[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3814318B2 - Etching method and semiconductor device manufacturing apparatus using the etching method - Google Patents

Etching method and semiconductor device manufacturing apparatus using the etching method Download PDF

Info

Publication number
JP3814318B2
JP3814318B2 JP29331495A JP29331495A JP3814318B2 JP 3814318 B2 JP3814318 B2 JP 3814318B2 JP 29331495 A JP29331495 A JP 29331495A JP 29331495 A JP29331495 A JP 29331495A JP 3814318 B2 JP3814318 B2 JP 3814318B2
Authority
JP
Japan
Prior art keywords
substrate
film
etching
etched
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29331495A
Other languages
Japanese (ja)
Other versions
JPH09115877A (en
Inventor
博文 一ノ瀬
勉 村上
明男 長谷部
諭 新倉
雪絵 上野
一平 沢山
雅哉 久松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP29331495A priority Critical patent/JP3814318B2/en
Application filed by Canon Inc filed Critical Canon Inc
Priority to KR1019960046432A priority patent/KR100217006B1/en
Priority to CNB011046872A priority patent/CN1235271C/en
Priority to CN96119282A priority patent/CN1072737C/en
Priority to US08/731,663 priority patent/US5863412A/en
Publication of JPH09115877A publication Critical patent/JPH09115877A/en
Priority to US09/163,546 priority patent/US6051116A/en
Priority to CNB011046864A priority patent/CN1213175C/en
Application granted granted Critical
Publication of JP3814318B2 publication Critical patent/JP3814318B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Weting (AREA)
  • Photovoltaic Devices (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、改善されたエッチング方法及び該エッチング方法を利用した半導体素子の製造装置に関する。より詳しくは本発明は、簡便で選択精度に優れ、非エッチング領域及び非エッチング層への損傷を非常に少なくすることが可能なエッチング方法に関する。本発明はまた、低コストで工程数も少なく、処理時間を短縮して、良好な光起電力素子などの半導体素子を製造することができる装置に関する。
【0002】
【従来の技術】
従来より、エッチングの技術は光起電力素子の一つである太陽電池やフォトダイオードなどの様々な用途の半導体素子製造過程において広く利用されている。例えば、ダイオード、ICなどの半導体素子においては、金属導電膜もしくは透明導電膜などの電極もしくは基材あるいは半導体層のパターニングや分離に使用される。また、太陽電池などの半導体素子においても、透明導電膜や電極、半導体層のパターニング、分離などに使用される。
【0003】
こうしたエッチング技術を使用しての素子製造は例えばつぎのようにして行われる。即ち、光透過性絶縁基板上に透明導電膜を成膜し、この膜にエッチングにより太陽電池セルの所定のパターンを形成し、パターニングされた透明導電膜上に光電変換層であるアモルファスシリコン層を成膜し、その上に背面電極を形成することによりアモルファスシリコン太陽電池が製造される。また、別の例として、金属基板上にアモルファスシリコン層を成膜し、次に、透明導電膜を成膜し、この膜をエッチングによりパターン形成し、その上に銀などの集電用のグリッド電極を形成してアモルファスシリコン太陽電池が製造される。この金属基板を用いた太陽電池は作製後、折り曲げなどの加工ができ、更には基板が金属であるため、欠陥処理などの電気化学処理を行い易いことや連続成膜が可能などの利点があり注目されている。
【0004】
基板上に透明導電膜を成膜後、エッチングにより選択的にパターニングする方法としては、特開昭55−108779号および米国特許第4419530号明細書に開示されているような化学エッチング法が知られている。ここで、透明導電性膜のパターニング方法の一例について説明する。まず、シルクスクリーン印刷やフレキソ印刷やその他の印刷方法によって、またはスピンナーや印刷によって形成されたフォトレジストに所望のパターンで露光、現像して、レジストによる所望のポジパターンを形成する。次に、レジストパターンのネガ部分(透明導電膜の露出部分)に相当する透明導電膜を塩化第二鉄溶液や酸性溶液である硝酸などのエッチング液でエッチングして除去し、レジストパターンに対応した透明導電膜を残す。あるいはプラズマエッチング処理によるドライエッチングなどの手段によってレジストパターンに対応した透明導電膜を残す。そしてポジ部分に残っているレジストパターン(シルクスクリーン用インキなどの印刷インクや樹脂、フォトレジストの硬化物のパターン)を、それぞれの剥離剤にて溶解除去及び/または剥離除去し、または、ドライプロセス(プラズマ灰化法など)で除去して、所望のパターン形状の透明導電膜を得る。
【0005】
また、別の方法としては、特開昭62−290900号に開示されている透明導電膜が形成された基板面にレジストパターンを密着させ、HCl水溶液中に浸漬して通電した後通電を停止することにより、レジスト以外の部分の透明導電膜をパターンニングする電気化学的方法が知られている。
【0006】
【発明が解決しようとする課題】
従来のエッチング法によるパターニングではいずれもフォトレジストなどによるレジストのポジパターンの形成、露光、現像、エッチング、レジスト剥離、後処理といったエッチングの前工程及び後工程が多い。また、化学エッチングでは溶液中でエッチングを行うため、レジストの膨張、剥離による精度低下をもたらすことがあるという問題がある。また、厳密な溶液の温度管理と時間管理が必要であるという問題もある。
ドライエッチングについては、精度の高いパターニングが可能であるが、処理速度が遅く、装置自身の処理能力が低く結果として製造コストが高くなるという問題の他、フォトレジストの剥離には非常に強力な酸化剤を必要とする場合があるという問題がある。また、強力な酸化剤は取り扱いが危険であること、廃液処理も難しいという問題もある。プラズマ灰化法については、溶液を使用せず無公害なレジスト除去方法であるが、全てのレジストに対して利用できるわけではない。
【0007】
電気化学的方法の場合化学エッチングのように厳密な溶液の温度管理は必要でないが、所望のエッチングパターンを得るためには透明導電膜が形成された基板面にレジストパターンを密着させる必要があり、フォトレジストがなければパターニングできず、パターン作製工程が必要であるという問題がある。
更に従来のエッチング法で光起電力素子などの半導体の薄膜多層構成物上に形成された透明導電膜をパターニングする場合、液処理時間が長いと半導体の薄膜多層構成物に悪影響を及ぼすおそれがある。また、温度管理が不十分な場合、エッチング不良が生じ、光起電力素子にシャントやショートを生じさせる原因となる。また、レジスト法はエッチング中にレジスト剥離が生じた場合オーバーエッチングが生じることがあり、余分な部分をエッチングしてしまい、外観不良や光起電力素子の特性低下の原因となる。また、非エッチング領域及び非エッチング層への損傷が生じることもある。
【0008】
ところで、従来のエッチング法を施してパターニングするエッチング装置では、図2に示すように金属基板201上に形成された透明導電膜202(図2(a))上に塗布装置203によりレジスト204を塗布し(図2(b))、不図示の乾燥器で乾燥する。続いて、レジスト204上にマスクパターン205を配置し露光器206により露光する(図2(c))。次に現像水槽207内で現像を行う(図2(d))。現像後、洗浄リンス槽208内で洗浄し乾燥する(図2(e))。次にエッチング槽209内でエッチング処理し(図2(f))、レジスト剥離処理槽210内でレジスト剥離、洗浄後乾燥して所望のパターンが得られる(図2(g))。このように多数の工程があるため装置もそれらの工程をまとめるのは難しく、装置が多数に分けられてしまう。また、いくつかの工程を、同一装置内にまとめても大型化してしまうばかりか、連続工程を実現するのが難しく、処理時間が短縮できない。
本発明の目的は以上のような課題を克服して、処理工程が少なく簡便で、選択精度に優れ、安定性のある透明導電膜の選択的エッチング方法を提供することにある。
本発明の他の目的はシャントや外観不良、非エッチング領域及び非エッチング層への損傷の発生などの課題を解決して特性の良好な光起電力素子を提供することにある。
本発明の更なる目的は、低コストで工程も少なく、装置を小型化でき、処理時間を短縮できる透明導電膜を選択的エッチングする装置を提供することにある。
【0009】
【課題を解決するための手段】
本発明は従来技術における上述した問題点を解決し、上記目的を達成するものである。本発明のエッチング方法は、被エッチング膜を積層した基板を電解液中に浸漬し、前記基板を陰極とし、前記基板及び前記電解液間に直流電流またはパルス電流を流すことにより、前記被エッチング膜の所定の部分を選択的に除去するエッチング方法であって、前記エッチング方法はエッチング装置を用いて行い、前記エッチング装置は、前記電解液を内部に有する電解槽、前記基板を保持しつつ昇降または回転により前記電解槽の前記電解液への前記基板の浸漬及び前記基板の前記電解槽からの排出が連続して行える基板搬送機構、及び陰極として機能する前記基板に対向する対向極であって、その表面にギャップの有無により形成されたエッチングパターンを有する対向極を保持する電極保持機構を備え、基板搬送機構により前記基板を前記電解槽の前記電解液に浸漬し、前記電極保持機構により前記対向極を前記基板から所定の間隔の位置に前記ギャップと前記被エッチング膜との間が絶液するように配置し、前記基板及び前記被エッチング膜及び前記電解液間に前記対向極を介して前記直流電流またはパルス電流を流すことで陰極として機能する前記基板側に生じる水素によって前記基板の前記被エッチング膜を還元し、該被エッチング膜の絶液していない部分を選択的に溶解除去し、その後前記基板を前記基板搬送機構により前記電解槽から排出することを特徴とする。また、前記基板は金属体の基板または金属体上に半導体層が積層されている基板であることができる
【0010】
本発明の半導体素子を製造する装置は基板上に積層してある被エッチング膜をエッチングする装置を有するものであって、前記エッチング装置は、電解液を内部に有する電解槽、前記基板を保持しつつ昇降または回転により前記電解槽の前記電解液への前記基板の浸漬及び前記基板の前記電解槽からの排出が連続して行える基板搬送機構、及び直流電流またはパルス電流を流すための対向極を保持する電極保持機構を備え、該対向極はギャップの有無により形成されたエッチングパターンを有し、前記基板搬送機構により前記基板を前記電解槽の前記電解液に浸漬し、前記電極保持機構により前記対向極を前記基板から所定の間隔の位置に前記ギャップと前記被エッチング膜との間が絶液するように配置し、前記対向極を介して直流電流またはパルス電流を前記基板及び前記被エッチング膜及び前記電解液間に流すことで前記基板側に生じる水素によって前記基板の前記被エッチング膜を還元し、該被エッチング膜の絶液していない部分を選択的に溶解除去し、その後前記基板を前記基板搬送機構により前記電解槽から排出することを特徴とする。前記基板の固定は磁力によってなされることができる。また、前記基板側を陰極、対向極側を陽極として直流電流またはパルス電流を流すことができる。
【0011】
【作用】
本発明者らは、透明導電膜などの被エッチング膜の電気化学的反応による還元、溶解現象を利用したエッチング方法について実験を介して鋭意検討を行った。即ち、良好なエッチングパターンの得られる条件を実験を介して見い出した。本発明はかくして得られた知見に基づいて完成に至ったものである。本発明のエッチング方法は、基板を電解液中に浸漬し、該基板を陰極とし、前記基板及び前記被エッチング膜及び前記電解液間に直流電流またはパルス電流を流すことにより、前記被エッチング膜を電解還元するエッチング方法であって、前記基板から所定の間隔の位置に対向極を設け前記直流電流またはパルス電流が流されることを特徴とする。
【0012】
本発明によれば透明導電膜の良好なエッチングパターンが得られる。この点について以下に説明する。
一般に、アモルファス太陽電池などに用いられる透明導電膜としては、可視光に対する透明性と電気伝導性で優れた特性をもつSnO2,In23,ITO(In23+SnO2)膜などが使用される。これらの透明導電膜の製法としては、真空蒸着法、イオン化蒸着法、スパッタリング法、CVD法、プラズマCVD法、スプレー法などを用いることができ、所望に応じて適宜選択される。これらの透明導電膜をアモルファス太陽電池などに用いる場合、一定の選択された範囲でエッチングによりパターン化する必要がある。しかし、これら透明導電膜は酸及び塩基に不溶であることからエッチングしにくい物質であり、化学的にエッチングするには反応が遅いため、反応速度を速めるために高温でエッチングする必要がある。
これに対し、電気化学エッチングと呼ばれる方法では、種々の電解液を用いることができ、室温で反応が進み、外部から熱を供給する必要がない。ここでは、電解に際して陰極側に生じる発生期水素が透明導電膜を還元し、電解液中に溶解し除去される。
電解液に使用する電解質は、透明導電膜の材料によって異なるが、塩化ナトリウム、塩化カリウム、塩化アルミニウム、塩化亜鉛、塩化錫、塩化第二鉄、硝酸ナトリウム、硝酸カリウム、塩酸、硝酸、硫酸などが好適に用いられる。
対向極の材料としては、白金、カーボン、金、ステンレス鋼、ニッケル、銅、鉛を挙げることができ、金、白金、カーボンが化学的に安定でかつ、所望のパターンに加工し易いために好適に用いられる。
【0013】
被エッチング膜と対向極との間にギャップを設けるには、図1に示したように対極がギャップに挟み込まれた形でギャップは被エッチング膜に接触しているが、対向極は非接触になる構成が考えられる。図において101は基板、102は被エッチング膜、103は対向極、104はギャップ、105は電解槽、106電解液、107は電源を示す。図1(a)は横側からみた図であり、図1(b)は対向極部及びギャップをギャップの接触面からみた図であり、図1(c)は透明導電膜がパターニングされた基板を示した図である。ギャップ厚さを調節することにより、流れる電流密度との関係でエッチングの深さ方向を調節でき、通常0.1mm〜2mmの範囲でギャップ厚さを設定する。ギャップによる対極が液に晒される形状により所望のパターニングが得られる。図1では、田型に対向極を設け、パターン化を行うようにしてある。ここで、電解液中に基板を浸漬し、基板側を陰極に接続し、対向極が非接触の状態で間に電解液を存在させながら所定の間隔に位置している。そして、接触しているギャップ部分と被エッチング膜との間は絶液した状態を保っている。このため、対向極側を陽極に接続し、直流電流を流すことにより被エッチング膜と対向極との間のみで被エッチング膜表面の還元反応を起こすことができ、被エッチング膜側にマスク形成する必要はない。このとき、流す電流が好適に用いられ、電流を印加時間や電流量を調整したり、パルス電流とすることによりエッチングによるパターニングの選択性をよりコントロールできる。ギャップに用いる材料としてはシリコンゴムやシリコンスポンジなどの軟質な材質でかつ、耐薬液性があるものが好適に用いられる。
【0014】
また、これらの透明導電膜などの被エッチング膜のパターニングの精度は光起電力素子の特性に大きな影響を与える。図3に本発明によりパターニングを施し、作成した光起電力素子の一例としてアモルファス太陽電池を示す。図3(a)はアモルファス太陽電池の断面図、図3(b)は図3(a)のアモルファス太陽電池を光入射側からみた図であり、30cm×30cm角にパターニングされている。図において、301は基板、302は下部電極、303は半導体層、304は透明導電膜、305は集電電極、306は透明導電膜をパターン化した部分を示す。基板301はアモルファス太陽電池の場合、支持基板の役目をし、導電性基板を用いることにより、裏面電極の役目も果たす。下部電極302は半導体層303が発生した電力を取り出すための一方の電極であり、半導体層303に対してはオーミックコンタクトとなる仕事関数を持つことが要求される。下部電極302の表面を光の乱反射を起こさせるためにテクスチャー化してもよい。材料としては、AlSi,Ag,Pt,ZnO,In23,ITOなどの金属体または合金及び透明導電性酸化物が用いられる。半導体層303は、n層、i層、p層からなるシングルセル構成であることができ、あるいはpin接合またはpn接合のセルを複数積層したダブルセル構成またはトリプルセル構成であることができる。集電電極305を形成後、プラス取り出し電極307及びマイナス取り出し電極308を形成する。
【0015】
太陽電池により、より多くの電力を得るためには大面積化の必要があるが、変換効率は面積が大きくなるにつれて減少する傾向にある。これは透明導電膜の抵抗による電力損失が主たる原因である。そのため集電電極305の集電効率との関係から太陽電池の有効面積が決定されるが、透明導電膜のパターニングを正確に行うことにより、太陽電池の有効面積が増加し、出力の向上が図れる。また、パターニングの際にエッチングが不十分となり、パターン部306に断線が生じると、有効面積外のシャント部からリーク電流が発生し効率低下の原因となる。このため、エッチングの際、透明導電膜がエッチングにより完全に除去されることが必要である。また、これらのエッチング不良は初期特性に影響を与えるばかりでなく、信頼性試験におけるシャントの発生の原因となり、屋外での使用などに問題となる。更に、図示しないが透明導電膜を積層した構成である場合、透明性基板上に堆積したアモルファス太陽電池、単結晶系、多結晶系、薄膜多結晶系太陽電池においても本発明の思想を用いた構成は適用可能であることはいうまでもない。
【0016】
次に、本発明の選択的エッチングを実施するに好適な装置を図4及び図5に示す。
図4は基板の電解液への浸漬を回転式にして行う装置を示す。図4において、401は電解槽、402は基板、403は電解液、404は対向極、405は対向極昇降機構、406はギャップ、407は基板保持部、408は回転ドラム、409は回転軸、410は基板搬送機構、411は処理液排除機構、412は電源、413はシーケンスコントローラー、414は搬送ベルトを示す。電解槽401は塩化ビニル樹脂、アクリル樹脂のように耐酸性で錆の発生などがなく、軽量かつ、加工の容易な材質が好適に選ばれる。ここで電源からの陰極の接続は回転軸を通して、回転ドラム内で接続されている。回転ドラムの形状は図4に示すような4面体であっても、5面体以上であってもよい。各面に電極が接続されていて電解液に浸漬されている陰極に電流が流れるようにオン・オフできるようにするのが好ましい。対向極404は回転時には回転ドラム408の回転半径より外側に位置しており、電流が流される直前に基板の被エッチング膜にギャップ406はつき当たり、その後、電流が流されエッチングが施される。
【0017】
この際、シーケンスコントローラー413により電流量や時間を調節し、更には、パルス電流の調整を行う。また、基板保持部407には固定用の磁石を設けてあり、磁力により固定が行われるため、磁力のオン・オフにより基板の脱着が容易にできる。なお、磁力のオン・オフは基板の裏面側から固定板に磁石を近接させ基板を固定、基板を外す場合には磁石を固定板から離す機構を持たせるとよい。処理液排除機構411は電解槽の外部に電解液を持ち出さないためにエッチング後、基板表面から電解液を取り除くものであり、エアー吹き付けやブラシにより液取り除きを行う。さらに、回転ドラムの基板固定面には連続して投入されるため、ドラムが4面体以上である場合、待機、エッチング、処理液排除、排出が時間のロスなく連続して行うことができ、処理時間が大幅に短縮される。
【0018】
図5は基板の電解液への浸漬を昇降式にして行う装置を示す。図5において、501は電解槽、502は基板、503は電解液、504は対向極、505はギャップ、506は基板保持部、507は基板保持部昇降機構、508は処理液排除機構、509は電源、510はシーケンスコントローラー、511は搬送ベルトを示す。507の基板保持部昇降機構はエアーシリンダーを用いボールベアリングなどを併用するとよい。このように基板の固定部に昇降機構を連結することにより、基板の電解液への浸漬、エッチング、搬送が連続かつ短時間で処理できる。基板の固定部は電解液に降下し、電流が流される直前に基板の透明導電膜が対向極504上に形成されているギャップ505につき当たり、その後、電流が流されエッチングが施される。また、基板保持部506には固定用の磁石が設けてあり、磁力により固定が行われているため、磁力のオン・オフにより基板の脱着が容易にできる。処理液排除機構507は電解槽の外部に電解液を持ち出さないためにエッチング後、基板表面から電解液を取り除くものである。更に、基板を平面方向で投入するために、電解液の必要量は少なく、装置も小型化できる。
【0019】
【実施例】
本発明を以下の実施例により更に詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
【0020】
【実施例1】
図4に示す回転式装置により透明導電膜のパターニングを行い、図3に示すpin接合シングルセル構成のアモルファス太陽電池を作製した。
まず、十分に脱脂、洗浄したSUS基板SUS430BA製基板301を不図示のDCスパッタ装置に入れAgを4000Å堆積し、その後ZnOを4000Å堆積して下部電極302を形成した。基板を取り出し、不図示のRFプラズマCVD成膜装置に入れn層、i層、p層の順で半導体層303の堆積を行った。その後、不図示の抵抗加熱の蒸着装置にいれ反射防止効果を兼ねた機能を有する透明導電膜304としてIn23膜を成膜した(成膜温度190℃、膜厚700Å)。
【0021】
次に31cm×31cm角にこの太陽電池基板をカットし、図4に示す4面体ドラム式の回転式エッチング装置のゴム製の搬送ベルト414に光入射面を上面にして投入した。次に吸着パットを配列具備した基板搬送機構410が太陽電池基板の端部を吸着し、基板保持部407上に配置した。基板保持部の表面には不図示の平板上の電極が設置してあり、裏面は電源の陰極側に接続されている。基板が配置された後、基板保持部に具備されたマグネットが上昇し、基板を磁力により保持した。次に、回転ドラムが回転し、基板保持部が基板ごと電解液に浸漬した。このとき電解液は塩化アルミニウムの6水和物を電解質とした8wt%溶液を用い、電解液の電気伝導度は65.0mS/cm2であった。また、液温は室温と同じ25.0℃であった。次に、Pt製で露出部が0.5mm幅のラインで30cm×30cm角にパターニングされている対向極404が対極昇降機構405により上昇し、厚みが1mmのシリコンゴム製のギャップ406が基板の透明導電膜上につき当たり、密着した。次に電源412により25Åの直流電流をシーケンスコントローラー413により0.5秒間通電した。通電後、対向極404は下降し、回転ドラムが回転した。回転途中、エアー吹き付けによる処理液排除機構411を通過し、基板の表面についた電解液が取り除かれた。基板が上面に回転移動した時点でマグネットが下降し基板保持部から離れた。次に基板搬送機構410が太陽電池基板の端部を吸着し搬送ベルト414に移動搬送した。上記の操作を連続で太陽電池基板100個について行ったところ、10秒タクトで処理できた。パターニングされた太陽電池基板を不図示の装置により純水で洗浄、乾燥した後、銀ペーストをスクリーン印刷して集電電極305を形成した。さらに銅箔を用いたプラス電極306を銀ペーストで集電電極305に接続し、マイナス電極307を半田によりSUS基板301の裏面側に接続して図3に示す構成の太陽電池を複数個得た。
【0022】
得られた太陽電池について、初期特性を以下のように測定した。まず、暗状態での電圧電流特性を測定し、原点付近の傾きからシャント抵抗を求めたところ平均で80kΩ・cm2でシャントは生じていなかった。次に、AM1.5グローバルの太陽光スペクトルで100mW/cm2の光量の疑似太陽光源(SPIRE社製)を用いて太陽電池特性を測定し、変換効率を求めたところ7.0%±0.2%で良好であった。このとき、エッチングによりパターニングされた部分を顕微鏡で観察したところ、断線やエッチング不良はなく、均一なラインが得られていた。歩留まりは98%であった。更にこれらの太陽電池を公知手法でラミネートしてモジュール化し、信頼性試験を、日本工業規格C8917の結晶系太陽電池モジュールの環境試験法及び耐久試験法に定められた温湿度サイクル試験A−2に基づいて行った。即ち、試料を、温湿度が制御できる恒温恒湿器に投入し、−40℃から+85℃(相対湿度85%)に変化させるサイクル試験を20回繰り返し行った。次に試験終了後の試料を初期と同様にシミュレーターで測定したところ、初期変換効率に対して平均で2.0%の劣化で有意な劣化は生じていなかった。
【0023】
本実施例の結果から、エッチングによるパターニング精度は良好で、パターニング工程を入れて作製した太陽電池の初期特性は良好であり、信頼性も高いことが分かる。しかも、電解処理の前後に予備工程は必要でなく、処理速度も短時間でできることが分かる。
【0024】
【比較例1】
比較のために従来のフォトマスクによりパターン形成する電解エッチングパターニングの工程を入れてpin接合シングルセル構成のアモルファス太陽電池300を作製した。太陽電池の作製はIn23の透明導電膜の形成まで実施例1と同様にして行った。フォトレジストマスクのパターニングは透明導電膜202上に感光樹脂のレジストを塗布、乾燥した。次に30cm×30cm角にパターニングしたマスクを重ね、紫外線を照射し薬品処理しパターニングを施した。フォトマスクによりパターニングされた太陽電池基板を図2に示すような工程と電解エッチング装置でエッチング処理した。電解液は実施例1と同様に塩化アルミニウムの6水和物を電解質とした溶液を用い、電解条件も同じにした。処理後、不用となったフォトマスクをアルコールで除去した。その後、不図示の装置により純水で洗浄、乾燥し、集電電極を形成し図3に示すような太陽電池を複数個得た。
【0025】
これらの太陽電池について、初期特性を実施例1と同様にして測定したところ、シャント抵抗が10kΩ・cm2のものが10%あった。また変換効率は5.3±1.8%でばらつきが大きかった。また、シャントが生じており、パターニングラインを顕微鏡で観察すると断線が生じていた。この断線は紫外線照射してパターニングする際、フォトマスクの除去が不十分であることが分かった。また、変換効率の低いものはシャントが生じている以外に、ラインの幅が大で不均一のものもあった。これはフォトレジスト膜と透明導電膜との密着性が不十分であり、対向極側がパターニングされていないため、生じる電気力線を制御できず、サンドエッチングやオーバーエッチングになっていることが分かった。
【0026】
【実施例2】
太陽電池をpin接合トリプル型セル構成の半導体層のものにして該半導体層をマイクロ波CVD法を用いて形成し、透明導電膜としてITOを形成した以外は実施例1と同様にしてアモルファス太陽電池300を作製した。即ち、まず、十分に脱脂、洗浄したSUS基板SUS430BA製基板301を不図示のDCスパッタ装置に入れAgを4000Å堆積し、その後ZnOを4000Å堆積して下部電極302を形成した。基板を取り出し、不図示のマイクロ波プラズマCVD成膜装置に入れ、n層、i層、p層の順でボトムセルを形成した。次に、同様にn層、i層、p層の順でミドルセルを形成し、続いてn層、i層、p層の順でトップセルを形成し、半導体層を形成した。次に、基板を不図示のスパッタリング装置に入れ反射防止効果を兼ねた機能を有する透明導電膜304としてITO膜を成膜した(成膜温度170℃、膜厚730Å)。
【0027】
次に31cm×31cm角にこの太陽電池基板をカットし、実施例1と同様に、図4に示す4面体ドラム式の回転式エッチング装置のゴム製の搬送ベルト513に光入射面を上面にして投入し、30cm×30cm角にエッチング、パターニングし、集電電極を形成し、図3に示す構成の太陽電池を複数個得た。これらの太陽電池について、初期特性を実施例1と同様にして測定したところ、9.0%±0.2%で良好であった。このとき、エッチングによりパターニングされた部分を顕微鏡で観察したところ、断線やエッチング不良はなく、均一なラインが得られていた。歩留まりは95%であった。
【0028】
ついで得られた太陽電池を実施例1と同様にしてラミネートしてモジュール化し、信頼性試験を行った。次に試験終了後の試料をシミュレーターで測定したところ、初期変換効率に対して平均で2.1%の劣化で有意な劣化は生じていなかった。
本実施例の結果から、エッチングによるパターニング精度は良好で、パターニング工程を入れて作製した太陽電池の初期特性は良好であり、信頼性も高いことが分かる。しかも、電解処理の前後に予備工程は必要でなく、処理速度も短時間でできることが分かる。
【0029】
【実施例3】
図5に示すエッチング装置を用いた以外は実施例1と同様にして図3に示すpin接合シングルセル構成のアモルファス太陽電池300を作製した。次に31cm×31cm角にこの太陽電池基板をカットし、図5に示すエッチング装置の表面を滑面加工した搬送部512に光入射面を下面にして投入した。次に基板保持部506が太陽電池基板502に接近し、磁力により基板を吸着し、基板保持部506上に配置した。基板保持部506の表面には不図示の平板上の電極が設置してあり、裏面は電源の陰極側に接続されている。基板が配置された後、昇降装置は電解槽501上に移動し下降して電解液503に浸漬し、基板保持部506が基板502ごと電解液に浸漬した。このとき電解液503は塩化カリウムを電解質とした10wt%溶液を用い、電解液の電気伝導度は50.0mS/cmであった。また、液温は室温と同じ25.0℃であった。次に、基板保持部506が基板ごとPt製で露出部が0.5mm幅のラインで30cm×30cm角にパターニングされている対向極504上についている厚みが1mmのシリコンゴム製のギャップ505が基板の透明導電膜上につき当たり、密着した。次に電源509により30Åの直流電流をシーケンスコントローラー510により0.4秒間通電した。通電後、基板保持部は上昇し、エアー吹き付けによる処理液排除機構508を通過し、基板の表面についた電解液が取り除かれた。更に基板保持部が移動し、ゴム製の搬送ベルト上で磁力がオフになり排出され移動搬送した。上記の操作を連続で100個の太陽電池基板について行ったところ、25秒タクトで処理できた。パターニングされた基板を不図示の装置により純水で洗浄、乾燥した後、集電電極を形成し図3に示す構成の太陽電池を複数個得た。
【0030】
得られた太陽電池について、初期特性を以下のように測定した。即ち、まず、暗状態での電圧電流特性を測定し、原点付近の傾きからシャント抵抗を求めたところ平均で85kΩ・cm2でシャントは生じていなかった。次に、AM1.5グローバルの太陽光スペクトルで100mW/cm2の光量の疑似太陽光源(SPIRE社製)を用いて太陽電池特性を測定し、変換効率を求めたところ7.1%±0.3%で良好であった。このとき、エッチングによりパターニングされた部分を顕微鏡で観察したところ、断線やエッチング不良はなく、均一なラインが得られていた。歩留まりは97%であった。ついで、該太陽電池を実施例1と同様にしてラミネートしてモジュール化し、信頼性試験を行った。次に試験終了後の試料を初期と同様にシミュレーターで測定したところ、初期変換効率に対して平均で1.8%の劣化で有意な劣化は生じていなかった。
本実施例の結果から、エッチングによるパターニング精度は良好で、パターニング工程を入れて作製した太陽電池の初期特性は良好であり、信頼性も高いことが分かる。しかも、電解処理の前後に予備工程は必要でなく、処理速度も短時間でできることが分かる。
【0031】
【実施例4】
金属導電性膜のエッチングの一実施例としてICに用いるウエハ上の配線回路パターニングを以下のように行った。まず、ウエハ上にTi−Wの金属層をスパッタ法で1000Åを堆積し、続いてアルミニウムの金属層をスパッタ法で1μm堆積した。これを実施例1で用いた装置の対向極404を所望の配線回路のパターニングとしアルミニウムの金属層のエッチングを行った。パターニング後、配線パターンを顕微鏡観察により調べたが、回路の断線やエッチング不良は確認されなかった。また、回路の電気的動作確認によっても異常は認められなかった。
本実施例の結果から、エッチングによるパターニング精度は良好で、パターニング工程を入れて作製したIC用の配線回路は良好であることが分かる。
【0032】
【発明の効果】
本発明のエッチング方法によれば、処理工程を大幅に削減することができ、選択精度に優れ、非エッチング領域及び非エッチング層への損傷を非常に少なくすることが可能なパターニングが可能である。
また、本発明のエッチング方法を工程を採用することによりシャントや外観不良などの課題を解決して特性の良好な光起電力素子が得られる。
更にまた、本発明のエッチング装置によれば、低コストで工程も少なく、処理時間を短縮してエッチングすることができ、装置が小型化でき、省スペース化が可能になる。
【図面の簡単な説明】
【図1】本発明のエッチング方法の構成とエッチングパターンを示した図である。
【図2】従来のエッチング工程と装置を示した図である。
【図3】本発明のエッチング工程を採用して作製した太陽電池の模式図である。
【図4】本発明の回転式エッチング装置の模式図である。
【図5】本発明の昇降式エッチング装置の模式図である。
【符号の説明】
101,201,301 基板
102,202,304 被エッチング膜
103,404,405 対向極
104,406,505 ギャップ
105,401,501 電解槽
106,403,405 電解液
107,412,509 電源
203 塗布装置
204 レジスト
205 マスク
206 露光装置
207 現像槽
208 リンス洗浄槽
209 エッチング槽
210 レジスト剥離処理槽
300 太陽電池
302 下部電極
303 半導体層
305 集電電極
306 パターン化された部分
402,502 基板
405 対向極昇降機構
407,506 基板保持部
408 回転ドラム
409 回転軸
410 基板搬送機構
411,508 処理液排除機構
413,510 シーケンスコントローラー
414 搬送ベルト
507 基板保持部昇降機構
511 搬送部
[0001]
[Industrial application fields]
The present invention relates to an improved etching method and a semiconductor device manufacturing apparatus using the etching method. More specifically, the present invention relates to an etching method that is simple and excellent in selection accuracy, and that can significantly reduce damage to a non-etched region and a non-etched layer. The present invention also relates to an apparatus capable of manufacturing a semiconductor element such as a good photovoltaic element at a low cost with a small number of steps and a reduced processing time.
[0002]
[Prior art]
Conventionally, the etching technique has been widely used in the process of manufacturing semiconductor devices for various applications such as solar cells and photodiodes, which are one of photovoltaic elements. For example, in a semiconductor element such as a diode or an IC, it is used for patterning or separation of an electrode or substrate such as a metal conductive film or a transparent conductive film, or a semiconductor layer. Also, in semiconductor elements such as solar cells, it is used for patterning and separation of transparent conductive films and electrodes and semiconductor layers.
[0003]
For example, the element manufacturing using such an etching technique is performed as follows. That is, a transparent conductive film is formed on a light-transmitting insulating substrate, a predetermined pattern of solar cells is formed by etching on this film, and an amorphous silicon layer which is a photoelectric conversion layer is formed on the patterned transparent conductive film. An amorphous silicon solar cell is manufactured by forming a film and forming a back electrode thereon. As another example, an amorphous silicon layer is formed on a metal substrate, then a transparent conductive film is formed, this film is patterned by etching, and a current collecting grid such as silver is formed thereon. An electrode is formed to produce an amorphous silicon solar cell. Solar cells using this metal substrate can be processed after bending, such as bending, and since the substrate is made of metal, there are advantages such as easy electrochemical processing such as defect processing and continuous film formation. Attention has been paid.
[0004]
As a method of selectively patterning by etching after forming a transparent conductive film on a substrate, a chemical etching method as disclosed in JP-A-55-108779 and U.S. Pat. No. 4,419,530 is known. ing. Here, an example of the patterning method of the transparent conductive film will be described. First, a desired positive pattern is formed by exposing and developing a photoresist formed by silk screen printing, flexographic printing, other printing methods, or a spinner or printing with a desired pattern. Next, the transparent conductive film corresponding to the negative part of the resist pattern (exposed part of the transparent conductive film) was removed by etching with an etching solution such as ferric chloride solution or nitric acid which is an acidic solution, and the resist pattern was supported. Leave the transparent conductive film. Alternatively, the transparent conductive film corresponding to the resist pattern is left by means such as dry etching by plasma etching. Then, the resist pattern (printing ink such as silk screen ink, resin, and cured photoresist pattern) remaining in the positive portion is dissolved and / or stripped and removed with the respective stripping agent, or a dry process. Removal by a plasma ashing method or the like to obtain a transparent conductive film having a desired pattern shape.
[0005]
As another method, the resist pattern is brought into close contact with the substrate surface on which the transparent conductive film disclosed in JP-A-62-290900 is formed, immersed in an aqueous HCl solution, energized, and then energized. Thus, an electrochemical method for patterning the transparent conductive film in portions other than the resist is known.
[0006]
[Problems to be solved by the invention]
In the conventional patterning by the etching method, there are many pre-processes and post-processes of etching such as formation of a positive pattern of a resist using a photoresist, exposure, development, etching, resist stripping, and post-processing. In addition, since chemical etching is performed in a solution, there is a problem in that accuracy may be reduced due to expansion and peeling of the resist. There is also a problem that strict temperature control and time management of the solution are necessary.
For dry etching, high-precision patterning is possible, but the processing speed is slow and the processing capability of the device itself is low, resulting in high manufacturing costs. There is a problem that an agent may be required. In addition, there is a problem that a strong oxidizing agent is dangerous to handle and waste liquid treatment is difficult. The plasma ashing method is a non-polluting resist removal method that does not use a solution, but is not available for all resists.
[0007]
In the case of the electrochemical method, it is not necessary to strictly control the temperature of the solution as in the case of chemical etching, but in order to obtain a desired etching pattern, it is necessary to adhere the resist pattern to the substrate surface on which the transparent conductive film is formed. If there is no photoresist, patterning cannot be performed, and there is a problem that a pattern preparation process is necessary.
Further, when patterning a transparent conductive film formed on a semiconductor thin film multilayer structure such as a photovoltaic element by a conventional etching method, there is a risk of adversely affecting the semiconductor thin film multilayer structure if the liquid treatment time is long. . Further, when the temperature control is insufficient, an etching failure occurs, which causes a shunt or a short circuit in the photovoltaic element. Further, in the resist method, when resist peeling occurs during etching, over-etching may occur, and an excessive portion is etched, which causes poor appearance and deterioration of the characteristics of the photovoltaic element. Further, damage to the non-etched region and the non-etched layer may occur.
[0008]
By the way, in an etching apparatus that performs patterning by performing a conventional etching method, a resist 204 is applied by a coating apparatus 203 on a transparent conductive film 202 (FIG. 2A) formed on a metal substrate 201 as shown in FIG. (FIG. 2 (b)) and dried with a drier not shown. Subsequently, a mask pattern 205 is placed on the resist 204 and exposed by an exposure device 206 (FIG. 2C). Next, development is performed in the developing water tank 207 (FIG. 2D). After development, the substrate is washed and dried in a washing rinse bath 208 (FIG. 2 (e)). Next, an etching process is performed in the etching tank 209 (FIG. 2F), the resist is stripped in the resist stripping process tank 210, washed, and then dried to obtain a desired pattern (FIG. 2G). Since there are many processes in this way, it is difficult for the apparatus to organize these processes, and the apparatus is divided into a large number. Moreover, even if several processes are put together in the same apparatus, not only will the size be increased, but it is difficult to realize a continuous process, and the processing time cannot be shortened.
An object of the present invention is to overcome the above-described problems and provide a selective etching method for a transparent conductive film that is simple, has few processing steps, is excellent in selection accuracy, and is stable.
Another object of the present invention is to provide a photovoltaic device having good characteristics by solving problems such as shunts, poor appearance, and damage to non-etched regions and non-etched layers.
It is a further object of the present invention to provide an apparatus for selectively etching a transparent conductive film that can be manufactured at a low cost, with few processes, a small apparatus, and a short processing time.
[0009]
[Means for Solving the Problems]
  The present invention solves the above-mentioned problems in the prior art and achieves the above object. The etching method of the present inventionA predetermined portion of the film to be etched is selected by immersing the substrate on which the film to be etched is laminated in an electrolytic solution, using the substrate as a cathode, and passing a direct current or a pulse current between the substrate and the electrolytic solution. The etching method is performed by using an etching apparatus, and the etching apparatus includes an electrolytic bath having the electrolytic solution therein, and the electrolytic bath is moved up and down or rotated while holding the substrate. A substrate transport mechanism capable of continuously immersing the substrate in the electrolytic solution and discharging the substrate from the electrolytic cell; and a counter electrode facing the substrate functioning as a cathode, and having a gap on the surface thereof An electrode holding mechanism for holding a counter electrode having an etching pattern formed by the step, and the substrate is transferred to the electrolytic solution in the electrolytic cell by a substrate transport mechanism. And the counter electrode is disposed at a predetermined distance from the substrate by the electrode holding mechanism so that the gap and the film to be etched are completely drained, and the substrate, the film to be etched, and the electrolytic film By passing the direct current or pulse current between the liquids through the counter electrode, the film to be etched of the substrate is reduced by hydrogen generated on the substrate functioning as a cathode, and the film to be etched is made liquid-free. The part which does not exist is selectively dissolved and removed, and then the substrate is discharged from the electrolytic cell by the substrate transport mechanism.It is characterized by that. The substrate may be a metal substrate or a substrate in which a semiconductor layer is stacked on the metal member..
[0010]
  An apparatus for manufacturing a semiconductor element of the present invention has an apparatus for etching an etching target film laminated on a substrate,The etching apparatus includes an electrolytic bath having an electrolytic solution therein, and the substrate is immersed and lifted or rotated while holding the substrate, and the substrate is continuously immersed in the electrolytic solution and discharged from the electrolytic bath. A substrate transport mechanism that can be performed by this, and an electrode holding mechanism that holds a counter electrode for flowing a direct current or pulse current, the counter electrode has an etching pattern formed by the presence or absence of a gap, and the substrate transport mechanism A substrate is immersed in the electrolytic solution in the electrolytic bath, and the counter electrode is disposed at a predetermined distance from the substrate by the electrode holding mechanism so that the gap and the film to be etched are completely separated. The substrate is caused by hydrogen generated on the substrate side by passing a direct current or a pulse current between the substrate, the film to be etched, and the electrolytic solution through the counter electrode. The reduction of the film to be etched, a portion not absolute liquid該被etched film is selectively dissolved and removed, and then discharging the substrate from the electrolytic bath by the substrate transfer mechanismIt is characterized by that. The substrate can be fixed by magnetic force.. Also,Direct current or pulse current can be passed with the substrate side as the cathode and the counter electrode side as the anode.
[0011]
[Action]
The inventors of the present invention have intensively studied through an experiment on an etching method using a reduction and dissolution phenomenon of an etching target film such as a transparent conductive film by an electrochemical reaction. That is, the conditions for obtaining a good etching pattern were found through experiments. The present invention has been completed based on the knowledge thus obtained. The etching method of the present invention comprises immersing a substrate in an electrolytic solution, using the substrate as a cathode, and passing a direct current or a pulse current between the substrate, the etched film, and the electrolytic solution, thereby An etching method for electrolytic reduction, characterized in that a counter electrode is provided at a predetermined distance from the substrate, and the direct current or pulse current is passed.
[0012]
According to the present invention, a good etching pattern of a transparent conductive film can be obtained. This will be described below.
Generally, as a transparent conductive film used for an amorphous solar cell or the like, SnO having excellent properties in transparency to visible light and electrical conductivity.2, In2OThree, ITO (In2OThree+ SnO2) A membrane or the like is used. As a method for producing these transparent conductive films, a vacuum vapor deposition method, an ionization vapor deposition method, a sputtering method, a CVD method, a plasma CVD method, a spray method, or the like can be used, and the method is appropriately selected as desired. When these transparent conductive films are used for amorphous solar cells and the like, it is necessary to pattern them by etching within a certain selected range. However, these transparent conductive films are difficult to etch because they are insoluble in acids and bases, and the chemical reaction requires a slow reaction. Therefore, it is necessary to etch at a high temperature in order to increase the reaction rate.
On the other hand, in a method called electrochemical etching, various electrolytic solutions can be used, the reaction proceeds at room temperature, and it is not necessary to supply heat from the outside. Here, nascent hydrogen generated on the cathode side during electrolysis reduces the transparent conductive film and dissolves and removes it in the electrolytic solution.
The electrolyte used for the electrolyte varies depending on the material of the transparent conductive film, but sodium chloride, potassium chloride, aluminum chloride, zinc chloride, tin chloride, ferric chloride, sodium nitrate, potassium nitrate, hydrochloric acid, nitric acid, sulfuric acid, etc. are suitable Used for.
Examples of the material for the counter electrode include platinum, carbon, gold, stainless steel, nickel, copper, and lead. Gold, platinum, and carbon are suitable because they are chemically stable and can be easily processed into a desired pattern. Used for.
[0013]
  In order to provide a gap between the film to be etched and the counter electrode, the gap is in contact with the film to be etched with the counter electrode sandwiched between the gaps as shown in FIG. The structure which becomes is considered. In the figure, 101 is a substrate, 102 is a film to be etched, 103 is a counter electrode, 104 is a gap, 105 is an electrolytic cell, 106IsAn electrolyte solution 107 indicates a power source. 1A is a side view, FIG. 1B is a view of a counter electrode portion and a gap as seen from a contact surface of the gap, and FIG. 1C is a substrate on which a transparent conductive film is patterned. FIG. gapthicknessBy adjusting the depth of etching, the depth direction of etching can be adjusted in relation to the flowing current density, and the gap is usually in the range of 0.1 mm to 2 mm.thicknessSet. Desired patterning is obtained by the shape in which the counter electrode due to the gap is exposed to the liquid. In FIG. 1, a counter electrode is provided in a rice pad and patterning is performed. Here, the substrate is immersed in the electrolytic solution, the substrate side is connected to the cathode, and the counter electrode is positioned in a predetermined interval while the electrolytic solution is present in a non-contact state. The gap portion in contact with the film to be etched is kept in a completely liquid state. For this reason, the counter electrode side is connected to the anode, and a direct current is applied to cause a reduction reaction on the surface of the film to be etched only between the film to be etched and the counter electrode, and a mask is formed on the side of the film to be etched. There is no need. At this time, a current to be applied is preferably used, and the patterning selectivity by etching can be further controlled by adjusting the application time and current amount of the current or using a pulse current. As a material used for the gap, a soft material such as silicone rubber or silicone sponge and having chemical resistance is preferably used.
[0014]
In addition, the patterning accuracy of the film to be etched such as the transparent conductive film greatly affects the characteristics of the photovoltaic element. FIG. 3 shows an amorphous solar cell as an example of a photovoltaic element that has been patterned by the present invention. 3A is a cross-sectional view of the amorphous solar cell, and FIG. 3B is a view of the amorphous solar cell of FIG. 3A viewed from the light incident side, and is patterned to a 30 cm × 30 cm square. In the figure, 301 is a substrate, 302 is a lower electrode, 303 is a semiconductor layer, 304 is a transparent conductive film, 305 is a collecting electrode, and 306 is a patterned portion of the transparent conductive film. In the case of an amorphous solar cell, the substrate 301 serves as a support substrate, and also serves as a back electrode by using a conductive substrate. The lower electrode 302 is one electrode for taking out the electric power generated by the semiconductor layer 303, and the semiconductor layer 303 is required to have a work function that serves as an ohmic contact. The surface of the lower electrode 302 may be textured to cause irregular reflection of light. Materials include AlSi, Ag, Pt, ZnO, In2OThree, A metal body such as ITO or an alloy, and a transparent conductive oxide are used. The semiconductor layer 303 may have a single cell configuration including an n layer, an i layer, and a p layer, or may have a double cell configuration or a triple cell configuration in which a plurality of pin junction or pn junction cells are stacked. After forming the current collecting electrode 305, a plus take-out electrode 307 and a minus take-out electrode 308 are formed.
[0015]
In order to obtain more electric power with a solar cell, it is necessary to increase the area, but the conversion efficiency tends to decrease as the area increases. This is mainly due to power loss due to the resistance of the transparent conductive film. Therefore, although the effective area of the solar cell is determined from the relationship with the current collection efficiency of the current collecting electrode 305, the effective area of the solar cell can be increased and the output can be improved by accurately patterning the transparent conductive film. . In addition, when etching becomes insufficient during patterning and disconnection occurs in the pattern portion 306, a leakage current is generated from the shunt portion outside the effective area, causing a reduction in efficiency. For this reason, it is necessary to completely remove the transparent conductive film by the etching. Further, these etching defects not only affect the initial characteristics, but also cause a shunt in the reliability test, which causes problems for outdoor use. Furthermore, although not shown, when the transparent conductive film is laminated, the concept of the present invention is used for amorphous solar cells, single crystal systems, polycrystalline systems, and thin film polycrystalline solar cells deposited on a transparent substrate. It goes without saying that the configuration is applicable.
[0016]
Next, an apparatus suitable for carrying out the selective etching of the present invention is shown in FIGS.
FIG. 4 shows an apparatus in which the substrate is immersed in the electrolytic solution in a rotary manner. 4, 401 is an electrolytic cell, 402 is a substrate, 403 is an electrolytic solution, 404 is a counter electrode, 405 is a counter electrode lifting mechanism, 406 is a gap, 407 is a substrate holder, 408 is a rotating drum, 409 is a rotating shaft, Reference numeral 410 denotes a substrate transport mechanism, 411 denotes a processing liquid removal mechanism, 412 denotes a power source, 413 denotes a sequence controller, and 414 denotes a transport belt. The electrolytic cell 401 is preferably selected from materials that are acid resistant and free from rust, such as vinyl chloride resin and acrylic resin, and that are lightweight and easy to process. Here, the cathode connection from the power source is connected in the rotating drum through the rotating shaft. The shape of the rotating drum may be a tetrahedron as shown in FIG. 4 or a pentahedron or more. It is preferable to be able to turn on and off so that an electric current flows through the cathode which is connected to each surface and is immersed in the electrolytic solution. The counter electrode 404 is positioned outside the rotation radius of the rotating drum 408 during rotation, and the gap 406 reaches the film to be etched immediately before the current is supplied, and then the current is supplied and etching is performed.
[0017]
At this time, the sequence controller 413 adjusts the current amount and time, and further adjusts the pulse current. In addition, the substrate holding portion 407 is provided with a fixing magnet and is fixed by a magnetic force. Therefore, the substrate can be easily attached and detached by turning the magnetic force on and off. In order to turn the magnetic force on / off, it is preferable to provide a mechanism for fixing the substrate by bringing the magnet close to the fixed plate from the back side of the substrate and removing the magnet from the fixed plate when removing the substrate. The treatment liquid removal mechanism 411 removes the electrolytic solution from the substrate surface after etching in order not to take the electrolytic solution out of the electrolytic cell, and removes the liquid by air blowing or a brush. Further, since the substrate is fixed continuously on the substrate fixing surface of the rotating drum, when the drum is a tetrahedron or more, standby, etching, removal of processing liquid, and discharging can be performed continuously without time loss. Time is greatly reduced.
[0018]
FIG. 5 shows an apparatus in which the substrate is immersed in the electrolyte in a liftable manner. In FIG. 5, 501 is an electrolytic cell, 502 is a substrate, 503 is an electrolytic solution, 504 is a counter electrode, 505 is a gap, 506 is a substrate holding unit, 507 is a substrate holding unit lifting mechanism, 508 is a processing liquid removal mechanism, and 509 is A power source, 510 is a sequence controller, and 511 is a conveyor belt. The substrate holding unit lifting mechanism 507 may be an air cylinder and a ball bearing. In this way, by connecting the lifting mechanism to the fixed portion of the substrate, immersion, etching, and conveyance of the substrate in the electrolytic solution can be processed continuously and in a short time. The fixed portion of the substrate falls into the electrolytic solution, and the transparent conductive film of the substrate hits the gap 505 formed on the counter electrode 504 immediately before the current flows, and then the current is flowed and etching is performed. In addition, since the substrate holding portion 506 is provided with a fixing magnet and is fixed by a magnetic force, the substrate can be easily attached and detached by turning the magnetic force on and off. The processing liquid removal mechanism 507 removes the electrolytic solution from the substrate surface after etching in order not to take the electrolytic solution out of the electrolytic cell. Further, since the substrate is loaded in the plane direction, the required amount of the electrolytic solution is small and the apparatus can be miniaturized.
[0019]
【Example】
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
[0020]
[Example 1]
The transparent conductive film was patterned by the rotary device shown in FIG. 4 to produce an amorphous solar cell having a pin junction single cell configuration shown in FIG.
First, a sufficiently degreased and cleaned SUS substrate SUS430BA substrate 301 was placed in a DC sputtering apparatus (not shown), and 4000 g of Ag was deposited, and then 4000 g of ZnO was deposited to form the lower electrode 302. The substrate was taken out, put in an RF plasma CVD film forming apparatus (not shown), and the semiconductor layer 303 was deposited in the order of n layer, i layer, and p layer. After that, a transparent conductive film 304 having a function also serving as an antireflection effect was put into a resistance heating vapor deposition apparatus (not shown).2OThreeA film was formed (deposition temperature 190 ° C., film thickness 700 mm).
[0021]
Next, the solar cell substrate was cut into a 31 cm × 31 cm square, and the light incident surface was placed on the rubber conveyor belt 414 of the tetrahedral drum type rotary etching apparatus shown in FIG. Next, the substrate transport mechanism 410 having the adsorption pads arranged thereon adsorbs the end portion of the solar cell substrate and arranges it on the substrate holding unit 407. An electrode on a flat plate (not shown) is provided on the surface of the substrate holding part, and the back surface is connected to the cathode side of the power source. After the substrate was placed, the magnet provided in the substrate holding unit was raised to hold the substrate by magnetic force. Next, the rotating drum was rotated, and the substrate holding part was immersed in the electrolyte together with the substrate. At this time, the electrolyte used was an 8 wt% solution containing aluminum chloride hexahydrate as an electrolyte, and the electrical conductivity of the electrolyte was 65.0 mS / cm.2Met. The liquid temperature was 25.0 ° C., the same as room temperature. Next, the counter electrode 404 made of Pt and exposed at a 0.5 mm width and patterned to a 30 cm × 30 cm square is raised by the counter lift mechanism 405, and a silicon rubber gap 406 having a thickness of 1 mm is formed on the substrate. It hit on the transparent conductive film and adhered. Next, a direct current of 25 liters was supplied from the power source 412 by the sequence controller 413 for 0.5 seconds. After energization, the counter electrode 404 was lowered and the rotating drum was rotated. During the rotation, it passed through the treatment liquid removal mechanism 411 by air blowing, and the electrolytic solution attached to the surface of the substrate was removed. When the substrate was rotated upward, the magnet was lowered and separated from the substrate holder. Next, the substrate transport mechanism 410 adsorbs the end of the solar cell substrate and moves it to the transport belt 414. When the above operation was continuously performed on 100 solar cell substrates, the treatment could be performed in 10 seconds. The patterned solar cell substrate was washed with pure water using an apparatus (not shown) and dried, and then a silver paste was screen printed to form a collecting electrode 305. Further, a positive electrode 306 using copper foil was connected to the current collecting electrode 305 with silver paste, and a negative electrode 307 was connected to the back side of the SUS substrate 301 with solder to obtain a plurality of solar cells having the configuration shown in FIG. .
[0022]
The initial characteristics of the obtained solar cell were measured as follows. First, the voltage-current characteristics in the dark state were measured, and the shunt resistance was obtained from the slope near the origin, and an average of 80 kΩ · cm2There was no shunt. Next, 100mW / cm in the AM1.5 global solar spectrum2The solar cell characteristics were measured using a pseudo-solar light source (manufactured by SPIRE) with a light quantity of 5%, and the conversion efficiency was determined to be 7.0% ± 0.2%. At this time, when the portion patterned by etching was observed with a microscope, there was no disconnection or defective etching, and a uniform line was obtained. The yield was 98%. Furthermore, these solar cells are laminated by a known method to form a module, and the reliability test is performed in the temperature and humidity cycle test A-2 defined in the environmental test method and the durability test method of the crystalline solar cell module of Japanese Industrial Standard C8917. Based on. That is, the sample was put into a thermo-hygrostat whose temperature and humidity can be controlled, and a cycle test for changing from −40 ° C. to + 85 ° C. (relative humidity 85%) was repeated 20 times. Next, the sample after completion of the test was measured with a simulator in the same manner as in the initial stage, and no significant deterioration occurred with an average deterioration of 2.0% with respect to the initial conversion efficiency.
[0023]
From the results of this example, it can be seen that the patterning accuracy by etching is good, the initial characteristics of the solar cell manufactured by including the patterning step are good, and the reliability is high. In addition, it is understood that no preliminary process is required before and after the electrolytic treatment, and the processing speed can be shortened.
[0024]
[Comparative Example 1]
For comparison, an amorphous solar cell 300 having a pin junction single cell configuration was manufactured by performing an electrolytic etching patterning step of forming a pattern using a conventional photomask. Production of solar cell is In2OThreeIt carried out similarly to Example 1 until formation of the transparent conductive film of this. For patterning the photoresist mask, a photosensitive resin resist was applied on the transparent conductive film 202 and dried. Next, a mask patterned in a 30 cm × 30 cm square was stacked, and irradiated with ultraviolet rays for chemical treatment to perform patterning. The solar cell substrate patterned with the photomask was subjected to an etching process using a process and an electrolytic etching apparatus as shown in FIG. As in Example 1, a solution containing aluminum chloride hexahydrate as an electrolyte was used as the electrolytic solution, and the electrolytic conditions were also the same. After the treatment, the unnecessary photomask was removed with alcohol. Thereafter, it was washed with pure water by an apparatus (not shown) and dried to form a collecting electrode to obtain a plurality of solar cells as shown in FIG.
[0025]
For these solar cells, the initial characteristics were measured in the same manner as in Example 1. As a result, the shunt resistance was 10 kΩ · cm.210%. Further, the conversion efficiency was 5.3 ± 1.8%, and the variation was large. Moreover, the shunt has arisen and the disconnection had arisen when the patterning line was observed with the microscope. This disconnection was found to be insufficient in removing the photomask when patterning by ultraviolet irradiation. In addition, those having low conversion efficiency had a large line width and non-uniformity in addition to shunting. This shows that the adhesion between the photoresist film and the transparent conductive film is insufficient and the counter electrode side is not patterned, so that the generated lines of electric force cannot be controlled and sand etching or over etching is performed. .
[0026]
[Example 2]
Amorphous solar cell in the same manner as in Example 1 except that the solar cell is a semiconductor layer having a pin junction triple cell configuration, the semiconductor layer is formed using a microwave CVD method, and ITO is formed as a transparent conductive film. 300 was produced. That is, first, a sufficiently degreased and cleaned SUS substrate SUS430BA substrate 301 was put in a DC sputtering apparatus (not shown), and 4000 g of Ag was deposited, and then 4000 g of ZnO was deposited to form the lower electrode 302. The substrate was taken out and placed in a microwave plasma CVD film forming apparatus (not shown) to form a bottom cell in the order of n layer, i layer, and p layer. Next, similarly, a middle cell was formed in the order of n layer, i layer, and p layer, and then a top cell was formed in the order of n layer, i layer, and p layer to form a semiconductor layer. Next, an ITO film was formed as a transparent conductive film 304 having a function also serving as an antireflection effect by placing the substrate in a sputtering apparatus (not shown) (film formation temperature 170 ° C., film thickness 730 mm).
[0027]
Next, this solar cell substrate is cut into a 31 cm × 31 cm square, and the same as in Example 1, the light incident surface is the upper surface of the rubber conveyance belt 513 of the tetrahedral drum type rotary etching apparatus shown in FIG. Then, 30 cm × 30 cm square was etched and patterned to form current collecting electrodes, and a plurality of solar cells having the structure shown in FIG. 3 were obtained. The initial characteristics of these solar cells were measured in the same manner as in Example 1. As a result, 9.0% ± 0.2% was obtained. At this time, when the portion patterned by etching was observed with a microscope, there was no disconnection or defective etching, and a uniform line was obtained. The yield was 95%.
[0028]
Subsequently, the obtained solar cell was laminated in the same manner as in Example 1 to form a module, and a reliability test was performed. Next, the sample after completion of the test was measured with a simulator. As a result, no significant deterioration occurred with an average deterioration of 2.1% with respect to the initial conversion efficiency.
From the results of this example, it can be seen that the patterning accuracy by etching is good, the initial characteristics of the solar cell manufactured by including the patterning step are good, and the reliability is high. In addition, it is understood that no preliminary process is required before and after the electrolytic treatment, and the processing speed can be shortened.
[0029]
[Example 3]
An amorphous solar cell 300 having a pin junction single cell configuration shown in FIG. 3 was produced in the same manner as in Example 1 except that the etching apparatus shown in FIG. 5 was used. Next, this solar cell substrate was cut into a 31 cm × 31 cm square, and the light incident surface was placed on the lower surface of the transfer unit 512 in which the surface of the etching apparatus shown in FIG. Next, the substrate holding part 506 approached the solar cell substrate 502, attracted the substrate by magnetic force, and placed on the substrate holding part 506. An electrode on a flat plate (not shown) is provided on the surface of the substrate holding unit 506, and the back surface is connected to the cathode side of the power source. After the substrate was placed, the lifting / lowering device moved onto the electrolytic cell 501, moved down and immersed in the electrolytic solution 503, and the substrate holder 506 was immersed in the electrolytic solution together with the substrate 502. At this time, the electrolytic solution 503 was a 10 wt% solution containing potassium chloride as an electrolyte, and the electric conductivity of the electrolytic solution was 50.0 mS / cm. The liquid temperature was 25.0 ° C., the same as room temperature. Next, a gap 505 made of silicon rubber having a thickness of 1 mm is provided on the counter electrode 504 in which the substrate holding part 506 is made of Pt and the exposed part is patterned with a width of 0.5 mm and is 30 cm × 30 cm square. It contacted | contacted and adhered to the transparent conductive film. Next, a direct current of 30 liters was supplied from the power source 509 by the sequence controller 510 for 0.4 seconds. After energization, the substrate holding part was raised, passed through the treatment liquid removal mechanism 508 by air blowing, and the electrolytic solution attached to the surface of the substrate was removed. Further, the substrate holder moved, and the magnetic force was turned off on the rubber conveyance belt, and the substrate was discharged and moved. When the above operation was continuously performed on 100 solar cell substrates, the treatment could be performed in 25 seconds. The patterned substrate was washed with pure water using an apparatus (not shown) and dried, and then a collecting electrode was formed to obtain a plurality of solar cells having the configuration shown in FIG.
[0030]
The initial characteristics of the obtained solar cell were measured as follows. That is, first, the voltage-current characteristics in the dark state were measured, and the shunt resistance was obtained from the inclination near the origin, and the average was 85 kΩ · cm.2There was no shunt. Next, 100mW / cm in the AM1.5 global solar spectrum2When the solar cell characteristics were measured using a pseudo solar light source (manufactured by SPIRE) with a light quantity of and the conversion efficiency was determined, it was found to be 7.1% ± 0.3%. At this time, when the portion patterned by etching was observed with a microscope, there was no disconnection or defective etching, and a uniform line was obtained. The yield was 97%. Subsequently, the solar cell was laminated and modularized in the same manner as in Example 1, and a reliability test was performed. Next, the sample after completion of the test was measured with a simulator in the same manner as in the initial stage. As a result, no significant deterioration occurred with an average deterioration of 1.8% of the initial conversion efficiency.
From the results of this example, it can be seen that the patterning accuracy by etching is good, the initial characteristics of the solar cell manufactured by including the patterning step are good, and the reliability is high. In addition, it is understood that no preliminary process is required before and after the electrolytic treatment, and the processing speed can be shortened.
[0031]
[Example 4]
As an example of etching the metal conductive film, wiring circuit patterning on a wafer used for an IC was performed as follows. First, a 1000-mm Ti—W metal layer was deposited on the wafer by sputtering, and then an aluminum metal layer was deposited by 1 μm by sputtering. The counter electrode 404 of the apparatus used in Example 1 was used as a desired wiring circuit patterning to etch the aluminum metal layer. After patterning, the wiring pattern was examined by microscopic observation, but no disconnection of the circuit or defective etching was confirmed. In addition, no abnormality was found by checking the electrical operation of the circuit.
From the results of this example, it can be seen that the patterning accuracy by etching is good, and the wiring circuit for IC manufactured by including the patterning step is good.
[0032]
【The invention's effect】
According to the etching method of the present invention, it is possible to perform patterning that can greatly reduce the processing steps, has excellent selection accuracy, and can greatly reduce damage to the non-etched region and the non-etched layer.
Further, by adopting the etching method of the present invention as a process, it is possible to solve the problems such as shunting and poor appearance, and to obtain a photovoltaic device having good characteristics.
Furthermore, according to the etching apparatus of the present invention, the cost can be reduced, the number of processes can be reduced, the etching time can be shortened, the apparatus can be miniaturized, and the space can be saved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration and an etching pattern of an etching method according to the present invention.
FIG. 2 is a view showing a conventional etching process and apparatus.
FIG. 3 is a schematic view of a solar cell produced by employing the etching process of the present invention.
FIG. 4 is a schematic view of a rotary etching apparatus of the present invention.
FIG. 5 is a schematic view of an elevating etching apparatus according to the present invention.
[Explanation of symbols]
101, 201, 301 substrate
102, 202, 304 Film to be etched
103, 404, 405 Counter electrode
104,406,505 gap
105, 401, 501 Electrolyzer
106,403,405 Electrolyte
107,412,509 power supply
203 Coating device
204 resist
205 mask
206 Exposure apparatus
207 Development tank
208 Rinse washing tank
209 Etching tank
210 Resist stripping tank
300 solar cell
302 Lower electrode
303 Semiconductor layer
305 Current collecting electrode
306 Patterned part
402,502 Substrate
405 Counter-pole lifting mechanism
407, 506 substrate holder
408 Rotating drum
409 axis of rotation
410 Substrate transport mechanism
411,508 Treatment liquid removal mechanism
413,510 Sequence controller
414 Conveyor belt
507 Substrate holder lifting mechanism
511 Transport section

Claims (6)

被エッチング膜を積層した基板を電解液中に浸漬し、前記基板を陰極とし、前記基板及び前記電解液間に直流電流またはパルス電流を流すことにより、前記被エッチング膜の所定の部分を選択的に除去するエッチング方法であって、前記エッチング方法はエッチング装置を用いて行い、前記エッチング装置は、前記電解液を内部に有する電解槽、前記基板を保持しつつ昇降または回転により前記電解槽の前記電解液への前記基板の浸漬及び前記基板の前記電解槽からの排出が連続して行える基板搬送機構、及び陰極として機能する前記基板に対向する対向極であって、その表面にギャップの有無により形成されたエッチングパターンを有する対向極を保持する電極保持機構を備え、基板搬送機構により前記基板を前記電解槽の前記電解液に浸漬し、前記電極保持機構により前記対向極を前記基板から所定の間隔の位置に前記ギャップと前記被エッチング膜との間が絶液するように配置し、前記基板及び前記被エッチング膜及び前記電解液間に前記対向極を介して前記直流電流またはパルス電流を流すことで陰極として機能する前記基板側に生じる水素によって前記基板の前記被エッチング膜を還元し、該被エッチング膜の絶液していない部分を選択的に溶解除去し、その後前記基板を前記基板搬送機構により前記電解槽から排出することを特徴とするエッチング方法。A substrate on which a film to be etched is laminated is immersed in an electrolytic solution, the substrate is used as a cathode, and a direct current or a pulse current is passed between the substrate and the electrolytic solution to selectively select a predetermined portion of the film to be etched. The etching method is performed by using an etching apparatus, and the etching apparatus includes an electrolytic bath having the electrolytic solution therein, and the electrolytic bath is moved up and down or rotated while holding the substrate. A substrate transport mechanism capable of continuously immersing the substrate in an electrolytic solution and discharging the substrate from the electrolytic cell; and a counter electrode facing the substrate functioning as a cathode , depending on the presence or absence of a gap on the surface thereof an electrode holding mechanism for holding the opposing electrode having the formed etched patterns, immersion of the substrate into the electrolyte of the electrolytic cell by a substrate transfer mechanism And, wherein said counter electrode from the substrate and the gap to a position of a predetermined distance between the film to be etched is arranged to absolute solution, the substrate and the etched film and the electrolyte by the electrode holding mechanism The film to be etched of the substrate is reduced by hydrogen generated on the side of the substrate that functions as a cathode by passing the direct current or pulse current through the counter electrode in between, and the film to be etched is not completely drained. An etching method, wherein a portion is selectively dissolved and removed, and then the substrate is discharged from the electrolytic cell by the substrate transport mechanism. 前記被エッチング膜を積層した基板が金属体と該金属体上に積層された半導体層からなるものである請求項1に記載のエッチング方法。  2. The etching method according to claim 1, wherein the substrate on which the film to be etched is laminated comprises a metal body and a semiconductor layer laminated on the metal body. 前記被エッチング膜が透明導電膜である請求項1又は2に記載のエッチング方法。The etching method according to claim 1 or 2 etched film is a transparent conductive film. 基板上に積層してある被エッチング膜をエッチングする装置を有する半導体素子の製造装置であって、前記エッチング装置は、電解液を内部に有する電解槽、前記基板を保持しつつ昇降または回転により前記電解槽の前記電解液への前記基板の浸漬及び前記基板の前記電解槽からの排出が連続して行える基板搬送機構、及び直流電流またはパルス電流を流すための対向極を保持する電極保持機構を備え、該対向極はギャップの有無により形成されたエッチングパターンを有し、前記基板搬送機構により前記基板を前記電解槽の前記電解液に浸漬し、前記電極保持機構により前記対向極を前記基板から所定の間隔の位置に前記ギャップと前記被エッチング膜との間が絶液するように配置し、前記対向極を介して直流電流またはパルス電流を前記基板及び前記被エッチング膜及び前記電解液間に流すことで前記基板側に生じる水素によって前記基板の前記被エッチング膜を還元し、該被エッチング膜の絶液していない部分を選択的に溶解除去し、その後前記基板を前記基板搬送機構により前記電解槽から排出することを特徴とする、半導体素子の製造装置。An apparatus for manufacturing a semiconductor element having an apparatus for etching a film to be etched laminated on a substrate, wherein the etching apparatus includes an electrolytic bath having an electrolyte solution therein, and is moved up and down or rotated while holding the substrate. A substrate transport mechanism capable of continuously immersing the substrate in the electrolytic solution in an electrolytic bath and discharging the substrate from the electrolytic bath; and an electrode holding mechanism for holding a counter electrode for passing a direct current or a pulse current. The counter electrode has an etching pattern formed depending on the presence or absence of a gap, the substrate transport mechanism immerses the substrate in the electrolytic solution in the electrolytic cell, and the electrode holding mechanism causes the counter electrode to be removed from the substrate. wherein said gap to a position of a predetermined distance between the film to be etched is arranged to absolute solution, wherein a direct current or pulsed current through the counter electrode Reducing the film to be etched of the substrate by the hydrogen generated in the substrate side by passing the plate and the between the film to be etched and the electrolyte, selectively dissolving and removing the portions not Ze'eki of該被etching film And then discharging the substrate from the electrolytic cell by the substrate transport mechanism. 前記基板の保持は磁力によってなされる請求項に記載の半導体素子の製造装置。The semiconductor element manufacturing apparatus according to claim 4 , wherein the substrate is held by a magnetic force. 前記基板側を陰極、対向極を陽極として直流電流またはパルス電流を流す請求項に記載の半導体素子の製造装置。The apparatus for manufacturing a semiconductor element according to claim 4 , wherein a direct current or a pulsed current is passed using the substrate side as a cathode and the counter electrode as an anode.
JP29331495A 1995-10-17 1995-10-17 Etching method and semiconductor device manufacturing apparatus using the etching method Expired - Fee Related JP3814318B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP29331495A JP3814318B2 (en) 1995-10-17 1995-10-17 Etching method and semiconductor device manufacturing apparatus using the etching method
CNB011046872A CN1235271C (en) 1995-10-17 1996-10-17 Process for producing semiconductor device
CN96119282A CN1072737C (en) 1995-10-17 1996-10-17 Etching method, process for producing semiconductor element using said etching method
US08/731,663 US5863412A (en) 1995-10-17 1996-10-17 Etching method and process for producing a semiconductor element using said etching method
KR1019960046432A KR100217006B1 (en) 1995-10-17 1996-10-17 Etching method, process for producing a semiconductor element using said etching method, and apparatus suitable for practicing said etching method
US09/163,546 US6051116A (en) 1995-10-17 1998-09-30 Etching apparatus
CNB011046864A CN1213175C (en) 1995-10-17 2001-02-21 Etching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29331495A JP3814318B2 (en) 1995-10-17 1995-10-17 Etching method and semiconductor device manufacturing apparatus using the etching method

Publications (2)

Publication Number Publication Date
JPH09115877A JPH09115877A (en) 1997-05-02
JP3814318B2 true JP3814318B2 (en) 2006-08-30

Family

ID=17793236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29331495A Expired - Fee Related JP3814318B2 (en) 1995-10-17 1995-10-17 Etching method and semiconductor device manufacturing apparatus using the etching method

Country Status (1)

Country Link
JP (1) JP3814318B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4579650B2 (en) 2003-12-01 2010-11-10 キヤノン株式会社 Electrolytic etching method and apparatus
CN101958361A (en) * 2009-07-13 2011-01-26 无锡尚德太阳能电力有限公司 Method for etching transparent thin-film solar cell component
KR102312385B1 (en) * 2018-08-27 2021-10-13 한양대학교 에리카산학협력단 Method of fabricating of pellicle for EUV lithography, and appartus of fabricating of the same

Also Published As

Publication number Publication date
JPH09115877A (en) 1997-05-02

Similar Documents

Publication Publication Date Title
KR100217006B1 (en) Etching method, process for producing a semiconductor element using said etching method, and apparatus suitable for practicing said etching method
US5993637A (en) Electrode structure, electrolytic etching process and apparatus
US5688366A (en) Etching method, method of producing a semiconductor device, and etchant therefor
US20150349152A1 (en) Method for metallization of solar cell substrates
EP3973089B1 (en) Method of manufacturing a photovoltaic cell
US6491808B2 (en) Electrolytic etching method, method for producing photovoltaic element, and method for treating defect of photovoltaic element
CN113471337B (en) Preparation method of heterojunction solar cell
US20190256996A1 (en) Process for metallizing a component
CN103866230A (en) Manufacturing method for novel shadow mask for producing OLED display panel
CN108346744A (en) A kind of laser processing improving perovskite solar cell effective area
JP3173318B2 (en) Etching method and method for manufacturing semiconductor device
CN115274884A (en) Preparation process of silicon-based solar cell metal electrode
CN105826231A (en) Pattern plating method for integrating two types of sheet resistance film circuits on same plane of dielectric substrate
JP3814318B2 (en) Etching method and semiconductor device manufacturing apparatus using the etching method
JP2966332B2 (en) Method and apparatus for manufacturing photovoltaic element
JP2007533125A (en) Method for cleaning and etching a substrate having a transparent and conductive oxide layer and apparatus for carrying out the method
CN114899098A (en) Method and device for selectively removing metal electrode on surface of semiconductor device
CN215163230U (en) Patterned mask of single-sided or double-sided solar cell and solar cell
JP3823166B2 (en) Electrolytic etching method, photovoltaic device manufacturing method, and photovoltaic device defect processing method
JP2006161090A (en) Electrolytic etching method and electrolytic etching apparatus
CN100362613C (en) Method of manufacturing bus electrode of plasma display board
JP2000188410A (en) Manufacture of photovoltaic element
JPH0992851A (en) Formation of thin film solar battery
JPH11233802A (en) Manufacture of photovoltaic device
CN117766601A (en) Method for preparing solar cell electrode by using thin film mask

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040302

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040305

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040412

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees