JP3833903B2 - 半導体装置の製造方法 - Google Patents
半導体装置の製造方法 Download PDFInfo
- Publication number
- JP3833903B2 JP3833903B2 JP2001174567A JP2001174567A JP3833903B2 JP 3833903 B2 JP3833903 B2 JP 3833903B2 JP 2001174567 A JP2001174567 A JP 2001174567A JP 2001174567 A JP2001174567 A JP 2001174567A JP 3833903 B2 JP3833903 B2 JP 3833903B2
- Authority
- JP
- Japan
- Prior art keywords
- source
- drain
- film
- gate
- insulating film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 76
- 239000004065 semiconductor Substances 0.000 title claims description 30
- 239000000758 substrate Substances 0.000 claims description 79
- 229910052751 metal Inorganic materials 0.000 claims description 69
- 239000002184 metal Substances 0.000 claims description 69
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 68
- 239000010703 silicon Substances 0.000 claims description 68
- 229910052710 silicon Inorganic materials 0.000 claims description 68
- 239000011229 interlayer Substances 0.000 claims description 59
- 230000015572 biosynthetic process Effects 0.000 claims description 41
- 229910021332 silicide Inorganic materials 0.000 claims description 30
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 30
- 239000007769 metal material Substances 0.000 claims description 18
- 238000005530 etching Methods 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 239000012535 impurity Substances 0.000 claims description 9
- 239000010408 film Substances 0.000 description 333
- 238000000034 method Methods 0.000 description 94
- 230000008569 process Effects 0.000 description 73
- 108091006146 Channels Proteins 0.000 description 56
- 239000000463 material Substances 0.000 description 34
- 230000000694 effects Effects 0.000 description 32
- 229910052581 Si3N4 Inorganic materials 0.000 description 25
- 238000001020 plasma etching Methods 0.000 description 25
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 25
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 22
- 230000004888 barrier function Effects 0.000 description 22
- 238000005468 ion implantation Methods 0.000 description 21
- 239000010410 layer Substances 0.000 description 19
- 238000002955 isolation Methods 0.000 description 18
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 11
- 238000001459 lithography Methods 0.000 description 10
- 150000002500 ions Chemical class 0.000 description 9
- -1 CaSnF 2 Inorganic materials 0.000 description 7
- 230000003213 activating effect Effects 0.000 description 7
- VLJQDHDVZJXNQL-UHFFFAOYSA-N 4-methyl-n-(oxomethylidene)benzenesulfonamide Chemical compound CC1=CC=C(S(=O)(=O)N=C=O)C=C1 VLJQDHDVZJXNQL-UHFFFAOYSA-N 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 229910021340 platinum monosilicide Inorganic materials 0.000 description 6
- 108010075750 P-Type Calcium Channels Proteins 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 229910004261 CaF 2 Inorganic materials 0.000 description 4
- 229910004129 HfSiO Inorganic materials 0.000 description 4
- 229910010413 TiO 2 Inorganic materials 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 229910006501 ZrSiO Inorganic materials 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 230000009977 dual effect Effects 0.000 description 4
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 229910052691 Erbium Inorganic materials 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 208000011380 COVID-19–associated multisystem inflammatory syndrome in children Diseases 0.000 description 1
- 229910004767 CaSn Inorganic materials 0.000 description 1
- 229910017583 La2O Inorganic materials 0.000 description 1
- 108090000699 N-Type Calcium Channels Proteins 0.000 description 1
- 102000004129 N-Type Calcium Channels Human genes 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28158—Making the insulator
- H01L21/28167—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
- H01L21/28194—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823814—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823828—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/095—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being Schottky barrier gate field-effect transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/417—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
- H01L29/41725—Source or drain electrodes for field effect devices
- H01L29/41733—Source or drain electrodes for field effect devices for thin film transistors with insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/45—Ohmic electrodes
- H01L29/456—Ohmic electrodes on silicon
- H01L29/458—Ohmic electrodes on silicon for thin film silicon, e.g. source or drain electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/47—Schottky barrier electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/4908—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/517—Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66545—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66553—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using inside spacers, permanent or not
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66575—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
- H01L29/66583—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with initial gate mask or masking layer complementary to the prospective gate location, e.g. with dummy source and drain contacts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66643—Lateral single gate silicon transistors with source or drain regions formed by a Schottky barrier or a conductor-insulator-semiconductor structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7839—Field effect transistors with field effect produced by an insulated gate with Schottky drain or source contact
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Chemical & Material Sciences (AREA)
- Electrodes Of Semiconductors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Thin Film Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Description
【発明の属する技術分野】
本発明は、シリコン基板とショットキー接合するシリサイドをソース及びドレインに用いたMISFETを有する半導体装置の製造方法に関する。
【0002】
【従来の技術】
MOSFETにメタルゲートや高誘電体ゲート絶縁膜を適用するために、ダミーゲートを用いるプロセス(Rep1acement gate process, Damascene gate process)が提案されている(参考文献:A.Chatterjee et al., IEDM Tech. Dig., (1997), p.821およびA. Yagishita et al., IEDM Tech Dig, (1998), p.785)。
【0003】
ここでダミーゲートプロセスとは、将来ゲートを形成する領域に後で除去する使い捨てのゲートを形成し、これにセルフアラインでソース/ドレインを形成したのち、ダミーゲートを除去した後、ダミーゲートを除去して形成された溝にダマシンプロセスを用いて本来のゲートに置き換えるプロセスである。
【0004】
ダミーゲートプロセスを用いれば、高温熱処理の必要なソース/ドレインをゲートより先に形成してしまうので、ゲート形成後の熱工程を450℃以下に低温化できる。したがって、熱耐性に乏しいメタルゲート電極や高誘電体ゲート絶縁膜をMOSFETに適用することが容易になる。
【0005】
メタルゲート、high−kゲート絶縁膜を用いたダマシンゲート(またはリプレイスメントゲート)トランジスタの問題点は、
(1)ダミーゲート形成および除去のために工程数が大幅に増加してしまうこと、
(2)ゲート電界のフリンジ(しみだし)効果で短チャネル効果が劣化すること(参考文献:Baohong Cheng et al., IEEE Transactions on ELECTRON DEVICES, Vol. 46, No. 7, (1999), p.1537)、
(3)用いられる多くのメタルゲートの仕事関数がシリコンのミッドギャップ付近に位置するため、その影響でしきい値電圧(絶対値)が上昇すること、
である。
【0006】
【発明が解決しようとする課題】
上述したように、ダミーゲートの形成及び除去のために工程数が大幅に増加するという問題があった。また、ゲート電界のフリンジ(しみだし)効果で短チャネル効果が劣化するとういう問題があった。
【0007】
本発明の目的は、ゲート絶縁膜及びゲート電極にそれぞれ高誘電体膜及び金属を用いたMISFETの工程数の抑制を図り得る半導体装置の製造方法を提供することにある。
【0008】
また、本発明の別の目的は、ゲート絶縁膜に高誘電体膜を用いても短チャネル効果の抑制を図り得る半導体装置の製造方法を提供することにある。
【0009】
【課題を解決するための手段】
[構成]
本発明は、上記目的を達成するために以下のように構成されている。
【0014】
(1)本発明に係わる半導体装置の製造方法は、シリコン基板上に、層間絶縁膜を形成する工程と、MISFETのソース及びドレインの形成予定領域間の前記層間絶縁膜を選択的に除去して、ゲート溝を形成する工程と、前記ゲート溝の側壁に側壁絶縁膜を形成する工程と、前記ゲート溝の底面に前記シリコン基板を露出させ、露出するシリコン基板の表面にゲート絶縁膜を形成する工程と、前記溝内にゲート電極を埋め込み形成する工程と、前記MISFETのソース及びドレインの形成予定領域の前記層間絶縁膜を選択的にエッチングして、底部に前記シリコン基板の表面が露出するソース/ドレイン溝を形成する工程と、前記ソース/ドレイン溝内に金属膜を埋め込み形成し、ソース電極及びドレイン電極を形成する工程と、前記シリコン基板と前記ソース電極及びドレイン電極とを反応させて、該基板とショットキー接合するシリサイド膜を形成して、ソース及びドレインを形成する工程とを含む。
【0016】
上記の半導体装置の製造方法において、前記ゲート電極及びゲート絶縁膜は、金属材料及び高誘電体で形成され、前記シリコン基板と前記金属膜との反応は、450℃以下の温度で行われることが好ましい。
【0017】
(2)本発明に係わる半導体装置の製造方法は、シリコン基板上に、層間絶縁膜を形成する工程と、MISFETのソース及びドレインの形成予定領域の前記層間絶縁膜に、底部に前記シリコン基板の表面が露出するソース/ドレイン溝を形成する工程と、前記ソース/ドレイン溝内に金属膜を埋め込み形成し、ソース電極およびドレイン電極を形成する工程と、前記シリコン基板とソース電極およびドレイン電極とを反応させて、該基板とショットキー接合するシリサイド膜を形成して、ソース及びドレインを形成する工程と、前記ソース電極およびドレイン電極の対向する側面が露出するゲート溝を形成する工程と、前記ゲート溝の側壁に側壁絶縁膜を形成する工程と、前記ゲート溝の底面に前記シリコン基板を露出させ、露出するシリコン基板の表面にゲート絶縁膜を形成する工程と、前記ゲート溝内にゲート電極を埋め込み形成する工程とを含む。
【0018】
[作用]
本発明は、上記構成によって以下の作用・効果を有する。
【0019】
以上のようにすると、ダミーゲートの形成および除去が不要になるため、従来のダマシンゲートプロセスよりも工程数を大幅に削減できる。またソースおよびドレイン活性化のための高温熱工程(通常1000℃程度)を行う必要がないので製造が容易になる。さらに、pn接合でなくショットキー接合によるソースおよびドレインを用いているため、ゲート絶縁膜に高誘電体膜を用いていても短チャネル効果を防止できる。短チャネル効果が抑えられれば、チャネル濃度を薄くできるのでS−factor改善、しきい値電圧低減の効果も得られる。
【0020】
また、ソース/ドレイン材料として、NMOSとPMOSでそれぞれ異なるメタル材料を用いたため、以下のようなメリットが生じる。すなわち、ショットキー接触(接合)をソースおよびドレインに用いたトランジスタでは、電流駆動能力の低下を避けるために、Nチャネルに対しては小さな、またPチャネルに対しては大きな仕事関数を持つショットキー接触材料が必要であるが、NMOSに対しては仕事関数の小さな材料、PMOSに対しては仕事関数の大きな材料を用いることができるので、NMOS,PMOS両方の駆動電流を大きくすることが可能になる。また、ショットキー接触材料を選ぶことにより、NMOS,PMOSそれぞれのしきい値電圧を別々に制御できる。
【0021】
また、SOI−MOSFETのソース/ドレインにショットキー接合を適用することで、接触の特徴を活かしてSOI素子の欠点を補うことができ、また、SOIを利用することでショットキー接触のもつ欠点を取り除くことが出来る。すなわち、ソース/ドレインの双方におけるショットキー障壁の効果で、SOI−MOSFETの基板浮遊問題を抑制でき、また、SOI構造の採用により、ドレイン接触でのリーク電流を抑制できるため、トランジスタのオフ電流(消費電力)を小さくできる。
【0022】
【発明の実施の形態】
本発明の実施の形態を以下に図面を参照して説明する。
【0023】
[第1実施形態]
図1は、本発明の第1の実施形態に係わるNMOSFETの構成を示す断面図である。なお、図1は、ゲート長方向の断面を示している。
【0024】
図1に示すように、半導体シリコン基板101の素子領域の周囲に素子分離絶縁膜102が形成されている。シリコン基板101上に、チャネル領域の周囲を覆うようにシリコン窒化膜からなる側壁絶縁膜107が形成されている。
【0025】
側壁が側壁絶縁膜からなる溝の内部に、Ta2O5膜108,バリアメタルTiN膜109,Al膜110が埋め込み形成されている。Ta2O5膜108がゲート絶縁膜であり、バリアメタルTiN膜109及びAl膜110がメタルゲート電極111である。
【0026】
素子分離絶縁膜102上に層間絶縁膜104が形成されている。側壁が側壁絶縁膜107及び層間絶縁膜からなる溝の底部のシリコン基板101上にシリサイドからなるショットキー接合・ソース/ドレイン115が形成されている。ショットキー接合・ソース/ドレイン115上にソース/ドレイン電極114が形成されている。
【0027】
このNMOSFETは、シリコン基板との接合がpn接合でなくショットキー接合によるソースおよびドレインを用いたトランジスタ(Schottky barrier tunne1 transistor(SBTT))である。SBTTは、ソース及びドレイン領域の接合部分で、空乏層幅が小さい。また、ショットキー接合の障壁高さは、鏡像効果を除けば電界によって変化することはないため、DIBL(Drain-Induced Barrier Lowering)を避けることが出来る。したがって、このトランジスタ構造ではショートチャネル効果を抑制することができる。短チャネル効果が抑制されることにより、チャネル濃度を薄くできるのでS−factor改善、しきい値電圧低減の効果も得られる。
【0028】
次に、このNMOSFETの製造方法について図2〜図5を参照して説明する。図2〜図5は、図1に示したNMOSFETの製造工程を示す工程断面図である。
工程順に説明を行うと、まず、図2(a)に示すように、半導体シリコン基板101を用意する。次いで、図2(b)に示すように、STI(Shallow-trench-iso1ation)による素子分離を行うため、素子分離領域に深さ200nm程度の溝を形成し、溝にTEOS−SiO2 膜を埋め込み形成して素子分離絶縁膜102を形成する。
【0029】
次いで、図2(c)に示すように、シリコン基板101表面に5nm程度の熱酸化によりSiO2 膜103を形成した後、150nm程度のTEOS−SiO2 膜をLPCVD法により堆積して層間絶縁膜104を形成する。この層間絶縁膜は、後の工程でCMPのストッパーとして使用される。
【0030】
次いで、図2(d)に示すように、EB直描やリソグラフィーによりMISFETのチャネル形成領域に開口を有するレジスト膜105を形成した後、レジスト膜105をマスクにソース及びドレインの形成予定領域間の層間絶縁膜104をエッチングして、ゲート溝106を形成する。
【0031】
次いで、図3(e)に示すように、レジスト膜105を除去した後、シリコン窒化膜の堆積,RIE法によるエッチングを行って、ゲート溝106の内側に側壁絶縁膜107を形成する。ここでチャネル領域に、トランジスタのしきい値電圧調整用のイオン注入を行う(図示せず)。このゲート溝106がゲート形成予定領域となる。
【0032】
本発明のトランジスタではソース/ドレインをショットキー接合にて低温で(例えば450℃以下で)形成する予定なので、ゲート形成後450℃以上の高温熱処理工程が存在しない。したがって、高誘電率膜や強誘電体膜(Ta2O5膜、TiO2 膜、Si3N4膜、(Ba,Sr)TiO3 ,HfO2 ,ZrO2 ,La2O3,Gd2O3,Y2O3,CaF2 ,CaSnF2 ,CeO2 ,Yttria Stabi1ized Zirconia,Al2O3,ZrSiO4 ,HfSiO4 ,Gd2SiO5,2La2O3・3SiO2 、など)をゲート絶縁膜に使用することができ、またゲート電極にはメタル材料(TiN,WN,Al,W,Ru等)を使用することができる。
【0033】
もしゲート形成後に800〜1000℃程度の高温工程が存在すると、メタルゲート原子がゲート絶縁膜中に拡散してゲート耐圧が劣化したり、High−k膜とシリコンの間の界面に誘電率の低い薄膜層が形成され、実効的なゲート絶縁膜厚が著しく増大してしまう。
【0034】
ここではゲート絶縁膜材料としてTa2O5膜、メタルゲート材料としてバリアメタルTiNとAlの積層構造を用いた場合を説明する。
詳しく製造方法を述べると、図3(f)に示すように、例えばゲート溝106底部にシリコン基板101を露出させ、1nm以下のシリコン窒化膜(NO窒化オキシナイトライド膜)を形成する。その上にTa2O5膜(ゲート絶縁膜)108を約4nm,CVD法で成膜する。このときゲート絶縁膜の酸化膜換算膜厚は2nm以下となる。その後、バリアメタルとして例えば膜厚5nm程度のバリアメタルTiN膜109をCVD法にて形成し、例えば膜厚300nm程度のAl膜110をスパッタ法で堆積する。
【0035】
次いで、図3(g)に示すように、Al膜110,バリアメタルTiN膜109及びTa2O5膜108に対して順次CMPを行うことによって、ゲート溝106内にメタルゲート電極111を埋め込み形成する。
【0036】
次いで、図4(h)に示すように、リソグラフィー等により、素子領域に開口を有するレジスト膜112を形成した後、レジスト膜112をマスクに層間絶縁膜104及びSiO2 膜103をエッチングし、ソース/ドレイン溝113を形成する。
【0037】
層間絶縁膜104をエッチングする際、層間絶縁膜104を構成するシリコン窒化膜,Ta2O5膜108及びメタルゲート電極111がエッチングされず、選択的にSiO2 膜がエッチングされる条件で行うことにより、自己整合的にメタルゲート電極111を挟むようなソース/ドレイン溝113を形成することができる。
【0038】
次いで、図4(i)に示すように、レジスト膜112を除去した後、ソース/ドレイン溝113内が埋め込まれるように、Er膜114を堆積する。次いで、図4(j)に示すように、CMPでEr膜114の表面を平坦化して、層間絶縁膜104の表面を露出させると共に、ソース/ドレイン溝113内にソース/ドレイン電極114を形成する。
【0039】
次いで、図5(k)に示すように、450℃以下の温度でアニールを行って、シリコン基板101とソース及びドレイン電極114とを反応させて、ErSi2 等のシリサイドからなるショットキー接合・ソース/ドレイン115を形成する。
【0040】
ソースおよびドレイン形成後は通常のLSI製造プロセスと同様である。すなわち、図5(l)に示すように、TEOSーSiO2 膜からなる層間絶縁膜116をCVD法で形成し、ソース/ドレイン電極114及びメタルゲート電極111上にコンタクトホールを開孔し、Al配線(上層金属配線)117をデュアルダマシン法にて形成する。
【0041】
以上のようにすると、ダミーゲートの形成および除去が不要になるため、従来のダマシンゲートプロセスよりも工程数を大幅に削減できる。またソースおよびドレイン活性化のための高温熱工程(通常1000℃程度)を行う必要がないので製造が容易になる。
【0042】
さらに、pn接合でなくショットキー接合によるソース及びドレインを用いているため、high−kゲート絶縁膜を用いていても短チャネル効果を防止できる。短チャネル効果が抑えられれば、チャネル濃度を薄くできるのでS−factor改善、しきい値電圧低減の効果も得られる。
【0043】
しかも、以下のようなダマシンゲートプロセスのメリットもそのまま存続する。すなわち、[1]ゲートをRIEでなくCMPで加工するため、ゲート絶縁膜にプラズマダメージが導入されない。[2]薄いゲート絶縁膜上でメタルゲートをRIE加工するのは大変困難であるが本発明のプロセスではその必要がない。[3]ゲート加工後、表面が完全平坦化されるため、以降の製造工程が容易になる。[4]ソースおよびドレインとゲートの位置はセルフアラインで形成される。
【0044】
[第2の実施形態]
図6は、本発明の第2の実施形態に係わるCMOSFETの構成を示す断面図である。なお、図6は、ゲート長方向の断面を示している。図1と同一な部分には同一符号を付し、その説明を省略する。
【0045】
本実施形態では、NMOSとPMOSでショットキー接合・ソース/ドレインを構成する形成材料が異なる。すなわち、NMOSFET形成領域では、ソース/ドレイン電極114にErを用い、ショットキー接合・ソース/ドレイン115にErSi2 を用いている。PMOSFET形成領域では、ソース/ドレイン電極201にPtを用い、ショットキー接合・ソース/ドレイン202にPtSiを用いている。
【0046】
本実施形態ではソース/ドレイン材料として、NMOSとPMOSでそれぞれ異なるメタル材料を用いたため、以下のようなメリットが生じる。すなわち、ショットキー接触(接合)をソース及びドレインに用いたトランジスタでは、電流駆動能力の低下を避けるために、Nチャネルに対しては小さな、またPチャネルに対しては大きな仕事関数を持つショットキー接触材料が必要である。
【0047】
本実施形態では、NMOSFETに対しては仕事関数の小さなエルビウムシリサイド(ErSi2 )、PMOSFETに対しては仕事関数の大きなPtSiを用いることができるので、NMOSFET,PMOSFET両方の駆動電流を大きくすることが可能になる。また、ショットキー接触材料を選ぶことにより、NMOSFET,PMOSFETそれぞれのしきい値電圧を別々に制御できる。
【0048】
次に、図6に示したCMOSFETの製造方法を説明する。図7〜図9は、図6に示したCMOSFETの製造工程を示す工程断面図である。
【0049】
図7(a)に示す構造は、第1の実施形態において図2(a)〜図3(e)を用いて説明した工程と同様な工程を経て形成されるで説明を省略する。
【0050】
次いで、図7(b)に示すように、PMOSチャネル形成領域の表面に選択的にレジスト膜211を形成した後、NMOSチャネル形成領域に露出するシリコン基板101の表面にトランジスタしきい値電圧調整用のイオンを注入する。次いで、図7(c)に示すように、PMOSチャネル形成領域表面のレジスト膜211を除去した後、NMOSチャネル形成領域の表面にレジスト膜212を形成して、PMOSチャネル形成領域に露出するシリコン基板101表面にトランジスタしきい値電圧調整用のイオンを注入する。
【0051】
本発明のトランジスタではソース/ドレインをショットキー接合にて低温で(例えば450℃以下で)形成する予定なので、ゲート形成後450℃以上の高温熱処理工程が存在しない。したがって、高誘電率膜や強誘電体膜(Ta2O5膜、TiO2 膜、Si3N4膜、(Ba,Sr)TiO3 ,HfO2 ,ZrO2 ,La2O3,Gd2O3,Y2O3,CaF2 ,CaSnF2 ,CeO2 ,Yttria Stabi1ized Zirconia,Al2O3,ZrSiO4 ,HfSiO4 ,Gd2SiO5,2La2O3・3SiO2 、など)をゲート絶縁膜に使用することができ、またゲート電極にはメタル材料(TiN,WN,Al,W,Ru等)を使用することができる。
【0052】
次いで、図7(d)に示すように、レジスト膜を除去した後、第1の実施形態と同様に、ゲート絶縁膜材料としてTa2O5膜108、バリアメタルTiN109とAl膜110とが積層されたメタルゲート電極111を形成する。
【0053】
次いで、図8(e)に示すように、NMOSチャネル形成領域の素子領域に開口部を有するレジスト膜213を形成した後、レジスト膜213をマスクに層間絶縁膜104を選択的にエッチングし、NMOS側ソース/ドレイン溝214を形成する。次いで、図7(f)に示すように、NMOS側ソース/ドレイン溝214内を埋め込むように、全面にEr膜114を堆積する。
【0054】
次いで、図7(g)に示すように、Er膜114に対して化学的機械研磨を行って、層間絶縁膜104の表面を露出させて、ソース/ドレイン電極114を形成する。そして、例えば450℃以下の低温でシリサイド反応を起こさせて、ソース/ドレイン電極114とシリコン基板101との界面に、NMOS側ショットキー接合・ソース/ドレイン115を形成する。
【0055】
次いで、図9(h)に示すように、PMOSチャネル形成領域の素子領域に開口部を有するレジスト膜215を形成した後、レジスト膜215をマスクに層間絶縁膜104を選択的にエッチングし、PMOS側ソース/ドレイン溝216を形成する。次いで、図9(i)に示すように、PMOS側ソース/ドレイン溝216内を埋め込むように、全面にPt膜201を堆積する。
【0056】
次いで、図9(j)に示すように、Pt膜201に対して化学的機械研磨を行って、層間絶縁膜の表面を露出させて、PMOS側ソース/ドレイン溝216内にソース/ドレイン電極201を形成する。そして、例えば450℃以下の低温でシリサイド反応を起こさせて、PMOS側ソース/ドレイン電極201とシリコン基板101との界面に、PMOS側ショットキー接合・ソース/ドレイン202を形成する。
【0057】
ショットキー接合・ソース及びドレインの形成後は通常のLSI製造プロセスと同様である。すなわち、層間絶縁膜TEOSをCVDで堆積し、ソース/ドレイン電極114,201およびメタルゲート電極111上にコンタクトホールを開孔し、上層金属配線(例えばAl配線)117をデュアルダマシン法にて形成する。これらの断面図は第1の実施形態と同様であるから省略する。
【0058】
以上のようにすると、ダミーゲートの形成および除去が不要になるため、従来のダマシンゲートプロセスよりも工程数を大幅に削減できる。またソースおよびドレイン活性化のための高温熱工程(通常1000℃程度)を行う必要がないので製造が容易になる。
【0059】
さらに、pn接合でなくショットキー接合によるソースおよびドレインを用いているため、high−kゲート絶縁膜を用いていても短チャネル効果を防止できる。短チャネル効果が抑えられれば、チャネル濃度を薄くできるのでS−factor改善、しきい値電圧低減の効果も得られる。
【0060】
しかも、本実施形態ではソース/ドレイン材料として、NMOSとPMOSでそれぞれ異なるメタル材料を用いたため、以下のようなメリットが生じる。すなわち、ショットキー接触(接合)をソースおよびドレインに用いたトランジスタでは、電流駆動能力の低下を避けるために、Nチャネルに対しては小さな、またPチャネルに対しては大きな仕事関数を持つショットキー接触材料が必要である。
【0061】
本実施形態では、NMOSFETに対しては仕事関数の小さなエルビウムシリサイド(ErSi2 )、PMOSFETに対しては仕事関数の大きなPtSiを用いることができるので、NMOSFET,PMOSFET両方の駆動電流を大きくすることが可能になる。また、ショットキー接触材料を選ぶことにより、NMOSFET,PMOSFETそれぞれのしきい値電圧を別々に制御できる。
【0062】
なお、本実施形態においては、NMISソース/ドレインとPMISソース/ドレインと製造の順番を逆にしてもよい。
【0063】
[第3の実施形態]
図10は、本発明の第3の実施形態に係わるNMOSFETの構成を示す断面図である。なお、図10は、ゲート長方向の断面を示している。図10において、図1と同一な部分には同一符号を付し、その説明を省略する。
本実施形態の特徴は、支持シリコン基板301,埋め込み酸化膜302,及びシリコン層303からなるSOI基板300を用いている点である。その他の構成は第1の実施形態と同様であるから、製造方法の説明は省略する。
本実施形態によれば、第1の実施形態と同様の効果(メリット)が得られると共に、それ以外にも以下のようなメリットが得られる。すなわち、SOI−MOSFETのソース/ドレインにショットキー接合を適用することで、接触の特徴を活かしてSOI基板を用いた半導体素子の欠点を補うことができると共に、SOI基板を利用することでショットキー接触のもつ欠点を取り除くことが出来るのである。
【0064】
詳しく述べると、
[1]ソース/ドレインの双方におけるショットキー障壁の効果で、SOI−MOSFETの基板浮遊問題を抑制できる、
[2]SOI構造の採用により、ドレイン接触でのリーク電流を抑制できるため、トランジスタのオフ電流(消費電力)を小さくできる。
【0065】
[第4の実施形態]
図11は、本発明の第4の実施形態に係わるNMOSFETの構成を示す断面図である。なお、図11は、ゲート長方向の断面を示している。
本実施形態の特徴は、ショットキー接合・ソース/ドレイン115が側壁絶縁膜107の下まで伸びて形成されていることにある。
【0066】
本実施形態によれば、第1の実施形態と同様の効果(メリット)が得られる。それ以外にも以下のようなメリットが得られる。すなわち、ゲート電極とソース/ドレインとの距離を短くすることにより、トランジスタの寄生抵抗を低減し、高い駆動能力を実現できる。
【0067】
次に、図11に示すNMOSFETの製造工程を説明する。図12(a)に示す構造は、第1の実施形態において図2(a)〜図4(h)を用いて説明した工程を経て形成されるので、説明を省略する。その後の工程を順に説明すると、図12(b)に示すように、ソース/ドレイン溝113の底部に露出するシリコン基板を30nm程度CDEでエッチングすることにより、ゲート側壁の下にアンダーカット401を形成する。
【0068】
次いで、図12(c)示すように、アンダーカット401が出来たソース/ドレイン溝113内を埋め込むようにEr膜を形成する。次いで、図12(d)に示すように、CMPでEr膜114の表面を平坦化して、層間絶縁膜104の表面を露出させると共に、ソース/ドレイン溝113内にソース/ドレイン電極114を形成する。そして、450℃以下の温度でアニールを行って、シリコン基板101とソース及びドレイン電極114とを反応させて、ErSi2 からなるショットキー接合・ソース/ドレイン115を形成する。
【0069】
本実施形態によれば、第1の実施形態と同様の効果(メリット)が得られる。それ以外にも以下のようなメリットが得られる。すなわち、ゲートとソース/ドレインの問のオフセット量(またはオーバーラップ量)を制御することが出来るようになり、トランジスタの寄生抵抗を低減し、高い駆動能力を実現できる。なお、ソース/ドレインのシリサイド化反応時にシリコン基板が侵食される場合、上記のようなCDEを行わなくても、ゲート側壁下にソース/ドレインメタル材料が回り込むことがある。
【0070】
[第5の実施形態]
図13(a)〜図14(h)は、本発明の第5の実施形態に係わるNMOSFETの製造工程を示す工程断面図である。なお、図13(a)〜図14(h)ではゲート長方向の断面を示している。
工程順に説明を行うと、まず、図13(a)に示すように、半導体シリコン基板101を用意する。次いで、図13(b)に示すように、STI(Shallow-trench-iso1ation)による素子分離を行うため、素子分離領域に深さ200nm程度の溝を形成し、溝にTEOS−SiO2 膜を埋め込み形成して素子分離絶縁膜102を形成する。そして、シリコン基板101の表面に熱酸化により5nm程度のSiO2 膜103を形成した後、全面に10nm程度のシリコン窒化膜501を形成する。次いで、図13(c)に示すように、シリコン窒化膜501上に、150nm程度の膜厚のTEOS−SiO2 膜をLPCVD法を用いて堆積し、層間絶縁膜104を形成する。
【0071】
次いで、図13(d)に示すように、EB直描やリソグラフィーによりチャネル形成領域に開口を有するレジスト膜105を形成し、ゲート形成予定領域の層間絶縁膜104をRIE法でエッチングし、ゲート溝106を形成する。このとき、シリコン窒化膜501が、RIEストッパーの役目を果たし、シリコン基板101がエッチングされるのを防ぐ。
【0072】
次いで、図14(e)に示すように、レジスト膜105を除去した後、シリコン窒化膜の堆積、RIE法によるエッチングを行うことで、ゲート溝106内側に例えばシリコン窒化膜からなる側壁絶縁膜107を形成する。側壁絶縁膜107形成のためのRIEの時、溝底部に露出するシリコン窒化膜501も同時に除去されるが、もし残留しているようであれば、ホットリン酸かRIEで除去する。
【0073】
次いで、図14(f)に示すように、チャネル領域にトランジスタのしきい値電圧調整用のイオン注入を行ない(図示せず)、HF処理でSiO2 膜103を除去する。
【0074】
この後は他の実施形態と同様である。すなわち、図14(g)に示すように、ダマシンプロセスを用いて、ゲート絶縁膜材料のTa2O5膜108、バリアメタルTiN膜109とAl膜110との積層構造からなるメタルゲート電極111をゲート溝106に埋め込み形成する。
【0075】
そして、図14(h)に示すように、ソース/ドレイン溝を形成した後、ソース/ドレイン溝内にEr膜からなるソース/ドレイン電極114を埋め込み形成した後、450℃以下の温度でアニールすることによって、ソース/ドレイン電極114とシリコン基板101との界面に、ショットキー接合・ソース/ドレイン115を形成する。
【0076】
本実施形態によれば、第1の実施形態と同様の効果(メリット)が得られる。それ以外にも以下のようなメリットが得られる。すなわち、層間絶縁膜104と5nm程度のSiO2 膜103との間に形成された10nm程度のシリコン窒化膜501により、ゲート形成予定領域の層間絶縁膜104をRIE法でエッチングし、ゲート溝106を形成するとき、シリコン窒化膜501が、RIEストッパーの役目を果たし、シリコン基板101がエッチングされたり、RIEダメージを受けたりするのを防ぐことができる。従って、MOS界面の特性が著しく改善する。
【0077】
[第6の実施形態]
図15(a)〜(d)は、本発明の第6の実施形態に係わるNMOSFETの製造工程を示す工程断面図である。なお、図15(a)〜(d)ではゲート長方向の断面を示している。
本実施形態では、メタルゲートをダマシン法ではなく、RIEプロセスで形成している。工程順に説明を行うと、まず、図15(a)に示すように、半導体シリコン基板101にSTI技術を用いた素子分離絶縁膜102を形成し、チャネル領域にトランジスタのしきい値電圧調整用のイオン注入を行う。そして、シリコン基板表面にゲート絶縁膜材料としてTa2O5膜108を形成する。
【0078】
次いで、図15(b)に示すように、メタルゲート材料としてバリアメタルTiN膜109とAl膜110とを順次堆積した後、EB直描やリソグラフィーとRIE法によりによりゲートパターンにパターニングし、メタルゲート電極111を形成する。次に、メタルゲート電極111の側面に例えばシリコン窒化膜による側壁絶縁膜107を形成する。次いで、図15(c)に示すように、200nm程度のTEOS−SiO2 膜を堆積した後、CMPで平坦化して、層間絶縁膜104を形成する。
【0079】
この後は他の実施形態と同様である。図15(d)に示すように、ソース/ドレイン領域の層間絶縁膜104をエッチング除去した後、ソース/ドレイン電極104及びショットキー接合・ソース/ドレイン115を形成する。
【0080】
本実施形態によれば、ダミーゲートの形成および除去が不要になるため、ダマシンゲートプロセスよりも工程数を大幅に削減できる。またソースおよびドレイン活性化のための高温熱工程(通常1000℃程度)を行う必要がないので製造が容易になる。さらに、pn接合でなくショットキー接合によるソースおよびドレインを用いているため、high−kゲート絶縁膜を用いていても短チャネル効果を防止できる。短チャネル効果が抑えられれば、チャネル濃度を薄くできるのでS−factor改善、しきい値電圧低減の効果も得られる。当然、ソースおよびドレインとゲートの位置はセルフアラインで形成される。
【0081】
[第7の実施形態]
第1の実施形態では、図1に示すNMOSFETの製造方法を図2〜5を用いて説明した。本発明では、図2〜5を用いて説明した製造方法と異なるNMISFETの製造方法を説明する。
【0082】
図16,17は、本発明の第7の実施形態に係わるNMISFETの製造工程を示す工程断面図である。
先ず、図16(a)に示す構造は、第1の実施形態において図2(a)〜図2(c)を用いて説明した工程を経て形成されるので、説明を省略する。
次いで、図16(b)に示すように、MISFETのソース及びドレインが形成される領域に開口部を有するレジスト膜を形成した後、レジスト膜をマスクに層間絶縁膜104及びSiO2 膜103を選択的にエッチングし、ソース/ドレイン溝113を形成する。
【0083】
次いで、図16(c)に示すように、ダマシン法を用いて、ソース/ドレイン溝内にシリコンと反応してシリサイドを形成するメタル材114を埋め込み形成する。次いで、図16(d)に示すように、メタル材114とシリコン基板101とを反応させてシリサイドからなるショットキー接合・ソース/ドレイン115を形成する。
【0084】
なお、図16(b)に示した工程において、ソース/ドレイン溝113の底部に露出するシリコン基板を30nm程度CDEでエッチングすることにより、ゲート側壁の下にアンダーカットを形成し、アンダーカットを埋め込むようにEr膜を埋め込み形成しても良い。すると、ショットキー接合・ソース/ドレイン115が後で経営する側壁絶縁膜107の下まで伸びて形成されるので、ゲート電極とソース/ドレインとの距離を短くすることにより、トランジスタの寄生抵抗を低減し、高い駆動能力を実現できる。
【0085】
次いで、図17(e)に示すように、ショットキー接合・ソース/ドレイン115上のメタル材114及びソース/ドレイン115間の層間絶縁膜104上に開口を有するレジスト膜701を形成する。そして、レジスト膜701をマスクに層間絶縁膜104を選択的にエッチングし、ソース/ドレイン電極の対向する側面が露出するゲート溝106を形成する。
【0086】
次いで、図17(f)に示すように、レジスト膜701を除去した後、シリコン窒化膜の堆積,RIE法によるエッチングを行って、ゲート溝106の内側に側壁絶縁膜107を形成する。ここで必要で有ればチャネル領域のシリコン基板101に、SiO2 膜103を介して、トランジスタのしきい値電圧調整用のイオン注入を行う(図示せず)。
【0087】
次いで、図17(g)に示すように、第1の実施形態と同様に、ゲート絶縁膜材料としてTa2O5膜108、バリアメタルTiN膜109とAl膜110とが積層されたメタルゲート電極111を形成する。
【0088】
本実施形態では、ソース/ドレイン溝内に埋め込むメタル材は、第1の実施形態と異なり、シリコンと反応してシリサイドを形成するものであれば、任意の金属を用いることができる。第1の実施形態では、ゲート絶縁膜及びメタルゲート電極を形成した後に、ソース及びドレインを形成するために、450℃以下でシリサイドを形成するメタルをソース/ドレインに埋め込み形成しなければならなかった。本実施形態の場合、ソース/ドレインの形成後にゲート電極を形成するので、高い温度でシリサイドを形成するメタル材を用いることができる。
【0089】
また、ソース/ドレイン電極114が露出する溝を形成した後、溝の側壁に側壁絶縁膜を形成してゲート溝の形成を行うことによって、ソース/ドレインに対してゲート電極を自己整合的に形成することができる。
【0090】
[第8の実施形態]
第2の実施形態では、図6に示すCMOSFETの製造方法を図7〜9を用いて説明した。本発明では、図7〜9を用いて説明した製造方法と異なるCMISFETの製造方法を説明する。
【0091】
図18〜図20は、本発明の第8の実施形態に係わるCMOSFETの製造工程を示す工程断面図である。
まず、図18(a)に示す断面図は、図2(a)〜図2(b)を用いて説明した工程で形成されるので、その説明を省略する。
【0092】
次いで、図18(b)に示すように、NMOSソース/ドレイン形成領域に開口部を有するレジスト膜801を形成した後、レジスト膜801をマスクに層間絶縁膜104を選択的にエッチングし、NMOS側ソース/ドレイン溝802を形成する。次いで、図18(c)に示すように、NMOS側ソース/ドレイン溝802内を埋め込むように、全面にEr膜114を堆積する。
【0093】
次いで、図18(d)に示すように、Er膜114に対して化学的機械研磨を行って、層間絶縁膜104の表面を露出させて、ソース/ドレイン電極114を形成する。そして、ソース/ドレイン電極114とシリコン基板101との界面に、NMOS側ショットキー接合・ソース/ドレイン115を形成する。
【0094】
次いで、図19(e)に示すように、PMOSソース/ドレイン形成領域に開口部を有するレジスト膜803を形成した後、レジスト膜803をマスクに層間絶縁膜104を選択的にエッチングし、PMOS側ソース/ドレイン溝804を形成する。次いで、図19(f)に示すように、PMOS側ソース/ドレイン溝804内を埋め込むように、全面にPt膜201を堆積する。
【0095】
次いで、図19(g)に示すように、Pt膜201に対して化学的機械研磨を行って、層間絶縁膜の表面を露出させて、PMOS側ソース/ドレイン溝804内にソース/ドレイン電極201を形成する。そして、例えば450℃以下の低温でシリサイド反応を起こさせて、PMOS側ソース/ドレイン電極201とシリコン基板101との界面に、PMOS側ショットキー接合・ソース/ドレイン202を形成する。
【0096】
次いで、図19(h)に示すように、ソース/ドレイン電極114,201の一部、及びソース/ドレイン115,202間の層間絶縁膜104上に開口を有するレジスト膜805を形成する。そして、レジスト膜805をマスクに、PMOS側及びNMOS側のソース/ドレイン電極114,201の対向する側面が露出するゲート溝806a,806bを形成する。次いで、図20(i)に示すように、シリコン窒化膜の堆積,RIE法によるエッチングを行って、ゲート溝106の内側に側壁絶縁膜807を形成する。
【0097】
次いで、図20(j)に示すように、PMOSチャネル形成領域の表面に選択的にレジスト膜808を形成した後、NMOSチャネル形成領域のゲート溝806a底面に露出するシリコン基板101の表面にトランジスタしきい値電圧調整用のイオンを注入する。次いで、図20(k)に示すように、PMOSチャネル形成領域表面のレジスト膜808を除去した後、NMOSチャネル形成領域の表面にレジスト膜800を形成して、PMOSチャネル形成領域のゲート溝806b底面に露出するシリコン基板101表面にトランジスタしきい値電圧調整用のイオンを注入する。
【0098】
次いで、図20(l)に示すように、第1の実施形態と同様に、ゲート絶縁膜材料としてTa2O5膜108、バリアメタルTiN膜109とAl膜110とが積層されたメタルゲート電極111を形成する。
【0099】
(第9の実施形態)
図21は、本発明の第9の実施形態に係わるNMISFETの構成を示す断面図である。図21において、図1と同一な部分には同一符号を付し、その説明を省略する。なお、図21は、ゲート長方向をの断面を示している。
このNMISFETは、図21に示すように、ショットキー接合・ソース/ドレイン115とp型のチャネル領域2111との間に、N型のエクステンション領域2112が形成されている。なお、半導体基板として、Si支持基板2101とBOX酸化膜2102とSi半導体層(チャネル領域2111,エクステンション領域2112)とが積層されたSOI基板を用いている。
【0100】
ショットキー接合・ソース/ドレイン115とp型のチャネル領域2111との間にエクステンション層2112を形成する事により、ショットキー障壁(barrier)の高さを低減して、トランジスタの電流駆動力を向上させることができる。ただし、エクステンション層の不純物濃度には、上限があり、通常3×1019cm-3程度である。この濃度は、ソース・ドレインにErSiやPtSiを用いた場合に、ショットキー接合部でバリスティック(ballistic)伝導が起こる限界点である。また、この構造では、チャネル領域におけるエクステンション領域と反対導電型の不純物濃度が、エクステンション領域の不純物濃度と同程度かそれ以上に濃くなるため、エクステンション領域の不純物濃度が濃すぎると、しきい値電圧Vthが高くなりすぎてしまうためである。従って、望むしきい値電圧Vthの値によっては、上記濃度より低い濃度に抑える必要がありうる。又、エクステンション領域及びチャネル領域の濃度が濃すぎると、両者のpn接合耐圧が低下する問題もあり、この問題がエクステンション領域の上限を決めることもある。
【0101】
次に、図21に示すNMISFETの製造工程を図22(a)〜図25(m)を用いて説明する。
工程順に説明を行なうと、まず、図22(a)に示すように、Si支持基板2101,BOX酸化膜2102,及びSi半導体層2103が積層された半導体SOI基板を用意する。
【0102】
次いで、図22(b)に示すように、STI(Shallow−trench−isolation)技術を用いた素子分離を行なうため、素子分離領域のSi半導体層2103を除去して深さ100nm程度の溝を形成し、この溝内にTEOS膜を埋め込み形成し、素子分離絶縁膜102を形成する。次に、Si半導体層2103の表面に5nm程度の熱酸化によりSiO2 膜103を形成する。そして、Si半導体層2103に後でソースおよびドレインとなるエクステンション領域の形成のためのイオン注入を行って、N型のエクステンション領域2112を形成する。例えば、Asを1×1019cm-3程度の濃度となるようにイオン注入する。
【0103】
次いで、図22(c)に示すように、その上に150nm程度のTEOS膜をLPCVD法により堆積して、層間絶縁膜104を形成する。この層間絶縁膜104は、後にCMPのストッパーとして使用される。
【0104】
次いで、図22(d)に示すように、電子ビームの直描やリソグラフィーによりレジスト膜105を形成し、レジスト膜105をマスクにゲート形成予定領域の層間絶縁膜104をRIE(Reactive−ion−etching)法でエッチングし、ゲート溝106を形成する。
【0105】
次いで、図23(e)に示すように、レジスト膜105を除去した後、ゲート溝106の内側に例えばシリコン窒化膜による側壁絶縁膜107を形成する。
次いで、図23(f)に示すように、ここで先ほど全面に注入したn型のエクステンション領域2112を打ち消すように、逆導電型のイオン(ボロンなど)をイオン注入し、p型イオン注入領域2201を形成する。例えば、チャネル領域がp型半導体になるようにエクステンション領域よりも高濃度(>1×1019cm-3)のイオン注入を行う。このイオン注入で、トランジスタのしきい値電圧調整も同時に行なう。そして、図23(g)に示すように、p型イオン注入領域2201を活性化し、P型のチャネル領域2111を形成する。
【0106】
本実施形態のトランジスタではソース/ドレイン電極をエクステンション領域とショットキー接合するシリサイド電極の形成を低温(例えば450℃以下)で形成する(高濃度不純物を用いたDeep接合は形成しない)予定なので、ゲート形成後450℃以上の高温熱処理工程が存在しない。したがって、高誘電率膜や強誘電体膜(Ta2O5膜、TiO2 膜、Si3N4膜、(Ba,Sr)TiO3 、HfO2 、ZrO2 、La2O3、Gd2O3、Y2O3、CaF2 、CaSn2 、CeO2 、YttriaStabilizedZirconia、Al2O3、ZrSiO4、HfSiO4、Gd2SiO5、2La2O3・3SiO2、など)をゲート絶縁膜に使用することができ、またゲート電極にはメタル材料(TiN、WN、Al、W、Ru、Mo等)を使用することができる。
【0107】
もしゲート形成後に800〜1000℃程度の高温工程が存在すると、メタルゲート原子がゲート絶縁膜中に拡散してゲート耐圧が劣化したり、High−k膜とシリコンの間の界面に誘電率の低い薄膜層が形成されたり、実効的なゲート絶縁膜厚が著しく増大し素子性能が劣化してしまう。
【0108】
本実施形態ではゲート絶縁膜材料としてTa2O5膜、メタルゲート材料としてバリアメタルTiNとWの積層構造を用いた場合を説明する。
詳しく製造方法を述べると、図24(h)に示すように、例えばゲート溝106底部のSiO2 膜103を除去してチャネル領域2111を露出させる。そして、ゲート溝106底部に1nm以下のシリコン窒化膜(NO窒化オキシナイトライド膜)、及びTa2O5膜108を約4nm、CVD成膜する。このときゲート絶縁膜の酸化膜換算膜厚は1.5nm以下となる。その後、バリアメタルとして、例えば膜厚5nm程度のTiN膜109をCVDにて形成し、例えば膜厚300nm程度のW膜110を成膜する。
【0109】
次いで、図24(i)に示すように、TiN膜109とW膜110の積層構造をCMP法により研磨して、ダマシン法によるTEOS膜104上のTiN膜109及びW膜110のパターニングを行って、メタルゲート電極111を形成する。
【0110】
その後、図24(j)に示すように、リソグラフィー等により素子領域に開口を有するレジスト膜2202を形成した後、レジスト膜2202をマスクにソース/ドレイン領域の層間絶縁膜104を選択的にエッチング除去し、ソース/ドレイン溝2203を形成する。
【0111】
次いで、図25(k)に示すように、ソース/ドレイン溝2203内が埋め込まれるように、例えばErからなるソース/ドレイン電極114を堆積する。次いで、図25(l)に示すように、層間絶縁膜104上のソース/ドレイン電極114をCMP法により研磨して、ソース/ドレイン溝2203内にソース/ドレイン電極114を埋め込み形成する。さらに、図25(m)に示すように、低温で(例えば450℃以下で)シリサイド反応を起こさせて、シリサイドメタル(ErSi2 )を形成し、ショットキー接合ソース/ドレイン115を形成する。
【0112】
ソースおよびドレインの形成後は通常のLSI製造プロセスと同様である。すなわち、層間絶縁膜TEOSをCVD法で堆積し、ソース/ドレインおよびゲート電極上にコンタクトホールを開孔し、上層金属配線(例えばCu配線)をデュアルダマシン法にて形成する。
【0113】
以上のようにすると、従来のダマシンゲートで必要であった「ダミーゲートの形成および除去」が不要になるため、工程数を大幅に削減できる。またソースおよびドレインのDeep拡散層活性化のための高温熱工程(通常1000℃程度)を行なう必要がないので製造が容易になる。
【0114】
さらに、以下のようなダマシンゲートプロセスのメリットもそのまま存続する。すなわち、[1]ゲートをRIEでなくCMPで加工するため、ゲート絶縁膜にプラズマダメージが導入されない。[2]薄いゲート絶縁膜上でメタルゲートをRIE加工するのは大変困難であるが本発明のプロセスではその必要がない。[3]ゲート加工後、表面が完全平坦化されるため、以降の製造工程が容易になる。[4]ソースおよびドレインとゲートの位置はセルフアラインで形成される。
【0115】
さらにまた、SOI−MOSFETのソース/ドレインにショットキー接合を適用することで、接触の特徴を活かしてSOI素子の欠点を補うことができ、また、SOIを利用することでショットキー接触のもつ欠点を取り除くことが出来る。詳しく述べると、[1]ソース/ドレインの双方におけるショットキー障壁の効果で、SOI−MOSFETの基板浮遊問題を抑制できる、[2]SOI構造の採用により、ドレイン接触でのリーク電流を抑制できるため、トランジスタのオフ電流(消費電力)を小さくできる。
【0116】
(第10の実施形態)
本実施形態では、NMOSFETとPMOSFETとでショットキー接合・ソース/ドレインを構成する形成材料が異なるCMOSFETの製造方法について説明する。
【0117】
次に、CMOSFETの製造方法を説明する。図26〜図28は、本発明の第10の実施形態に係わるCMOSFETの製造工程を示す工程断面図である。
【0118】
図23(a)〜図23(e)までは、第9の実施形態と同様なので説明を省略する。但し、nMOS、pMOS領域にそれぞれn型とp型のエクステンション領域2112a,2112bを形成しておく。その後の工程を順に説明すると、図26(a)に示すように、ゲート形成予定領域の層間絶縁膜104にゲート溝2601a,2601bを形成し、その内側に例えばシリコン窒化膜による側壁絶縁膜107を形成する。
【0119】
次いで、図26(b)に示すように、PMOSFET形成領域の表面を覆い、NMOSFET形成領域に開口を有するレジスト膜2602を形成した後、エクステンション領域2112aに導入されている不純物を打ち消すように、逆導電型のイオン注入を行い、ゲート溝2601aに底部に露出するエクステンション領域2112aにp型イオン注入領域2201aを形成する。例えば、チャネル領域がp型半導体になるように、n型エクステンション領域2112aよりも高濃度(>1×1019cm-3)のチャネルイオン注入を行なう。このイオン注入で、トランジスタのしきい値電圧調整も同時に行なう。
【0120】
次いで、図26(c)に示すように、レジスト膜2602を除去した後、NMOSFET形成領域の表面を覆い、PMOSFET形成領域に開口を有するレジスト膜2603を形成した後、エクステンション領域2112bに導入されている不純物を打ち消すように、逆導電型のイオン注入を行い、ゲート溝2601bに底部に露出するエクステンション領域2112bにn型イオン注入領域2201bを形成する。例えば、チャネル領域がn型半導体になるように、p型エクステンション領域2112bよりも高濃度(>1×1019cm-3)のチャネルイオン注入を行なう。このイオン注入で、トランジスタのしきい値電圧調整も同時に行なう。
【0121】
次いで、図26(d)に示すように、レジスト膜2603を除去した後、イオン注入領域2201a,bに注入されたイオンの活性化を行う熱処理を行い、P型チャネル領域2111a、N型チャネル領域2111bを形成する。
【0122】
本発明のトランジスタではソース/ドレイン電極をエクステンション領域2112a,2112bとシリサイドの(ショットキー)接合にて低温で(例えば450℃以下で)形成する(高濃度不純物を用いたDeep接合は形成しない)予定なので、ゲート形成後450℃以上の高温熱処理工程が存在しない。したがって、高誘電率膜や強誘電体膜(Ta2O5膜、TiO2 膜、Si3N4膜、(Ba,Sr)TiO3 、HfO2 、ZrO2 、La2O3 、Gd2O3 、Y2O3、CaF2、CaSnF2、CeO2 、YttriaStabilizedZirconia、Al2O3、ZrSiO4、HfSiO4、Gd2SiO5、2La2O3・3SiO2 、など)をゲート絶縁膜に使用することができ、またゲート電極にはメタル材料(TiN、WN、Al、W、Ru、Mo等)を使用することができる。
【0123】
ここでは第9の実施形態と同様に、ゲート絶縁膜材料としてTa2O5膜、メタルゲート材料としてバリアメタルTiNとWの積層構造を用いる。図27(e)に示すように、ゲート溝の内部に、Ta2O5膜108及び、TiN膜とW膜とが積層されたメタルゲート電極111を形成する。
【0124】
その後、図27(f)に示すように、リソグラフィー等によりNMOS側の素子領域に開口を有するレジスト膜2604を形成した後、レジスト膜2202をマスクにNMOSのソース/ドレイン領域の層間絶縁膜104を選択的にエッチング除去してNMOS側ソース及びドレイン溝2605aを形成する。次いで、図27(g)に示すように、NMOS側ソース及びドレイン溝2605a内にメタル材料、例えばEr膜114を堆積する。次いで、図27(h)に示すように、層間絶縁膜104上のEr膜114を除去した後、低温で(例えば450℃以下で)Er膜114とエクステンション領域2112aとのシリサイド反応を起こさせてシリサイドメタル(ErSi2 )を形成し、ショットキー接合ソース/ドレイン115を形成する。
【0125】
その後、図28(i)に示すように、リソグラフィー等により、リソグラフィー等によりPMOS側の素子領域に開口を有するレジスト膜2606を形成した後、レジスト膜2202をマスクにPMOSのソース/ドレイン領域の層間絶縁膜104を選択的にエッチング除去してPMOS側ソース及びドレイン溝2605bを形成する。次いで、図28(j)に示すように、PMOS側ソース及びドレイン溝2605b内にメタル材料、例えばPt膜201を堆積する。次いで、図28(k)に示すように、層間絶縁膜104上のPt膜を除去した後、低温で(例えば450℃以下で)シリサイド反応を起こさせてシリサイドメタル(PtSi)を形成し、ショットキー接合ソース/ドレイン202bを形成する。
【0126】
ソースおよびドレイン形成後は通常のLSI製造プロセスと同様である。すなわち、層間絶縁膜TEOSをCVDで堆積し、ソース/ドレインおよびゲート電極上にコンタクトホールを開孔し、上層金属配線(例えばCu配線)をデュアルダマシン法にて形成する。これらの断面図は第8の実施形態と同様であるから省略する。
【0127】
以上のようにすると、従来のダマシンゲートで必要であった「ダミーゲートの形成および除去」が不要になるため、工程数を大幅に削減できる。またソースおよびドレインのDeep拡散層活性化のための高温熱工程(通常1000℃程度)を行なう必要がないので製造が容易になる。
【0128】
さらに、本実施形態ではソース/ドレイン材料として、NMOSとPMOSでそれぞれ異るメタル材料を用いたため、以下のようなメリットが生じる。すなわち、ショットキー接触(接合)をソースおよびドレインに用いたトランジスタでは、電流駆動能力の低下を避けるために、Nチャネルに対しては小さな、またPチャネルに対しては大きな仕事関数を持つショットキー接触材料が必要である。本実施例では、NMOSに対しては仕事関数の小さなエルビウムシリサイド(ErSi2)、PMOSに対しては仕事関数の大きなPtSiを用いることができるので、NMOS、PMOS両方の駆動電流を大きくすることが可能になる。また、ショットキー接触材料を選ぶことにより、NMOS、PMOSそれぞれのしきい値電圧を別々に制御できる。
【0129】
(第11の実施形態)
図29は、本発明の第11の実施形態に係わるNMOSFETの製造工程を示す工程断面図である。なお、図29では説明するためのゲート長方向の断面を示している。
本実施例の特徴は、SOIでなく、バルクシリコン基板を用いている点である。その他は第9の実施形態と同様であるから、製造方法の詳細な説明は省略する。
【0130】
本実施例によれば、SOI起因のメリットを除けば第9の実施形態と同様の効果(メリット)が得られる。
【0131】
図29(d)では、メタルシリサイドの底面がエクステンション層2101の内部に含まれた構造を示している。このようにすると、接合リークを低減させることができる。
【0132】
(第12の実施形態)
図30〜32は、本発明の第12の実施形態に係わるNMOSFETの製造工程を示す工程断面図である。なお、図30〜32では説明するためのゲート長方向の断面を示している。
本実施形態では、層間膜TEOSの下に10nm程度のシリコン窒化膜と5nm程度のSiO2 膜の積層膜を形成している。
工程順に説明を行なうと、まず、図30(a)に示すように、Si支持基板2101,BOX酸化膜2102,及びSi半導体層2103が積層された半導体SOI基板を用意する。
【0133】
次いで、図30(b)に示すように、STI(Shallow−trench−isolation)技術を用いた素子分離を行なうため、素子分離領域のSi半導体層2103を除去して深さ100nm程度の溝を形成し、この溝内にTEOS膜を埋め込み形成し、素子分離絶縁膜102を形成する。次に、Si半導体層2103の表面に5nm程度の熱酸化によりSiO2 膜103を形成する。そして、Si半導体層2103に後でソースおよびドレインとなるエクステンション領域の形成のためのイオン注入を行って、N型のエクステンション領域2112を形成する。例えば、Asを1×1019cm-3程度の濃度となるようにイオン注入する。
【0134】
次いで、図30(c)に示すように、その上に酸化膜上に10nm程度のシリコン窒化膜3001を堆積した後、150nm程度のTEOS膜104をLPCVD法により堆積する。
【0135】
次いで、図30(d)に示すように、電子ビームの直描やリソグラフィーによりレジスト膜105を形成し、レジスト膜105をマスクにゲート形成予定領域の層間絶縁膜104をRIE(Reactive−ion−etching)法でエッチングし、ゲート溝106を形成する。このとき、シリコン窒化膜3001が、エッチングストッパーの役目を果たし、エクステンション領域2112がエッチングされるのを防ぐ。
【0136】
次いで、図31(e)に示すように、レジスト膜105を除去した後、ゲート溝106の内側に例えばシリコン窒化膜による側壁絶縁膜107を形成する。そして、ここで先ほど全面に注入したn型のエクステンション領域2112を打ち消すように、逆導電型のイオン(ボロンなど)をイオン注入した後、p型イオン注入領域を活性化し、P型のチャネル領域2111を形成する。このイオン注入で、トランジスタのしきい値電圧調整も同時に行なう
次いで、図31(f),(g)に示すように、チャネル領域2111上のSiO2 膜103をHFなどで除去した後、ダマシン法を用いて、ゲート溝106内に、Ta2O5膜108,TiN膜109及びW膜110(メタルゲート電極111)を形成する。
【0137】
次いで、図32(h)に示すように、レジスト膜112をマスクにソース/ドレイン溝113を形成する。そして、図32(i)に示すように、レジスト膜112を除去した後、ダマシン法を用いてソース/ドレイン溝113内にEr膜114を形成する。そして、低温で(例えば450℃以下で)Er膜114とエクステンション領域2112aとのシリサイド反応を起こさせてシリサイドメタル(ErSi2 )を形成し、ショットキー接合ソース/ドレイン115を形成する。 本実施例によれば、第9の実施例と同様の効果(メリット)が得られる。それ以外にも以下のようなメリットが得られる。すなわち、層間膜TEOSの下に10nm程度のシリコン窒化膜と5nm程度のSiO2 膜の積層膜を形成しているため、ゲート形成予定領域のTEOSをRIE(Reactive−ion−etching)法でエッチングしゲート溝を形成するとき、シリコン窒化膜が、RIEストッパーの役目を果たし、シリコン基板がエッチングされたり、RIEダメージを受けたりするのを防ぐことができる。従って、MOS界面の特性が著しく改善する。
【0138】
なお、本発明は、上記実施形態に限定されるものではない。例えば、上記実施形態では、ゲート絶縁膜の材料が高誘電体膜であり、ゲート電極の材料が金属であったが、ゲート絶縁膜の材料が高誘電体膜で、ゲート電極の材料は金属でなくても良い。また、ゲート電極の材料が金属で、ゲート絶縁膜の材料が高誘電体膜でなくても良い。
【0139】
その他、本発明は、その要旨を逸脱しない範囲で、種々変形して実施することが可能である。
【0140】
【発明の効果】
以上説明したように本発明によれば、ダミーゲートを用いずに、ゲートとソース/ドレインとをセルフアラインで形成できるため、大幅な工程数削減効果がある。また、ソース/ドレイン活性化のための高温熱工程をやる必要がなく、製造が容易である。
【0141】
また、ショットキー接合によるメタルソースおよびメタルドレインを用いているため、DIBLがおさえられ、短チャネル効果を防止できる。
【図面の簡単な説明】
【図1】第1の実施形態に係わるNMOSFETの構成を示す断面図。
【図2】図1に示したNMOSFETの製造工程を示す工程断面図。
【図3】図1に示したNMOSFETの製造工程を示す工程断面図。
【図4】図1に示したNMOSFETの製造工程を示す工程断面図。
【図5】図1に示したNMOSFETの製造工程を示す工程断面図。
【図6】第2の実施形態に係わるCMOSFETの構成を示す断面図。
【図7】図6に示したCMOSFETの製造工程を示す工程断面図。
【図8】図6に示したCMOSFETの製造工程を示す工程断面図。
【図9】図6に示したCMOSFETの製造工程を示す工程断面図。
【図10】第3の実施形態に係わるNMOSFETの構成を示す断面図。
【図11】第4の実施形態に係わるNMOSFETの構成を示す断面図。
【図12】図11に示したNMOSFETの製造工程を示す工程断面図。
【図13】第5の実施形態に係わるNMOSFETの製造工程を示す工程断面図。
【図14】第5の実施形態に係わるNMOSFETの製造工程を示す工程断面図。
【図15】第6の実施形態に係わるNMOSFETの製造工程を示す工程断面図。
【図16】第7の実施形態に係わるNMOSFETの製造工程を示す工程断面図。
【図17】第7の実施形態に係わるNMOSFETの製造工程を示す工程断面図。
【図18】第8の実施形態に係わるCMOSFETの製造工程を示す工程断面図。
【図19】第8の実施形態に係わるCMOSFETの製造工程を示す工程断面図。
【図20】第8の実施形態に係わるCMOSFETの製造工程を示す工程断面図。
【図21】第9の実施形態に係わるNMISFETの構成を示す断面図。
【図22】図21に示したNMISFETの製造工程を示す工程断面図。
【図23】図21に示したNMISFETの製造工程を示す工程断面図。
【図24】図21に示したNMISFETの製造工程を示す工程断面図。
【図25】図21に示したNMISFETの製造工程を示す工程断面図。
【図26】第10の実施形態に係わるCMOSFETの製造工程を示す工程断面図。
【図27】第10の実施形態に係わるCMOSFETの製造工程を示す工程断面図。
【図28】第10の実施形態に係わるCMOSFETの製造工程を示す工程断面図。
【図29】第11の実施形態に係わるNMOSFETの製造工程を示す工程断面図。
【図30】第12の実施形態に係わるNMOSFETの製造工程を示す工程断面図。
【図31】第12の実施形態に係わるNMOSFETの製造工程を示す工程断面図。
【図32】第12の実施形態に係わるNMOSFETの製造工程を示す工程断面図。
【符号の説明】
101…シリコン基板
102…素子分離絶縁膜
103…SiO2 膜
104…層間絶縁膜
105…レジスト膜
106…ゲート溝
107…側壁絶縁膜
108…Ta2O5膜
109…バリアメタルTiN膜
110…Al膜
111…メタルゲート電極
112…レジスト膜
113…ソース/ドレイン溝
114…ソース/ドレイン電極
115…ショットキー接合・ソース/ドレイン
116…層間絶縁膜
117…Al配線
Claims (4)
- シリコン基板上に、層間絶縁膜を形成する工程と、
MISFETのソース及びドレインの形成予定領域間の前記層間絶縁膜を選択的に除去して、ゲート溝を形成する工程と、
前記ゲート溝の側壁に側壁絶縁膜を形成する工程と、
前記ゲート溝の底面に前記シリコン基板を露出させ、露出するシリコン基板の表面にゲート絶縁膜を形成する工程と、
前記溝内にゲート電極を埋め込み形成する工程と、
前記MISFETのソース及びドレインの形成予定領域の前記層間絶縁膜を選択的にエッチングして、底部に前記シリコン基板の表面が露出するソース/ドレイン溝を形成する工程と、
前記ソース/ドレイン溝内に金属膜を埋め込み形成し、ソース電極及びドレイン電極を形成する工程と、
前記シリコン基板と前記ソース電極及びドレイン電極とを反応させて、該基板とショットキー接合するシリサイド膜を形成して、ソース及びドレインを形成する工程とを含むことを特徴とする半導体装置の製造方法。 - シリコン基板の表面に、第1導電型の不純物が導入されたエクステンション領域を形成する工程と、
前記シリコン基板上に層間絶縁膜を形成する工程と、
MISFETのソース及びドレインの形成予定領域間の前記層間絶縁膜を選択的に除去して、ゲート溝を形成する工程と、
前記ゲート溝の側壁に側壁絶縁膜を形成する工程と、
前記ゲート溝下部のエクステンション領域に第2導電型の不純物を導入し、チャネル領域を形成する工程と、
前記ゲート溝の底面に前記シリコン基板を露出させ、露出するシリコン基板の表面にゲート絶縁膜を形成する工程と、
前記溝内にゲート電極を埋め込み形成する工程と、
前記MISFETのソース及びドレインの形成予定領域の前記層間絶縁膜を選択的にエッチングして、底部に前記シリコン基板の表面が露出するソース/ドレイン溝を形成する工程と、
前記ソース/ドレイン溝内に金属膜を埋め込み形成し、ソース電極及びドレイン電極を形成する工程と、
前記シリコン基板と前記ソース電極及びドレイン電極とを反応させて、該基板とショットキー接合するシリサイド膜を形成して、ソース及びドレインを形成する工程とを含むことを特徴とする半導体装置の製造方法。 - 前記ゲート電極及びゲート絶縁膜は、金属材料及び高誘電体で形成され、
前記シリコン基板と前記金属膜との反応は、450℃以下の温度で行われることを特徴とする請求項1又は2に記載の半導体装置の製造方法。 - シリコン基板上に、層間絶縁膜を形成する工程と、
MISFETのソース及びドレインの形成予定領域の前記層間絶縁膜に、底部に前記シリコン基板の表面が露出するソース/ドレイン溝を形成する工程と、
前記ソース/ドレイン溝内に金属膜を埋め込み形成し、ソース電極およびドレイン電極を形成する工程と、
前記シリコン基板とソース電極およびドレイン電極とを反応させて、該基板とショットキー接合するシリサイド膜を形成して、ソース及びドレインを形成する工程と、
前記ソース電極およびドレイン電極の対向する側面が露出するゲート溝を形成する工程と、
前記ゲート溝の側壁に側壁絶縁膜を形成する工程と、
前記ゲート溝の底面に前記シリコン基板を露出させ、露出するシリコン基板の表面にゲート絶縁膜を形成する工程と、
前記ゲート溝内にゲート電極を埋め込み形成する工程とを含むことを特徴とする半導体装置の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001174567A JP3833903B2 (ja) | 2000-07-11 | 2001-06-08 | 半導体装置の製造方法 |
TW090115681A TW497131B (en) | 2000-07-11 | 2001-06-28 | Semiconductor device and method for manufacturing the same |
KR10-2001-0041173A KR100535283B1 (ko) | 2000-07-11 | 2001-07-10 | 반도체 장치 제조 방법 |
CNB01122374XA CN1246909C (zh) | 2000-07-11 | 2001-07-11 | 半导体器件及其制造方法 |
US09/901,721 US20020011613A1 (en) | 2000-07-11 | 2001-07-11 | Semiconductor device and method for manufacturing the same |
US10/205,203 US6887747B2 (en) | 2000-07-11 | 2002-07-26 | Method of forming a MISFET having a schottky junctioned silicide |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000210473 | 2000-07-11 | ||
JP2000-210473 | 2000-07-11 | ||
JP2001174567A JP3833903B2 (ja) | 2000-07-11 | 2001-06-08 | 半導体装置の製造方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006175509A Division JP4592649B2 (ja) | 2000-07-11 | 2006-06-26 | 半導体装置の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002094058A JP2002094058A (ja) | 2002-03-29 |
JP3833903B2 true JP3833903B2 (ja) | 2006-10-18 |
Family
ID=26595838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001174567A Expired - Fee Related JP3833903B2 (ja) | 2000-07-11 | 2001-06-08 | 半導体装置の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (2) | US20020011613A1 (ja) |
JP (1) | JP3833903B2 (ja) |
KR (1) | KR100535283B1 (ja) |
CN (1) | CN1246909C (ja) |
TW (1) | TW497131B (ja) |
Families Citing this family (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060079059A1 (en) * | 2001-08-10 | 2006-04-13 | Snyder John P | Transistor having high dielectric constant gate insulating layer and source and drain forming schottky contact with substrate |
US6974737B2 (en) * | 2002-05-16 | 2005-12-13 | Spinnaker Semiconductor, Inc. | Schottky barrier CMOS fabrication method |
US7084423B2 (en) | 2002-08-12 | 2006-08-01 | Acorn Technologies, Inc. | Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions |
US6833556B2 (en) | 2002-08-12 | 2004-12-21 | Acorn Technologies, Inc. | Insulated gate field effect transistor having passivated schottky barriers to the channel |
US6891234B1 (en) * | 2004-01-07 | 2005-05-10 | Acorn Technologies, Inc. | Transistor with workfunction-induced charge layer |
JP4637467B2 (ja) * | 2002-09-02 | 2011-02-23 | 株式会社半導体エネルギー研究所 | 液晶表示装置および液晶表示装置の駆動方法 |
US6818952B2 (en) | 2002-10-01 | 2004-11-16 | International Business Machines Corporation | Damascene gate multi-mesa MOSFET |
US6867084B1 (en) * | 2002-10-03 | 2005-03-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Gate structure and method of forming the gate dielectric with mini-spacer |
JP3803631B2 (ja) | 2002-11-07 | 2006-08-02 | 株式会社東芝 | 半導体装置及びその製造方法 |
JP4574951B2 (ja) * | 2003-02-26 | 2010-11-04 | 株式会社東芝 | 半導体装置及びその製造方法 |
CN1532943B (zh) * | 2003-03-18 | 2011-11-23 | 松下电器产业株式会社 | 碳化硅半导体器件及其制造方法 |
JP2004296491A (ja) | 2003-03-25 | 2004-10-21 | Sanyo Electric Co Ltd | 半導体装置 |
JP2004319587A (ja) * | 2003-04-11 | 2004-11-11 | Sharp Corp | メモリセル、メモリ装置及びメモリセル製造方法 |
WO2004107421A1 (en) * | 2003-06-03 | 2004-12-09 | Koninklijke Philips Electronics N.V. | Formation of junctions and silicides with reduced thermal budget |
JP2005044844A (ja) * | 2003-07-23 | 2005-02-17 | Toshiba Corp | 不揮発性半導体記憶装置及びその製造方法 |
RU2006114833A (ru) * | 2003-10-03 | 2007-11-10 | Спиннэйкер Семикондактор, Инк. (Us) | Способ изготовления полевого транзистора моп-структуры с барьером шотки с использованием процесса изотропного травления |
US7344965B2 (en) * | 2003-12-10 | 2008-03-18 | International Business Machines Corporation | Method of etching dual pre-doped polysilicon gate stacks using carbon-containing gaseous additions |
JP2005209782A (ja) * | 2004-01-21 | 2005-08-04 | Toshiba Corp | 半導体装置 |
JP2005244186A (ja) * | 2004-02-23 | 2005-09-08 | Sharp Corp | 反応性ゲート電極導電性バリア |
JP4546201B2 (ja) * | 2004-03-17 | 2010-09-15 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法 |
JP3910971B2 (ja) | 2004-03-26 | 2007-04-25 | 株式会社東芝 | 電界効果トランジスタ |
US20050250258A1 (en) * | 2004-05-04 | 2005-11-10 | Metz Matthew V | Method for making a semiconductor device having a high-k gate dielectric layer and a metal gate electrode |
CN100452357C (zh) * | 2004-06-23 | 2009-01-14 | 日本电气株式会社 | 半导体装置及其制造方法 |
JP2006054423A (ja) * | 2004-07-13 | 2006-02-23 | Toshiba Corp | 半導体装置及びその製造方法 |
US20060022264A1 (en) * | 2004-07-30 | 2006-02-02 | Leo Mathew | Method of making a double gate semiconductor device with self-aligned gates and structure thereof |
JP4116990B2 (ja) | 2004-09-28 | 2008-07-09 | 富士通株式会社 | 電界効果型トランジスタおよびその製造方法 |
JP4552603B2 (ja) * | 2004-11-08 | 2010-09-29 | エルピーダメモリ株式会社 | 半導体装置の製造方法 |
JP2006140404A (ja) * | 2004-11-15 | 2006-06-01 | Renesas Technology Corp | 半導体装置 |
US20060157748A1 (en) * | 2005-01-20 | 2006-07-20 | Nui Chong | Metal junction diode and process |
US20060163670A1 (en) * | 2005-01-27 | 2006-07-27 | International Business Machines Corporation | Dual silicide process to improve device performance |
JP2006237512A (ja) * | 2005-02-28 | 2006-09-07 | Toshiba Corp | 半導体装置 |
JP2006245417A (ja) * | 2005-03-04 | 2006-09-14 | Toshiba Corp | 半導体装置およびその製造方法 |
US7504306B2 (en) | 2005-04-06 | 2009-03-17 | Fairchild Semiconductor Corporation | Method of forming trench gate field effect transistor with recessed mesas |
US7329937B2 (en) * | 2005-04-27 | 2008-02-12 | International Business Machines Corporation | Asymmetric field effect transistors (FETs) |
JP4626411B2 (ja) * | 2005-06-13 | 2011-02-09 | ソニー株式会社 | 半導体装置および半導体装置の製造方法 |
ATE457525T1 (de) * | 2005-11-28 | 2010-02-15 | Nxp Bv | Verfahren zur herstellung selbstausgerichteter schottky-dioden für halbleiterbauelemente |
KR100698013B1 (ko) * | 2005-12-08 | 2007-03-23 | 한국전자통신연구원 | 쇼트키 장벽 관통 트랜지스터 및 그 제조 방법 |
US7446374B2 (en) | 2006-03-24 | 2008-11-04 | Fairchild Semiconductor Corporation | High density trench FET with integrated Schottky diode and method of manufacture |
US7915123B1 (en) * | 2006-04-20 | 2011-03-29 | Spansion Llc | Dual charge storage node memory device and methods for fabricating such device |
JP4501965B2 (ja) | 2006-10-16 | 2010-07-14 | ソニー株式会社 | 半導体装置の製造方法 |
JP2008171872A (ja) * | 2007-01-09 | 2008-07-24 | Elpida Memory Inc | 半導体装置及びその製造方法 |
JP2008192985A (ja) | 2007-02-07 | 2008-08-21 | Seiko Instruments Inc | 半導体装置、及び半導体装置の製造方法 |
ES2562824T3 (es) * | 2007-05-09 | 2016-03-08 | Irobot Corporation | Robot autónomo de cubrimiento compacto |
US8236648B2 (en) * | 2007-07-27 | 2012-08-07 | Seiko Instruments Inc. | Trench MOS transistor and method of manufacturing the same |
US8878363B2 (en) * | 2009-06-26 | 2014-11-04 | Intel Corporation | Fermi-level unpinning structures for semiconductive devices, processes of forming same, and systems containing same |
US8507996B2 (en) * | 2009-09-22 | 2013-08-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | Block contact plugs for MOS devices |
US8482084B2 (en) * | 2010-03-18 | 2013-07-09 | International Business Machines Corporation | SOI schottky source/drain device structure to control encroachment and delamination of silicide |
DE102010028460B4 (de) * | 2010-04-30 | 2014-01-23 | Globalfoundries Dresden Module One Limited Liability Company & Co. Kg | Verfahren zum Herstellen eines Halbleiterbauelements mit einer reduzierten Defektrate in Kontakten, das Austauschgateelektrodenstrukturen unter Anwendung einer Zwischendeckschicht aufweist |
JP5672819B2 (ja) * | 2010-07-27 | 2015-02-18 | 富士通セミコンダクター株式会社 | 半導体装置の製造方法 |
CN102403230B (zh) * | 2010-09-17 | 2014-05-14 | 中芯国际集成电路制造(上海)有限公司 | 一种半导体器件结构的制作方法 |
KR101718794B1 (ko) | 2010-12-16 | 2017-03-23 | 삼성전자주식회사 | 반도체 소자의 제조 방법 |
US8785322B2 (en) * | 2011-01-31 | 2014-07-22 | International Business Machines Corporation | Devices and methods to optimize materials and properties for replacement metal gate structures |
US8962477B2 (en) * | 2011-08-12 | 2015-02-24 | Taiwan Semiconductor Manufacturing Co., Ltd. | High temperature anneal for stress modulation |
KR101898027B1 (ko) | 2011-11-23 | 2018-09-12 | 아콘 테크놀로지스 인코포레이티드 | 계면 원자 단일층의 삽입에 의한 ⅳ족 반도체에 대한 금속 접점의 개선 |
US8860135B2 (en) | 2012-02-21 | 2014-10-14 | United Microelectronics Corp. | Semiconductor structure having aluminum layer with high reflectivity |
US8779515B2 (en) * | 2012-05-21 | 2014-07-15 | International Business Machines Corporation | Semiconductor structure containing an aluminum-containing replacement gate electrode |
CN103545188B (zh) * | 2012-07-13 | 2017-03-08 | 中国科学院微电子研究所 | 半导体器件制造方法 |
US9461143B2 (en) * | 2012-09-19 | 2016-10-04 | Intel Corporation | Gate contact structure over active gate and method to fabricate same |
US9748356B2 (en) * | 2012-09-25 | 2017-08-29 | Stmicroelectronics, Inc. | Threshold adjustment for quantum dot array devices with metal source and drain |
US9214349B2 (en) * | 2012-10-12 | 2015-12-15 | Samsung Electronics Co., Ltd. | Method for manufacturing semiconductor device |
US9184254B2 (en) | 2013-05-02 | 2015-11-10 | United Microelectronics Corporation | Field-effect transistor and fabricating method thereof |
CN104347397B (zh) * | 2013-07-23 | 2018-02-06 | 无锡华润上华科技有限公司 | 注入增强型绝缘栅双极型晶体管的制造方法 |
US10403646B2 (en) * | 2015-02-20 | 2019-09-03 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
US9614042B2 (en) | 2015-03-06 | 2017-04-04 | International Business Machines Corporation | Heterojunction tunnel field effect transistor fabrication using limited lithography steps |
US10504721B2 (en) | 2015-04-30 | 2019-12-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | Staggered-type tunneling field effect transistor |
JP6736351B2 (ja) * | 2015-06-19 | 2020-08-05 | 株式会社半導体エネルギー研究所 | 半導体装置 |
FR3044824B1 (fr) * | 2015-12-08 | 2018-05-04 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Transistor sbfet ameliore et procede de fabrication correspondant |
US9620611B1 (en) | 2016-06-17 | 2017-04-11 | Acorn Technology, Inc. | MIS contact structure with metal oxide conductor |
US9985107B2 (en) | 2016-06-29 | 2018-05-29 | International Business Machines Corporation | Method and structure for forming MOSFET with reduced parasitic capacitance |
US10217707B2 (en) * | 2016-09-16 | 2019-02-26 | International Business Machines Corporation | Trench contact resistance reduction |
US9881926B1 (en) * | 2016-10-24 | 2018-01-30 | International Business Machines Corporation | Static random access memory (SRAM) density scaling by using middle of line (MOL) flow |
US10170627B2 (en) | 2016-11-18 | 2019-01-01 | Acorn Technologies, Inc. | Nanowire transistor with source and drain induced by electrical contacts with negative schottky barrier height |
US10714621B2 (en) * | 2016-12-14 | 2020-07-14 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device and method of forming doped channel thereof |
US10102898B2 (en) * | 2016-12-30 | 2018-10-16 | Qualcomm Incorporated | Ferroelectric-modulated Schottky non-volatile memory |
US20200227562A1 (en) | 2017-08-04 | 2020-07-16 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing semiconductor device |
US20210242207A1 (en) * | 2018-05-18 | 2021-08-05 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the semiconductor device |
CN112397508B (zh) * | 2019-08-15 | 2022-12-27 | 长鑫存储技术有限公司 | 存储器件、半导体结构及其制造方法 |
JP7385540B2 (ja) * | 2020-09-03 | 2023-11-22 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法 |
CN115206994A (zh) * | 2021-04-09 | 2022-10-18 | 株式会社日本显示器 | 显示装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4434013A (en) * | 1980-02-19 | 1984-02-28 | Xerox Corporation | Method of making a self-aligned Schottky metal semi-conductor field effect transistor with buried source and drain |
US4783688A (en) * | 1981-12-02 | 1988-11-08 | U.S. Philips Corporation | Schottky barrier field effect transistors |
US4485550A (en) * | 1982-07-23 | 1984-12-04 | At&T Bell Laboratories | Fabrication of schottky-barrier MOS FETs |
KR910006249B1 (ko) | 1983-04-01 | 1991-08-17 | 가부시기가이샤 히다찌세이사꾸쇼 | 반도체 장치 |
US4586063A (en) * | 1984-04-02 | 1986-04-29 | Oki Electric Industry Co., Ltd. | Schottky barrier gate FET including tungsten-aluminum alloy |
JPS62500061A (ja) * | 1984-08-24 | 1987-01-08 | アメリカン テレフオン アンド テレグラフ カムパニ− | ショットキ−層電極を持つmosトランジスタ |
DE59003447D1 (de) * | 1989-09-20 | 1993-12-16 | Ciba Geigy | Verfahren zur Herstellung von Benztriazolen. |
US5159416A (en) * | 1990-04-27 | 1992-10-27 | Nec Corporation | Thin-film-transistor having schottky barrier |
JPH07297400A (ja) * | 1994-03-01 | 1995-11-10 | Hitachi Ltd | 半導体集積回路装置の製造方法およびそれにより得られた半導体集積回路装置 |
JP2000049344A (ja) * | 1998-07-31 | 2000-02-18 | Mitsubishi Electric Corp | 半導体装置およびその製造方法 |
JP3394914B2 (ja) * | 1998-09-09 | 2003-04-07 | 株式会社東芝 | 半導体装置およびその製造方法 |
US6303479B1 (en) * | 1999-12-16 | 2001-10-16 | Spinnaker Semiconductor, Inc. | Method of manufacturing a short-channel FET with Schottky-barrier source and drain contacts |
-
2001
- 2001-06-08 JP JP2001174567A patent/JP3833903B2/ja not_active Expired - Fee Related
- 2001-06-28 TW TW090115681A patent/TW497131B/zh not_active IP Right Cessation
- 2001-07-10 KR KR10-2001-0041173A patent/KR100535283B1/ko active IP Right Grant
- 2001-07-11 US US09/901,721 patent/US20020011613A1/en not_active Abandoned
- 2001-07-11 CN CNB01122374XA patent/CN1246909C/zh not_active Expired - Lifetime
-
2002
- 2002-07-26 US US10/205,203 patent/US6887747B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002094058A (ja) | 2002-03-29 |
CN1333568A (zh) | 2002-01-30 |
KR20020005994A (ko) | 2002-01-18 |
US6887747B2 (en) | 2005-05-03 |
US20020011613A1 (en) | 2002-01-31 |
CN1246909C (zh) | 2006-03-22 |
KR100535283B1 (ko) | 2005-12-09 |
US20020179980A1 (en) | 2002-12-05 |
TW497131B (en) | 2002-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3833903B2 (ja) | 半導体装置の製造方法 | |
US11289482B2 (en) | Field effect transistor contact with reduced contact resistance | |
US8110897B2 (en) | Semiconductor device with carbon-containing region | |
US7754593B2 (en) | Semiconductor device and manufacturing method therefor | |
US20060038241A1 (en) | Semiconductor device and method of manufacturing the same | |
JP2002118255A (ja) | 半導体装置およびその製造方法 | |
TWI469262B (zh) | 半導體裝置之製造方法及半導體裝置 | |
US6664150B2 (en) | Active well schemes for SOI technology | |
US20060170047A1 (en) | Semiconductor device and method of manufacturing the same | |
JP2008288364A (ja) | 半導体装置および半導体装置の製造方法 | |
US8202780B2 (en) | Method for manufacturing a FinFET device comprising a mask to define a gate perimeter and another mask to define fin regions | |
JP2009111046A (ja) | 半導体装置および半導体装置の製造方法 | |
US20230042167A1 (en) | Transistor structure with multiple halo implants having epitaxial layer, high-k dielectric and metal gate | |
US7179714B2 (en) | Method of fabricating MOS transistor having fully silicided gate | |
JP4592649B2 (ja) | 半導体装置の製造方法 | |
JP6543392B2 (ja) | 半導体装置 | |
JP5676111B2 (ja) | 半導体装置及びその製造方法 | |
JPH1012748A (ja) | 半導体装置の製造方法 | |
JP2002083956A (ja) | 半導体装置の製造方法 | |
JPH11204658A (ja) | 半導体装置の製造方法 | |
KR20130105020A (ko) | 고유전층 및 금속게이트를 갖는 cmos 장치 및 그 제조방법 | |
JP2007067301A (ja) | 半導体装置及びその製造方法 | |
JP2007180354A (ja) | 半導体装置及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050314 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060419 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060425 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060626 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060718 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060720 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090728 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100728 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110728 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120728 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130728 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |