[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3893735B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP3893735B2
JP3893735B2 JP11468998A JP11468998A JP3893735B2 JP 3893735 B2 JP3893735 B2 JP 3893735B2 JP 11468998 A JP11468998 A JP 11468998A JP 11468998 A JP11468998 A JP 11468998A JP 3893735 B2 JP3893735 B2 JP 3893735B2
Authority
JP
Japan
Prior art keywords
light emitting
semiconductor light
green
emitting element
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11468998A
Other languages
Japanese (ja)
Other versions
JPH11307818A (en
Inventor
賢一 小屋
保成 奥
義文 内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP11468998A priority Critical patent/JP3893735B2/en
Publication of JPH11307818A publication Critical patent/JPH11307818A/en
Application granted granted Critical
Publication of JP3893735B2 publication Critical patent/JP3893735B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a composite semiconductor full-color light emitting element to emit light rays of different colors by making the electrical connection of the element easier and improving the breakdown voltage against impressed high voltages of static electricity, surge, etc. SOLUTION: A composite semiconductor full-color light emitting element is constituted by mounting semiconductor light emitting elements 5, 6, and 7 for red, green, and blue in continuity on an Si diode 3 for static electricity protection connected in continuity to a lead frame or substrate. The light emitting elements 6 and 7 for green and blue are used as GaN-containing flip chip light emitting elements and, at the same time, micro-bumps 6d and 6e are formed on the n- and p-side electrodes of the elements 6 and 7 and conducted to the polarity opposite to that of the diode 3.

Description

【0001】
【発明の属する技術分野】
本発明は、フリップチップ型の半導体発光素子を含む発光装置に係り、特に半導体発光素子と静電気保護素子とを複合素子化して静電耐圧性を向上させたフルカラー複合半導体発光素子及びこれを用いた発光装置に関する。
【0002】
【従来の技術】
LEDランプやチップ型LED等のような半導体発光素子を利用した発光装置は、例えば、パネルにこれらのLEDランプやチップ型LEDを多数配列したLEDディスプレイとして広く利用されている。半導体発光素子(LED)は、化合物半導体の種類によって赤色や緑色等の発光が得られ、最近では、絶縁性と透明性を有したサファイア基板上にGaN系の化合物半導体を積層して構成される青色や緑色の半導体発光素子も実用化に至っている。
【0003】
LEDディスプレイの場合では、単色表示のものでは1個の半導体発光素子によって1画素が構成されるが、フルカラー表示のものでは光の3原色である赤色,緑色,青色を一組とする発光素子を1画素として構成される。
【0004】
図9は、赤色,緑色,青色の半導体発光素子(LED)を利用したフルカラー発光装置の要部を示す概略平面図、図10及び図11はそれぞれ要部の概略縦断面図である。
【0005】
図9において、赤色の半導体発光素子16は台座基板(図10中の14)上に形成された配線パターン15aの右側に偏った部分に搭載され、たとえばGaAlAsを材料とした半導体発光素子を用いたものである。この赤色の半導体発光素子16は、図10に示すように底面にn電極16aを形成するとともに上面にはp電極16bを形成し、n電極16aを導電性のペースト16cによって配線パターン15aに導通固定し、更にワイヤ16dによってp電極16bと配線パターン(図9中の15b)との間をボンディングして導通させている。
【0006】
緑色の半導体発光素子17および青色の半導体発光素子18は、いずれもGaN系化合物半導体を絶縁性のサファイア基板17aに積層し、その中の1つの層として形成されるInGaN活性層を発光層として、サファイア基板側を配線パターン15aに固定している。
【0007】
たとえば緑色の半導体発光素子17は、図9および図11に示すように、サファイア基板17aを配線パターン15aの上面にペースト17dを介して接合しているとともに、半導体発光素子の上面には、p側電極17cとn側電極17bを形成しているとともにそれぞれp側電極17cは配線パターン15bとワイヤ17eによって、またn側電極17bは配線パターン15dとワイヤ17fによってボンディングして導通させている。
【0008】
青色の半導体発光素子18についても、同様であり、図11において括弧付きの符号で示している。
【0009】
このような赤色,緑色,青色の一組を1画素とするフルカラーの発光装置の一般的な製造は、配線パターン上に赤色,緑色,青色の半導体発光素子を別々にダイスボンドし、これらの半導体発光素子のそれぞれに対して独立して電気的に接続するためにワイヤボンディングするという工程としたものが一般的であり、高輝度フルカラー発光装置を製造する際にGaN系半導体発光素子の緑色,青色を搭載した場合、緑色,青色の半導体発光素子がサファイア基板上に2極の電極をもつ半導体発光素子であるため、緑色,青色についてはそれぞれ2本のワイヤが必要となる。よって赤色,緑色,青色の半導体発光素子を用いたフルカラー発光装置としては、少なくとも5本のワイヤ接合が必要となる。
【0010】
また、GaN系化合物半導体は静電耐圧が低いという欠点があり、実装中に特性破壊を生じてしまう場合がある。
【0011】
このような緑色,青色の半導体発光素子の静電破壊に対しては、特開平9−148625号公報に記載されているように、GaN系化合物半導体を用いた半導体発光素子の静電耐圧を向上させるため、逆耐圧補償用の補償ダイオードを備えることが一つの有効な手段となり得る。
【0012】
この公報に記載の半導体発光素子における逆耐圧補償用の補償ダイオードは、半導体発光素子のp側電極に電気的に接続されるn伝導型の第1層と、半導体発光素子のn側電極に電気的に接続されるp伝導型の第2層とがpn接合を成す構成である。そして、このような構成により、発光部に逆方向に印加される静電気による破壊が防止されるとしたものである。
【0013】
【発明が解決しようとする課題】
従来の製造方法においてフルカラーとしての輝度が不足している場合、半導体発光素子の員数を増やすことで輝度不足を補っているが、青色,緑色を増やすと先に記載したようにワイヤの数が素子1個あたり2本ずつ増えるために、ワイヤボンディング時にワイヤが煩雑化してしまう。ワイヤ数が増える場合、ワイヤ間の接触を回避させるため半導体発光素子の搭載位置を離すことが有効であるが、半導体発光素子を搭載する配線パターンを大きくし、更にボンディングされる配線パターンを離す必要が生じるため、装置自体の小型化ができないという問題があった。さらに、ループが半導体発光素子の上面を跨がる配線では、発光観測面側の光を遮断するため、輝度を低下させる要因になっていた。
【0014】
また、特願平9−18782号記載の装置を利用した場合、ワイヤ数の減少ができても、補償ダイオードが半導体発光素子よりも必ず大きくなるため、半導体発光素子どうしを近接化するにも限界があり、同時発光した際の混色化が十分に達成できないという問題があった。
【0015】
更に近年では、図12に示すように、赤色,緑色,青色の半導体発光素子19,20,21の外周部にPC、ABS樹脂などで成型されたパラボラ形状の反射カップ材22を取り付け、高輝度化を目指した発光装置が製造されている。しかし、パラボラ状の反射カップ材22が赤色,緑色,青色の半導体発光素子19,20,21の外周部に配置されているため、各半導体発光素子から出た光が隣接した素子に遮光されたり、バンドギャップエネルギーの違いから青色の半導体発光素子21の発光が赤色の半導体発光素子19の発光で吸収されたり、更にカップ斜面までの距離が半導体発光素子の側面に対して均等でないため、パラボラが効率よく作用しないという問題があった。
【0016】
本発明の目的は、電気的接続が簡単で、かつ静電気やサージ等の高電圧の印加に対する耐圧を向上し得るフルカラー発光が可能な半導体発光素子及びこれを用いた発光装置を提供することにある。
【0017】
【課題を解決するための手段】
本発明は、リードフレームまたは基板に導通接続された静電気保護用のSiダイオードと、このSiダイオードの上に導通搭載される赤,緑,青の各色の半導体発光素子との組み合わせからなるフルカラーの複合半導体発光素子であって、前記緑色及び青色の半導体発光素子をGaNを含むフリップチップ型の半導体発光素子とするとともに、そのn側及びp側の電極にマイクロバンプを形成し、これらのn側及びp側のマイクロバンプを前記Siダイオードと逆極性として導通させてなることを特徴とする。
【0018】
【発明の実施の形態】
請求項1の発明は、リードフレームまたは基板に導通接続された静電気保護用のSiダイオードと、前記Siダイオードの上に導通搭載される赤,緑,青の各色の半導体発光素子との組み合わせからなるフルカラーの複合半導体発光素子を搭載した発光装置であって、前記赤色の半導体発光素子がGaAlAsまたはInGaAlPからなり、前記緑色及び青色の半導体発光素子GaN系化合物半導体からなるフリップチップ型の半導体発光素子とするとともに前記フリップチップ型の半導体発光素子のn側及びp側の電極と前記Siダイオードの表面に形成したp電極及びn電極とを逆極性としてマイクロバンプで接合し、前記緑色及び青色の半導体発光素子を前記赤色の半導体発光素子よりもリードフレームまたは基板の配線パターンの引き出し側に配置してなるものであり、静電気保護用のSiダイオードの上に赤色,緑色,青色の半導体発光素子を搭載して導通接続することによって、特に静電耐圧が低いGaN系半導体発光素子の静電耐圧を大幅に向上させ、Siダイオードを共通化しGaN系半導体発光素子をマイクロバンプにより接続しているため、ワイヤボンディング回数の減少と赤色,緑色,青色の半導体発光素子の近接化による装置の小型化、さらに近接化による色の混色性の向上を図ることが可能となる。また、マイクロバンプ接合によりワイヤ数を最小限に減らすことができるので、ワイヤによって遮断されていた発光観測面側の光を有効に取り出すことができ、高輝度化を実現できるという作用を有する。
【0019】
また、前記緑色及び青色の半導体発光素子をリードフレームまたは基板の配線パターンの引き出し側に相当させて配置してなるものであり、色の混色性が向上するとともに、発熱の大きいGaN半導体発光素子の放熱性を改善できるという作用を有する。
【0021】
請求項の発明は、前記Siダイオードの表面に、前記赤色の半導体発光素子を落とし込んで搭載する凹部を形成し、前記赤色半導体発光素子を凹部に搭載したとき前記赤色半導体発光素子がSiダイオードの上端面に対して埋没する高さ関係としてなる請求項1記載発光装置であり、赤色の半導体発光素子をSiダイオードに埋没するように搭載するので、緑色,青色の半導体発光素子に対し干渉をなくすことができるとともに、Siダイオード上面から凹部底面に亘る傾斜面を光の反射面として利用できるという作用を有するため、効率よく光を発光観測面側に取り出すことが可能となる。
【0022】
請求項の発明は、Siダイオードの表面に、前記凹部を少なくとも3個所に設け、これらの凹部のそれぞれに少なくとも前記赤,緑,青の各色の半導体発光素子を1個ずつ搭載してなる発光装置であり、赤色,緑色,青色の半導体発光素子を個々に独立して凹部に落とし込むため、赤色,緑色,青色の半導体発光素子の干渉を無くすとともに、赤色,緑色,青色の全ての半導体発光素子に対してSiダイオード上面から凹部底面に亘る傾斜面を光の反射面として利用できるという作用を有するため、全ての半導体発光素子に対して効率よく光を発光観測面側に取り出すことが可能となる。
【0023】
請求項の発明は、前記Siダイオードの表面に、前記赤,緑,青の各色の半導体発光素子の全てに対してp側またはn側として導通させる共通の電極を備えてなる請求項1からのいずれかに記載の発光装置であり、Siダイオード上面の電極を共有してアノードコモンまたはカソードコモンとすることができるという作用を有する。
【0026】
以下に、本発明の実施の形態の具体例を図面を参照しながら説明する。
図1は本発明の一実施の形態によるフルカラー複合半導体発光素子の要部を示す概略平面図、図2及び図3はそれぞれ要部の概略縦断面図である。
【0027】
図1において、ディスプレイパネルの取付け面に固定される台座基板1の表面に配線パターン2a,2b,2c,2dが一様に形成され、これらのパターンの中で大きな平面形状を持つ配線パターン2aの上面をフルカラーの複合半導体発光素子Aの搭載面としている。なお、図示の例では、複合半導体発光素子Aを1個載せた状態を示しているが、たとえば配線パターン2aならびに2b,2c,2dを変更すれば、この複合半導体発光素子Aを長手方向に一定間隔で並べたアセンブリとすることも可能である。
【0028】
複合半導体発光素子Aは、導電性ペースト(例えば、Agをフィラーとして含む樹脂)4によって配線パターン2a上に導通固定された静電気保護用のSiダイオード3と、このSiダイオード3の上面に導通接続された赤色,緑色,青色の3個の半導体発光素子5,6,7とから構成されたものである。
【0029】
Siダイオード3は、図2及び図3に示すように、n型シリコン基板3aを基材としてその底面にn極3bを形成し、導電性ペースト4を介して配線パターン2aと電気的な導通を良好にしており、上面には一部を除いて被覆する酸化膜3cを形成したものである(図2を参照)。n型シリコン基板3aには、酸化膜3cで被覆されていない2個所の部分を拡散窓としてp型不純物イオンを注入することによって、2つの領域に区分けされたp型半導体領域3d,3eを拡散形成する(図3を参照)。これらのp型半導体領域3d,3eの拡散領域はp型不純物イオンの注入量によってその領域の大きさや深さが一義的に決まり、本発明においてはp型半導体領域3d,3eどうしの間の間隔は10μm以上とする。
【0030】
n型シリコン基板3aの表面には、図1に示すようにn電極8aと第1p電極8b及び第2p電極8cをそれぞれ金属蒸着法によって形成する。n電極8aは、Siダイオード3の表面の左端部側を除いて広く形成され、図2および図3に示すように酸化膜3cが形成されずにn型シリコン基板3aが露出している部分に接合されている。一方、第1p電極8b及び第2p電極8cは左端部に沿って配置され、それぞれn型シリコン基板3aに拡散形成したp型半導体領域3d,3e(図1中の破線で示された部分)に接続されている。
【0031】
赤色の半導体発光素子5はn電極8aの右側に偏った部分に搭載されたもので、従来から知られているGaAlAsまたはInGaAlPを材料とした半導体発光素子を用いたものである。この赤色の半導体発光素子5は、図2に示すように、底面にp電極5aを形成するとともに上面にはn電極5bを形成し、p電極5aを導電性ペースト5cによってSiダイオード3のn電極8aに導通固定し、更にワイヤ9aによってn電極5bを配線パターン2bとの間でボンディングして導通させている。
【0032】
緑色の半導体発光素子6及び青色の半導体発光素子7は、いずれもGaN系化合物半導体を透明なサファイア基板(6a,7a)に積層して、その中の1つの層として形成されるInGaN活性層を発光層とし、フリップチップ型のSiダイオード3の上面に搭載されるものである。
【0033】
すなわち、図3に示すように、たとえば緑色の半導体発光素子6は透明のサファイア基板6aに積層したn型層及びp型層のそれぞれの表面にn側電極6b及びp側電極6cを蒸着法によって形成したものである。また、これらのn側電極6b及びp側電極6cの表面にはそれぞれマイクロバンプ6d,6eが形成されている。そして、図1に示すようにn電極8aと第1p電極8bとに跨がる配置として緑色の半導体発光素子6を搭載し、n側電極6b及びp側電極6cをそれぞれ第1p電極8b及びn電極8aにマウント接合する。
【0034】
青色の半導体発光素子7についても同様であり、n電極8aと第2p電極8cとに跨がるように搭載することでn側電極(7b)を第2p電極8cに及びp側電極(7c)をn電極8aに接合したマウントとする。なお、図3においては、青色の半導体発光素子7と第2p電極8cとの接合を併せて示すため、括弧付きの符号で青色の半導体発光素子7と第2p電極8cの関係を表している。たとえば、符号7aはサファイア基板であり、符号7cはp側電極を示す。
【0035】
ここで、Siダイオード3の平面形状は図1に示すようにほぼ正四角形であり、赤色,緑色,青色のそれぞれの半導体発光素子5,6,7はSiダイオード3の中心周りに描く1つの円に沿う配置とする。すなわち、各半導体発光素子5,6,7の中央部であってほぼ発光中心と対応する位置がSiダイオード3の中心を原点とする円の上に位置し、且つそれぞれの間の中心角がほぼ120°の関係となる位置関係を持たせる。これにより、各半導体発光素子5,6,7は、その配列円に沿う方向の相互の隣接距離をほぼ同じにすることができ、赤色,緑色,青色の着色発光の混色性を向上させることができる。また、このような配置によって、緑色の半導体発光素子6と青色の半導体発光素子7はSiダイオード3の外郭に近い部分に位置するので、発熱が大きなGaN系の化合物半導体を用いるこれらの緑色,青色の半導体発光素子6,7であっても、放熱が促されるので、発光装置の信頼性を高めることができる。
【0036】
このような緑色,青色の半導体発光素子6,7のマウントとともに、第1,第2p電極8b,8cをワイヤ9b,9cによってそれぞれ配線パターン2c,2dにボンディングすることで、1個の複合半導体発光素子Aが導通状態にアセンブリされる。
【0037】
図4は以上のアセンブリによって構成される等価的な回路図であり、緑色,青色の半導体発光素子6,7は、Siダイオード3のp電極,n電極に対してp側電極,n側電極が逆向きに接続されている。従って、緑色,青色の半導体発光素子6,7の順方向に対しては、Siダイオード3のn型シリコン基板3aの抵抗成分Rが保護抵抗として働くとともに、静電気による印加電圧がSiダイオード3のツェナー降伏電圧以上になる場合は、Siダイオード3の逆方向のバイパス(ツェナー降伏現象)により過電流が逃がされる。また、緑色,青色の半導体発光素子6,7の逆方向に対しては、Siダイオード3の順方向導通によって過電流が逃がされる。したがって、過電流が緑色,青色の半導体発光素子6,7に流れるのを防止でき、これによって緑色,青色の半導体発光素子6,7を静電破壊から防止することができる。
【0038】
以上の構成において、赤色,緑色,青色の各半導体発光素子5,6,7へ通電されると、それぞれの発光層からの光が放出される。赤色半導体発光素子5では、n電極5b側が第1の主発光面となる。また、緑色,青色の半導体発光素子6,7では、下側及び側方に抜ける光の成分もあるが、サファイア基板6aが透明であることから図3において上側を向いた面を主光取出し面とした発光が得られる。したがって、赤色,緑色,青色の光の3原色の半導体発光素子5,6,7のそれぞれの発光色とこれらの組み合わせによって、フルカラーの発光が可能な画素単位が1つの複合半導体発光素子Aに形成されることになる。
【0039】
本発明においては、フルカラー発光に必要な赤色,緑色,青色の半導体発光素子5,6,7を一つの単位として1個の共通のSiダイオード3に搭載する構成であっても、マイクロバンプ等により接合することにより発光装置の小型化ができるとともにワイヤ数の削減にワイヤが発光面の上面を跨がることにより生じる光遮断を改善し、さらにアセンブリを容易にすることができる。
【0040】
また、Siダイオード3を備えることによって、各半導体発光素子5,6,7の静電破壊を防止でき、特に静電耐圧が低いGaN系半導体化合物を必須とする緑色,青色の半導体発光素子6,7の耐久性も向上するので、赤色,緑色,青色の半導体発光素子5,6,7の組み合わせのフルカラー対応画素を有効に利用した発光表示が可能となる。
【0041】
図5はSiダイオードの上面に反射帯を設けた複合半導体発光素子の例を示す概略斜視図、図6は要部の概略縦断面図である。
【0042】
この例は図1〜図3に示した複合半導体発光素子AのSiダイオード3の上面に反射帯11を形成したもので、先の例と同じ部材については共通の符号で指示し、その詳細な説明は省略する。
【0043】
反射帯11は、図6に示すようにほぼ台形状の縦断面を持つAlなどの金属を素材としたもので、3本の同じ長さの枝11a,11b,11cを互いの間の角度が120°となる関係で展開させた平面形状を持つ。反射帯11はこれらの枝11a,11b,11cのそれぞれが交差する基点11dをSiダイオード3の中心に合わせて位置させるとともに、2本の枝11a,11bがn電極8aの上に及び残りの枝11cが第1p電極8bと第2p電極8cの間を抜ける姿勢として設置されている。そして、各枝11a〜11cは絶縁性の接着剤12によってそれぞれの接合面に接着固定されている。
【0044】
ここで、反射帯11の各枝11a〜11cは図5に示すよう赤色,緑色,青色の半導体発光素子5,6,7の上端よりも高い寸法形状を持ち、断面を台形状としたことによって発光方向に対して先細りする反射面を各半導体発光素子5,6,7に対して臨ませている。したがって、各半導体発光素子5,6,7は各枝11a,11b,11cによって個々に分断された配置となり、各半導体発光素子5,6,7を構成する材料のバンドギャップエネルギーの違いによる光吸収の影響を抑えることができ、各色の発光が高出力として得られる。すなわち、各半導体発光素子5,6,7は各枝11a〜11cによって包囲されて1個1個が光学的に干渉しない独立した配置とすることができるので、相互の間の光吸収が抑えられ高出力の発光が得られるとともにその色も鮮明化される。
【0045】
また、反射帯11の各枝11a〜11cの反射面が傾斜しているので、特に透明のサファイア基板6a,7aを備える緑色,青色の半導体発光素子6,7では赤色半導体発光素子5に比べると側方に抜ける光の成分が多く含まれるので、この光を発光方向に反射して回収することができ、発光輝度も向上する。
【0046】
なお、図5及び図6の例では、金属を反射帯として絶縁性の接着剤によって固定するようにしているが、光反射性の合成樹脂の層をそのまま反射帯として形成したものであってもよい。なお、図示の例では反射帯が枝状になっているが連続させたリング状になっても同様の効果を持つのは無論である。
【0047】
したがって、従来では半導体発光素子を搭載するリードフレームのマウント部にパラボラ状の反射面を形成することで反射光を回収していたが、このようなパラボラを備えることも不要となる。
【0048】
図7はSiダイオードの上面に凹部を設けてこの中に半導体発光素子を配置する複合半導体発光素子の例を示す概略斜視図、図8は要部の概略縦断面図である。
【0049】
この例は図1〜図3に示した複合半導体発光素子AのSiダイオード3の上面の3箇所に凹部13a,13b,13cを形成したもので、先の例と同じ部材については共通の符号で指示し、その詳細な説明は省略する。
【0050】
凹部13a〜13cは円形の平面形状を持ち、それぞれの中心がSiダイオード3の中心周りの同一円上であって中心角が120°のピッチで配列されたものである。すなわち、これらの凹部13a〜13cに対して調心させて赤色,緑色,青色の半導体発光素子5,6,7を配置することによって、図1で説明したように、Siダイオード3の中心に対して各半導体発光素子5,6,7は同じ角度ピッチで同一円上に配列される。そして、各凹部13a,13bは、図8に示すように、底部側に向けて開口断面が先細りしたすり鉢状に形成されている。
【0051】
図8の(a)に示すように、n電極8aはSiダイオード3の上面から凹部13aの傾斜面および底面にかけて形成され、n型シリコン基板3aに接合されている。また、図8の(b)に示すように、凹部13bにおいても同様にn電極8aの一端側および第1p電極8bはSiダイオード3の上面から凹部13bの傾斜面および底部にかけて形成されている。そして、第1p電極8bは凹部13bの底部においてp型半導体領域3dに接合されている。そして、緑色半導体発光素子6はそのp側のマイクロバンプ6eをn電極8aに接合し、n側のマイクロバンプ6dを第1p電極8bに接合し、更にワイヤ9bがこの第1p電極8bにボンディングされている。
【0052】
なお、凹部13cに対する青色半導体発光素子7の搭載構造も同様であり、図8の(b)においては括弧内にそれぞれの符号を指示している。
【0053】
このように、赤色,緑色,青色の半導体発光素子5,6,7をそれぞれ凹部13a,13b,13cの中に落とし込むように組み込むことによって、各半導体発光素子5,6,7どうしの間の光学的な干渉を受けることがない。このため、各半導体発光素子5,6,7に使用する材料のバンドギャップエネルギーの違いによる光吸収が抑えられ、それぞれの発光色がより一層鮮明化するとともに高い発光出力が得られる。
【0054】
また、n電極8a及び第1,第2のp電極8b,8cをそれぞれ光反射率が高い金属素材としておけば、凹部13a〜13cの内周の傾斜した面を光反射面として利用することができる。したがって、赤色,緑色,青色の半導体発光素子5,6,7から側方または下方に漏れる光をこの光反射面から発光方向に回収でき、各色の発光輝度を高めることができる。このため、図5の反射帯11を設ける場合と同様に、リードフレームや基板のマウント部にパラボラ状の反射面を形成することは不要となり、構造を簡略化することができる。
【0055】
更に、赤色,緑色,青色の半導体発光素子5,6,7はSiダイオード3の表面から突き出ないように組み込まれるので、図1〜図3に示したものと比較すると、複合半導体発光素子Aの高さ寸法を小さくでき、最終的に製作される発光装置の薄型化も可能となる。
【0056】
以上の図1〜図8に示した複合半導体発光素子Aは、いずれも台座基板1に所定の個数配列したものとしてアセンブリし、複数の台座基板1をディスプレイパネルに装着するとともに各配線基板2a〜2cへの導通回路を接続することによって、画像ディスプレイ装置の製品として提供できる。そして、静電気に比較的弱いGaN系化合物半導体を利用する緑色,青色の半導体発光素子6,7については、Siダイオード3によって保護されるので、静電耐圧が高いディスプレイ装置を提供できる。また、図1〜図9に示した複合半導体発光素子Aをフルカラー光源として用いても高出力の発光装置が実現できる。
【0057】
【発明の効果】
請求項1の発明では、特に静電耐圧が低いGaN系半導体発光素子の静電耐圧を大幅に向上させ、Siダイオードを共通化しGaN系半導体発光素子をマイクロバンプにより接続しているため、ワイヤボンディングの回数を減少するだけでなく、赤色,緑色,青色の半導体発光素子を近接化することができ、色の混色性を向上するとともに、半導体発光装置の小型化を可能とし、発光観測面側の光を有効に取り出され、高輝度化を実現できるという格別の効果を奏する。
【0058】
また、赤色,緑色,青色の半導体発光素子による発光色の混色性が向上し、GaN半導体発光素子をリードフレームや基板の搭載面の引き出し側に搭載しているので、発熱の大きいGaN半導体発光素子の放熱性を改善でき信頼性が向上する。
【0060】
請求項の発明では、赤色,緑色,青色の各半導体発光素子どうしの相互干渉を無くすことができ、また凹部の傾斜面を反射面として利用できるので、光取り出し効率が向上するとともに、従来、リードフレーム等に形成していたパラボラが不要となり、高性能化及び低コスト化が可能となる。
【0061】
請求項の発明では、半導体発光素子のそれぞれの材料の相違による光の吸収を受けない発光が可能となり、また各色毎に半導体発光素子を凹部に搭載しているため、各色の光取り出し効率が向上するとともに、クリアな発光が得られる。
【0062】
請求項の発明では、Siダイオード上面の配線パターンの1つを共有するので、アノードコモンまたはカソードコモンとすることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態によるフルカラー複合半導体発光素子の要部を示す概略平面図
【図2】赤色の半導体発光素子の搭載構造を示す要部概略図
【図3】緑色の半導体発光素子及び青色の半導体発光素子の搭載構造を示す要部概略図
【図4】静電気保護素子による静電気保護機能を説明するための回路図
【図5】Siダイオードの上に反射帯を形成した例を示す概略斜視図
【図6】図5の例における素子の要部を示す概略縦断面図
【図7】Siダイオードの表面の3個所に凹部を設けてこれらに半導体発光素子を組み込む例を示す概略斜視図
【図8】図7の例における要部の概略断面図であって、
(a)は赤色の半導体発光素子の搭載構造を示す図
(b)は緑色及び青色の半導体発光素子の搭載構造を示す図
【図9】従来のフルカラー発光装置の要部を示す概略平面図
【図10】赤色の半導体発光素子を搭載した従来構造を示す要部概略図
【図11】緑色の半導体発光素子及び青色の半導体発光素子を搭載した従来構造を示す要部概略図
【図12】反射カップ材を装着した従来のフルカラー発光装置の概略斜視図
【符号の説明】
A 複合半導体発光素子
1 台座基板
2a,2b,2c,2d 配線パターン
3 Siダイオード
3a シリコン基板
3b n極
3c 酸化膜
3d,3e p型半導体領域
4 導電性ペースト
5 赤色の半導体発光素子
5a p電極
5b n電極
5c 導電性ペースト
6 緑色の半導体発光素子
7 青色の半導体発光素子
6a,7a サファイア基板
6b,7b n側電極
6c,7c p側電極
6d,7d マイクロバンプ
8a n電極
8b 第1p電極
8c 第2p電極
9a,9b,9c ワイヤ
11 反射帯
11a,11b,11c 枝
11d 基点
12 接着剤
13a,13b,13c 凹部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light-emitting device including a flip-chip type semiconductor light-emitting element, and more particularly, a full-color composite semiconductor light-emitting element in which a semiconductor light-emitting element and an electrostatic protection element are combined to improve electrostatic withstand voltage and the same. The present invention relates to a light emitting device.
[0002]
[Prior art]
Light emitting devices using semiconductor light emitting elements such as LED lamps and chip LEDs are widely used as LED displays in which a large number of these LED lamps and chip LEDs are arranged on a panel, for example. Semiconductor light-emitting devices (LEDs) emit red, green, and other light depending on the type of compound semiconductor, and are recently formed by stacking a GaN-based compound semiconductor on an insulating and transparent sapphire substrate. Blue and green semiconductor light emitting devices have also been put into practical use.
[0003]
In the case of an LED display, one pixel is constituted by one semiconductor light emitting element in the case of a single color display, but in the case of a full color display, a light emitting element having a set of red, green, and blue which are the three primary colors of light is used. Configured as one pixel.
[0004]
FIG. 9 is a schematic plan view showing the main part of a full-color light emitting device using red, green, and blue semiconductor light emitting elements (LEDs), and FIGS. 10 and 11 are schematic vertical sectional views of the main part.
[0005]
In FIG. 9, a red semiconductor light emitting element 16 is mounted on the right side of a wiring pattern 15a formed on a base substrate (14 in FIG. 10), and a semiconductor light emitting element made of, for example, GaAlAs is used. Is. As shown in FIG. 10, the red semiconductor light emitting element 16 has an n electrode 16a formed on the bottom surface and a p electrode 16b formed on the top surface, and the n electrode 16a is conductively fixed to the wiring pattern 15a with a conductive paste 16c. Furthermore, the p-electrode 16b and the wiring pattern (15b in FIG. 9) are bonded and made conductive by the wire 16d.
[0006]
Each of the green semiconductor light-emitting element 17 and the blue semiconductor light-emitting element 18 is formed by stacking a GaN-based compound semiconductor on an insulating sapphire substrate 17a, and using an InGaN active layer formed as one of the layers as a light-emitting layer. The sapphire substrate side is fixed to the wiring pattern 15a.
[0007]
For example, as shown in FIGS. 9 and 11, the green semiconductor light emitting element 17 has a sapphire substrate 17a bonded to the upper surface of the wiring pattern 15a via a paste 17d, and the upper surface of the semiconductor light emitting element has a p side. The electrode 17c and the n-side electrode 17b are formed, and the p-side electrode 17c is bonded by the wiring pattern 15b and the wire 17e, and the n-side electrode 17b is bonded by the wiring pattern 15d and the wire 17f.
[0008]
The same applies to the blue semiconductor light-emitting element 18 and is indicated by parenthesized symbols in FIG.
[0009]
In general production of such a full-color light emitting device in which one set of red, green and blue is one pixel, red, green and blue semiconductor light emitting elements are separately die-bonded on a wiring pattern, and these semiconductors are manufactured. In general, the process of wire bonding is used to electrically connect each of the light emitting elements independently, and the green and blue colors of the GaN-based semiconductor light emitting elements are used when manufacturing a high brightness full color light emitting device. When green is mounted, green and blue semiconductor light emitting elements are semiconductor light emitting elements having two electrodes on a sapphire substrate, so two wires are required for each of green and blue. Therefore, a full-color light emitting device using red, green, and blue semiconductor light emitting elements requires at least five wire junctions.
[0010]
In addition, GaN-based compound semiconductors have the disadvantage of low electrostatic withstand voltage, which may cause characteristic destruction during mounting.
[0011]
With respect to electrostatic breakdown of such green and blue semiconductor light emitting devices, as described in Japanese Patent Laid-Open No. 9-148625, the electrostatic withstand voltage of semiconductor light emitting devices using GaN compound semiconductors is improved. Therefore, it can be an effective means to provide a compensation diode for reverse withstand voltage compensation.
[0012]
The compensation diode for reverse withstand voltage compensation in the semiconductor light emitting device described in this publication includes an n-conducting first layer electrically connected to the p-side electrode of the semiconductor light-emitting device and an n-side electrode of the semiconductor light-emitting device. The p-conductivity type second layer connected to each other forms a pn junction. With such a configuration, destruction due to static electricity applied in the reverse direction to the light emitting portion is prevented.
[0013]
[Problems to be solved by the invention]
In the case where the brightness as a full color is insufficient in the conventional manufacturing method, the lack of brightness is compensated by increasing the number of semiconductor light emitting elements. However, when blue and green are increased, the number of wires is increased as described above. Since two wires increase per wire, the wires become complicated during wire bonding. When the number of wires increases, it is effective to separate the mounting position of the semiconductor light emitting element to avoid contact between the wires, but it is necessary to enlarge the wiring pattern for mounting the semiconductor light emitting element and further to separate the wiring pattern to be bonded Therefore, there is a problem that the apparatus itself cannot be reduced in size. Furthermore, in the wiring where the loop straddles the upper surface of the semiconductor light emitting element, the light on the light emission observation surface side is blocked, which causes a reduction in luminance.
[0014]
In addition, when the apparatus described in Japanese Patent Application No. 9-18882 is used, even if the number of wires can be reduced, the compensation diode is necessarily larger than the semiconductor light emitting element, so that there is a limit to making the semiconductor light emitting elements close to each other. There is a problem that color mixing cannot be sufficiently achieved when light is emitted simultaneously.
[0015]
Further, in recent years, as shown in FIG. 12, a parabolic reflecting cup material 22 molded of PC, ABS resin or the like is attached to the outer peripheral portions of the red, green, and blue semiconductor light emitting elements 19, 20, and 21 to obtain high brightness. Light-emitting devices aiming to be made are being manufactured. However, since the parabolic reflective cup material 22 is disposed on the outer periphery of the red, green, and blue semiconductor light emitting elements 19, 20, and 21, light emitted from each semiconductor light emitting element is shielded by adjacent elements. Because of the difference in band gap energy, the light emitted from the blue semiconductor light emitting element 21 is absorbed by the light emitted from the red semiconductor light emitting element 19, and the distance to the cup slope is not uniform with respect to the side surface of the semiconductor light emitting element. There was a problem that it did not work efficiently.
[0016]
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor light emitting element capable of full color light emission that can be easily electrically connected and can improve the withstand voltage against application of a high voltage such as static electricity or surge, and a light emitting device using the same. .
[0017]
[Means for Solving the Problems]
The present invention is a full-color composite comprising a combination of an electrostatic protection Si diode conductively connected to a lead frame or a substrate and red, green and blue semiconductor light emitting elements conductively mounted on the Si diode. A semiconductor light emitting device, wherein the green and blue semiconductor light emitting devices are flip chip type semiconductor light emitting devices containing GaN, and micro bumps are formed on the n side and p side electrodes, and the n side and The p-side micro-bump is made conductive with the polarity opposite to that of the Si diode.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The invention of claim 1 is an electrostatic protection Si diode that is conductively connected to a lead frame or a substrate; Above A full-color composite semiconductor light-emitting device composed of a combination of red, green and blue semiconductor light-emitting devices conductively mounted on a Si diode Light emitting device equipped with Because The red semiconductor light emitting element is made of GaAlAs or InGaAlP, The green and blue semiconductor light emitting devices But GaN Made of compound semiconductor Flip chip type semiconductor light emitting device Of the flip-chip type semiconductor light emitting device n-side and p-side electrodes And p electrode and n electrode formed on the surface of the Si diode Micro bump The green and blue semiconductor light-emitting elements are arranged on the lead frame or the wiring pattern drawing side of the substrate rather than the red semiconductor light-emitting elements. By mounting a red, green, and blue semiconductor light emitting element on a Si diode for electrostatic protection and conducting connection, the electrostatic withstand voltage of a GaN-based semiconductor light emitting element with a particularly low electrostatic withstand voltage is greatly increased. Improved, Si diodes are shared, and GaN-based semiconductor light-emitting elements are connected by micro bumps, reducing the number of wire bonding and reducing the size of the device by bringing red, green, and blue semiconductor light-emitting elements closer to each other. It is possible to improve the color mixing property of the color. In addition, since the number of wires can be reduced to the minimum by microbump bonding, the light on the light emission observation surface side blocked by the wires can be effectively extracted, and high brightness can be realized.
[0019]
Also, The green and blue semiconductor light emitting elements are arranged corresponding to the lead frame or the wiring pattern drawing side of the substrate. thing Thus, the color mixing property is improved, and the heat dissipation of the GaN semiconductor light emitting device that generates a large amount of heat can be improved.
[0021]
Claim 2 According to the invention, a recess is formed on the surface of the Si diode to drop and mount the red semiconductor light emitting element. red When the semiconductor light emitting device is mounted in the recess, red The semiconductor light emitting element has a height relationship embedded in the upper end surface of the Si diode. Claim 1 of Light emitting device Since the red semiconductor light-emitting element is mounted so as to be buried in the Si diode, interference with the green and blue semiconductor light-emitting elements can be eliminated, and an inclined surface extending from the top surface of the Si diode to the bottom surface of the recess can be illuminated. Since it can be used as a reflecting surface, it is possible to efficiently extract light to the light emission observation surface side.
[0022]
Claim 3 According to the invention, at least three of the concave portions are provided on the surface of the Si diode, and at least one semiconductor light emitting element of each color of red, green, and blue is mounted on each of the concave portions. Light emitting device Since the red, green, and blue semiconductor light emitting devices are individually dropped into the recesses, the interference of the red, green, and blue semiconductor light emitting devices is eliminated, and all the red, green, and blue semiconductor light emitting devices are used. On the other hand, since the inclined surface extending from the upper surface of the Si diode to the bottom surface of the recess can be used as a light reflecting surface, light can be efficiently extracted to the light emission observation surface side for all the semiconductor light emitting elements.
[0023]
Claim 4 The invention of claim 1 further comprises a common electrode on the surface of the Si diode that conducts as a p-side or an n-side with respect to all of the semiconductor light emitting elements of red, green, and blue. 3 In any of Light emitting device The electrode on the upper surface of the Si diode can be shared and used as an anode common or a cathode common.
[0026]
Hereinafter, specific examples of embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic plan view showing a main part of a full-color composite semiconductor light emitting device according to an embodiment of the present invention, and FIGS. 2 and 3 are schematic vertical sectional views of the main part.
[0027]
In FIG. 1, wiring patterns 2a, 2b, 2c, and 2d are uniformly formed on the surface of the base substrate 1 fixed to the mounting surface of the display panel. Of these patterns, the wiring pattern 2a having a large planar shape is formed. The upper surface is a mounting surface for the full-color composite semiconductor light emitting element A. In the illustrated example, one composite semiconductor light emitting element A is mounted. However, if the wiring patterns 2a and 2b, 2c, and 2d are changed, for example, the composite semiconductor light emitting element A is fixed in the longitudinal direction. It is also possible to have assemblies arranged at intervals.
[0028]
The composite semiconductor light emitting element A is electrically connected to an upper surface of the Si diode 3 and an electrostatic protection Si diode 3 conductively fixed on the wiring pattern 2a by a conductive paste (for example, a resin containing Ag as a filler) 4. It is composed of three semiconductor light emitting elements 5, 6 and 7 of red, green and blue.
[0029]
As shown in FIGS. 2 and 3, the Si diode 3 has an n-type silicon substrate 3 a as a base material, an n-pole 3 b is formed on the bottom surface thereof, and is electrically connected to the wiring pattern 2 a through the conductive paste 4. An oxide film 3c is formed on the upper surface except for a part (see FIG. 2). The p-type semiconductor regions 3d and 3e divided into two regions are diffused into the n-type silicon substrate 3a by implanting p-type impurity ions using the two portions not covered with the oxide film 3c as diffusion windows. Form (see FIG. 3). The diffusion region of these p-type semiconductor regions 3d and 3e is uniquely determined in size and depth by the amount of implanted p-type impurity ions. In the present invention, the distance between the p-type semiconductor regions 3d and 3e is determined. Is 10 μm or more.
[0030]
On the surface of the n-type silicon substrate 3a, as shown in FIG. 1, an n-electrode 8a, a first p-electrode 8b, and a second p-electrode 8c are formed by metal vapor deposition. The n electrode 8a is formed widely except for the left end side of the surface of the Si diode 3, and as shown in FIGS. 2 and 3, the oxide film 3c is not formed and the n-type silicon substrate 3a is exposed. It is joined. On the other hand, the first p-electrode 8b and the second p-electrode 8c are arranged along the left end portion, and are respectively formed in the p-type semiconductor regions 3d and 3e (portions shown by broken lines in FIG. 1) diffused in the n-type silicon substrate 3a. It is connected.
[0031]
The red semiconductor light-emitting element 5 is mounted on the right side of the n-electrode 8a and uses a conventionally known semiconductor light-emitting element made of GaAlAs or InGaAlP. As shown in FIG. 2, the red semiconductor light-emitting element 5 has a p-electrode 5a formed on the bottom surface and an n-electrode 5b formed on the top surface. The p-electrode 5a is formed on the n-electrode of the Si diode 3 with a conductive paste 5c. The n electrode 5b is bonded and connected to the wiring pattern 2b by the wire 9a.
[0032]
Each of the green semiconductor light-emitting element 6 and the blue semiconductor light-emitting element 7 has an InGaN active layer formed as a single layer in which a GaN-based compound semiconductor is stacked on a transparent sapphire substrate (6a, 7a). The light emitting layer is mounted on the upper surface of the flip chip type Si diode 3.
[0033]
That is, as shown in FIG. 3, for example, the green semiconductor light emitting element 6 is formed by depositing an n-side electrode 6b and a p-side electrode 6c on the respective surfaces of an n-type layer and a p-type layer laminated on a transparent sapphire substrate 6a. Formed. Micro bumps 6d and 6e are formed on the surfaces of the n-side electrode 6b and the p-side electrode 6c, respectively. As shown in FIG. 1, the green semiconductor light emitting element 6 is mounted so as to straddle the n electrode 8a and the first p electrode 8b, and the n side electrode 6b and the p side electrode 6c are respectively connected to the first p electrode 8b and n. Mounted to the electrode 8a.
[0034]
The same applies to the blue semiconductor light emitting element 7, and the n-side electrode (7 b) is mounted on the second p electrode 8 c and the p-side electrode (7 c) by being mounted so as to straddle the n electrode 8 a and the second p electrode 8 c. Is a mount joined to the n-electrode 8a. In FIG. 3, in order to show the junction between the blue semiconductor light-emitting element 7 and the second p-electrode 8c together, the relationship between the blue semiconductor light-emitting element 7 and the second p-electrode 8c is represented by the reference numerals in parentheses. For example, the code | symbol 7a is a sapphire substrate, and the code | symbol 7c shows the p side electrode.
[0035]
Here, the planar shape of the Si diode 3 is substantially a regular square as shown in FIG. 1, and each of the red, green, and blue semiconductor light emitting elements 5, 6, and 7 is a single circle drawn around the center of the Si diode 3. It will be arranged along. That is, the center portion of each of the semiconductor light emitting elements 5, 6 and 7 is located on a circle having the center of the Si diode 3 as the origin, and the center angle between the centers is substantially the same. A positional relationship that is 120 ° is provided. As a result, the semiconductor light-emitting elements 5, 6, and 7 can have substantially the same adjacent distance in the direction along the array circle, thereby improving the color mixing of red, green, and blue colored light emission. it can. Also, with such an arrangement, the green semiconductor light emitting element 6 and the blue semiconductor light emitting element 7 are located in a portion close to the outline of the Si diode 3, so that these green and blue using GaN-based compound semiconductors that generate a large amount of heat. Even in the semiconductor light emitting elements 6 and 7, since heat dissipation is promoted, the reliability of the light emitting device can be improved.
[0036]
Along with the mounting of the green and blue semiconductor light emitting elements 6 and 7, the first and second p electrodes 8b and 8c are bonded to the wiring patterns 2c and 2d by the wires 9b and 9c, respectively, so that one composite semiconductor light emission is achieved. Element A is assembled in a conducting state.
[0037]
FIG. 4 is an equivalent circuit diagram constituted by the above assembly. The green and blue semiconductor light emitting elements 6 and 7 have a p-side electrode and an n-side electrode with respect to the p-electrode and n-electrode of the Si diode 3, respectively. Connected in the opposite direction. Accordingly, in the forward direction of the green and blue semiconductor light emitting elements 6 and 7, the resistance component R of the n-type silicon substrate 3a of the Si diode 3 serves as a protective resistance, and the applied voltage due to static electricity is a Zener of the Si diode 3. When the breakdown voltage is higher than the breakdown voltage, the overcurrent is released by the reverse bypass (Zener breakdown phenomenon) of the Si diode 3. In addition, overcurrent is released by the forward conduction of the Si diode 3 in the reverse direction of the green and blue semiconductor light emitting elements 6 and 7. Therefore, it is possible to prevent overcurrent from flowing into the green and blue semiconductor light emitting elements 6 and 7, thereby preventing the green and blue semiconductor light emitting elements 6 and 7 from electrostatic breakdown.
[0038]
In the above configuration, when the red, green, and blue semiconductor light emitting elements 5, 6, and 7 are energized, light from the respective light emitting layers is emitted. In the red semiconductor light emitting element 5, the n-electrode 5b side is the first main light emitting surface. Further, in the green and blue semiconductor light emitting elements 6 and 7, there is a component of light that passes through downward and laterally, but since the sapphire substrate 6a is transparent, the surface facing upward in FIG. 3 is the main light extraction surface. Is obtained. Therefore, a pixel unit capable of full color light emission is formed in one composite semiconductor light emitting device A by the respective light emission colors of the three primary colors of semiconductor light emitting devices 5, 6 and 7 of red, green and blue light, and combinations thereof. Will be.
[0039]
In the present invention, even when the red, green and blue semiconductor light emitting elements 5, 6 and 7 required for full color light emission are mounted on one common Si diode 3 as a unit, they are formed by micro bumps or the like. Bonding can reduce the size of the light emitting device, reduce the number of wires, improve light blocking caused by the wires straddling the upper surface of the light emitting surface, and facilitate assembly.
[0040]
In addition, by providing the Si diode 3, electrostatic breakdown of each of the semiconductor light emitting elements 5, 6, and 7 can be prevented, and in particular, green and blue semiconductor light emitting elements 6, which require a GaN-based semiconductor compound having a low electrostatic withstand voltage, are essential. 7 is also improved, so that it is possible to perform light-emitting display that effectively uses full-color compatible pixels of a combination of red, green, and blue semiconductor light-emitting elements 5, 6, and 7.
[0041]
FIG. 5 is a schematic perspective view showing an example of a composite semiconductor light emitting device in which a reflection band is provided on the upper surface of the Si diode, and FIG.
[0042]
In this example, a reflection band 11 is formed on the upper surface of the Si diode 3 of the composite semiconductor light emitting device A shown in FIGS. 1 to 3. Description is omitted.
[0043]
The reflection band 11 is made of a metal such as Al having a substantially trapezoidal longitudinal section as shown in FIG. 6, and the angle between the three branches 11a, 11b, and 11c of the same length is mutually different. It has a planar shape developed with a relationship of 120 °. The reflection band 11 positions the base point 11d where these branches 11a, 11b and 11c intersect with the center of the Si diode 3, and the two branches 11a and 11b are on the n-electrode 8a and the remaining branches. 11c is installed in such a posture that it passes between the first p electrode 8b and the second p electrode 8c. The branches 11 a to 11 c are bonded and fixed to the respective joint surfaces with an insulating adhesive 12.
[0044]
Here, the branches 11a to 11c of the reflection band 11 have dimensions higher than the upper ends of the red, green, and blue semiconductor light emitting elements 5, 6, and 7 as shown in FIG. A reflective surface that tapers in the light emitting direction faces each semiconductor light emitting element 5, 6, 7. Accordingly, the respective semiconductor light emitting elements 5, 6, and 7 are individually divided by the respective branches 11a, 11b, and 11c, and light absorption due to the difference in band gap energy of the materials constituting the respective semiconductor light emitting elements 5, 6, and 7 is achieved. The light emission of each color can be obtained as a high output. That is, the semiconductor light emitting elements 5, 6, and 7 are surrounded by the branches 11a to 11c and can be arranged independently so that each one does not interfere optically, so that light absorption between them can be suppressed. High output light emission is obtained and the color is also sharpened.
[0045]
In addition, since the reflecting surfaces of the branches 11a to 11c of the reflection band 11 are inclined, the green and blue semiconductor light emitting elements 6 and 7 including the transparent sapphire substrates 6a and 7a are particularly compared with the red semiconductor light emitting element 5. Since a lot of light components that escape to the side are included, the light can be reflected and collected in the light emitting direction, and the light emission luminance is also improved.
[0046]
In the examples of FIGS. 5 and 6, the metal is fixed as a reflective band by an insulating adhesive, but a light-reflective synthetic resin layer may be formed as it is as a reflective band. Good. In the example shown in the figure, the reflection band has a branch shape, but it is needless to say that the same effect can be obtained even if the reflection ring has a continuous ring shape.
[0047]
Therefore, conventionally, the reflected light is collected by forming a parabolic reflecting surface on the mount portion of the lead frame on which the semiconductor light emitting element is mounted. However, it is not necessary to provide such a parabola.
[0048]
FIG. 7 is a schematic perspective view showing an example of a composite semiconductor light emitting device in which a concave portion is provided on the upper surface of the Si diode and the semiconductor light emitting device is arranged therein, and FIG. 8 is a schematic vertical sectional view of the main part.
[0049]
In this example, recesses 13a, 13b, and 13c are formed at three locations on the upper surface of the Si diode 3 of the composite semiconductor light emitting device A shown in FIGS. 1 to 3, and the same members as those in the previous example are denoted by common reference numerals. The detailed explanation is omitted.
[0050]
The recesses 13a to 13c have a circular planar shape, and their centers are arranged on the same circle around the center of the Si diode 3, and are arranged at a pitch of 120 ° in the center angle. That is, by arranging the red, green, and blue semiconductor light emitting elements 5, 6, and 7 in alignment with the recesses 13a to 13c, as described with reference to FIG. The semiconductor light emitting elements 5, 6, and 7 are arranged on the same circle at the same angular pitch. And as shown in FIG. 8, each recessed part 13a, 13b is formed in the mortar shape which the opening cross section taper toward the bottom side.
[0051]
As shown in FIG. 8A, the n-electrode 8a is formed from the upper surface of the Si diode 3 to the inclined surface and the bottom surface of the recess 13a, and is joined to the n-type silicon substrate 3a. Also, as shown in FIG. 8B, similarly in the recess 13b, the one end side of the n electrode 8a and the first p electrode 8b are formed from the upper surface of the Si diode 3 to the inclined surface and the bottom of the recess 13b. The first p electrode 8b is joined to the p-type semiconductor region 3d at the bottom of the recess 13b. The green semiconductor light emitting element 6 has its p-side microbump 6e bonded to the n-electrode 8a, the n-side microbump 6d bonded to the first p-electrode 8b, and the wire 9b bonded to the first p-electrode 8b. ing.
[0052]
The mounting structure of the blue semiconductor light emitting element 7 in the recess 13c is the same. In FIG. 8B, the reference numerals are indicated in parentheses.
[0053]
As described above, by incorporating the red, green, and blue semiconductor light emitting elements 5, 6, and 7 so as to be dropped into the recesses 13a, 13b, and 13c, respectively, the optics between the semiconductor light emitting elements 5, 6, and 7 can be obtained. Is not subject to general interference. For this reason, the light absorption by the difference in the band gap energy of the material used for each semiconductor light emitting element 5, 6, and 7 is suppressed, and each luminescent color becomes clearer and high light emission output is obtained.
[0054]
Further, if the n electrode 8a and the first and second p electrodes 8b and 8c are each made of a metal material having a high light reflectivity, the inclined surfaces on the inner periphery of the recesses 13a to 13c can be used as the light reflecting surfaces. it can. Therefore, the light leaking sideways or downward from the red, green, and blue semiconductor light emitting elements 5, 6, and 7 can be collected in the light emitting direction from the light reflecting surface, and the light emission luminance of each color can be increased. Therefore, as in the case of providing the reflection band 11 of FIG. 5, it is not necessary to form a parabolic reflection surface on the lead frame or the mount portion of the substrate, and the structure can be simplified.
[0055]
Furthermore, since the red, green, and blue semiconductor light emitting elements 5, 6, and 7 are incorporated so as not to protrude from the surface of the Si diode 3, the composite semiconductor light emitting element A is compared with that shown in FIGS. The height dimension can be reduced, and the finally manufactured light-emitting device can be made thinner.
[0056]
The composite semiconductor light emitting elements A shown in FIGS. 1 to 8 are all assembled as a predetermined number arrayed on the pedestal substrate 1, and a plurality of pedestal substrates 1 are mounted on the display panel and the wiring substrates 2a to 2a are mounted. By connecting a conduction circuit to 2c, it can be provided as a product of an image display device. Since the green and blue semiconductor light emitting elements 6 and 7 that use a GaN-based compound semiconductor that is relatively weak against static electricity are protected by the Si diode 3, a display device with a high electrostatic withstand voltage can be provided. Further, even if the composite semiconductor light emitting element A shown in FIGS. 1 to 9 is used as a full color light source, a high output light emitting device can be realized.
[0057]
【The invention's effect】
According to the first aspect of the present invention, the electrostatic withstand voltage of the GaN-based semiconductor light-emitting element having a particularly low electrostatic withstand voltage is greatly improved, the Si diode is shared, and the GaN-based semiconductor light-emitting elements are connected by micro bumps. In addition to reducing the number of times, the red, green, and blue semiconductor light emitting elements can be brought closer to each other, improving the color mixing property and reducing the size of the semiconductor light emitting device. There is an extraordinary effect that light can be extracted effectively and high brightness can be realized.
[0058]
Also, The color mixing characteristics of the red, green, and blue semiconductor light emitting elements are improved, and the GaN semiconductor light emitting elements are mounted on the lead frame or on the drawing side of the mounting surface of the substrate. Can improve the reliability.
[0060]
Claim 2 In this invention, mutual interference between the red, green, and blue semiconductor light emitting elements can be eliminated, and the inclined surface of the recess can be used as a reflecting surface, so that the light extraction efficiency is improved and a conventional lead frame, etc. Thus, the parabola formed in the above is no longer necessary, and high performance and low cost are possible.
[0061]
Claim 3 In this invention, it is possible to emit light that is not subjected to light absorption due to the difference in the materials of the semiconductor light emitting elements, and the light emitting efficiency of each color is improved because the semiconductor light emitting elements are mounted in the recesses for each color. Clear light emission can be obtained.
[0062]
Claim 4 In this invention, since one of the wiring patterns on the upper surface of the Si diode is shared, it can be the anode common or the cathode common.
[Brief description of the drawings]
FIG. 1 is a schematic plan view showing a main part of a full-color composite semiconductor light emitting device according to an embodiment of the present invention.
FIG. 2 is a schematic diagram of a main part showing a mounting structure of a red semiconductor light emitting element
FIG. 3 is a schematic diagram of a main part showing a mounting structure of a green semiconductor light emitting device and a blue semiconductor light emitting device.
FIG. 4 is a circuit diagram for explaining an electrostatic protection function by an electrostatic protection element.
FIG. 5 is a schematic perspective view showing an example in which a reflection band is formed on a Si diode.
6 is a schematic longitudinal sectional view showing the main part of the element in the example of FIG.
FIG. 7 is a schematic perspective view showing an example in which recesses are provided at three locations on the surface of a Si diode and a semiconductor light emitting device is incorporated in these recesses.
8 is a schematic cross-sectional view of the main part in the example of FIG. 7,
(A) is a figure which shows the mounting structure of a red semiconductor light-emitting device
(B) is a figure which shows the mounting structure of the green and blue semiconductor light-emitting device.
FIG. 9 is a schematic plan view showing a main part of a conventional full-color light emitting device.
FIG. 10 is a schematic diagram of a main part showing a conventional structure in which a red semiconductor light emitting element is mounted.
FIG. 11 is a schematic diagram of a main part showing a conventional structure in which a green semiconductor light emitting element and a blue semiconductor light emitting element are mounted.
FIG. 12 is a schematic perspective view of a conventional full-color light emitting device equipped with a reflective cup material.
[Explanation of symbols]
A composite semiconductor light emitting device
1 Base board
2a, 2b, 2c, 2d Wiring pattern
3 Si diode
3a Silicon substrate
3b n pole
3c oxide film
3d, 3e p-type semiconductor region
4 Conductive paste
5 Red semiconductor light emitting device
5a p electrode
5b n electrode
5c conductive paste
6 Green semiconductor light emitting device
7 Blue semiconductor light emitting device
6a, 7a Sapphire substrate
6b, 7b n-side electrode
6c, 7c p-side electrode
6d, 7d micro bump
8a n electrode
8b 1p electrode
8c Second p electrode
9a, 9b, 9c wire
11 Reflection band
11a, 11b, 11c branches
11d base point
12 Adhesive
13a, 13b, 13c recess

Claims (4)

リードフレームまたは基板に導通接続された静電気保護用のSiダイオードと、前記Siダイオードの上に導通搭載される赤,緑,青の各色の半導体発光素子との組み合わせからなるフルカラーの複合半導体発光素子を搭載した発光装置であって、前記赤色の半導体発光素子がGaAlAsまたはInGaAlPからなり、前記緑色及び青色の半導体発光素子GaN系化合物半導体からなるフリップチップ型の半導体発光素子とするとともに前記フリップチップ型の半導体発光素子のn側及びp側の電極と前記Siダイオードの表面に形成したp電極及びn電極とを逆極性としてマイクロバンプで接合し、前記緑色及び青色の半導体発光素子を前記赤色の半導体発光素子よりもリードフレームまたは基板の配線パターンの引き出し側に配置してなる発光装置And Si diode for electrostatic protection which is conductively connected to the lead frame or substrate, red is conducted mounted on the Si diode, green, composite semiconductor light-emitting device of a full color comprising a combination of the respective colors of the semiconductor light-emitting element of blue A light emitting device mounted thereon, wherein the red semiconductor light emitting element is made of GaAlAs or InGaAlP, and the green and blue semiconductor light emitting elements are made of a flip chip type semiconductor light emitting element made of a GaN compound semiconductor, and the flip chip type The n-side and p-side electrodes of the semiconductor light-emitting element and the p-electrode and the n-electrode formed on the surface of the Si diode are bonded with micro-bumps with opposite polarities, and the green and blue semiconductor light-emitting elements are connected to the red semiconductor Arranged on the lead frame or substrate wiring pattern lead-out side of the light emitting element Consisting of Te light-emitting device. 前記Siダイオードの表面に、前記赤色半導体発光素子を落とし込んで搭載する凹部を形成し、前記赤色半導体発光素子を凹部に搭載したとき前記赤色半導体発光素子がSiダイオードの上端面に対して埋没する高さ関係としてなる請求項1記載の発光装置 A recess for dropping and mounting the red semiconductor light emitting element is formed on the surface of the Si diode, and the red semiconductor light emitting element is embedded in the upper end surface of the Si diode when the red semiconductor light emitting element is mounted in the recess. It is formed by a related claim 1 emitting device according. 前記Siダイオードの表面に、前記凹部を少なくとも3個所に設け、これらの凹部のそれぞれに少なくとも前記赤,緑,青の半導体発光素子を1個ずつ搭載してなる請求項2記載の発光装置Wherein the surface of the Si diode, provided the recesses in at least three locations, at least the red each of these recesses, green light emitting device mounted composed claim 2 wherein each one of the semiconductor light emitting element of blue. 前記Siダイオードの表面に、前記赤,緑,青の半導体発光素子の全てに対してp側またはn側として導通させる共通の電極を備えてなる請求項1から3のいずれかに記載の発光装置On the surface of the Si diode, the red, green, light emitting device according to any one of claims 1 to 3 comprising a common electrode for conducting a p-side or n-side for all the semiconductor light-emitting element of blue .
JP11468998A 1998-04-24 1998-04-24 Light emitting device Expired - Fee Related JP3893735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11468998A JP3893735B2 (en) 1998-04-24 1998-04-24 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11468998A JP3893735B2 (en) 1998-04-24 1998-04-24 Light emitting device

Publications (2)

Publication Number Publication Date
JPH11307818A JPH11307818A (en) 1999-11-05
JP3893735B2 true JP3893735B2 (en) 2007-03-14

Family

ID=14644180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11468998A Expired - Fee Related JP3893735B2 (en) 1998-04-24 1998-04-24 Light emitting device

Country Status (1)

Country Link
JP (1) JP3893735B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10041686A1 (en) * 2000-08-24 2002-03-14 Osram Opto Semiconductors Gmbh Component with a large number of LED chips
US6486561B1 (en) * 2000-09-12 2002-11-26 Luminary Logic, Ltd. Semiconductor light emitting element formed on a clear or translucent substrate
JP4904628B2 (en) * 2001-03-14 2012-03-28 パナソニック株式会社 Composite light emitting device
JP2003017753A (en) * 2001-07-03 2003-01-17 Koha Co Ltd Light emitting device
JP2003051610A (en) * 2001-08-03 2003-02-21 Nichia Chem Ind Ltd Led element
JP3993475B2 (en) * 2002-06-20 2007-10-17 ローム株式会社 LED chip mounting structure and image reading apparatus having the same
TW541731B (en) * 2002-06-21 2003-07-11 Advanced Optoelectronic Tech LED package module
US7518158B2 (en) 2003-12-09 2009-04-14 Cree, Inc. Semiconductor light emitting devices and submounts
WO2005057672A2 (en) * 2003-12-09 2005-06-23 Gelcore, Llc Surface mount light emitting chip package
KR100541110B1 (en) 2004-06-25 2006-01-11 삼성전기주식회사 Method of producing multi-wavelength semiconductor laser device
JP2006114854A (en) 2004-10-18 2006-04-27 Sharp Corp Semiconductor light emitting device, and backlight device for liquid crystal display
JP2007123777A (en) * 2005-10-31 2007-05-17 Sharp Corp Semiconductor light-emitting apparatus
JP2007335462A (en) 2006-06-12 2007-12-27 Stanley Electric Co Ltd Semiconductor compound element, and its fabrication process
JP5045166B2 (en) * 2007-03-16 2012-10-10 ソニー株式会社 Light source device and liquid crystal display device
JP5431688B2 (en) 2007-06-29 2014-03-05 ソウル セミコンダクター カンパニー リミテッド Multi LED package
US7871842B2 (en) * 2008-10-03 2011-01-18 E. I. Du Pont De Nemours And Company Production process for surface-mounting ceramic LED package, surface-mounting ceramic LED package produced by said production process, and mold for producing said package

Also Published As

Publication number Publication date
JPH11307818A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
US10679973B2 (en) Multiple pixel surface mount device package
CN103227169B (en) Luminescent device
JP3893735B2 (en) Light emitting device
JP6133040B2 (en) Light emitting device and light emitting device package
US10431567B2 (en) White ceramic LED package
US8901583B2 (en) Surface mount device thin package
US9112124B2 (en) Light emitting device
KR101276053B1 (en) Semiconductor light emitting device and light emitting apparatus
KR20130045507A (en) Light emitting device
TWI570962B (en) A light emitting unit and a semiconductor light emitting device
US20110037083A1 (en) Led package with contrasting face
KR20140022640A (en) Semiconductor light emitting device and light emitting apparatus
KR20130046755A (en) Light emitting device
JP4904628B2 (en) Composite light emitting device
KR20130025232A (en) A light emitting device
US10217903B2 (en) Optoelectronic semiconductor chip and optoelectronic module
CN110611024B (en) Light emitting module and method for manufacturing light emitting module
JP2008288552A (en) Light emitting device
JP2017157593A (en) Light-emitting diode, manufacturing method for light-emitting diode, light-emitting diode display device, and manufacturing method for light-emitting diode display device
JP4042213B2 (en) Full color semiconductor light emitting device
KR102131853B1 (en) Light emitting diode array
JP3571477B2 (en) Semiconductor light emitting device
TW201332155A (en) Electrode coplanar light-emitting diode device, flip-chip light-emitting diode package structure and optical reflection structure
CN113659061B (en) Flip-chip light emitting diode and light emitting device
CN217641391U (en) LED chip for limiting LED light-emitting angle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040310

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040413

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees