JP3821883B2 - Method for producing amorphous tin oxide sol - Google Patents
Method for producing amorphous tin oxide sol Download PDFInfo
- Publication number
- JP3821883B2 JP3821883B2 JP22931996A JP22931996A JP3821883B2 JP 3821883 B2 JP3821883 B2 JP 3821883B2 JP 22931996 A JP22931996 A JP 22931996A JP 22931996 A JP22931996 A JP 22931996A JP 3821883 B2 JP3821883 B2 JP 3821883B2
- Authority
- JP
- Japan
- Prior art keywords
- tin oxide
- oxide sol
- amorphous
- sol
- amorphous tin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Oxygen, Ozone, And Oxides In General (AREA)
- Non-Insulated Conductors (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は非晶質酸化スズゾルの製造方法に関する。
【0002】
【従来の技術】
一般に酸化スズは半導体であり、単体では高い導電性を示さないが、異原子をドープすることにより高い導電性を得ることが知られている。また、透明性、物理的化学的安定性に優れた材料であり、電気電子的用途に期待される材料である。
【0003】
このような酸化スズは、アンチモンやインジウムとの複合による透明導電性酸化皮膜が有名であり多くの用途を有するが、高純度の酸化スズもしくは非晶質酸化スズについては導電性が低いためにあまり検討されていない。
【0004】
これらの材料に関しては、科学技術庁刊行の無機材質研究所研究報告書第35号「酸化スズに関する研究」に述べられているように、ある特定の金属化合物のドープもしくは複合化以外では、高い導電性を示さない。純度が高くなると半導体領域になり、その導電性は106Ωcm以上まで達する。従って、透明導電材料の用途へ用いるためには、これまで導電性を高める多くの努力が成されてきた。
【0005】
また、透明導電材料には一般に化学蒸着法、真空蒸着法、反応性イオンプレーティング法、スパッタ法、イオンビームスパッタ法等の膜形成法により基板に被覆され用いられる。
【0006】
しかしこれらの方法は、いずれも装置が高価・複雑・大型であるだけでなく、膜形成速度が小さく、且つ大面積の膜を得ることができないという欠点をも有している。さらに複雑形状の膜を形成する場合、不均一となり易く、利用上の制約が多かった。
【0007】
これらに対し、液状の原料を基板にディップして塗布する方法、或いはスプレーして塗布する方法、エアードクター、バーコーター等を用いて塗布する方法等は、比較的容易に大面積の膜が得られると共に、複雑形状の部位にも比較的容易に適用でき、工業的に有望な方法である。酸化スズ系の材料においても、このような塗布方法は幅広く検討されている。
【0008】
従来より検討されている酸化スズ系材料は、主としてスズ及びアンチモンを共にイオンとして含有する有機或いは無機化合物の塩溶液である。従って、有機化合物の塩溶液の使用時には、有機物の残存がないように注意深く熱分解を行わなければならず、スズ及びアンチモンが有機塩として気散したり、溶液の極性が低くガラス等の基板とのなじみがなく均一な膜を得ることができなかった。
【0009】
また、有機塩の液安定性を保つために安定化材を多く必要とする結果、薄い膜厚のものしか得られず、且つ有機物含量が多いために乾燥後に多層ディップを行っても焼成時に剥離する等の問題があった。
【0010】
さらに熱分解時に生成する酸化スズ・アンチモンは一般に粒子径が粗く、特に均一微細性が要求される分野への適用については問題があった。かかる問題を解決する技術として、特開昭62−223019号及び同62−278705号には、製造方法の工夫により製造された結晶質酸化スズゾルを用いる方法が開示されている。
【0011】
しかしこれらの技術では、ゾル溶液が着色していたり、結晶質であるためにゾルを塗布した時の表面の平滑性が損なわれたり、また一度焼成しなければ高い導電性を発現しない等の問題点を有していた。
【0012】
【発明が解決しようとする課題】
そこで本発明の課題は、着色が無く、導電性が良好である透明導電材料の用途に適した非晶質酸化スズゾルの製造方法を提供することにある。
【0013】
【課題を解決するための手段】
上記課題を解決する本発明は、下記構成を有する。
1.下記に示す非晶質酸化スズゾルの製造方法であって、加水分解性スズ化合物を加水分解処理し洗浄後、得られたハロゲン濃度が0.001%以上3%以下の原料をアンモニア水に溶解して水の沸点以下で加熱処理を行うことを特徴とする非晶質酸化スズゾルの製造方法。
[非晶質酸化スズゾル]
原子の配列に長距離秩序がなく、結晶性酸化スズの融点(1127℃)以下に物質の変化を示す温度領域が存在する非晶質酸化スズゾルであって、導電性が105Ωcm未満の非晶質酸化スズ粒子を含むことを特徴とする非晶質酸化スズゾル。
【0014】
2.下記に示す非晶質酸化スズゾルの製造方法であって、加水分解性スズ化合物とフッ素を含む化合物とを用いて加水分解処理し洗浄後、得られたハロゲン濃度が0.001%以上3%以下の原料をアンモニア水に溶解して水の沸点以下で加熱処理を行うことを特徴とする非晶質酸化スズゾルの製造方法。
[非晶質酸化スズゾル]
原子の配列に長距離秩序がなく、結晶性酸化スズの融点(1127℃)以下に物質の変化を示す温度領域が存在する非晶質酸化スズゾルであって、導電性が105Ωcm未満の非晶質酸化スズ粒子を含むことを特徴とする非晶質酸化スズゾル。
【0015】
3.非晶質酸化スズゾルが、加熱処理により200℃から500℃の範囲で重量減少を0.1wt%以上30wt%未満生じる酸化スズを含むことを特徴とする前記1又は2に記載の非晶質酸化スズゾルの製造方法。
【0016】
4.非晶質酸化スズゾルが、少なくとも0.001wt%以上の陰イオンを含む酸化スズを含むことを特徴とする前記1又は2に記載の非晶質酸化スズゾルの製造方法。
【0018】
【発明の実施の形態】
以下、本発明の詳細について説明する。
先ず、本発明において非晶質とは、結晶質とは異なる物質を意味する。結晶質とは、電気・電子工学大系72巻、結晶の評価(伊藤 次、犬塚直夫、コロナ社、1982年)第4頁に記載されているように、原子の配列に長距離秩序があり、その物質に固相の融点があることが特徴である。例えば、高純度で無色透明な結晶性の酸化スズであれば、正方晶系ルチル型構造であり、屈折率1.9968、電気伝導性は室温で106Ωcm以上の高抵抗を示すことが知られている。また融点は1127℃であり、結晶性酸化スズであればこの温度まで熱的に安定である。故に、一般に非晶質酸化スズとは、以上の性質を示さない物質であり、
▲1▼原子の配列に長距離秩序がない、
▲2▼結晶性酸化スズの融点以下に、物質の変化を示す温度領域が存在する、
酸化スズといえる。
【0019】
▲1▼については、X線回折によりその構造を同定することが可能であり、新版カリティX線回折要論(松村源太郎訳、アグネ社、1977年)に記載された結晶子サイズの測定から長距離秩序のおおよその値を知ることができる。例えば、酸化スズの(110)面の面間隔はおおよそ0.33nmであり、結晶性酸化スズならば数10個以上の繰り返し単位がなければならず、結晶子測定を行えば、10数nmの値が観測される。従って、結晶子測定において10nm未満であれば、もはや長距離秩序があるとはいえず、非晶質と思われる。5nm未満であれば、もはや繰り返し単位を仮定すれば10個以下となり結晶ではない。
【0020】
▲2▼については、固体の熱分析を行えば容易に明らかとなり、測定条件の影響、試料サイズの影響を考慮しても1000℃未満で熱的な変化が生じるならば結晶とは言い難い。熱的な変化で容易に観測できるのは熱重量分析であり、200℃での重量を測定開始重量として重量減少を融点よりはるかに低い500℃までの温度領域で0.1wt%以上生じるならば単結晶酸化スズではない。
以上のように上記▲1▼もしくは▲2▼を満たす酸化スズの場合には明らかに非晶質である。
【0021】
次に導電性については、酸化スズ粒子の導電性を意味し、その測定方法については、正確に導電性が評価できる限りいかなる方法でもよい。以下に測定例を示すが、本発明に制限を加えるものではない。
【0022】
石英板に酸化スズ薄膜を形成し、200℃空気中で処理を行う。室温25℃で薄膜の膜厚を測定後、四端子法にて抵抗を測定し、この抵抗値と膜厚から体積固有抵抗を求める。このような方法で求めた体積固有抵抗が10−2Ωcm以上105Ωcm未満を示す酸化スズ粒子を含むゾルが本発明の酸化スズゾルである。
【0023】
加熱処理による重量減少については、一般に用いられる熱重量分析で測定した値を意味する。昇温速度は30℃/分以下が好ましく、さらに好ましくは10℃/分以下で測定し、200℃から500℃の範囲で重量減少を0.1wt%以上30wt%未満生じる酸化スズを含むゾルである。
【0024】
本発明のゾルを200℃まで、空気中もしくは、N2やArなどの非酸化性雰囲気で加熱すると、非晶質酸化スズとなる。結晶性酸化スズであれば、続いて行う200℃以上の処理で熱的な変化を伴わない。非晶質酸化スズであれば0.1wt%以上の重量減少を示す。この重量減少量と導電性の関係は、明らかではないが、本発明者らは重量減少を示す酸化スズ粒子が導電性を有することを発見し、本発明に至った。
【0025】
不純物イオンについては、アンモニウムイオン、水素イオンなどの陽イオンや次に述べる陰イオンなど存在していると良好な結果を示す。
【0026】
陰イオンについては、特にその存在を規定しないが、有機イオン、無機イオンなんでも存在していた方が高い導電性を示す。特に好ましいのは、カルボン酸基もしくはスルホン酸基、アミノ基、水酸基を含むイオン、炭酸イオンとハロゲンイオンである。これらのイオンは、非晶質酸化スズ粒子の内部に存在していても、外部もしくは内部と外部の両者に存在していてもいずれでもよい。但し、存在する量については、表面等の外部については、粒子に対して30wt%以上存在するとゾルの安定性に問題が生じるので好ましくなく、30wt%未満が好ましく、より好ましくは10wt%未満、特に好ましくは6wt%未満がゾルにした時の安定性がよいことから選ばれる。粒子内部に存在する陰イオンについては、ゾルの安定性に影響がないのでその量を規定しないが、好ましくは0.001wt%以上6wt%未満である。
【0027】
これらの酸化スズゾルの製造方法としては、
請求項1に示す方法、即ち、加水分解性スズ化合物を加水分解処理し洗浄後、得られたハロゲン濃度が0.001%以上3%以下の原料をアンモニア水に溶解して水の沸点以下で加熱処理を行う方法、
請求項2に示す方法、即ち、加水分解性スズ化合物とフッ素を含む化合物とを用いて加水分解処理し洗浄後、得られたハロゲン濃度が0.001%以上3%以下の原料をアンモニア水に溶解して水の沸点以下で加熱処理を行う方法、
のいずれの方法でもよい。
【0028】
本発明の製造方法において、全体の製造工程でSnを含む化合物にかかる温度条件が重要であり、高温度の熱処理を伴う方法は、一次粒子の成長や、結晶性が高くなる現象を生じるので好ましくなく、熱処理を行う必要がある時には、450℃以下、特に300℃以下、好ましくは200℃以下、より好ましくは150℃以下とする。しかし、25℃から150℃までの加温は、好適に選ばれる手段である。
【0029】
また、製造工程は、加水分解性スズ化合物を加水分解処理する工程と、得られた沈殿物の洗浄工程を経てゾル化する工程の3工程からなる。各工程がさらに細分化された工程をとることに本発明は制限を加えない。例えば、加水分解工程は、原料を計量する工程と投入する工程、加水分解するために加えられる成分との混合工程、加熱工程等で構成されるが、どのような構成をとっても加水分解工程ならばこれを制限しない。また洗浄工程では、固液分離工程を伴うが、その方法もデカンテーション、限外濾過等、適当な濾過器を用いる方法等、いかなる方法でもよい。
ゾル化も同様であり、粒子を安定に分散するために加えられる添加剤、溶媒等は制限されないが、アンモニア水によるゾルの安定化が経済性の点で好ましい。
【0030】
請求項1に示す製造方法に用いられる化合物について以下に述べる。
加水分解性スズ化合物とは、K2SnO3・3H2Oのようなオキソ陰イオンを含む化合物、SnCl4、SnCl4・5H2Oのような水溶性ハロゲン化物、R′2SnR2、R3SnX、R2SnX2[R′は脂肪族もしくは芳香族有機化合物、、Rは脂肪族もしくは芳香族有機化合物、Xはハロゲンを示す。]の構造を有する化合物、例えば(CH3)3SnCl・(ピリジン)、(C4H9)2Sn(O2CC2H5)2等の有機金属化合物、Sn(SO4)2・2H2O等のオキソ塩を挙げることができる。
【0031】
加水分解性スズ化合物の溶媒中における分解反応から製造する方法においては、プロセスの途中で溶媒に可溶なSn以外の元素を含む化合物の添加も可能である。例えば、溶媒に可溶なフッ素含有化合物の添加や、炭酸塩の添加である。溶媒に可溶なフッ素含有化合物とは、イオン性フッ化物もしくは共有性フッ化物のいずれでもよく、例えば、HFもしくはKHF2、SbF3、MoF6等の金属フッ化物、NH4MnF3、NH4BiF4等のフルオロ錯陰イオンを生成する化合物、BrF3、SF4、SF6等の無機分子性フッ化物、CF3I、CF3OOH、P(CF3)3等の有機フッ素化合物を挙げることができるが、溶媒が水の場合にはCaF2と硫酸との組み合わせのようにフッ素含有化合物と不揮発性酸との組み合わせも用いることができる。
【0032】
以上の製造方法において、洗浄プロセスを途中に用いてもよい。洗浄プロセスを用いることにより、ゾルに含まれるイオンの量を制御することが可能である。洗浄方法は、特に限定されないが、例えば、デカンテーションによる方法、限外濾過膜による方法などが挙げられる。
【0033】
【実施例】
以下、本発明の実施例について説明する。
実施例1
塩化第二スズ45gを炭酸ガスを含んでいる30℃の水2000mlに溶解し均一溶液を得た。次いでこれを2時間煮沸し共沈殿物を得た。生成した沈殿物をデカンテーションにより取り出し、蒸留水にて沈殿を10回水洗する。蒸留水1000ml添加し、全量を2000mlとする。さらに30%アンモニア水を40ml加え、水浴中で100℃に加温し、無色透明なゾル溶液を得た。
このゾル溶液へ石英板をディップして乾燥する。この操作を100回繰り返し石英板上に酸化スズ薄膜を形成した。この石英板を空気中150℃2時間処理した試料について四端子法にて体積固有抵抗を測定したところ、7×104Ωcmであった。
ゾル溶液をスプレードライ装置を用いて乾燥しゾル溶液から粉末を取り出した。この粉末を用いて粉末X線回折により(100)面の結晶子測定を行ったところ、2.1nmと求められ非晶質粉末であることを確認した。また、この粉末の熱重量分析を10℃/分の昇温速度で行ったところ、200℃まで緩やかに重量減少を1.0wt%示した後、200℃から500℃までに2.5wt%の重量減少を示した。
【0034】
比較例1
塩化第二スズ水和物65gを蒸留水2000mlに100℃で溶解し均一溶液を得た。次いでこれを煮沸し共沈殿物を得た。生成した沈殿物をデカンテーションにより取り出し、蒸留水にて沈殿を40回水洗する。沈殿を洗浄した蒸留水中に硝酸銀を滴下し、塩素イオンの反応が無いことを確認後、蒸留水1000ml添加し全量を2000mlとする。さらに30%アンモニア水を40ml加え、水浴中で100℃に加温し、コロイド状ゲル分散液を得た。できたゾル溶液は、無色透明であった。
実施例1と同様の方法により石英板上に薄膜を形成した後、四端子法にて体積固有抵抗を測定したところ、2.1×105Ωcmであった。
また、結晶子測定を行ったところ、3.1nmと測定された。
【0035】
比較例2
塩化第二スズ水和物65gを30℃の蒸留水2000mlに溶解し均一溶液を得た。次いでこれを煮沸し共沈殿物を得た。生成した沈殿物をデカンテーションにより取り出し、蒸留水にて沈殿を40回水洗する。水洗後800℃の筒状の電気炉の中へスプレーし粉末を取り出した。この粉末を2000mlの水中に分散し、30%アンモニア水を40ml加え、水浴中で100℃に加温し、コロイド状ゲル分散液を得た。できたゾル溶液はやや白濁していた。
実施例1と同様の方法により、石英板上に薄膜を形成した後、四端子法にて体積固有抵抗を測定したところ、7.1×106Ωcmであった。
また、結晶子測定を行ったところ、30.5nmと測定された。
【0036】
以上、実施例1と比較例1及び比較例2とから、僅かな製造条件の違いで得られる酸化スズの体積固有抵抗が異なることが明らかである。
【0037】
実施例2
塩化第二スズ45gを50℃の蒸留水2000mlに溶解し均一溶液を得た。次いでこれを2時間煮沸し共沈殿物を得た。生成した沈殿物をデカンテーションにより取り出し、蒸留水にて沈殿を8回水洗する。蒸留水1000ml添加し全量を2000mlとする。さらに30%アンモニア水を40ml加え、水浴中で100℃に加温し、無色透明なゾル溶液を得た。
イオンクロマトグラフィーを用いて、ゾル溶液に含まれる塩素イオン濃度を求めたところ、0.008wt%塩素イオンが含まれていた。
実施例1と同様に石英板上にこのゾル溶液を用いて薄膜を形成し、熱処理後の体積固有抵抗を求めたところ、9.5×104Ωcmであった。
また、実施例1と同様に結晶子測定を行ったところ、2.7nmであった。
【0038】
実施例3
塩化第二スズ45gを40℃の蒸留水2000mlに溶解し均一溶液を得た。次いでこれを2時間煮沸し共沈殿物を得た。生成した沈殿物をデカンテーションにより取り出し、蒸留水にて沈殿を7回水洗する。蒸留水1000ml添加し全量を2000mlとする。さらに30%アンモニア水を40ml加え、水浴中で100℃に加温し、無色透明なゾル溶液を得た。
イオンクロマトグラフィーを用いて、ゾル溶液に含まれる塩素イオン濃度を求めたところ、0.016wt%塩素イオンが含まれていた。
実施例1と同様に石英板上にこのゾル溶液を用いて薄膜を形成し、熱処理後の体積固有抵抗を求めたところ、9.5×104Ωcmであった。
また、実施例1と同様に結晶子測定を行ったところ、2.2nmであった。
【0039】
実施例4
塩化第二スズ45gとK2TiF6を5gとを30℃の蒸留水2000mlに溶解し均一溶液を得た。次いでこれを2時間煮沸し共沈殿物を得た。生成した沈殿物をデカンテーションにより取り出し、蒸留水にて沈殿を8回水洗する。蒸留水1000ml添加し全量を2000mlとする。さらに30%アンモニア水を40ml加え、水浴中で100℃に加温し、無色透明なゾル溶液を得た。
イオンクロマトグラフィーを用いて、ゾル溶液に含まれる塩素イオン濃度を求めたところ、0.008wt%塩素イオンが含まれていた。
実施例1と同様に石英板上にこのゾル溶液を用いて薄膜を形成し、熱処理後の体積固有抵抗を求めたところ、1.5×104Ωcmであった。
また、実施例1と同様に結晶子測定を行ったところ、2.4nmであった。
【0040】
実施例5
塩化第二スズ45gとKF5gとを30℃の蒸留水2000mlに溶解し均一溶液を得た。次いでこれを2時間煮沸し共沈殿物を得た。生成した沈殿物をデカンテーションにより取り出し、蒸留水にて沈殿を8回水洗する。蒸留水1000ml添加し全量を2000mlとする。さらに30%アンモニア水を40ml加え、水浴中で100℃に加温し、無色透明なゾル溶液を得た。
イオンクロマトグラフィーを用いて、ゾル溶液に含まれる塩素イオン濃度を求めたところ、0.008wt%塩素イオンが含まれていた。
実施例1と同様に石英板上にこのゾル溶液を用いて薄膜を形成し、熱処理後の体積固有抵抗を求めたところ、6.5×103Ωcmであった。
また、実施例1と同様に結晶子測定を行ったところ、2.1nmであった。
【0041】
比較例3
塩化第二スズ水和物65gと三塩化アンチモン1.0gを30℃の水/エタノール混合溶液2000mlに溶解し均一溶液を得た。次いでこれを2時間煮沸し共沈殿物を得た。生成した沈殿物をデカンテーションにより取り出し、蒸留水にて沈殿を40回水洗する。沈殿を洗浄した蒸留水中に硝酸銀を滴下し、塩素イオンの反応が無いことを確認後、蒸留水1000ml添加し全量を2000mlとする。さらに30%アンモニア水を40ml加え、水浴中で100℃に加温し、コロイド状ゲル分散液を得た。やや赤みを帯びたゾル溶液が得られた。
【0042】
以上、実施例2、実施例3、実施例4、実施例5と比較例3との比較より、本発明は着色の無い、導電性の良好な非晶質酸化スズゾルを製造することが可能である。
【0043】
【発明の効果】
本発明によれば、着色が無く、導電性が良好である透明導電材料の用途に適した非晶質酸化スズゾルの製造方法を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing an amorphous oxide Suzuzo Le.
[0002]
[Prior art]
In general, tin oxide is a semiconductor and does not exhibit high conductivity by itself, but it is known that high conductivity can be obtained by doping different atoms. Moreover, it is a material excellent in transparency and physical and chemical stability, and is expected to be used for electrical and electronic applications.
[0003]
Such tin oxide is famous for its transparent conductive oxide film composed of a combination of antimony and indium, and has many uses. However, high-purity tin oxide or amorphous tin oxide has low conductivity, so Not considered.
[0004]
For these materials, as described in Research Report No. 35 “Study on Tin Oxide” published by the Science and Technology Agency published by the Science and Technology Agency, it has high conductivity except for doping or compounding of certain metal compounds. Does not show sex. When the purity is increased, a semiconductor region is formed, and the conductivity reaches 10 6 Ωcm or more. Therefore, many efforts have been made to increase conductivity in order to use the transparent conductive material in applications.
[0005]
The transparent conductive material is generally used by being coated on a substrate by a film forming method such as chemical vapor deposition, vacuum vapor deposition, reactive ion plating, sputtering, or ion beam sputtering.
[0006]
However, these methods have disadvantages that not only the apparatus is expensive, complicated and large, but also the film formation rate is low and a film having a large area cannot be obtained. Further, when forming a film having a complicated shape, it tends to be non-uniform and there are many restrictions on use.
[0007]
On the other hand, a method of dipping a liquid raw material on a substrate, a method of applying by spraying, a method of applying using an air doctor, a bar coater, etc. can obtain a film of a large area relatively easily. In addition, the method can be applied relatively easily to a part having a complicated shape, and is an industrially promising method. Such a coating method has been widely studied also for tin oxide-based materials.
[0008]
The tin oxide-based material that has been studied conventionally is a salt solution of an organic or inorganic compound mainly containing both tin and antimony as ions. Therefore, when using a salt solution of an organic compound, it must be carefully pyrolyzed so that no organic matter remains, and tin and antimony are scattered as an organic salt, and the polarity of the solution is low and a substrate such as glass is used. A uniform film could not be obtained.
[0009]
In addition, as a result of requiring a large amount of stabilizing material to maintain the liquid stability of the organic salt, only a thin film thickness can be obtained, and because of the high organic matter content, even if multi-layer dipping is performed after drying, it is peeled off during firing. There was a problem such as.
[0010]
Furthermore, tin oxide / antimony produced during pyrolysis generally has a coarse particle size, and there has been a problem in application to fields requiring uniform fineness. As a technique for solving such a problem, JP-A-62-223019 and JP-A-62-278705 disclose a method using a crystalline tin oxide sol produced by devising a production method.
[0011]
However, with these technologies, the sol solution is colored, the surface is not smooth when coated with sol because it is crystalline, and high conductivity is not exhibited unless it is fired once. Had a point.
[0012]
[Problems to be solved by the invention]
Therefore object of the present invention, coloration without conductivity is to provide a method for producing an amorphous oxide Suzuzo Le suitable for use in the transparent conductive material is good.
[0013]
[Means for Solving the Problems]
The present invention for solving the above problems has the following configuration.
1. A method for producing an amorphous tin oxide sol as shown below, after hydrolyzing a hydrolyzable tin compound and washing, the obtained halogen concentration of 0.001% to 3% is dissolved in ammonia water. A method for producing an amorphous tin oxide sol, wherein the heat treatment is carried out below the boiling point of water .
[Amorphous tin oxide sol]
An amorphous tin oxide sol having a long-range order in the atomic arrangement and a temperature range showing a change in the substance below the melting point (1127 ° C.) of crystalline tin oxide, and having a conductivity of less than 10 5 Ωcm An amorphous tin oxide sol comprising crystalline tin oxide particles.
[0014]
2. A method for producing an amorphous tin oxide sol as shown below, wherein the halogen concentration obtained is hydrolyzed using a hydrolyzable tin compound and a fluorine-containing compound, and the resulting halogen concentration is 0.001% or more and 3% or less. A method for producing an amorphous tin oxide sol, wherein the raw material is dissolved in ammonia water and subjected to heat treatment at a temperature equal to or lower than the boiling point of water .
[Amorphous tin oxide sol]
An amorphous tin oxide sol having a long-range order in the atomic arrangement and a temperature range showing a change in the substance below the melting point (1127 ° C.) of crystalline tin oxide, and having a conductivity of less than 10 5 Ωcm An amorphous tin oxide sol comprising crystalline tin oxide particles.
[0015]
3. 3. The amorphous oxide according to 1 or 2 above, wherein the amorphous tin oxide sol contains tin oxide that causes a weight loss of 0.1 wt% or more and less than 30 wt% in the range of 200 ° C. to 500 ° C. by heat treatment. Manufacturing method of tin sol.
[0016]
4). 3. The method for producing an amorphous tin oxide sol according to 1 or 2, wherein the amorphous tin oxide sol contains tin oxide containing at least 0.001 wt% or more of anions.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Details of the present invention will be described below.
First, in the present invention, amorphous means a substance different from crystalline. Crystalline refers to a long-range order in the atomic arrangement, as described in page 4 of the University of Electrical and Electronics Engineering Vol. 72, Evaluation of Crystals (Jun Ito, Nao Inuzuka, Corona, 1982). The substance is characterized by having a solid-phase melting point. For example, a highly pure, colorless and transparent crystalline tin oxide has a tetragonal rutile structure, a refractive index of 1.9968, and an electrical conductivity of 10 6 Ωcm or higher at room temperature. It has been. The melting point is 1127 ° C., and crystalline tin oxide is thermally stable up to this temperature. Therefore, in general, amorphous tin oxide is a substance that does not exhibit the above properties,
(1) There is no long-range order in the atomic arrangement,
(2) There is a temperature range showing the change of the substance below the melting point of crystalline tin oxide.
It can be said that it is tin oxide.
[0019]
Regarding (1), it is possible to identify the structure by X-ray diffraction, and it is long from the measurement of crystallite size described in the new edition of Karity X-ray diffraction theory (translated by Gentaro Matsumura, Agne, 1977). You can know the approximate value of the distance order. For example, the spacing between the (110) planes of tin oxide is approximately 0.33 nm. For crystalline tin oxide, there must be several tens or more of repeating units. A value is observed. Therefore, if the crystallite measurement is less than 10 nm, it can no longer be said that there is long-range order, and it seems amorphous. If it is less than 5 nm, the number of repeating units is no longer 10 and it is not a crystal.
[0020]
Regarding (2), it will be readily apparent if thermal analysis of a solid is performed, and even if the influence of measurement conditions and the influence of sample size are taken into consideration, it is difficult to say that it is a crystal if a thermal change occurs below 1000 ° C. Thermogravimetric analysis can be easily observed with a thermal change. If weight at 200 ° C. is used as a measurement starting weight and a weight loss is 0.1 wt% or more in a temperature range of up to 500 ° C., which is much lower than the melting point. It is not single crystal tin oxide.
As described above, in the case of tin oxide satisfying the above (1) or (2), it is clearly amorphous.
[0021]
Next, the term “conductivity” means the conductivity of the tin oxide particles, and the measurement method may be any method as long as the conductivity can be accurately evaluated. Although a measurement example is shown below, the present invention is not limited.
[0022]
A tin oxide thin film is formed on a quartz plate and processed in air at 200 ° C. After measuring the thickness of the thin film at room temperature of 25 ° C., the resistance is measured by the four-terminal method, and the volume resistivity is obtained from the resistance value and the film thickness. A sol containing tin oxide particles having a volume resistivity of 10 −2 Ωcm or more and less than 10 5 Ωcm determined by such a method is the tin oxide sol of the present invention.
[0023]
About the weight loss by heat processing, the value measured by the thermogravimetric analysis generally used is meant. The temperature rising rate is preferably 30 ° C./min or less, more preferably 10 ° C./min or less, and a sol containing tin oxide that produces a weight loss of 0.1 wt% to less than 30 wt% in the range of 200 ° C. to 500 ° C. is there.
[0024]
When the sol of the present invention is heated to 200 ° C. in air or in a non-oxidizing atmosphere such as N 2 or Ar, amorphous tin oxide is obtained. If it is crystalline tin oxide, it is not accompanied by a thermal change by the process of 200 degreeC or more performed subsequently. Amorphous tin oxide shows a weight loss of 0.1 wt% or more. Although the relationship between the weight reduction amount and the conductivity is not clear, the present inventors have found that the tin oxide particles exhibiting the weight reduction have conductivity, and have reached the present invention.
[0025]
As for impurity ions, good results are obtained when cations such as ammonium ions and hydrogen ions and the following anions are present.
[0026]
The presence of anions is not particularly defined, but organic ions and inorganic ions are more conductive when they are present. Particularly preferred are carboxylic acid group or sulfonic acid group, amino group, ion containing hydroxyl group, carbonate ion and halogen ion. These ions may be present inside the amorphous tin oxide particles, or may be present outside or both inside and outside. However, as for the amount present, it is not preferable for the outside such as the surface to be present in an amount of 30 wt% or more with respect to the particles because it causes a problem in the stability of the sol, preferably less than 30 wt%, more preferably less than 10 wt%, particularly Preferably, less than 6 wt% is selected because of its good stability when made into a sol. The amount of anion present inside the particle is not specified because it does not affect the stability of the sol, but it is preferably 0.001 wt% or more and less than 6 wt%.
[0027]
As a manufacturing method of these tin oxide sols,
The method shown in claim 1, that is, after hydrolyzing the hydrolyzable tin compound and washing, the obtained raw material having a halogen concentration of 0.001% to 3% is dissolved in ammonia water so that the boiling point is below the boiling point of water. A method of performing heat treatment,
The method shown in claim 2, that is, after hydrolyzing and washing using a hydrolyzable tin compound and a fluorine-containing compound, the obtained raw material having a halogen concentration of 0.001% to 3% in ammonia water. A method of dissolving and heating at a boiling point of water or lower ,
Either method may be used.
[0028]
In the production method of the present invention, the temperature condition applied to the compound containing Sn is important in the whole production process, and a method involving high-temperature heat treatment is preferable because it causes the growth of primary particles and the phenomenon that the crystallinity increases. When heat treatment is required, the temperature is set to 450 ° C. or lower, particularly 300 ° C. or lower, preferably 200 ° C. or lower, more preferably 150 ° C. or lower. However, heating from 25 ° C. to 150 ° C. is a preferred means to be selected.
[0029]
Moreover, a manufacturing process consists of three processes, the process of hydrolyzing a hydrolysable tin compound, and the process of solating through the washing | cleaning process of the obtained deposit. The present invention does not place a restriction on each step being further subdivided. For example, the hydrolysis process is composed of a process of measuring and charging raw materials, a mixing process with components added for hydrolysis, a heating process, etc. This is not limited. The washing step involves a solid-liquid separation step, and any method such as decantation or ultrafiltration may be used.
The same applies to sol formation, and additives, solvents, and the like that are added to stably disperse the particles are not limited, but stabilization of the sol with aqueous ammonia is preferable from the viewpoint of economy.
[0030]
The compounds used in the production method shown in claim 1 are described below.
The hydrolyzable tin compound is a compound containing an oxo anion such as K 2 SnO 3 .3H 2 O, a water-soluble halide such as SnCl 4 , SnCl 4 .5H 2 O, R ′ 2 SnR 2 , R 3 SnX, R 2 SnX 2 [R ′ represents an aliphatic or aromatic organic compound, R represents an aliphatic or aromatic organic compound, and X represents a halogen. ], For example, organometallic compounds such as (CH 3 ) 3 SnCl · (pyridine), (C 4 H 9 ) 2 Sn (O 2 CC 2 H 5 ) 2 , Sn (SO 4 ) 2 · 2H An oxo salt such as 2 O can be mentioned.
[0031]
In the method of producing from a decomposition reaction of a hydrolyzable tin compound in a solvent, it is possible to add a compound containing an element other than Sn that is soluble in the solvent during the process. For example, addition of a fluorine-containing compound that is soluble in a solvent or addition of a carbonate. The soluble fluorine-containing compound in a solvent may be any of ionic fluoride or covalent fluoride, for example, HF or KHF 2, SbF 3, MoF 6 and metal fluoride, NH 4 MnF 3, NH 4 Examples include compounds that produce a fluoro complex anion such as BiF 4 , inorganic molecular fluorides such as BrF 3 , SF 4 , and SF 6 , and organic fluorine compounds such as CF 3 I, CF 3 OOH, and P (CF 3 ) 3. However, when the solvent is water, a combination of a fluorine-containing compound and a non-volatile acid, such as a combination of CaF 2 and sulfuric acid, can also be used.
[0032]
In the above manufacturing method, a cleaning process may be used in the middle. By using a cleaning process, it is possible to control the amount of ions contained in the sol. Although the washing | cleaning method is not specifically limited, For example, the method by a decantation, the method by an ultrafiltration membrane, etc. are mentioned.
[0033]
【Example】
Examples of the present invention will be described below.
Example 1
A homogeneous solution was obtained by dissolving 45 g of stannic chloride in 2000 ml of 30 ° C. water containing carbon dioxide. This was then boiled for 2 hours to obtain a coprecipitate. The produced precipitate is taken out by decantation, and the precipitate is washed with distilled water 10 times. Add 1000 ml of distilled water to make the total volume 2000 ml. Further, 40 ml of 30% aqueous ammonia was added and heated to 100 ° C. in a water bath to obtain a colorless and transparent sol solution.
The quartz plate is dipped into this sol solution and dried. This operation was repeated 100 times to form a tin oxide thin film on the quartz plate. When the volume resistivity of the sample obtained by treating this quartz plate in air at 150 ° C. for 2 hours was measured by the four probe method, it was 7 × 10 4 Ωcm.
The sol solution was dried using a spray drying apparatus, and the powder was taken out from the sol solution. When the crystallite measurement of (100) plane was performed by powder X-ray diffraction using this powder, it was calculated | required as 2.1 nm, and it confirmed that it was an amorphous powder. Further, when thermogravimetric analysis of this powder was performed at a temperature rising rate of 10 ° C./min, it showed 1.0 wt% of the weight decrease gradually to 200 ° C., and then 2.5 wt% from 200 ° C. to 500 ° C. It showed a weight loss.
[0034]
Comparative Example 1
65 g of stannic chloride hydrate was dissolved in 2000 ml of distilled water at 100 ° C. to obtain a uniform solution. This was then boiled to obtain a coprecipitate. The produced precipitate is taken out by decantation, and the precipitate is washed with distilled water 40 times. Silver nitrate is dropped into distilled water from which the precipitate has been washed, and after confirming that there is no reaction of chlorine ions, 1000 ml of distilled water is added to make the total amount 2000 ml. Further, 40 ml of 30% aqueous ammonia was added and heated to 100 ° C. in a water bath to obtain a colloidal gel dispersion. The resulting sol solution was colorless and transparent.
After forming a thin film on the quartz plate by the same method as in Example 1, the volume resistivity was measured by the four-terminal method and found to be 2.1 × 10 5 Ωcm.
Moreover, when crystallite measurement was performed, it was measured to be 3.1 nm.
[0035]
Comparative Example 2
65 g of stannic chloride hydrate was dissolved in 2000 ml of distilled water at 30 ° C. to obtain a uniform solution. This was then boiled to obtain a coprecipitate. The produced precipitate is taken out by decantation, and the precipitate is washed with distilled water 40 times. After washing with water, it was sprayed into a cylindrical electric furnace at 800 ° C. to take out the powder. This powder was dispersed in 2000 ml of water, 40 ml of 30% aqueous ammonia was added, and heated to 100 ° C. in a water bath to obtain a colloidal gel dispersion. The resulting sol solution was slightly cloudy.
After forming a thin film on a quartz plate by the same method as in Example 1, the volume resistivity was measured by a four-terminal method, which was 7.1 × 10 6 Ωcm.
Moreover, when crystallite measurement was performed, it was measured to be 30.5 nm.
[0036]
As described above, it is clear from Example 1 and Comparative Examples 1 and 2 that the volume resistivity of tin oxide obtained by a slight difference in manufacturing conditions is different.
[0037]
Example 2
A uniform solution was obtained by dissolving 45 g of stannic chloride in 2000 ml of distilled water at 50 ° C. This was then boiled for 2 hours to obtain a coprecipitate. The produced precipitate is taken out by decantation, and the precipitate is washed with distilled water 8 times. Add 1000 ml of distilled water to make the total volume 2000 ml. Further, 40 ml of 30% aqueous ammonia was added and heated to 100 ° C. in a water bath to obtain a colorless and transparent sol solution.
When the chloride ion concentration contained in the sol solution was determined using ion chromatography, 0.008 wt% chloride ion was contained.
A thin film was formed using this sol solution on a quartz plate in the same manner as in Example 1, and the volume resistivity after heat treatment was determined to be 9.5 × 10 4 Ωcm.
Moreover, it was 2.7 nm when the crystallite measurement was performed similarly to Example 1. FIG.
[0038]
Example 3
A homogeneous solution was obtained by dissolving 45 g of stannic chloride in 2000 ml of distilled water at 40 ° C. This was then boiled for 2 hours to obtain a coprecipitate. The produced precipitate is taken out by decantation, and the precipitate is washed with distilled water seven times. Add 1000 ml of distilled water to make the total volume 2000 ml. Further, 40 ml of 30% aqueous ammonia was added and heated to 100 ° C. in a water bath to obtain a colorless and transparent sol solution.
When the concentration of chlorine ions contained in the sol solution was determined using ion chromatography, 0.016 wt% chlorine ions were contained.
A thin film was formed using this sol solution on a quartz plate in the same manner as in Example 1, and the volume resistivity after heat treatment was determined to be 9.5 × 10 4 Ωcm.
Moreover, it was 2.2 nm when the crystallite measurement was performed similarly to Example 1. FIG.
[0039]
Example 4
A homogeneous solution was obtained by dissolving 45 g of stannic chloride and 5 g of K 2 TiF 6 in 2000 ml of distilled water at 30 ° C. This was then boiled for 2 hours to obtain a coprecipitate. The produced precipitate is taken out by decantation, and the precipitate is washed with distilled water 8 times. Add 1000 ml of distilled water to make the total volume 2000 ml. Further, 40 ml of 30% aqueous ammonia was added and heated to 100 ° C. in a water bath to obtain a colorless and transparent sol solution.
When the chloride ion concentration contained in the sol solution was determined using ion chromatography, 0.008 wt% chloride ion was contained.
A thin film was formed using this sol solution on a quartz plate in the same manner as in Example 1, and the volume resistivity after the heat treatment was determined to be 1.5 × 10 4 Ωcm.
Moreover, it was 2.4 nm when the crystallite measurement was performed similarly to Example 1. FIG.
[0040]
Example 5
45 g of stannic chloride and 5 g of KF were dissolved in 2000 ml of distilled water at 30 ° C. to obtain a uniform solution. This was then boiled for 2 hours to obtain a coprecipitate. The produced precipitate is taken out by decantation, and the precipitate is washed with distilled water 8 times. Add 1000 ml of distilled water to make the total volume 2000 ml. Further, 40 ml of 30% aqueous ammonia was added and heated to 100 ° C. in a water bath to obtain a colorless and transparent sol solution.
When the chloride ion concentration contained in the sol solution was determined using ion chromatography, 0.008 wt% chloride ion was contained.
A thin film was formed using this sol solution on a quartz plate in the same manner as in Example 1, and the volume resistivity after the heat treatment was determined to be 6.5 × 10 3 Ωcm.
Moreover, it was 2.1 nm when the crystallite measurement was performed similarly to Example 1. FIG.
[0041]
Comparative Example 3
A homogeneous solution was obtained by dissolving 65 g of stannic chloride hydrate and 1.0 g of antimony trichloride in 2000 ml of a 30 ° C. water / ethanol mixed solution. This was then boiled for 2 hours to obtain a coprecipitate. The produced precipitate is taken out by decantation, and the precipitate is washed with distilled water 40 times. Silver nitrate is dropped into distilled water from which the precipitate has been washed, and after confirming that there is no reaction of chlorine ions, 1000 ml of distilled water is added to make the total amount 2000 ml. Further, 40 ml of 30% aqueous ammonia was added and heated to 100 ° C. in a water bath to obtain a colloidal gel dispersion. A slightly reddish sol solution was obtained.
[0042]
As described above, from the comparison of Example 2, Example 3, Example 4, Example 5 and Comparative Example 3, the present invention can produce an amorphous tin oxide sol having no color and good conductivity. is there.
[0043]
【The invention's effect】
According to the present invention, coloration is no conductivity can be provided a method of manufacturing an amorphous oxide Suzuzo Le suitable for use in the transparent conductive material is good.
Claims (4)
[非晶質酸化スズゾル]
原子の配列に長距離秩序がなく、結晶性酸化スズの融点(1127℃)以下に物質の変化を示す温度領域が存在する非晶質酸化スズゾルであって、導電性が105Ωcm未満の非晶質酸化スズ粒子を含むことを特徴とする非晶質酸化スズゾル。A method for producing an amorphous tin oxide sol as shown below, after hydrolyzing a hydrolyzable tin compound and washing, the obtained halogen concentration of 0.001% to 3% is dissolved in ammonia water. A method for producing an amorphous tin oxide sol, wherein the heat treatment is carried out below the boiling point of water .
[Amorphous tin oxide sol]
An amorphous tin oxide sol having a long-range order in the atomic arrangement and a temperature range showing a change in the substance below the melting point (1127 ° C.) of crystalline tin oxide, and having a conductivity of less than 10 5 Ωcm An amorphous tin oxide sol comprising crystalline tin oxide particles.
[非晶質酸化スズゾル]
原子の配列に長距離秩序がなく、結晶性酸化スズの融点(1127℃)以下に物質の変化を示す温度領域が存在する非晶質酸化スズゾルであって、導電性が105Ωcm未満の非晶質酸化スズ粒子を含むことを特徴とする非晶質酸化スズゾル。A method for producing an amorphous tin oxide sol as shown below, wherein the halogen concentration obtained is hydrolyzed using a hydrolyzable tin compound and a fluorine-containing compound, and the resulting halogen concentration is 0.001% or more and 3% or less. A method for producing an amorphous tin oxide sol, wherein the raw material is dissolved in ammonia water and subjected to heat treatment at a temperature equal to or lower than the boiling point of water .
[Amorphous tin oxide sol]
An amorphous tin oxide sol having a long-range order in the atomic arrangement and a temperature range showing a change in the substance below the melting point (1127 ° C.) of crystalline tin oxide, and having a conductivity of less than 10 5 Ωcm An amorphous tin oxide sol comprising crystalline tin oxide particles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22931996A JP3821883B2 (en) | 1996-08-12 | 1996-08-12 | Method for producing amorphous tin oxide sol |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22931996A JP3821883B2 (en) | 1996-08-12 | 1996-08-12 | Method for producing amorphous tin oxide sol |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1059720A JPH1059720A (en) | 1998-03-03 |
JP3821883B2 true JP3821883B2 (en) | 2006-09-13 |
Family
ID=16890285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22931996A Expired - Fee Related JP3821883B2 (en) | 1996-08-12 | 1996-08-12 | Method for producing amorphous tin oxide sol |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3821883B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006012783A (en) * | 2004-05-21 | 2006-01-12 | Tdk Corp | Transparent conductive material, transparent conductive paste, transparent conductive film and transparent electrode |
JP2006056184A (en) | 2004-08-23 | 2006-03-02 | Konica Minolta Medical & Graphic Inc | Printing plate material and printing plate |
-
1996
- 1996-08-12 JP JP22931996A patent/JP3821883B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1059720A (en) | 1998-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wu et al. | Preparation, characterization and electrical properties of fluorine-doped tin dioxide nanocrystals | |
JP3357107B2 (en) | White conductive titanium dioxide powder and method for producing the same | |
Kitaoka et al. | Preparation of La0. 5Li0. 5TiO3 perovskite thin films by the sol–gel method | |
JPH0258213B2 (en) | ||
US4873352A (en) | Transparent aqueous tin compound solution | |
Morris et al. | Fluorine doped tin oxide films from spray pyrolysis of stannous fluoride solutions | |
RU2355823C2 (en) | Electrode for electrochemical process and method of its receiving | |
JP3821883B2 (en) | Method for producing amorphous tin oxide sol | |
JP4122117B2 (en) | Method for producing amorphous tin oxide sol | |
JPH1053417A (en) | Electroconductive tin oxide powder, its production and electroconductive suspended composition, electroconductive coating composition and antistatic material using the same | |
US5501883A (en) | Material for use as a transparent conductive film and method for making a transparent conductive film using the material | |
JP3834339B2 (en) | Transparent conductive film and method for producing the same | |
JPH08333376A (en) | Liquid methyltin halide composition | |
DE68907822T2 (en) | Liquid coating composition and process for making a fluorine-doped tin oxide coating on glass. | |
JP2000247639A (en) | Production of solution for forming titanium dioxide | |
JPH0586605B2 (en) | ||
Atta et al. | Preparation and properties of zirconia coatings from aquo-organic solutions of zirconyl chloride octahydrate | |
JP2000128532A (en) | Amorphous tin oxide sol and its production | |
Imai et al. | Preparation of hollow fibers of tin oxide with and without antimony doping | |
JP2759470B2 (en) | Stannate sol and method for producing the same | |
JP3889221B2 (en) | Coating liquid for forming ITO transparent conductive film and method for forming transparent conductive film | |
JP3940506B2 (en) | Amorphous tin oxide sol and method for producing the same | |
JP3373898B2 (en) | Transparent conductive film and method of manufacturing the same | |
JP2010080316A (en) | Transparent conductive substrate, and method for manufacturing the same | |
JP2003089523A (en) | Amorphous tin oxide colloidal solution and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050715 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051004 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051201 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060110 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060203 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060328 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060427 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060530 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060621 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100630 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100630 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110630 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110630 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120630 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120630 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130630 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130630 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140630 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |