[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3882337B2 - Fuel cell power generation facility with differential pressure self-control function - Google Patents

Fuel cell power generation facility with differential pressure self-control function Download PDF

Info

Publication number
JP3882337B2
JP3882337B2 JP13583498A JP13583498A JP3882337B2 JP 3882337 B2 JP3882337 B2 JP 3882337B2 JP 13583498 A JP13583498 A JP 13583498A JP 13583498 A JP13583498 A JP 13583498A JP 3882337 B2 JP3882337 B2 JP 3882337B2
Authority
JP
Japan
Prior art keywords
fuel cell
power generation
cathode
generation facility
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13583498A
Other languages
Japanese (ja)
Other versions
JPH11329469A (en
Inventor
一 斉藤
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP13583498A priority Critical patent/JP3882337B2/en
Publication of JPH11329469A publication Critical patent/JPH11329469A/en
Application granted granted Critical
Publication of JP3882337B2 publication Critical patent/JP3882337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶融炭酸塩型燃料電池を用いた発電設備に係わり、更に詳しくは差圧自己制御機能を有する燃料電池発電設備に関する。
【0002】
【従来の技術】
溶融炭酸塩型燃料電池は、電解質として高温で溶融状態になる溶融炭酸塩を用いたものであり、約650℃前後の高温で作動し高い発電効率を達成できる特徴を有している。
図2は、かかる溶融炭酸塩型燃料電池を用いた従来の発電設備(以下、単に燃料電池発電設備という)の全体構成図である。この図において、1は脱硫器、2a,2bは熱交換器、3は改質器(リフォーマ)、4は燃料電池、5は燃焼器、6は排熱回収ボイラ、7aは凝縮器、7bはノックアウトドラム(KOドラム)、8a,8bはブロア、9はタービンコンプレッサである。燃料としての天然ガスNgが、脱硫器1で硫黄分を除去され、熱交換器2aで予熱されて、改質器3の改質室Reに入り、ここで水素を含むアノードガスGaに改質され、熱交換器2aで冷却され、燃料電池4のアノード側Aに供給される。燃料電池4では、アノードガスGaとカソードガスGcにより発電し、発電後のアノード排ガスEaとカソード排ガスEcは、燃焼器5に供給され、ここで未燃分が触媒燃焼して高温ガスEgを発生し、改質器3の加熱室Hで改質室Reを加熱し、改質器3を出た燃焼排ガスは、空気予熱器2bで空気を予熱し、更に凝縮器7aで常温までガスの温度を下げ、ノックアウトドラム7bで水分Wを除去される。更に、排ガスは、ブロア8aで加圧され、タービンコンプレッサ9で加圧した空気Aが混合され、熱交換器2bで予熱し、高温リサイクル系と合流した後、カソードガスGcとして燃料電池4に供給される。また、排熱回収ボイラ6で発生した水蒸気Sは、天然ガスNgに混入して改質反応に用いられ、凝縮器7aで発生した水分Wは、ボイラ6の給水として用いられる。なお、8bはリサイクルブロアであり、カソードガスを循環して燃料電池の温度を制御するようになっている。
【0003】
上述した燃料電池発電設備は、発電効率を高めるために、通常加圧下で運転される。そのため、改質器3や燃料電池4は、それぞれ圧力容器内に内蔵される。しかし、個々に圧力容器に内蔵すると、設置面積が大きくなり、放熱も大きくなることから、これらの主要機器を1つの圧力容器に収納することが提案されている(例えば、特願平2−122972号)。
一方、燃料電池4内のアノード側Aとカソード側Bの差圧(極間差圧)が大きくなると、アノードガスGaとカソードガスGcがクロスリーク(内部リーク)して、燃料を浪費するばかりでなく電池性能を大幅に低下させる。そのため、極間差圧は、通常例えば約400mmAq以内の低い値に常に制御する必要があり、従来の燃料電池発電設備では、アノード排ガスEaとカソード排ガスEcを同一の燃焼器5に導き、燃焼器5内で連通させることにより、この極間差圧を本質的に低い値にしている。
【0004】
更に、燃料電池4内の圧力(アノード側A及びカソード側B)とこれを囲む圧力容器内の圧力も、ガスリーク(外部リーク)を防止するために、極間差圧と同程度の低い値に常に制御する必要がある。この制御は、図3に模式的に示すように、従来、電池内と容器内の差圧を差圧検出器Dpで検出し、容器内に供給するガス流量と排出するガス流量を流量制御弁10a,10bで調節することにより行っていた。
【0005】
【発明が解決しようとする課題】
かかる従来の燃料電池発電設備では、圧力容器内に窒素ガス又は排ガスを供給していた。しかし、▲1▼窒素ガスの製造や排ガスの循環用配管等にコストがかかり、かつ▲2▼差圧制御のために高価な制御弁が必要となる問題点があった。
【0006】
また、▲3▼容器とカソードの差圧を制御するための差圧検出器Dpと流量調節弁10a,10bにより、その差圧を精密に制御しなければならず、特に、プラント緊急遮断時に容器内と電池内の差圧が大きくなる問題点があった。すなわち、図3に示した従来の制御弁10a,10bによる差圧制御では、プラント緊急遮断時に容器内ガスが配管Bを通ってカソードラインに抜けるが、カソードライン圧が緊急開放により瞬時に常圧になるのに対して、容器内圧力は容量が大きいため配管Bの流量に制約されて徐々に抜ける。そのため、プラント緊急遮断時には、カソード圧に対して容器圧が一時的に許容圧を大きく超え、電池内のシール部を破損することがあった。また、この差圧制御(容器内と電池内の差圧)は、制御弁と制御装置を用いているため、停電や電圧変動に影響を受けやすく、長期運転時の信頼性に乏しい問題点があった。
【0007】
本発明はかかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、改質器及び燃料電池を格納する格納容器への窒素ガス又は排ガスの供給を無くすことができ、これによりユーティリティとしての窒素ガスを不要とし、かつプラント通常運転時、緊急遮断時を問わず、容器内と電池内の差圧を許容値以内の小さい値に抑制することができ、停電や電圧変動に影響を受けない信頼性の高い差圧制御が可能な差圧自己制御機能を有する燃料電池発電設備を提供することにある。
【0008】
【課題を解決するための手段】
本発明によれば、燃料電池、改質器、及び改質器用の燃焼器を同一の格納容器内に格納し、該格納容器内に燃料電池を出たカソード排ガスの一部を導入し、該カソード排ガスを格納容器を介して燃焼器の入口に導入する、ことを特徴とする差圧自己制御機能を有する燃料電池発電設備が提供される。
【0009】
上記本発明の構成によれば、燃焼器の入口に導入するカソード排ガスが一旦格納容器内に導入されて容器内ガスの役目を果たすので、格納容器への窒素ガスの供給を無くすことができ、これによりユーティリティとしての窒素ガスが不要になる。
また、上記構成によれば、カソード排ガスの一部を格納容器内に導入するように燃料電池のカソード排ガス出口が格納容器内と連通しているので、電池内カソード側と容器圧がほぼ同圧となり、従来技術のように、制御弁による容器/カソード側の差圧制御を必要としない。従って、プラント通常運転時、緊急遮断時を問わず、容器内と電池内の差圧を許容値以内の小さい値に抑制することができ、かつ停電や電圧変動に影響を受けない信頼性の高い差圧制御が可能となる。
【0010】
本発明の好ましい実施形態によれば、改質器を出た高温排ガスの一部を他の流体と熱交換することなく、燃料電池のカソード入口に再循環させるようになっている。
この構成により、改質器燃焼排ガスの熱量をそのままカソードに持ち込めるため、高温リサイクル系の容量を小さくすることができる。また、電池の放熱熱量は、格納容器内の空気を加熱し再びカソードガスとして燃料電池内に戻されるため損失にならない。
【0011】
【発明の実施の形態】
以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図において、共通する部分には同一の符号を付し、重複した説明を省略する。
図1は、本発明の燃料電池発電設備の全体構成図である。この図において、本発明の燃料電池発電設備では、熱交換器2a、改質器3、燃料電池4、及び改質器用の燃焼器5(好ましくは触媒燃焼器)が同一の格納容器12内に格納されている。また、燃料電池4のアノード出口配管13は、2つに分岐されて一方がオリフィス13aを介して燃焼器5に供給され、他方がタービンコンプレッサ9の燃焼器9aに供給される。更に、燃料電池4のカソード出口配管11は、3つに分岐されて、1つは逆止弁11aを介して改質器用の燃焼器5に供給され、1つは流量調節弁11bを介してカソード入口側に供給され、残る1つは、タービンコンプレッサ9の燃焼器9aに供給される。
【0012】
更に、本発明によれば、格納容器12内に位置するカソード出口配管11に開放孔17aを有し、かつ燃焼器5と逆止弁11aの間にも導入孔17bを有する。開放孔17aと導入孔17bは、それぞれ十分小さい圧損でカソードガスを流すように設定されている。この構成により、燃料電池4を出たカソード排ガスの一部を開放孔17aを介して格納容器12内に導入し、更にこのカソード排ガスを格納容器12から導入孔17bを介して燃焼器5の入口に導入することができる。
なお、格納容器12は、圧力容器であっても、常圧用の単なる密閉容器であってもよい。
【0013】
すなわち、本発明の燃料電池発電設備では、燃焼器5の入口に導入するカソード排ガスが一旦格納容器12内に導入されて容器内ガスの役目を果たすようになっている。従って、格納容器12への窒素ガスの供給を無くすことができ、これによりユーティリティとしての窒素ガスが不要になる。また、容器に導入するカソード排ガスは容器内温度上昇が起こらない少量とすることにより、容器内でのガス流れにより可燃性ガスの滞留(例えばアノードガスが洩れた場合でも)も防止できる。また、可燃性ガス濃度が上昇しても触媒燃焼器を通って系内に再循環されるので、可燃性ガスが系内に入ることも防止できる。
【0014】
また、本発明の燃料電池発電設備では、開放孔17aと導入孔17bを介して容器内とカソード出口が連通するので、運転圧力がアノード≒カソード>容器の関係となり、かつこの関係を特別の制御なしに自然に維持できるので、カソードガスがアノード側に混入せずアノード酸化を防止できる。また、この関係から、電池内カソード側と容器圧がほぼ同圧となり、従来技術のように、制御弁による容器/カソード側の差圧制御を必要としない。また、プラント緊急遮断時においても、容器内と電池内の差圧を許容値以内の小さい値に抑制することができ、かつ停電や電圧変動に影響を受けない信頼性の高い差圧制御が可能となる。
【0015】
すなわち、従来の制御弁による差圧制御では、上述したように、プラント緊急遮断時に容器内ガスが配管Bを通るため、瞬時にカソードラインに開放されず、カソード圧に対して、容器圧が高くなる傾向があったが、本発明では容器内のガスが容易にリフォーマ加熱室又はカソードに流れ込むため、電池の内外差圧を小さく制御することができる。
【0016】
また、図1に示すように、本発明の燃料電池発電設備では、改質器3を出た高温排ガスの一部を他の流体と熱交換することなく排ガス循環ライン16及び循環ブロア16aを介して燃料電池4のカソード入口に再循環させるようになっている。
この構成により、改質器燃焼排ガスの熱量をそのままカソードに持ち込めるため、高温リサイクル系の容量を小さくすることができる。また、電池の放熱熱量は、格納容器12内の空気を加熱し再びカソードガスとして燃料電池内に戻されるため損失にならない。
【0017】
なお、本発明は上述した実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。
【0018】
【発明の効果】
上述したように、本発明の燃料電池発電設備は、改質器及び燃料電池を格納する格納容器への窒素ガス又は排ガスの供給を無くすことができ、これによりユーティリティとしての窒素ガスを不要とし、かつプラント通常運転時、プラント緊急遮断時を問わず、圧力調節弁等の制御装置を用いずに、容器内と電池内の差圧を許容値以内の小さい値に抑制することができ、停電や電圧変動に影響を受けない信頼性の高い差圧制御が可能である、等の優れた効果を有する。
【図面の簡単な説明】
【図1】本発明の燃料電池発電設備の全体構成図である。
【図2】従来の燃料電池発電設備の全体構成図である。
【図3】図2の燃料電池まわりの部分構成図である。
【符号の説明】
1 脱硫器
2a,2b 熱交換器
3 改質器(リフォーマ)
4 燃料電池
5 燃焼器
6 排熱回収ボイラ
7a 凝縮器
7b ノックアウトドラム(KOドラム)
8a,8b ブロア
9 タービンコンプレッサ
9a 燃焼器
10a,10b 流量制御弁
11 カソード出口配管
11a 逆止弁
11b 流量調節弁
12 格納容器
13 アノード出口配管
13a オリフィス
14 空気ライン
16 排ガス循環ライン
16a 循環ブロア
17a 開放孔
17b 導入孔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power generation facility using a molten carbonate fuel cell, and more particularly to a fuel cell power generation facility having a differential pressure self-control function.
[0002]
[Prior art]
The molten carbonate fuel cell uses a molten carbonate that is in a molten state at a high temperature as an electrolyte, and has a feature that it can operate at a high temperature of about 650 ° C. and achieve high power generation efficiency.
FIG. 2 is an overall configuration diagram of a conventional power generation facility (hereinafter simply referred to as a fuel cell power generation facility) using such a molten carbonate fuel cell. In this figure, 1 is a desulfurizer, 2a and 2b are heat exchangers, 3 is a reformer (reformer), 4 is a fuel cell, 5 is a combustor, 6 is an exhaust heat recovery boiler, 7a is a condenser, and 7b is A knockout drum (KO drum), 8a and 8b are blowers, and 9 is a turbine compressor. The natural gas Ng as fuel is desulfurized by the desulfurizer 1, preheated by the heat exchanger 2a, and enters the reforming chamber Re of the reformer 3, where it is reformed to the anode gas Ga containing hydrogen. Then, it is cooled by the heat exchanger 2 a and supplied to the anode side A of the fuel cell 4. In the fuel cell 4, power is generated by the anode gas Ga and the cathode gas Gc, and the anode exhaust gas Ea and the cathode exhaust gas Ec after power generation are supplied to the combustor 5, where unburned components are catalytically combusted to generate a high temperature gas Eg. Then, the reforming chamber Re is heated in the heating chamber H of the reformer 3, and the combustion exhaust gas discharged from the reformer 3 preheats the air in the air preheater 2b, and further the gas temperature to room temperature in the condenser 7a. The water W is removed by the knockout drum 7b. Further, the exhaust gas is pressurized by the blower 8a, mixed with the air A pressurized by the turbine compressor 9, preheated by the heat exchanger 2b, merged with the high temperature recycle system, and then supplied to the fuel cell 4 as the cathode gas Gc. Is done. Further, the water vapor S generated in the exhaust heat recovery boiler 6 is mixed with the natural gas Ng and used for the reforming reaction, and the water W generated in the condenser 7 a is used as feed water for the boiler 6. A recycle blower 8b circulates the cathode gas to control the temperature of the fuel cell.
[0003]
The above-described fuel cell power generation facility is normally operated under pressure in order to increase power generation efficiency. Therefore, the reformer 3 and the fuel cell 4 are each built in the pressure vessel. However, since the installation area becomes large and the heat dissipation increases when each pressure vessel is individually incorporated in the pressure vessel, it has been proposed to store these main devices in one pressure vessel (for example, Japanese Patent Application No. 2-122972). issue).
On the other hand, when the differential pressure between the anode side A and the cathode side B (interelectrode differential pressure) in the fuel cell 4 increases, the anode gas Ga and the cathode gas Gc cross leak (internal leak), and the fuel is wasted. Battery performance is greatly reduced. For this reason, it is necessary to always control the inter-electrode differential pressure to a low value, for example, within about 400 mmAq. In the conventional fuel cell power generation facility, the anode exhaust gas Ea and the cathode exhaust gas Ec are led to the same combustor 5, and the combustor The pressure difference between the electrodes is made to be essentially a low value by communicating within 5.
[0004]
Further, the pressure in the fuel cell 4 (the anode side A and the cathode side B) and the pressure in the pressure vessel surrounding the fuel cell 4 are also set to a value as low as the inter-electrode differential pressure in order to prevent gas leakage (external leakage). There is always a need to control. As shown schematically in FIG. 3, this control is conventionally performed by detecting the pressure difference between the battery and the container with a differential pressure detector Dp, and the flow rate of the gas flow to be supplied and the gas flow to be discharged into the container. It was performed by adjusting with 10a and 10b.
[0005]
[Problems to be solved by the invention]
In such a conventional fuel cell power generation facility, nitrogen gas or exhaust gas is supplied into the pressure vessel. However, there is a problem that (1) the production of nitrogen gas and piping for exhaust gas circulation are costly, and (2) an expensive control valve is required for differential pressure control.
[0006]
(3) The differential pressure must be precisely controlled by the differential pressure detector Dp for controlling the differential pressure between the vessel and the cathode and the flow rate adjusting valves 10a and 10b. There is a problem that the pressure difference between the inside and the battery increases. That is, in the differential pressure control by the conventional control valves 10a and 10b shown in FIG. 3, the gas in the container escapes to the cathode line through the pipe B at the time of emergency shutdown of the plant, but the cathode line pressure is instantaneously normal pressure by the emergency opening. On the other hand, since the internal pressure of the container has a large capacity, the pressure in the container is gradually released by being restricted by the flow rate of the pipe B. Therefore, at the time of emergency plant shutoff, the vessel pressure temporarily exceeds the allowable pressure with respect to the cathode pressure, and the seal portion in the battery may be damaged. In addition, this differential pressure control (differential pressure in the container and in the battery) uses a control valve and a control device, so it is susceptible to power failures and voltage fluctuations, and has a problem of poor reliability during long-term operation. there were.
[0007]
The present invention has been made to solve such problems. That is, the object of the present invention is to eliminate the supply of nitrogen gas or exhaust gas to the containment vessel for storing the reformer and the fuel cell, thereby eliminating the need for nitrogen gas as a utility and during normal plant operation. Regardless of the time of emergency shutoff, the differential pressure in the container and the battery can be controlled to a value within the allowable range, and the differential pressure can be controlled reliably without being affected by power failure or voltage fluctuation. It is to provide a fuel cell power generation facility having a self-control function.
[0008]
[Means for Solving the Problems]
According to the present invention, the fuel cell, the reformer, and the combustor for the reformer are stored in the same containment vessel, and a part of the cathode exhaust gas discharged from the fuel cell is introduced into the containment vessel, There is provided a fuel cell power generation facility having a differential pressure self-control function, characterized in that cathode exhaust gas is introduced into an inlet of a combustor through a containment vessel.
[0009]
According to the configuration of the present invention, since the cathode exhaust gas introduced into the inlet of the combustor is once introduced into the containment vessel and serves as the gas in the vessel, the supply of nitrogen gas to the containment vessel can be eliminated, This eliminates the need for nitrogen gas as a utility.
In addition, according to the above configuration, the cathode exhaust gas outlet of the fuel cell communicates with the inside of the containment vessel so that a part of the cathode exhaust gas is introduced into the containment vessel. Thus, unlike the prior art, the container / cathode side differential pressure control by the control valve is not required. Therefore, regardless of whether the plant is in normal operation or emergency shutdown, the differential pressure in the container and the battery can be suppressed to a small value within the allowable value, and it is highly reliable without being affected by power failure or voltage fluctuation. Differential pressure control is possible.
[0010]
According to a preferred embodiment of the present invention, a portion of the hot exhaust gas leaving the reformer is recirculated to the cathode inlet of the fuel cell without heat exchange with other fluids.
With this configuration, the heat quantity of the reformer combustion exhaust gas can be brought into the cathode as it is, so that the capacity of the high temperature recycle system can be reduced. In addition, the amount of heat released from the battery is not lost because the air in the containment vessel is heated and returned to the fuel cell as cathode gas again.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.
FIG. 1 is an overall configuration diagram of a fuel cell power generation facility according to the present invention. In this figure, in the fuel cell power generation facility of the present invention, the heat exchanger 2a, the reformer 3, the fuel cell 4, and the reformer combustor 5 (preferably the catalytic combustor) are in the same containment vessel 12. Stored. Further, the anode outlet pipe 13 of the fuel cell 4 is branched into two, one is supplied to the combustor 5 through the orifice 13 a, and the other is supplied to the combustor 9 a of the turbine compressor 9. Further, the cathode outlet pipe 11 of the fuel cell 4 is branched into three, one is supplied to the reformer combustor 5 via the check valve 11a, and one is supplied via the flow rate control valve 11b. The other one supplied to the cathode inlet side is supplied to the combustor 9 a of the turbine compressor 9.
[0012]
Furthermore, according to the present invention, the cathode outlet pipe 11 located in the containment vessel 12 has the open hole 17a, and also has the introduction hole 17b between the combustor 5 and the check valve 11a. The open hole 17a and the introduction hole 17b are set so that the cathode gas flows with a sufficiently small pressure loss. With this configuration, a part of the cathode exhaust gas exiting the fuel cell 4 is introduced into the containment vessel 12 through the open hole 17a, and this cathode exhaust gas is further introduced from the containment vessel 12 through the introduction hole 17b into the inlet of the combustor 5. Can be introduced.
The storage container 12 may be a pressure container or a simple sealed container for normal pressure.
[0013]
That is, in the fuel cell power generation facility of the present invention, the cathode exhaust gas introduced into the inlet of the combustor 5 is once introduced into the containment vessel 12 and serves as the gas in the vessel. Therefore, the supply of nitrogen gas to the storage container 12 can be eliminated, thereby eliminating the need for nitrogen gas as a utility. Further, by setting the amount of cathode exhaust gas introduced into the container to a small amount that does not raise the temperature in the container, stagnation of combustible gas (for example, even when anode gas leaks) can be prevented by the gas flow in the container. Further, even if the concentration of the combustible gas increases, it is recirculated into the system through the catalyst combustor, so that it is possible to prevent the combustible gas from entering the system.
[0014]
Further, in the fuel cell power generation facility of the present invention, the inside of the container and the cathode outlet communicate with each other via the open hole 17a and the introduction hole 17b, so that the operating pressure has a relation of anode≈cathode> container, and this relation is specially controlled. Therefore, the cathode gas is not mixed into the anode side and anodic oxidation can be prevented. Further, from this relationship, the container pressure on the cathode side in the battery is almost the same as that in the battery, and unlike the conventional technique, the differential pressure control on the container / cathode side by the control valve is not required. In addition, even in the event of an emergency plant shutdown, the pressure difference between the container and the battery can be controlled to a small value within the allowable value, and highly reliable differential pressure control that is not affected by power outages or voltage fluctuations is possible. It becomes.
[0015]
That is, in the differential pressure control using the conventional control valve, as described above, since the gas in the container passes through the pipe B at the time of emergency shutdown of the plant, the container pressure is not instantaneously opened to the cathode line, and the container pressure is higher than the cathode pressure. However, in the present invention, since the gas in the container easily flows into the reformer heating chamber or the cathode, the internal / external differential pressure of the battery can be controlled to be small.
[0016]
Further, as shown in FIG. 1, in the fuel cell power generation facility of the present invention, a part of the high-temperature exhaust gas exiting the reformer 3 is not exchanged with other fluids via the exhaust gas circulation line 16 and the circulation blower 16a. Then, it is recirculated to the cathode inlet of the fuel cell 4.
With this configuration, the heat quantity of the reformer combustion exhaust gas can be brought into the cathode as it is, so that the capacity of the high temperature recycle system can be reduced. Further, the amount of heat released from the battery is not lost because the air in the storage container 12 is heated and returned to the fuel cell as cathode gas again.
[0017]
In addition, this invention is not limited to the Example mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.
[0018]
【The invention's effect】
As described above, the fuel cell power generation facility of the present invention can eliminate supply of nitrogen gas or exhaust gas to the containment vessel that stores the reformer and the fuel cell, thereby eliminating the need for nitrogen gas as a utility, In addition, regardless of whether the plant is in normal operation or when the plant is in an emergency shutdown, the pressure difference between the container and the battery can be suppressed to a small value within the allowable range without using a control device such as a pressure control valve. It has excellent effects such as highly reliable differential pressure control that is not affected by voltage fluctuations.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a fuel cell power generation facility according to the present invention.
FIG. 2 is an overall configuration diagram of a conventional fuel cell power generation facility.
FIG. 3 is a partial configuration diagram around the fuel cell of FIG. 2;
[Explanation of symbols]
1 Desulfurizer 2a, 2b Heat exchanger 3 Reformer (reformer)
4 Fuel cell 5 Combustor 6 Waste heat recovery boiler 7a Condenser 7b Knockout drum (KO drum)
8a, 8b Blower 9 Turbine compressor 9a Combustors 10a, 10b Flow control valve 11 Cathode outlet piping 11a Check valve 11b Flow control valve 12 Storage vessel 13 Anode outlet piping 13a Orifice 14 Air line 16 Exhaust gas circulation line 16a Circulation blower 17a Open hole 17b Introduction hole

Claims (2)

燃料電池、改質器、及び改質器用の燃焼器を同一の格納容器内に格納し、該格納容器内に燃料電池を出たカソード排ガスの一部を導入し、該カソード排ガスを格納容器を介して燃焼器の入口に導入する、ことを特徴とする差圧自己制御機能を有する燃料電池発電設備。The fuel cell, the reformer, and the combustor for the reformer are stored in the same containment vessel, a part of the cathode exhaust gas discharged from the fuel cell is introduced into the containment vessel, and the cathode exhaust gas is stored in the containment vessel. A fuel cell power generation facility having a differential pressure self-control function, wherein the fuel cell power generation facility is introduced into an inlet of a combustor. 改質器を出た高温排ガスの一部を、他の流体と熱交換することなくカソード入口に再循環させる、ことを特徴とする請求項1に記載の燃料電池発電設備。2. The fuel cell power generation facility according to claim 1, wherein a part of the high-temperature exhaust gas exiting the reformer is recirculated to the cathode inlet without heat exchange with other fluids.
JP13583498A 1998-05-19 1998-05-19 Fuel cell power generation facility with differential pressure self-control function Expired - Fee Related JP3882337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13583498A JP3882337B2 (en) 1998-05-19 1998-05-19 Fuel cell power generation facility with differential pressure self-control function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13583498A JP3882337B2 (en) 1998-05-19 1998-05-19 Fuel cell power generation facility with differential pressure self-control function

Publications (2)

Publication Number Publication Date
JPH11329469A JPH11329469A (en) 1999-11-30
JP3882337B2 true JP3882337B2 (en) 2007-02-14

Family

ID=15160871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13583498A Expired - Fee Related JP3882337B2 (en) 1998-05-19 1998-05-19 Fuel cell power generation facility with differential pressure self-control function

Country Status (1)

Country Link
JP (1) JP3882337B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119239A (en) * 2002-09-27 2004-04-15 Mitsubishi Heavy Ind Ltd Fuel cell-gas turbine power generation equipment and combined cycle power generation equipment
CA2527286C (en) * 2003-06-25 2015-03-03 Hydrogenics Corporation Passive electrode blanketing in a fuel cell
JP4939362B2 (en) * 2007-10-15 2012-05-23 三菱重工業株式会社 Fuel cell-gas turbine power generation facility and combined power generation facility
CN110273760A (en) * 2019-07-11 2019-09-24 中国华能集团清洁能源技术研究院有限公司 A kind of integral coal gasification fuel cell generation that air flow is highly coupled and method

Also Published As

Publication number Publication date
JPH11329469A (en) 1999-11-30

Similar Documents

Publication Publication Date Title
JP7191193B2 (en) Fuel cell system and its control method
WO2013100490A1 (en) Fuel cell hybrid system
JPS62184774A (en) Starting method for fuel cell power generating system
JPH0729589A (en) Differential pressure control method of plate type reformer in fuel cell power generating system
US5178969A (en) Fuel cell powerplant system
US6833209B2 (en) Fuel-cell co-generation system, of electrical energy and hot water
JP3882337B2 (en) Fuel cell power generation facility with differential pressure self-control function
JP6066662B2 (en) Combined power generation system and method of operating combined power generation system
JP3882965B2 (en) Fuel cell power generation facility
JP2000348749A (en) Starting method of fuel cell power generation plant
JP2014089890A (en) Fuel cell type power generator and cogeneration system
JP2000133295A (en) Solid electrolyte fuel cell composite power generation plant system
JPH1116592A (en) Fuel cell generating equipment
JP3331569B2 (en) Fuel cell generator
JP3882307B2 (en) Fuel cell power generation facility
JPH10223236A (en) Fuel cell electricity-generating apparatus
JP3239540B2 (en) Temperature control method of reformer
WO2024219121A1 (en) Fuel cell system
JPH01159966A (en) Method for shutdown of phosphoric acid type fuel cell power-generating device
JP2567122B2 (en) Fuel cell power generation system
KR100814434B1 (en) Differential pressure control method for Molten Carbonates Fuel Cell power plants
JP2004247117A (en) Differential pressure control device for fuel cell power generation plant
JP2015103422A (en) Solid oxide fuel cell system
JPH08241722A (en) Fuel cell power generating device, and operating method at low load
KR20230135846A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061106

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees