有量を増加することにより、正極性直流溶接において安定した短絡移行が可能となり、耐ギャップ溶接性が向上すること、
▲2▼正極性直流溶接においては、さらにCaを0.0016質量%以上とすることがアークの安定性を高めるうえで重要であること、
▲3▼正極性直流溶接においては、ワイヤが表層に平均厚さ 0.5μm以上のCuめっきを有することがアークの安定性向上に大きく寄与すること
を知見した。この発明は、これらの知見に基づいて構成されたものである。
【0011】
すなわち、この発明は、シールドガスとして Ar を 60 〜 95 体積%含有し残部がCO 2 −O 2 を主成分とする混合ガスを使用する正極性混合ガスシールドアーク溶接で用いられる溶接用鋼ワイヤであって、Cを0.20質量%以下、Siを 0.3〜2.5 質量%、Mnを0.45〜3.5 質量%、Pを 0.050質量%以下、Sを 0.050質量%以下、Tiを0.05〜0.5 質量%、Caを0.0005〜0.0059質量%、Oを0.0080質量%未満含有し、残部Feおよび不可避的不純物からなる組成を有するガスシールドアーク溶接用鋼ワイヤである。
【0012】
前記した発明においては、第1の好適態様として、前記組成のうち、Ca含有量が0.0016〜0.0059質量%であることが好ましい。
また第2の好適態様として、前記組成に加えて、Kを0.0001〜0.0150質量%含有することが好ましい。
また第3の好適態様として、前記組成に加えて、Crを 3.0質量%以下、Niを 3.0質量%以下、Moを 1.5質量%以下、Cuを 3.0質量%以下およびBを 0.005質量%以下のうちの1種または2種以上を含有することが好ましい。
【0013】
また第4の好適態様として、前記組成に加えて、Zr、Al、NbおよびVのうちの1種または2種以上を合憲0.55質量%以下含有することが好ましい。
また第5の好適態様として、ガスシールドアーク溶接用鋼ワイヤが、表層に平均厚さ 0.5μm以上のCuめっきを有することが好ましい。
また、本発明のガスシールドアーク溶接用鋼ワイヤは、Cを0.20質量%以下、Siを 0.3〜2.5 質量%、Mnを0.45〜3.5 質量%、Pを 0.050質量%以下、Sを 0.050質量%以下、Tiを0.05〜0.5 質量%、Caを0.0005〜0.0100質量%含有し、好ましくはCa含有量を0.0016〜0.0100質量%含有し、残部が実質的にFeである組成を有する鋼素材を、熱間加工あるいはさらに冷間で伸線加工して所定の線径の鋼素線とした後、その鋼素線にカリウム塩溶液を塗布して、焼鈍,酸洗を行ない、さらにCuめっきを施した後、冷間で伸線加工して所定の寸法の鋼ワイヤとする製造方法で製造されるのが好ましい。
【0014】
また、本発明のガスシールドアーク溶接用鋼ワイヤの製造方法では、Cuめっきを 0.5μm以上の厚さとするのが好ましい。また、本発明のガスシールドアーク溶接用鋼ワイヤを製造する方法では、前記した組成に加えて、さらにKを0.0001〜0.0150質量%含有することが好ましく、さらにCr: 3.0質量%以下,Ni: 3.0質量%以下,Mo: 1.5質量%以下,Cu: 3.0質量%以下,B: 0.005質量%以下のうちから選ばれた1種または2種以上を含有することが好ましく、さらにZr,Al,Nb,Vのうちから選ばれた1種または2種以上を合計0.55質量%以下含有することが好ましい。
【0015】
【発明の実施の形態】
まず、本発明におけるガスシールドアーク溶接用鋼ワイヤの組成の限定理由について説明する。
C:0.20質量%以下
Cは、溶接金属の強度を確保するために重要な元素であるが、溶鋼の粘性を低下させて流動性を向上する作用を有し、多量に含有すると溶滴および溶融プールの挙動が不安定となり、スパッタが多発する。したがって、Cは0.20質量%以下に限定する必要がある。なお、好ましくは0.01〜0.10質量%の範囲内である。
【0016】
Si:0.30〜2.5 質量%
Siは、脱酸作用を有し、溶接金属の脱酸のために不可欠な元素である。さらに正極性直流溶接時にはアークの広がりを抑え、短絡移行回数を増大させる作用を有する。また薄鋼板溶接でギャップの大きい継手溶接においては、アーク熱による溶落ちを抑制する働きもあり、耐ギャップ溶接性を向上させる。このような効果は、Si含有量が0.30質量%以上で認められる。また、より一層の耐ギャップ溶接性の向上とビード形状の改善のためには、1.10質量%以上含有するのが好ましい。一方、Si含有量が 2.5質量%を超えると、溶接金属の靱性が低下する。したがって、Siは0.30〜2.5 質量%の範囲内を満足する必要がある。なお、好ましくは1.10〜2.5 質量%の範囲内である。
【0017】
Mn:0.45〜3.5 質量%
Mnは、Siと同様に脱酸作用を有し、溶接金属の脱酸のためには不可欠な元素である。Mn含有量が0.45質量%未満では、溶融金属の脱酸が不足し、溶融金属にブローホール欠陥が発生する。一方、3.5 質量%を超えると、溶接金属の靱性が低下する。したがって、Mnは0.45〜3.5 質量%の範囲内を満足する必要がある。
【0018】
Ca:0.0005〜0.0059質量%
Caは、製鋼および鋳造時の不純物として、あるいは伸線加工時の不純物としてワイヤに混入するが、正極性ガスシールドアーク溶接においては低電圧でのアークの安定性を向上させる元素である。Ca含有量が0.0005質量%未満では、アークを安定させる効果はない。なお、より一層の安定化を図るためには、Caの含有量は0.0016質量%以上が好ましい。一方、Ca含有量が0.0059質量%を超えると、溶接金属の靱性が低下する。したがって、Caは0.0005〜0.0059質量%の範囲内を満足する必要がある。なお、好ましくは0.0016〜0.0059質量%の範囲内である。
【0019】
P: 0.050質量%以下
Pは、鋼の融点を低下させるとともに電気抵抗率を向上させて、溶融効率を向上させるとともに、正極性ガスシールドアーク溶接においてアークを安定させる効果を有する。しかし 0.050質量%を超えて含有すると、溶接金属に溶接割れを生じる危険性が増大する。したがって、Pは 0.050質量%以下に限定する必要がある。なお、好ましくは 0.005〜0.020 質量%の範囲内である。
【0020】
S: 0.050質量%以下
Sは、溶融金属の粘性を低下させ、ワイヤ先端に懸垂した溶滴の離脱を円滑にする元素であり、ビードを平滑にして上板の溶落ちを抑制する効果を有する。またSは、正極性ガスシールドアーク溶接において、アークを安定させる効果も有する。しかしS含有量が 0.050質量%を超えると、小粒のスパッタが増加するとともに、溶接金属の靱性が低下する。したがって、Sは 0.050質量%以下とした。なお、好ましくは 0.015〜0.030 質量%の範囲内である。
【0021】
Ti:0.05〜0.5 質量%
Tiは、脱酸作用を有し、溶接金属の強度を増加させる元素である。さらにTiは、正極性ガスシールドアーク溶接においてアークを溶滴に集中させ、アーク切れを防止することによって、低電流域から高電流域までアークの安定性を向上させる効果を有する。このような効果は、Ti含有量が0.05質量%以上で顕著となる。一方、Ti含有量が 0.5質量%を超えると、溶接金属の脆化を招く。したがって、Tiは0.05〜0.5 質量%の範囲内を満足する必要がある。なお、好ましくは 0.015〜0.030 質量%の範囲内である。
O: 0.0080 質量%未満
Oは、鋼の溶製中あるいはワイヤの製造中に不可避的に含有される元素であるが、溶滴の移行形態を微細化する効果があり、 0.0080 質量%未満に調整する必要がある。
【0022】
K:0.0001〜0.0150質量%
Kは、アークを広げてソフト化するとともに、正極性ガスシールドアーク溶接において溶滴を微細化して液滴の移行を円滑にする効果を有する。このような効果は、K含有量が0.0001質量%以上で認められる。一方、K含有量が0.0150質量%を超えると、アークが長くなるので、ワイヤ先端に懸垂した液滴が不安定となりスパッタの発生が増加する。したがって、Kは0.0001〜0.0150質量%の範囲内を満足することが好ましい。なお、より好ましくは0.0003〜0.0030質量%の範囲内である。また、Kは沸点が 760℃と低く、素材となる鋼の溶製段階での歩留りが著しく低いので、Kは鋼の溶製段階で添加するよりも、ワイヤの製造時にワイヤ表面にカリウム塩溶液を塗布して焼鈍を行なうことによって、ワイヤ内部にKを安定して含有させるのが好ましい。
【0023】
Cr: 3.0質量%以下,Ni: 3.0質量%以下,Mo: 1.5質量%以下,Cu: 3.0質量%以下,B: 0.005質量%以下のうちから選ばれた1種または2種以上
Cr,Ni,Mo,Cu,Bは、いずれも溶接金属の強度を増加させ、かつ耐候性を向上させる元素であり、必要に応じて1種または2種以上を選択して含有できる。しかし過剰な含有は靱性の低下を招く。したがって、含有する場合の各元素の含有量は、Crは 3.0質量%以下,Niは 3.0質量%以下,Moは 1.5質量%以下,Cuは 3.0質量%以下,Bは 0.005質量%以下とするのが好ましい。なお、より好ましくはCrは0.15〜0.70質量%,Niは0.40〜0.80質量%,Moは0.20〜0.50質量%,Cuは0.15〜0.30質量%,Bは 0.001〜0.003 質量%の範囲内である。
【0024】
Zr,Al,Nb,V:1種または2種以上を合計0.55質量%以下
Zr,Al,Nb,Vは、いずれも溶接金属の強度および靱性を向上し、かつアークの安定性を向上させる元素であり、必要に応じて選択して1種または2種以上を含有できる。しかし、これらの元素の含有量が合計0.55質量%を超えると、靱性の低下を招く。したがって、Zr,Al,Nb,Vのうちから選ばれた1種または2種以上の含有量は、合計0.55質量%以下であることが好ましい。
【0025】
上記で説明した成分以外の残部は、Feおよび不可避的不純物である。不可避的不純物としては、Nを 0.010質量%以下が許容できる。
【0026】
次に、この発明の正極性ガスシールドアーク溶接用鋼ワイヤの製造方法について説明する。
上記した組成の溶鋼を、転炉あるいは電気炉等の従来から知られている方法で溶製した後、連続鋳造等によって鋼素材(たとえばビレット)を製造する。鋼素材を加熱し、次いで熱間圧延、あるいはさらに乾式の冷間圧延(伸線加工)して鋼素線とする。熱間圧延は、所定の寸法形状の鋼素線が得られる条件で行なえば良く、特に限定されない。
【0027】
次いで鋼素線は、焼鈍−酸洗−Cuめっき−伸線加工の各工程を順次施されて、所定の線径のガスシールドアーク溶接用鋼ワイヤとなる。本発明のガスシールドアーク溶接用鋼ワイヤを製造する際には、焼鈍前の鋼ワイヤ表面にカリウム塩溶液を塗布した後、焼鈍を行なうのが好ましい。カリウム塩溶液として、クエン酸3カリウム水溶液,炭酸カリウム水溶液,水酸化カリウム水溶液等を用いる。ワイヤ表面に塗布するカリウム塩濃度は、K量に換算した値で 0.5〜3.0 体積%とするのが好ましい。
【0028】
カリウム塩溶液を表面に塗布された鋼ワイヤを焼鈍することによって、焼鈍中に生成する内部酸化層内にKが安定して保持される。Kはスパッタを低下させる効果を有するが、鋼ワイヤ表面にK塩を保持(すなわち塗布)させると、熱的に不安定であることから、スパッタを低下させる効果が減少する。したがって、あらかじめ鋼ワイヤ表面にカリウム塩溶液を塗布した後、焼鈍を行なうのが好ましい。
【0029】
焼鈍は、鋼ワイヤを軟化させること、および鋼ワイヤの内部酸化層内にKを保持させることを目的として行なうのであり、 650〜950 ℃の温度範囲で、かつ水蒸気を含む窒素ガス雰囲気中で行なうのが好ましい。焼鈍温度が 650℃未満では内部酸化の反応の進行が遅く、また 950℃を超えると内部酸化の反応の進行が速すぎて、内部酸化の調整が困難となる。
【0030】
焼鈍の雰囲気は、内部酸化層の形成の観点から、露点0℃以下,酸素濃度200ppm以下とするのが好ましい。表面にカリウム塩溶液を塗布した鋼ワイヤを、このような雰囲気下で焼鈍することによって、鋼ワイヤの表面から酸化が進行し、図1に示すように表層部が内部酸化され、この内部酸化層にKが確実に保持される。焼鈍の条件(すなわち温度,時間,雰囲気等)は、鋼ワイヤ中のK含有量が0.0003〜0.0030質量%,O含有量が0.0020〜0.0080質量%となるように、線径およびカリウム塩濃度,カリウム塩溶液の塗布量等と関連して決定するのが好ましい。
【0031】
焼鈍した鋼素線は、酸洗を行なった後、表面にCuめっきを施す。Cuめっきの厚さは 0.5μm以上とするのが好ましい。
正極性直流溶接においては、逆極性の溶接に比べて、給電不良に起因してアークが不安定になりやすい。しかしCuめっきの厚さを 0.5μm以上とすることによって、給電不良に起因するアークの不安定化を防止できる。なおCuめっきの厚さは 0.8μm以上で、かつガスシールドアーク溶接用鋼ワイヤに含有されるCuとの合計が 3.0質量%以下となるように、Cuめっきの厚さを調整することが、より一層好ましい。このようにCuめっきを厚目付とすることによって、アークの不安定化を防止するのみならず、給電チップの損耗も低減できる。
【0032】
しかし、ガスシールドアーク溶接用鋼ワイヤに含有されるCuおよびCuめっきに含有されるCuが合計 3.0質量%を超えると、溶接金属の靱性が著しく低下する。したがって、Cuめっきの厚さは 0.8μm以上で、かつガスシールドアーク溶接用鋼ワイヤに含有されるCuとの合計が 3.0質量%以下となるように、Cuめっきの厚さを調整することが、より一層好ましい。
【0033】
また本発明では、溶接中の給電の安定化を図るために、ガスシールドアーク溶接用鋼ワイヤの平坦度を1.01未満とすることが肝要である。ガスシールドアーク溶接用鋼ワイヤの伸線加工においてダイス管理を厳格に行なうことによって、ガスシールドアーク溶接用鋼ワイヤの平坦度を1.01未満とすることが可能である。その結果、溶接中の給電が安定し、低スパッタ化が達成できる。なお、平坦度は下記の (1)式で算出される値である。
【0034】
平坦度=SM /SR ・・・ (1)
SM :測定対象領域におけるガスシールドアーク溶接用鋼ワイヤの本体表面の実表面積(mm2 )
SR :測定対象領域におけるガスシールドアーク溶接用鋼ワイヤの本体表面のみかけ上の面積(mm2 )
さらに本発明では、溶接中の給電の安定化を図るために、ガスシールドアーク溶接用鋼ワイヤの表面に付着した不純物を、ガスシールドアーク溶接用鋼ワイヤ10kgあたり0.01g以下にするのが好ましい。またガスシールドアーク溶接用鋼ワイヤの送給性を確保するために表面に塗布される潤滑油は、ガスシールドアーク溶接用鋼ワイヤ10kgあたり0.35〜1.4 gの範囲を満足するのが好ましい。ガスシールドアーク溶接用鋼ワイヤの送給性は、ロボット溶接を行なう場合に重要である。
【0035】
【実施例】
連続鋳造によって製造したビレットを熱間圧延して直径 5.5〜7.0mm の線材とし、次いで冷間で伸線加工を行なって直径 2.0〜2.8mm の鋼素線とした。この鋼素線に2〜30質量%のクエン酸3カリウム水溶液を塗布した。クエン酸3カリウム水溶液の塗布量は、鋼素線1kgあたり30〜50gであった。次いで、鋼素線を露点:−2℃以下,O2 : 200体積ppm 以下,CO2 : 0.1体積%以下のN2 雰囲気中で焼鈍した。焼鈍温度は 750〜950 ℃の範囲とした。このとき、鋼素線の径,カリウム塩の濃度,焼鈍温度と焼鈍時間を調整することによって、鋼素線中のO含有量とK含有量を調整した。
【0036】
焼鈍した後、鋼素線を酸洗し、さらに鋼素線の表面にCuめっきを施し、次いで冷間で伸線加工を行なって直径 1.2mmのガスシールドアーク溶接用鋼ワイヤとした。得られたガスシールドアーク溶接用鋼ワイヤの表面に潤滑油を塗布した。潤滑油の塗布量は、ガスシールドアーク溶接用鋼ワイヤ10kgあたり 0.4〜0.6 gであった。得られたガスシールドアーク溶接用鋼ワイヤの組成とCuめっき厚は表1および表2に示す通りである。
【0037】
【表1】
【0038】
【表2】
【0039】
これらのガスシールドアーク溶接用鋼ワイヤを用いて溶接試験を行ない、スパッタ発生量,ビード形状,給電チップの損耗度を下記の方法で評価した。溶接試験の条件は、シールドガス成分:Ar80体積%+CO2 20体積%,シールドガス流量:20 liter/min ,溶接電源:インバータ電源,極性:正極性,溶接電流: 250A,溶接電圧:18V,溶接速度: 100cm/min とした。評価した結果は表2−1および表2−2に示す通りである。
【0040】
(a) スパッタ発生量:板厚 1.6mmの薄鋼板上にビードオン溶接を行ない、Cu製の捕集治具を用いてスパッタを捕集して、スパッタ発生量を測定した。溶接時間は1min とした。スパッタ発生量が 1.5g/min 以下を○, 1.5g/min 超え〜 2.0g/min 以下を△, 2.0g/min 超えを×として評価した。
(b) ビード形状:板厚 1.6mmの薄鋼板を用いて、ギャップ 0.8mmのギャップ重ね隅肉溶接を図2に示す要領で行ない、ビード形状を目視で観察した。溶け落ち,アンダーカットあるいはハンピングビードが生じた場合は×とし、それ以外は○として評価した。
【0041】
(c) 給電チップの損耗度:直径 800mm,肉厚25mmの鋼管を自転させながら鋼管外周を連続溶接した。溶接時間は30min とした。溶接が終了した後、チップ先端内径を測定し、その最大値と最小値を用いてチップ先端内径の楕円化率を算出した。楕円化率が2%以下を○,2%超え〜5%以下を△,5%超えを×として評価した。なお、楕円化率は下記の (2)式で算出される値である。
【0042】
楕円化率(%)= 100×{(Dmax /Dmin )−1} ・・・ (2)
Dmax :チップ先端内径の最大値(mm)
Dmin :チップ先端内径の最小値(mm)
【0043】
【表3】
【0044】
【表4】
【0045】
スパッタ発生量について発明例と比較例を比べると、発明例1〜36は、いずれもスパッタ発生量が 2.0g/min 以下であったのに対して、比較例1〜3は、スパッタ発生量が 2.0g/min を超えていた。つまり、発明例の方が、スパッタ発生量が低く抑えられていた。特にCa含有量が0.0016質量%以上,かつTi含有量が0.0050質量%以上である発明例16〜36は、スパッタ発生量が 1.5g/min 以下であり、スパッタ発生量がより一層低く抑えらた。
【0046】
またチップ先端内径の楕円化率について発明例と比較例を比べると、発明例1〜36は、いずれも楕円化率が5%以下であったのに対して、比較例1〜3は、楕円化率が5%を超えていた。つまり、発明例の方が、チップの損耗度が低く抑えられていた。特にCuめっき厚が 0.8μm以上の発明例26〜36は、楕円化率が 1.9%以下であり、チップの損耗度がより一層低く抑えらた。
【0047】
【発明の効果】
本発明では、正極性混合ガスシールドアーク溶接において、アークの安定性に優れ、高い溶着量と浅い溶込みが達成でき、溶落ち欠陥を防止できるので高ギャップの薄鋼板継手溶接が安定して可能となる。またスパッタ量も低減でき、給電の安定性に優れ、さらに給電チップの損耗が低減できる等、産業上格段の効果を奏する。
【図面の簡単な説明】
【図1】本発明のガスシールドアーク溶接用鋼ワイヤの断面組織の一例を示す模式図である。
【図2】ギャップ重ね隅肉溶接の要領を模式的に示す説明図である。
【符号の説明】
1 薄鋼板
2 押さえ銅
3 ギャップ調整用銅
4 基板銅
5 溶接トーチ
6 ガスシールドアーク溶接用鋼ワイヤ
Claims (6)
- シールドガスとして Ar を 60 〜 95 体積%含有し残部がCO 2 −O 2 を主成分とする混合ガスを使用する正極性混合ガスシールドアーク溶接で用いられる溶接用鋼ワイヤであって、Cを0.20質量%以下、Siを 0.3〜2.5 質量%、Mnを0.45〜3.5 質量%、Pを 0.050質量%以下、Sを 0.050質量%以下、Tiを0.05〜0.5 質量%、Caを0.0005〜0.0059質量%、Oを0.0080質量%未満含有し、残部Feおよび不可避的不純物からなる組成を有することを特徴とするガスシールドアーク溶接用鋼ワイヤ。
- 前記組成のうち、Ca含有量が0.0016〜0.0059質量%であることを特徴とする請求項1に記載のガスシールドアーク溶接用鋼ワイヤ。
- 前記組成に加えて、Kを0.0001〜0.0150質量%含有することを特徴とする請求項1または2に記載のガスシールドアーク溶接用鋼ワイヤ。
- 前記組成に加えて、Crを 3.0質量%以下、Niを 3.0質量%以下、Moを 1.5質量%以下、Cuを 3.0質量%以下およびBを 0.005質量%以下のうちの1種または2種以上を含有することを特徴とする請求項1、2または3に記載のガスシールドアーク溶接用鋼ワイヤ。
- 前記組成に加えて、Zr、Al、NbおよびVのうちの1種または2種以上を合計0.55質量%以下含有することを特徴とする請求項1、2、3または4に記載のガスシールドアーク溶接用鋼ワイヤ。
- 前記ガスシールドアーク溶接用鋼ワイヤが、表層に平均厚さ 0.5μm以上のCuめっきを有することを特徴とする請求項1、2、3、4または5に記載のガスシールドアーク溶接用鋼ワイヤ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000303409A JP3941369B2 (ja) | 2000-10-03 | 2000-10-03 | ガスシールドアーク溶接用鋼ワイヤ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000303409A JP3941369B2 (ja) | 2000-10-03 | 2000-10-03 | ガスシールドアーク溶接用鋼ワイヤ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002103081A JP2002103081A (ja) | 2002-04-09 |
JP3941369B2 true JP3941369B2 (ja) | 2007-07-04 |
Family
ID=18784613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000303409A Expired - Fee Related JP3941369B2 (ja) | 2000-10-03 | 2000-10-03 | ガスシールドアーク溶接用鋼ワイヤ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3941369B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5629279B2 (ja) * | 2005-08-08 | 2014-11-19 | 株式会社神戸製鋼所 | 耐食性に優れた溶接継手および溶接構造体 |
-
2000
- 2000-10-03 JP JP2000303409A patent/JP3941369B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002103081A (ja) | 2002-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20040140303A1 (en) | Steel wire for carbon dioxide shielded arc welding and welding process using the same | |
JP5472244B2 (ja) | 厚鋼板の狭開先突合せ溶接方法 | |
US6784402B2 (en) | Steel wire for MAG welding and MAG welding method using the same | |
JP2002239725A (ja) | 鋼板のガスシールドアーク溶接方法 | |
JP3951593B2 (ja) | Mag溶接用鋼ワイヤおよびそれを用いたmag溶接方法 | |
JP4930048B2 (ja) | 重ね隅肉溶接継手の継手疲労強度を向上するプラズマアークハイブリッド溶接方法 | |
JP3941528B2 (ja) | 炭酸ガスシールドアーク溶接用ワイヤ | |
JP3861979B2 (ja) | 炭酸ガスシールドアーク溶接用鋼ワイヤ | |
JP4725700B2 (ja) | 炭酸ガスシールドアーク溶接用鋼ワイヤおよびそれを用いた溶接方法 | |
JP3945396B2 (ja) | 炭酸ガスシールドアーク溶接用鋼ワイヤおよびそれを用いた溶接方法 | |
JP2007118068A (ja) | 厚鋼板の狭開先突合せ溶接方法 | |
JP3941369B2 (ja) | ガスシールドアーク溶接用鋼ワイヤ | |
JP4830308B2 (ja) | 厚鋼板の多層炭酸ガスシールドアーク溶接方法 | |
JP3969322B2 (ja) | 炭酸ガスシールドアーク溶接用鋼ワイヤおよびそれを用いた溶接方法 | |
KR100501984B1 (ko) | 정극성 mag 용접용 강 와이어 및 이것을 사용한 정극성 mag 용접 방법 | |
JP7541650B2 (ja) | 正極性mag溶接用ワイヤおよびそれを用いた正極性mag溶接方法 | |
JP2005219062A (ja) | Yagレーザアークハイブリッド溶接方法 | |
JP3906827B2 (ja) | 炭酸ガスシールドアーク溶接用鋼ワイヤおよびそれを用いた溶接方法 | |
JP3969323B2 (ja) | 炭酸ガスシールドアーク溶接用鋼ワイヤおよびそれを用いた溶接方法 | |
JP3941756B2 (ja) | 炭酸ガスシールドアーク溶接用鋼ワイヤの鋼素線 | |
JP2007118069A (ja) | ガスシールドアーク溶接方法 | |
JP3546738B2 (ja) | ガスシールドアーク溶接用鋼ワイヤおよびその製造方法 | |
JP3983155B2 (ja) | ガスシールドアーク溶接用鋼ワイヤ | |
JP4655475B2 (ja) | 炭酸ガスシールドアーク溶接用鋼ワイヤ | |
JP3941755B2 (ja) | 炭酸ガスシールドアーク溶接用鋼ワイヤおよびそれを用いた溶接方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040127 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050905 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060808 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061006 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061128 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070125 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070313 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070326 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |