[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3882307B2 - Fuel cell power generation facility - Google Patents

Fuel cell power generation facility Download PDF

Info

Publication number
JP3882307B2
JP3882307B2 JP00293498A JP293498A JP3882307B2 JP 3882307 B2 JP3882307 B2 JP 3882307B2 JP 00293498 A JP00293498 A JP 00293498A JP 293498 A JP293498 A JP 293498A JP 3882307 B2 JP3882307 B2 JP 3882307B2
Authority
JP
Japan
Prior art keywords
exhaust gas
line
cathode
fuel cell
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00293498A
Other languages
Japanese (ja)
Other versions
JPH11204125A (en
Inventor
一 斉藤
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP00293498A priority Critical patent/JP3882307B2/en
Publication of JPH11204125A publication Critical patent/JPH11204125A/en
Application granted granted Critical
Publication of JP3882307B2 publication Critical patent/JP3882307B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、緊急遮断時に内部のガスを安全かつ確実に排気できる燃料電池発電設備に関する。
【0002】
【従来の技術】
溶融炭酸塩型燃料電池は、高効率で環境への影響が少ないなど、従来の発電装置にない特徴を有しており、水力、火力、原子力に続く発電システムとして注目を集め、現在鋭意研究が進められている。
【0003】
図2は都市ガスを燃料とする溶融炭酸塩型燃料電池を用いた発電設備の一例を示す図である。この図において、発電設備は、都市ガス等に水蒸気を混合した燃料ガス1を水素を含むアノードガスに改質する改質器12と、酸素を含むカソードガスと水素を含むアノードガスとから発電する燃料電池10とを備えており、改質器12で作られるアノードガスはアノードガスライン2により燃料電池10に供給され、燃料電池10の中でその大部分を消費してアノード排ガスとなり、アノード排ガスライン4により燃焼用ガスとして燃焼器13へ供給される。
【0004】
燃焼器13ではアノード排ガス中の可燃成分(水素、一酸化炭素、メタン等)を燃焼して高温の燃焼排ガスを生成し、改質器12の加熱室に供給しこの燃焼排ガスにより改質室を加熱し、改質室で改質触媒により燃料ガスを改質してアノードガスとする。アノードガスは燃料予熱器14によって燃料ガスライン1を流れる蒸気と混合した燃料ガスと熱交換し、燃料電池10のアノードに供給される。また加熱室を出た燃焼排ガスは炭酸ガスリサイクルライン7で炭酸ガスリサイクルブロワ22によりカソードに供給される。燃焼排ガスには多量の炭酸ガスが含まれており、電池反応に必要な炭酸ガスの供給源となる。空気ライン8からの空気が炭酸ガスリサイクルブロワ22の出側に供給されカソードの電池反応に必要な酸素を供給する。カソードから排出されるカソード排ガスの一部は循環ライン3により炭酸ガスリサイクルライン7に流入しカソードに供給される。このカソード排ガスと燃焼排ガスと空気が混合してカソードガスとなりカソードに供給される。なお、8aは空気ブロア、15は循環ライン3の流量を調節するリサイクル流量調節弁である。
【0005】
カソードガスは燃料電池10内で電池反応して高温のカソード排ガスとなり、一部は循環ライン3によりカソードに循環し、他の一部はカソード排ガスライン5により燃焼器13へ供給され、残部は排熱利用ライン6で空気を圧縮する圧縮機を駆動するタービン圧縮機18で動力を回収した後、さらに排熱回収蒸気発生装置20で熱エネルギを回収して系外に排出される。なお、この排熱回収蒸気発生装置20で発生した蒸気が蒸気ライン9により燃料ガスライン1に入り、燃料ガスと混合して改質器12に送られる。また、19はエキスパンダーであり、高圧のカソード排ガスを膨張させてエネルギーを回収するようになっている。
【0006】
【発明が解決しようとする課題】
上述した燃料電池発電設備において、プラント緊急停止時にはカソード排ガスを確実に燃焼器13に導き、アノード排ガスを完全燃焼して排気する必要がある。そのため、従来の設備では、CO2 リサイクルブロア22の入口側と排熱回収蒸気発生装置20の出口間を結ぶアノード排ガスライン24を設け、このラインに、緊急開放弁16a,流量調節弁(コントロール弁)16bを設け、かつ排熱回収蒸気発生装置20の出口側に出口閉鎖弁17を設けて緊急開放弁16a,流量調節弁16bとアノード排ガスライン24を介して排気していた。すなわち、図2に太線で示すように、出口閉鎖弁17を閉鎖し、緊急開放弁16a,16bを開放することにより、カソード排ガスをカソード排ガスライン5から確実に燃焼器13に供給し、アノード排ガスを燃焼させて、その排ガスをアノード排ガスライン24を介して排気することができる。
【0007】
しかし、アノード排ガスライン24に設置する緊急開放弁16aは、常用時に高温ガスを完全にシールする必要があるので、高価な高温タイプのボール弁を使用する必要があった。そのため、この緊急開放弁16aと共に、緊急開放弁16b、出口閉鎖弁17、及びアノード排ガスライン24の設置に費用がかかり過ぎる問題点があった。
【0008】
本発明はかかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、高価な高温タイプのボール弁を用いることなく、かつ余分なアノード排ガスラインを別個に設けることなく、緊急停止時にカソード排ガスを確実に燃焼器に導き、アノード排ガスを完全燃焼して排気することができる燃料電池発電設備を提供することにある。
【0009】
【課題を解決するための手段】
本発明によれば、カソードとアノードを有し酸素を含むカソードガスと水素を含むアノードガスから発電する燃料電池(10)と、カソード排ガスでアノード排ガスを燃焼する燃焼器(13)と、燃焼器の燃焼排ガスで水蒸気を含む燃料ガスを改質する改質器(12)と、カソード排ガスの一部を燃焼器に導くカソード排ガスライン(5)と、燃焼器の燃焼排ガスをカソードに循環させる炭酸ガスリサイクルライン(7)と、カソード排ガスラインの下流側からカソード排ガスの一部を炭酸ガスリサイクルラインに供給する循環ライン(3)と、循環ラインの更に下流側からカソード排ガスの残部を熱エネルギを回収して系外に排出する排熱利用ライン(6)とを備えた燃料電池発電設備において、カソード排ガスライン(5)と循環ライン(3)の間に緊急遮断弁(30)を設けたことを特徴とする燃料電池発電設備が提供される。
【0010】
上記本発明の構成によれば、プラント緊急停止時に緊急遮断弁(30)を閉鎖することにより、カソード排ガスを全量燃焼器に導入し、燃焼器(13)内でアノード排ガスを完全に燃焼させて排気できる。この燃焼排ガスは、循環ライン(3)を逆流して排熱利用ライン(6)に入り、そのまま系外が排出される。従って、プラント緊急停止時用に従来のように独立したアノード排ガスライン24を設置する必要がない。
【0011】
また、緊急遮断弁(30)は、カソード排ガスの系統ライン内に設置されるので常用/緊急停止時共にその間を完全にシールする必要がなく、高価なボール弁の代わりに安価なダンパ弁を用いることができる。
更に、従来と比べてアノード排ガスライン24と共にその緊急開放弁16a,コントロール弁16b及び排熱回収蒸気発生装置の出口遮断弁17も不要となり、大幅な低コスト化が実現できる。
【0012】
【発明の実施の形態】
以下、本発明の好ましい実施形態について図面を参照して説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。
図1は、本発明の燃料電池発電設備の全体構成図である。この図において、本発明の燃料電池発電設備は、カソードとアノードを有し酸素を含むカソードガスと水素を含むアノードガスから発電する燃料電池10と、カソード排ガスでアノード排ガスを燃焼する燃焼器13と、燃焼器の燃焼排ガスで水蒸気を含む燃料ガスを改質する改質器12と、カソード排ガスの一部を燃焼器13に導くカソード排ガスライン5と、燃焼器13の燃焼排ガスをカソードに循環させる炭酸ガスリサイクルライン7と、カソード排ガスラインの下流側からカソード排ガスの一部を炭酸ガスリサイクルライン7に供給する循環ライン3と、循環ライン3の更に下流側からカソード排ガスの残部を熱エネルギを回収して系外に排出する排熱利用ライン6とを備えている。
【0013】
更に、図1の燃料電池発電設備は、図2の燃料電池発電設備と比較すると、図2における遮断弁16a,コントロール弁16b,出口遮断弁17、アノード排ガスライン24が省略され、その代わりに緊急遮断弁30が追加されている。その他の構成は、図2に示した燃料電池発電設備と同様である。
緊急遮断弁30は、カソード排ガスライン5と循環ライン3の間に設けられている。この緊急遮断弁30には、比較的安価な安価なダンパ弁(バタフライ弁)を用いるのがよい。ダンパ弁は、完全にシールする機能はないが、カソード排ガスライン5と循環ライン3の両方がカソード排ガスが流れるラインであるためその必要性がない。すなわち、カソード排ガスの系統ライン内に設置されるので常用/緊急停止時共にその間を完全にシールする必要がなく、高価なボール弁の代わりに安価なダンパ弁を用いることができる。
【0014】
上述した本発明の構成によれば、プラント緊急停止時に緊急遮断弁30を閉鎖することにより、図1に太線で示すように、カソード排ガスを全量燃焼器13に導入し、燃焼器13内でアノード排ガスを完全に燃焼させて排気できる。この燃焼排ガスは、循環ライン3を逆流して排熱利用ライン6に入り、そのまま系外が排出される。従って、プラント緊急停止時用に従来のように独立したアノード排ガスライン24を設置する必要がない。
【0015】
また、アノード排ガスライン24と共にその緊急開放弁16a,コントロール弁16b及び排熱回収蒸気発生装置の出口遮断弁17も不要となり、大幅な低コスト化が実現できる。
【0016】
なお、本発明は上述した実施形態に限定されず、本発明の要旨を逸脱しない限りで、種々に変更できることは勿論である。
【0017】
【発明の効果】
上述した本発明により、従来のアノード排ガス系統を削除することで低コスト化を図ることが可能になった。特に、アノード排ガスライン24に設置した緊急開放弁16aは1台で4千万円近くするため低コスト化の障害になっていたが、カソード出口に安価(200万円程度)なダンパ弁30を設けるだけで、同様の機能を発揮させることができる。従って、アノード排ガスライン等を含めて約5千万円のコストダウンができ、これは出力1000kw規模で5万円/kwのコストダウンに相当する。
【0018】
従って、本発明の燃料電池発電設備は、高価な高温タイプのボール弁を用いることなく、かつ余分なアノード排ガスラインを別個に設けることなく、緊急停止時にカソード排ガスを確実に燃焼器に導き、アノード排ガスを完全燃焼して排気することができる、等の優れた効果を有する。
【図面の簡単な説明】
【図1】本発明の燃料電池発電設備の全体構成図である。
【図2】従来の燃料電池発電設備の全体構成図である。
【符号の説明】
1 燃料ガスライン
2 アノードガスライン
3 循環ライン
4 アノード排ガスライン
5 カソード排ガスライン
6 排熱利用ライン
7 炭酸ガスリサイクルライン
8 空気ライン
8a 空気ブロア
9 蒸気ライン
10 燃料電池
12 改質器
13 燃焼器
14 燃料予熱器
16a,16b
17 出口閉鎖弁
18 タービン圧縮機
19 エキスパンダー
20 排熱回収蒸気発生装置
22 炭酸ガスリサイクルブロワ
24 アノード排ガスライン
30 緊急遮断弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel cell power generation facility that can safely and reliably exhaust internal gas during an emergency shutdown.
[0002]
[Prior art]
Molten carbonate fuel cells have features that are not found in conventional power generators, such as high efficiency and little impact on the environment. They attract attention as a power generation system that follows hydropower, thermal power, and nuclear power, and are currently under intense research. It is being advanced.
[0003]
FIG. 2 is a diagram showing an example of power generation equipment using a molten carbonate fuel cell using city gas as fuel. In this figure, a power generation facility generates power from a reformer 12 that reforms a fuel gas 1 in which water vapor is mixed with city gas or the like into an anode gas containing hydrogen, a cathode gas containing oxygen, and an anode gas containing hydrogen. The anode gas produced by the reformer 12 is supplied to the fuel cell 10 through the anode gas line 2 and consumes most of the fuel cell 10 as anode exhaust gas. It is supplied to the combustor 13 as a combustion gas by the line 4.
[0004]
In the combustor 13, combustible components (hydrogen, carbon monoxide, methane, etc.) in the anode exhaust gas are burned to generate high-temperature combustion exhaust gas, which is supplied to the heating chamber of the reformer 12, and the reforming chamber is formed by this combustion exhaust gas. The fuel gas is heated and reformed with a reforming catalyst in the reforming chamber to form anode gas. The anode gas exchanges heat with the fuel gas mixed with the vapor flowing through the fuel gas line 1 by the fuel preheater 14 and is supplied to the anode of the fuel cell 10. Further, the combustion exhaust gas leaving the heating chamber is supplied to the cathode by the carbon dioxide recycling blower 22 in the carbon dioxide recycling line 7. The combustion exhaust gas contains a large amount of carbon dioxide, and becomes a supply source of carbon dioxide necessary for the battery reaction. Air from the air line 8 is supplied to the outlet side of the carbon dioxide recycle blower 22 to supply oxygen necessary for the cathode cell reaction. A part of the cathode exhaust gas discharged from the cathode flows into the carbon dioxide recycling line 7 through the circulation line 3 and is supplied to the cathode. The cathode exhaust gas, combustion exhaust gas, and air are mixed to form cathode gas and supplied to the cathode. In addition, 8a is an air blower, and 15 is a recycle flow rate adjusting valve for adjusting the flow rate of the circulation line 3.
[0005]
Cathode gas reacts in the fuel cell 10 to become high-temperature cathode exhaust gas, part of which is circulated to the cathode through the circulation line 3, the other part is supplied to the combustor 13 through the cathode exhaust gas line 5, and the rest is exhausted. After the power is recovered by a turbine compressor 18 that drives a compressor that compresses air in the heat utilization line 6, the heat energy is further recovered by an exhaust heat recovery steam generator 20 and discharged outside the system. The steam generated by the exhaust heat recovery steam generator 20 enters the fuel gas line 1 through the steam line 9, mixes with the fuel gas, and is sent to the reformer 12. Reference numeral 19 denotes an expander, which expands high-pressure cathode exhaust gas and recovers energy.
[0006]
[Problems to be solved by the invention]
In the above-described fuel cell power generation facility, it is necessary to reliably guide the cathode exhaust gas to the combustor 13 and exhaust the anode exhaust gas after complete combustion during an emergency stop of the plant. Therefore, in the conventional equipment, an anode exhaust gas line 24 connecting the inlet side of the CO 2 recycle blower 22 and the outlet of the exhaust heat recovery steam generator 20 is provided, and an emergency release valve 16a, a flow control valve (control valve) are provided in this line. ) 16 b is provided, and an outlet closing valve 17 is provided on the outlet side of the exhaust heat recovery steam generator 20, and the exhaust gas is exhausted through the emergency release valve 16 a, the flow control valve 16 b and the anode exhaust gas line 24. That is, as shown by a thick line in FIG. 2, the cathode exhaust gas is reliably supplied from the cathode exhaust gas line 5 to the combustor 13 by closing the outlet closing valve 17 and opening the emergency release valves 16a and 16b. The exhaust gas can be exhausted via the anode exhaust gas line 24.
[0007]
However, the emergency release valve 16a installed in the anode exhaust gas line 24 needs to use an expensive high temperature type ball valve because it is necessary to completely seal high temperature gas during normal use. For this reason, there is a problem that it is too expensive to install the emergency release valve 16b, the outlet closing valve 17, and the anode exhaust gas line 24 together with the emergency release valve 16a.
[0008]
The present invention has been made to solve such problems. That is, the object of the present invention is to lead the cathode exhaust gas to the combustor at the time of emergency stop without using an expensive high-temperature type ball valve and separately providing an extra anode exhaust gas line. An object of the present invention is to provide a fuel cell power generation facility that can be burned and exhausted.
[0009]
[Means for Solving the Problems]
According to the present invention, a fuel cell (10) having a cathode and an anode and generating electricity from a cathode gas containing oxygen and an anode gas containing hydrogen, a combustor (13) for burning anode exhaust gas with cathode exhaust gas, and a combustor A reformer (12) for reforming fuel gas containing water vapor with a combustion exhaust gas of the above, a cathode exhaust gas line (5) for guiding a part of the cathode exhaust gas to the combustor, and a carbon dioxide for circulating the combustion exhaust gas of the combustor to the cathode Thermal energy is supplied to the gas recycling line (7), the circulation line (3) for supplying a part of the cathode exhaust gas from the downstream side of the cathode exhaust gas line to the carbon dioxide recycling line, and the remaining part of the cathode exhaust gas from the downstream side of the circulation line. In a fuel cell power generation facility equipped with an exhaust heat utilization line (6) that recovers and discharges outside the system, a cathode exhaust gas line (5) and a circulation line Fuel cell power plant is provided which is characterized by providing an emergency shutoff valve (30) during 3).
[0010]
According to the configuration of the present invention, the emergency cutoff valve (30) is closed at the time of an emergency stop of the plant, whereby the cathode exhaust gas is introduced into the combustor and the anode exhaust gas is completely combusted in the combustor (13). Can exhaust. This combustion exhaust gas flows backward through the circulation line (3) and enters the exhaust heat utilization line (6), and is discharged outside the system as it is. Therefore, it is not necessary to install an independent anode exhaust gas line 24 for the emergency stop of the plant as in the prior art.
[0011]
Further, since the emergency shut-off valve (30) is installed in the system line of the cathode exhaust gas, it is not necessary to completely seal between the normal and emergency stop, and an inexpensive damper valve is used instead of the expensive ball valve. be able to.
Furthermore, the emergency exhaust valve 16a, the control valve 16b, and the outlet shut-off valve 17 of the exhaust heat recovery steam generator are not required together with the anode exhaust gas line 24 as compared with the prior art, and a significant cost reduction can be realized.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.
FIG. 1 is an overall configuration diagram of a fuel cell power generation facility according to the present invention. In this figure, the fuel cell power generation facility of the present invention includes a fuel cell 10 having a cathode and an anode and generating electricity from a cathode gas containing oxygen and an anode gas containing hydrogen, and a combustor 13 for burning anode exhaust gas with cathode exhaust gas. , A reformer 12 for reforming fuel gas containing water vapor with combustion exhaust gas of the combustor, a cathode exhaust gas line 5 for leading a part of the cathode exhaust gas to the combustor 13, and the combustion exhaust gas of the combustor 13 are circulated to the cathode The carbon dioxide recycling line 7, the circulation line 3 that supplies a part of the cathode exhaust gas from the downstream side of the cathode exhaust gas line to the carbon dioxide recycling line 7, and the remaining part of the cathode exhaust gas is recovered from the further downstream side of the circulation line 3. And a waste heat utilization line 6 for discharging out of the system.
[0013]
Further, the fuel cell power generation facility of FIG. 1 is omitted from the fuel cell power generation facility of FIG. 2 in that the shutoff valve 16a, the control valve 16b, the outlet shutoff valve 17, and the anode exhaust gas line 24 in FIG. A shut-off valve 30 is added. Other configurations are the same as those of the fuel cell power generation facility shown in FIG.
The emergency shut-off valve 30 is provided between the cathode exhaust gas line 5 and the circulation line 3. The emergency shut-off valve 30 may be a relatively inexpensive and inexpensive damper valve (butterfly valve). The damper valve does not have a function of completely sealing, but it is not necessary because both the cathode exhaust gas line 5 and the circulation line 3 are lines through which the cathode exhaust gas flows. That is, since it is installed in the system line of the cathode exhaust gas, it is not necessary to completely seal between normal and emergency stop, and an inexpensive damper valve can be used instead of an expensive ball valve.
[0014]
According to the configuration of the present invention described above, by closing the emergency shut-off valve 30 at the time of a plant emergency stop, the entire amount of the cathode exhaust gas is introduced into the combustor 13 as shown by a thick line in FIG. Exhaust gas can be exhausted completely. This combustion exhaust gas flows backward through the circulation line 3 and enters the exhaust heat utilization line 6 and is discharged outside the system as it is. Therefore, it is not necessary to install an independent anode exhaust gas line 24 for the emergency stop of the plant as in the prior art.
[0015]
Further, the emergency exhaust valve 16a, the control valve 16b and the outlet shutoff valve 17 of the exhaust heat recovery steam generator are not required together with the anode exhaust gas line 24, so that significant cost reduction can be realized.
[0016]
In addition, this invention is not limited to embodiment mentioned above, Of course, unless it deviates from the summary of this invention, it can change variously.
[0017]
【The invention's effect】
According to the present invention described above, it is possible to reduce the cost by eliminating the conventional anode exhaust gas system. In particular, the emergency release valve 16a installed in the anode exhaust gas line 24 has been an obstacle to cost reduction because it costs nearly 40 million yen per unit, but an inexpensive (about 2 million yen) damper valve 30 is provided at the cathode outlet. The same function can be exhibited only by providing. Therefore, the cost can be reduced by about 50 million yen including the anode exhaust gas line and the like, which corresponds to a cost reduction of 50,000 yen / kw with an output of 1000 kW.
[0018]
Therefore, the fuel cell power generation facility of the present invention reliably guides the cathode exhaust gas to the combustor during an emergency stop without using an expensive high-temperature type ball valve and without providing an extra anode exhaust gas line separately. It has excellent effects such as exhausting exhaust gas completely.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a fuel cell power generation facility according to the present invention.
FIG. 2 is an overall configuration diagram of a conventional fuel cell power generation facility.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fuel gas line 2 Anode gas line 3 Circulation line 4 Anode exhaust gas line 5 Cathode exhaust gas line 6 Waste heat utilization line 7 Carbon dioxide recycling line 8 Air line 8a Air blower 9 Steam line 10 Fuel cell 12 Reformer 13 Combustor 14 Fuel Preheater 16a, 16b
17 outlet closing valve 18 turbine compressor 19 expander 20 exhaust heat recovery steam generator 22 carbon dioxide gas recycle blower 24 anode exhaust gas line 30 emergency shutoff valve

Claims (1)

カソードとアノードを有し酸素を含むカソードガスと水素を含むアノードガスから発電する燃料電池(10)と、カソード排ガスでアノード排ガスを燃焼する燃焼器(13)と、燃焼器の燃焼排ガスで水蒸気を含む燃料ガスを改質する改質器(12)と、カソード排ガスの一部を燃焼器に導くカソード排ガスライン(5)と、燃焼器の燃焼排ガスをカソードに循環させる炭酸ガスリサイクルライン(7)と、カソード排ガスラインの下流側からカソード排ガスの一部を炭酸ガスリサイクルラインに供給する循環ライン(3)と、循環ラインの更に下流側からカソード排ガスの残部を熱エネルギを回収して系外に排出する排熱利用ライン(6)とを備えた燃料電池発電設備において、カソード排ガスライン(5)と循環ライン(3)の間に緊急遮断弁(30)を設けた、ことを特徴とする燃料電池発電設備。A fuel cell (10) having a cathode and an anode and generating electricity from a cathode gas containing oxygen and an anode gas containing hydrogen, a combustor (13) for burning the anode exhaust gas with the cathode exhaust gas, and steam from the combustion exhaust gas of the combustor A reformer (12) for reforming the fuel gas contained therein, a cathode exhaust gas line (5) for guiding a part of the cathode exhaust gas to the combustor, and a carbon dioxide gas recycling line (7) for circulating the combustion exhaust gas of the combustor to the cathode And a circulation line (3) for supplying a part of the cathode exhaust gas from the downstream side of the cathode exhaust gas line to the carbon dioxide recycling line, and recovering thermal energy from the further downstream side of the circulation line to recover the thermal energy. In a fuel cell power generation facility equipped with an exhaust heat utilization line (6) that discharges, an emergency occurs between the cathode exhaust gas line (5) and the circulation line (3). The provided Danben (30), a fuel cell power plant, characterized in that.
JP00293498A 1998-01-09 1998-01-09 Fuel cell power generation facility Expired - Fee Related JP3882307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00293498A JP3882307B2 (en) 1998-01-09 1998-01-09 Fuel cell power generation facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00293498A JP3882307B2 (en) 1998-01-09 1998-01-09 Fuel cell power generation facility

Publications (2)

Publication Number Publication Date
JPH11204125A JPH11204125A (en) 1999-07-30
JP3882307B2 true JP3882307B2 (en) 2007-02-14

Family

ID=11543191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00293498A Expired - Fee Related JP3882307B2 (en) 1998-01-09 1998-01-09 Fuel cell power generation facility

Country Status (1)

Country Link
JP (1) JP3882307B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093374A (en) * 2003-09-19 2005-04-07 Nissan Motor Co Ltd Fuel cell power generating system, and method of stopping the same
JP2005190962A (en) * 2003-12-26 2005-07-14 Ishikawajima Harima Heavy Ind Co Ltd Fuel cell power generating equipment and purging method of inflammable gas in fuel cell power generating equipment
KR101358132B1 (en) * 2012-02-02 2014-02-25 삼성중공업 주식회사 Fuel exhausting system for ship

Also Published As

Publication number Publication date
JPH11204125A (en) 1999-07-30

Similar Documents

Publication Publication Date Title
US5900329A (en) Fuel-cell system and method for operating a fuel-cell system
KR101678325B1 (en) Power generation system
JP3882307B2 (en) Fuel cell power generation facility
JP2000331697A (en) Fuel cell generating device injecting vapor into anode exhaust gas line
JPH11238520A (en) Fuel cell power generating apparatus
JP3573239B2 (en) Fuel cell power generator
JP3331576B2 (en) Fuel cell power generation equipment
JP3564812B2 (en) Fuel cell power generation equipment
JPH07208200A (en) Combustion equipment for turbine compressor and method thereof
JP2008078144A (en) Fuel cell-gas turbine generator set and combined generator set
JP4209015B2 (en) Solid electrolyte fuel cell combined power plant system
JP4578787B2 (en) Hybrid fuel cell system
JPH09231989A (en) Fuel battery power generating facility
JP4218055B2 (en) Fuel cell power generator
JP3271677B2 (en) Fuel cell generator
JP4158131B2 (en) Fuel cell power generator
JPH1167252A (en) Fuel cell power generating device
JP3263936B2 (en) Fuel cell generator
JP3601734B2 (en) Fuel cell power generation equipment
JP3589363B2 (en) How to start the fuel cell power plant
JP2004172018A (en) Seal gas supplying method to cathode blower
JPH06215788A (en) Control method of reformer temperature in fuel cell generating facilities
JPH11144750A (en) Fuel cell generating device with carbon dioxide recovering device
JPH10302820A (en) Fuel cell power generating facility
JPH10294119A (en) Fuel cell power generation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061106

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees