JP3601734B2 - Fuel cell power generation equipment - Google Patents
Fuel cell power generation equipment Download PDFInfo
- Publication number
- JP3601734B2 JP3601734B2 JP28554695A JP28554695A JP3601734B2 JP 3601734 B2 JP3601734 B2 JP 3601734B2 JP 28554695 A JP28554695 A JP 28554695A JP 28554695 A JP28554695 A JP 28554695A JP 3601734 B2 JP3601734 B2 JP 3601734B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- reformer
- gas
- exhaust gas
- power generation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、溶融炭酸塩型燃料電池を用いた燃料電池発電設備に関する。
【0002】
【従来の技術】
溶融炭酸塩型燃料電池は、高効率かつ環境への影響が少ないなど、従来の発電装置にはない特徴を有しており、水力・火力・原子力に続く発電システムとして注目を集め、現在世界各国で鋭意研究開発が行われている。特に天然ガスを燃料とする溶融炭酸塩型燃料電池を用いた発電設備では、図2に示すように天然ガス等の燃料ガス1を水素を含むアノードガス2に改質する改質器10と、アノードガス2と酸素を含むカソードガス3とから発電する燃料電池11とを備えており、改質器10で作られたアノードガス2は燃料電池11に供給され、燃料電池内でその大部分(例えば80%)を消費した後、アノード排ガス4として改質器の燃焼室Coに供給される。改質器10ではアノード排ガス中の可燃成分(水素、一酸化炭素、メタン等)がカソード排ガスにより燃焼し、高温の燃焼ガスにより改質室Reを加熱し改質室の燃料を改質する。改質室を出た燃焼排ガス5は空気予熱器13bで加圧空気6により冷却された後、低温ブロア17cで加圧され、空気予熱器13bで予熱された加圧空気6と合流してカソードガス3に供給される。低温ブロア17cは、改質器で発生したCO2 ガスを燃料電池のカソード側に供給してカソード反応に利用することからCO2 リサイクルブロアとも呼ばれる。
【0003】
燃料電池内でその一部が反応したカソードガス(カソード排ガス7)は、高温ブロア17bにより燃料電池の上流側に一部が循環され、残りの一部7aは改質器に燃焼用空気として供給され、残り7bはタービン圧縮機12で圧力を回収され、排熱回収装置19による熱回収後に系外に排出される。なお、図2において、13aは燃料予熱器、14は脱硫器、15は逆止弁、16は加熱器、17dは空気ブロア、18は熱風発生炉である。
【0004】
しかし、図2に示した従来の燃料電池発電設備では、CO2 リサイクルブロア(低温ブロア17c)の入口に空気予熱器13bを設置してブロア入口温度を下げ、かつ電池入口温度を適正温度(約580℃)に保持していため、空気予熱器13bの入口温度差が大きく(例えば750℃以上)、熱交換器(空気予熱器13b)の運転条件が厳しく、装置が大型化する問題点があった。
【0005】
そこで、本願発明者は、図3に示す燃料電池発電設備を創案し、先に出願した(特願平7−250724号、未公開)。この燃料電池発電設備は、改質器10の燃焼排ガス5を燃料電池11のカソード側3に供給するようになっており、カソード側に供給する低温の加圧空気6と高温の燃焼排ガス5とを直接混合するガス混合器20と、混合され低温化した混合ガスを加圧する低温ブロア21と、加圧された混合ガスを燃料電池のカソード側に供給する循環ライン22と、を備えている。循環ライン22には、カソードガス3の逆流を防止する逆止弁23が設けられている。
【0006】
上述した構成により、ガス混合器20によりカソード側3に供給する低温(例えば約20℃)の加圧空気6と高温(例えば約770℃)の燃焼排ガス5とを直接混合するので、この混合により、混合ガスの温度を低温(例えば約600℃)にすることができる。また、このガス混合器20は2つの流体を直接混合させるので、許容温度差の大きいものを、簡単な構造で、小型かつ安価に製造することができる。従って、シェル・アンド・チューブ形熱交換器のような大型の熱交換器を用いることなく、CO2 リサイクルブロア(低温ブロア21)の入口温度を下げることができるようになった。
【0007】
【発明が解決しようとする課題】
燃料電池発電設備では、装置の小型化、発電効率の上昇、及びコストダウンが大きな課題である。図2及び図3に示した燃料電池発電設備では、改質器10と燃料電池11が別々に設置されているため、設備が大型化し、かつその間を結ぶ高温配管からの放熱により発電効率が低下する問題点があった。そのため、図2及び図3で破線で囲む部分を同一の圧力容器内に設置し、好ましくは改質器10と燃料電池11を一体化して、装置の小型化、発電効率の上昇、及びコストダウンを図ることが望まれていた。
【0008】
しかし、図2及び図3から明らかなように、改質器10と燃料電池11を同一の圧力容器内に設置しても、燃料電池11のカソード排ガス7は、改質器10の燃焼室へ導かれるライン7a、タービン圧縮機12のタービンへ導かれるライン7b、及び燃料電池11のカソードガス3へ再循環されるライン7cの3本に分岐し、この3本のラインのうち2本7b,7cは、圧力容器を貫通して外部に取り出す必要があるため、圧力容器が複雑化するばかりでなく、約750℃前後に達する2本の高温ライン7b,7cからの放熱ロスが低減できない問題点があった。
【0009】
本発明はかかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、比較的簡単な構造の圧力容器により改質器と燃料電池を収納することができ、かつ高温配管からの放熱ロスを大幅に低減することができる燃料電池発電設備を提供することにある。
【0010】
【課題を解決するための手段】
本発明によれば、燃料電池のカソード排ガスを改質器の燃焼室に供給する燃料電池発電設備であって、燃料電池のカソード排ガスを改質器の燃焼室に全量供給するように構成するとともに、前記改質器と燃料電池を収納する圧力容器と、改質器の燃焼排ガスの一部をタービン圧縮機のタービンに導入する排ガス導入ラインと、燃焼排ガスの残部とタービン圧縮機による加圧空気との混合ガスを燃料電池のカソード側に供給する循環ラインと、を備え、前記圧力容器を貫通する配管は、前記循環ラインと、改質器から燃焼排ガスを導出する燃焼排ガスラインと、改質器の改質室に燃料ガスを供給する燃料ガスラインのみとした、ことを特徴とする燃焼電池発電設備が提供される。
【0011】
本発明のこの構成によれば、燃料電池のカソード排ガスはその全量が、改質器の燃焼室へ導かれ、タービン圧縮機のタービンへは排ガス導入ラインから改質器の燃焼排ガスの一部が導入され、燃料電池のカソードガスへはカソード排ガスの代わりに燃焼排ガスの残部とタービン圧縮機による加圧空気との混合ガスが供給される。カソード排ガスと燃焼排ガスは、温度及び圧力がほぼ同一であるので、この構成によりタービン圧縮機の性能を保持することができる。また、カソード排ガスと燃料電池への混合ガスは、温度及び圧力がわずかに異なるが、温度は加熱器16,圧力は低温ブロア21により自由に調節することができる。従って、上記構成により、タービン圧縮機及び燃料電池の性能を保持したまま、カソード排ガスの上述した2本の高温ライン7b,7cをなくすことができ、改質器と燃料電池を収納する圧力容器を備える場合に、比較的簡単な構造の圧力容器により改質器と燃料電池を収納することができ、かつ高温配管からの放熱ロスを大幅に低減することができる。
【0012】
【発明の実施の形態】
以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図において共通する部分には同一の符号を付して使用する。図1は、本発明による燃料電池発電設備の全体構成図である。この図において、本発明の燃料電池発電設備は、改質器10の燃焼排ガス5の一部5aをタービン圧縮機12のタービンに導入する排ガス導入ライン24と、燃焼排ガス5の残部5bとタービン圧縮機12による加圧空気6との混合ガスを燃料電池11のカソード側に供給する循環ライン26と、を備えている。また、この燃料電池発電設備は、燃料電池のカソード排ガスを改質器の燃焼室に全量供給するように構成されている。
【0013】
排ガス導入ライン24には、逆止弁24aが設置され、排ガスの逆流を防止している。また、熱風発生炉18から供給された高温ガスは、加熱器16を通過後に排ガス導入ライン24に合流するようになっている。カソード排ガス7と燃焼排ガス5は、温度及び圧力がほぼ同一であるので、この構成によりタービン圧縮機12の性能を保持することができる。
【0014】
循環ライン26には、図3に示した混合器20と低温ブロア21が設置され、燃料電池11からのカソード循環ライン7cと高温ブロア17bが廃されている。また、低温ブロア21の流量は、従来の低温ブロアの流量にカソード循環ガス7cの流量を加えた大流量に設定されている。この構成により、カソード排ガス7と混合ガスは、温度及び圧力がわずかに異なるが、温度は加熱器16,圧力は低温ブロア21により自由に調節することができる。
【0015】
また、本発明の燃料電池発電設備は更に、改質器10と燃料電池11を収納する圧力容器28を備えている。図1から明らかなように、改質器10と燃料電池11を同一の圧力容器28内に設置すると、燃料電池11のカソード排ガス7は、改質器10の燃焼室へ導かれるライン(従来のライン7a)だけであり、従来のライン7b,7cが廃されている。そのため、圧力容器を貫通して外部に取り出す部分は全体で5ヵ所から3ヵ所(小丸で示す)になり、約750℃前後に達する従来の2本の高温ライン7b,7cからの放熱ロスを実質的になくすことができる。つまり、圧力容器を貫通する配管は、循環ライン26と、改質器から燃焼排ガスを導出する燃焼排ガスライン31と、改質器の改質室に燃料ガスを供給する燃料ガスライン32のみとなる。
【0016】
すなわち、上述した本発明によれば、タービン圧縮機及び燃料電池の性能を保持したまま、カソード排ガスの上述した2本の高温ライン7b,7cをなくすことができ、改質器と燃料電池を収納する圧力容器を備える場合に、比較的簡単な構造の圧力容器により改質器と燃料電池を収納することができ、かつ高温配管からの放熱ロスを大幅に低減することができる。
【0017】
なお、本発明は上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。
【0018】
【発明の効果】
上述したように、本発明の燃料電池発電設備は、比較的簡単な構造の圧力容器により改質器と燃料電池を収納することができ、かつ高温配管からの放熱ロスを大幅に低減することができる等の優れた効果を有する。
【図面の簡単な説明】
【図1】本発明による燃料電池発電設備の全体構成図である。
【図2】従来の燃料電池発電設備の全体構成図である。
【図3】本願発明者による先の出願にかかわる燃料電池発電設備の全体構成図である。
【符号の説明】
1 燃料ガス
2 アノードガス
3 カソードガス
4 アノード排ガス
5 燃焼排ガス
6 空気
7 カソード排ガス
8 水蒸気
10 改質器
11 燃料電池
12 タービン圧縮機
13a 燃料予熱器
13b 空気予熱器
14 脱硫器
15 逆止弁
16 加熱器
17a 燃料ブロア
17b 高温ブロア
17c 低温ブロア
17d 空気ブロア
18 熱風発生炉
19 排熱回収装置
20 ガス混合器
21 低温ブロア
22 循環ライン
23 逆止弁
24 排ガス導入ライン
24a 逆止弁
26 循環ライン
28 圧力容器
31 燃焼排ガスライン
32 燃料ガスライン [0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel cell power generation facility using a molten carbonate fuel cell.
[0002]
[Prior art]
Molten carbonate fuel cells have features that are not found in conventional power generators, such as high efficiency and low environmental impact, and have attracted attention as a power generation system following hydro, thermal, and nuclear power. R & D is under way. In particular, in a power generation facility using a molten carbonate fuel cell using natural gas as a fuel, as shown in FIG. 2, a reformer 10 for reforming a fuel gas 1 such as natural gas into an anode gas 2 containing hydrogen, The fuel cell 11 includes an anode gas 2 and a fuel cell 11 that generates power from a cathode gas 3 containing oxygen. The anode gas 2 produced by the reformer 10 is supplied to the fuel cell 11 and most of the anode gas 2 is generated in the fuel cell ( After being consumed (for example, 80%), it is supplied to the combustion chamber Co of the reformer as the anode exhaust gas 4. In the reformer 10, combustible components (hydrogen, carbon monoxide, methane, etc.) in the anode exhaust gas are burned by the cathode exhaust gas, and the reforming chamber Re is heated by the high-temperature combustion gas to reform the fuel in the reforming chamber. The combustion exhaust gas 5 that has exited the reforming chamber is cooled by pressurized air 6 in an air preheater 13b, then pressurized by a low-temperature blower 17c, merges with the pressurized air 6 preheated in the air preheater 13b, and becomes a cathode. It is supplied to gas 3. The low-temperature blower 17c is also called a CO 2 recycle blower because it supplies CO 2 gas generated in the reformer to the cathode side of the fuel cell and uses it for a cathode reaction.
[0003]
A part of the cathode gas (cathode exhaust gas 7) which has partially reacted in the fuel cell is circulated upstream of the fuel cell by the high-temperature blower 17b, and the remaining part 7a is supplied to the reformer as combustion air. The remaining 7b is recovered in pressure by the turbine compressor 12, and is discharged out of the system after heat recovery by the exhaust heat recovery device 19. In FIG. 2, 13a is a fuel preheater, 14 is a desulfurizer, 15 is a check valve, 16 is a heater, 17d is an air blower, and 18 is a hot air generator.
[0004]
However, in the conventional fuel cell power generation equipment shown in FIG. 2, an air preheater 13b is installed at the inlet of a CO 2 recycle blower (low-temperature blower 17c) to lower the blower inlet temperature and reduce the battery inlet temperature to an appropriate temperature (about (580 ° C.), the temperature difference at the inlet of the air preheater 13b is large (for example, 750 ° C. or more), the operating conditions of the heat exchanger (air preheater 13b) are severe, and there is a problem that the apparatus becomes large. Was.
[0005]
Therefore, the inventor of the present application has devised a fuel cell power generation facility shown in FIG. 3 and has filed an earlier application (Japanese Patent Application No. 7-250724, not disclosed). This fuel cell power generation equipment supplies the combustion exhaust gas 5 of the reformer 10 to the cathode side 3 of the fuel cell 11, and the low temperature pressurized air 6 and the high temperature combustion exhaust gas 5 supplied to the cathode side , A low-temperature blower 21 for pressurizing the mixed and cooled gas mixture, and a circulation line 22 for supplying the pressurized mixed gas to the cathode side of the fuel cell. The circulation line 22 is provided with a check valve 23 for preventing the backflow of the cathode gas 3.
[0006]
According to the above-described configuration, the low-temperature (for example, about 20 ° C.) pressurized air 6 supplied to the cathode side 3 by the gas mixer 20 and the high-temperature (for example, about 770 ° C.) combustion exhaust gas 5 are directly mixed. The temperature of the mixed gas can be lowered (for example, about 600 ° C.). Further, since the gas mixer 20 directly mixes two fluids, a gas mixer having a large allowable temperature difference can be manufactured with a simple structure, in a small size and at low cost. Therefore, the inlet temperature of the CO 2 recycle blower (low-temperature blower 21) can be reduced without using a large-sized heat exchanger such as a shell-and-tube heat exchanger.
[0007]
[Problems to be solved by the invention]
In fuel cell power generation equipment, downsizing of the device, increase in power generation efficiency, and cost reduction are major issues. In the fuel cell power generation equipment shown in FIGS. 2 and 3, since the reformer 10 and the fuel cell 11 are separately installed, the equipment becomes large, and the power generation efficiency is reduced due to heat radiation from a high-temperature pipe connecting the equipment. There was a problem to do. Therefore, the portion surrounded by a broken line in FIGS. 2 and 3 is installed in the same pressure vessel, and preferably, the reformer 10 and the fuel cell 11 are integrated to reduce the size of the device, increase the power generation efficiency, and reduce the cost. It was desired to aim at.
[0008]
However, as is clear from FIGS. 2 and 3, even if the reformer 10 and the fuel cell 11 are installed in the same pressure vessel, the cathode exhaust gas 7 of the fuel cell 11 flows into the combustion chamber of the reformer 10. It branches into three lines: a line 7a to be guided, a line 7b to be guided to the turbine of the turbine compressor 12, and a line 7c to be recirculated to the cathode gas 3 of the fuel cell 11, and two of these three lines 7b, 7c has a problem that not only does the pressure vessel become complicated, but also the heat loss from the two high-temperature lines 7b and 7c reaching about 750 ° C. cannot be reduced because it is necessary to penetrate the pressure vessel and take it out to the outside. was there.
[0009]
The present invention has been made to solve such a problem. That is, an object of the present invention is to provide a fuel cell power generation facility capable of housing a reformer and a fuel cell with a pressure vessel having a relatively simple structure and greatly reducing heat loss from high-temperature piping. To provide.
[0010]
[Means for Solving the Problems]
According to the present invention, there is provided a fuel cell power generation system for supplying a cathode exhaust gas of a fuel cell to a combustion chamber of a reformer, wherein the entire amount of the cathode exhaust gas of the fuel cell is supplied to a combustion chamber of the reformer. A pressure vessel accommodating the reformer and the fuel cell, an exhaust gas introduction line for introducing a part of the combustion exhaust gas of the reformer to the turbine of the turbine compressor, and the remaining air of the combustion exhaust gas and compressed air by the turbine compressor. And a circulation line for supplying a mixed gas of the fuel cell to the cathode side of the fuel cell, a pipe penetrating the pressure vessel, the circulation line, a combustion exhaust gas line for extracting combustion exhaust gas from a reformer, and a reforming line. A combustion cell power generation facility is provided in which only a fuel gas line for supplying a fuel gas to a reforming chamber of a vessel is provided .
[0011]
According to this configuration of the present invention, the entire amount of the cathode exhaust gas of the fuel cell is guided to the combustion chamber of the reformer, and a part of the combustion exhaust gas of the reformer is supplied from the exhaust gas introduction line to the turbine of the turbine compressor. Introduced, a mixed gas of the remaining part of the combustion exhaust gas and the compressed air by the turbine compressor is supplied to the cathode gas of the fuel cell instead of the cathode exhaust gas. Since the cathode exhaust gas and the combustion exhaust gas have substantially the same temperature and pressure, this configuration can maintain the performance of the turbine compressor. Although the temperature and pressure of the mixed gas to the cathode exhaust gas and the fuel cell are slightly different, the temperature can be freely adjusted by the heater 16 and the pressure can be freely adjusted by the low-temperature blower 21. Therefore, with the above configuration, the above-described two high-temperature lines 7b and 7c for the cathode exhaust gas can be eliminated while maintaining the performance of the turbine compressor and the fuel cell, and the pressure vessel for housing the reformer and the fuel cell can be provided. When it is provided, the reformer and the fuel cell can be housed in a pressure vessel having a relatively simple structure, and the heat loss from the high-temperature pipe can be significantly reduced.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the drawings, common parts are denoted by the same reference numerals. FIG. 1 is an overall configuration diagram of a fuel cell power generation facility according to the present invention. In this figure, the fuel cell power generation equipment of the present invention includes an exhaust gas introduction line 24 for introducing a part 5a of the combustion exhaust gas 5 of the reformer 10 into the turbine of the turbine compressor 12, a remaining portion 5b of the combustion exhaust gas 5 and a turbine compression system. A circulation line 26 for supplying a gas mixture with the pressurized air 6 from the unit 12 to the cathode side of the fuel cell 11. The fuel cell power generation equipment is configured to supply the entire amount of the cathode exhaust gas of the fuel cell to the combustion chamber of the reformer.
[0013]
A check valve 24a is installed in the exhaust gas introduction line 24 to prevent the exhaust gas from flowing backward. The high-temperature gas supplied from the hot-air generating furnace 18 joins the exhaust gas introduction line 24 after passing through the heater 16. Since the temperature and pressure of the cathode exhaust gas 7 and the combustion exhaust gas 5 are substantially the same, the performance of the turbine compressor 12 can be maintained by this configuration.
[0014]
The circulation line 26 is provided with the mixer 20 and the low-temperature blower 21 shown in FIG. 3, and the cathode circulation line 7c from the fuel cell 11 and the high-temperature blower 17b are eliminated. Further, the flow rate of the low-temperature blower 21 is set to a large flow rate obtained by adding the flow rate of the cathode circulating gas 7c to the flow rate of the conventional low-temperature blower. With this configuration, the temperature and pressure of the cathode exhaust gas 7 and the mixed gas are slightly different, but the temperature can be freely adjusted by the heater 16 and the pressure by the low-temperature blower 21.
[0015]
Further, the fuel cell power generation equipment of the present invention further includes a pressure vessel 28 that houses the reformer 10 and the fuel cell 11. As is apparent from FIG. 1, when the reformer 10 and the fuel cell 11 are installed in the same pressure vessel 28, the cathode exhaust gas 7 of the fuel cell 11 is supplied to a line (conventional art) led to the combustion chamber of the reformer 10. Only the line 7a), and the conventional lines 7b and 7c are eliminated. For this reason, the number of parts that penetrate the pressure vessel to the outside is 5 to 3 (indicated by small circles) in total, and the heat loss from the conventional two high-temperature lines 7b and 7c reaching about 750 ° C. is substantially reduced. Can be eliminated. In other words, the piping that penetrates the pressure vessel is only the circulation line 26, the flue gas line 31 that leads the flue gas from the reformer, and the fuel gas line 32 that supplies the fuel gas to the reforming chamber of the reformer. .
[0016]
That is, according to the present invention described above, the two high-temperature lines 7b and 7c for the cathode exhaust gas can be eliminated while maintaining the performance of the turbine compressor and the fuel cell, and the reformer and the fuel cell can be housed. When a pressure vessel is provided, the reformer and the fuel cell can be housed in a pressure vessel having a relatively simple structure, and the heat loss from the high-temperature piping can be significantly reduced.
[0017]
It should be noted that the present invention is not limited to the above-described embodiment, and can be variously changed without departing from the gist of the present invention.
[0018]
【The invention's effect】
As described above, the fuel cell power generation equipment of the present invention can house the reformer and the fuel cell with a pressure vessel having a relatively simple structure, and can greatly reduce the heat loss from the high-temperature pipe. It has excellent effects such as being able to.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a fuel cell power generation facility according to the present invention.
FIG. 2 is an overall configuration diagram of a conventional fuel cell power generation facility.
FIG. 3 is an overall configuration diagram of a fuel cell power generation facility according to an earlier application by the present inventor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fuel gas 2 Anode gas 3 Cathode gas 4 Anode exhaust gas 5 Combustion exhaust gas 6 Air 7 Cathode exhaust gas 8 Steam 10 Reformer 11 Fuel cell 12 Turbine compressor 13a Fuel preheater 13b Air preheater 14 Desulfurizer 15 Check valve 16 Heating Unit 17a Fuel blower 17b High temperature blower 17c Low temperature blower 17d Air blower 18 Hot air generator 19 Exhaust heat recovery device 20 Gas mixer 21 Low temperature blower 22 Circulation line 23 Check valve 24 Exhaust gas introduction line 24a Check valve 26 Circulation line 28 Pressure vessel
31 flue gas line
32 Fuel gas line
Claims (1)
燃料電池のカソード排ガスを改質器の燃焼室に全量供給するように構成するとともに、
前記改質器と燃料電池を収納する圧力容器と、改質器の燃焼排ガスの一部をタービン圧縮機のタービンに導入する排ガス導入ラインと、燃焼排ガスの残部とタービン圧縮機による加圧空気との混合ガスを燃料電池のカソード側に供給する循環ラインと、を備え、
前記圧力容器を貫通する配管は、前記循環ラインと、改質器から燃焼排ガスを導出する燃焼排ガスラインと、改質器の改質室に燃料ガスを供給する燃料ガスラインのみとした、ことを特徴とする燃料電池発電設備。Fuel cell power generation equipment for supplying cathode exhaust gas of a fuel cell to a combustion chamber of a reformer,
A configuration in which the entire amount of the cathode exhaust gas of the fuel cell is supplied to the combustion chamber of the reformer,
A pressure vessel containing the reformer and the fuel cell, an exhaust gas introduction line for introducing a part of the combustion exhaust gas of the reformer to the turbine of the turbine compressor, and the remaining portion of the combustion exhaust gas and pressurized air by the turbine compressor. A circulation line for supplying the mixed gas of the above to the cathode side of the fuel cell,
The pipe penetrating the pressure vessel, the circulation line, a flue gas line for deriving flue gas from the reformer, and only a fuel gas line for supplying fuel gas to the reforming chamber of the reformer , Characteristic fuel cell power generation equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28554695A JP3601734B2 (en) | 1995-11-02 | 1995-11-02 | Fuel cell power generation equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28554695A JP3601734B2 (en) | 1995-11-02 | 1995-11-02 | Fuel cell power generation equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09129254A JPH09129254A (en) | 1997-05-16 |
JP3601734B2 true JP3601734B2 (en) | 2004-12-15 |
Family
ID=17692947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28554695A Expired - Fee Related JP3601734B2 (en) | 1995-11-02 | 1995-11-02 | Fuel cell power generation equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3601734B2 (en) |
-
1995
- 1995-11-02 JP JP28554695A patent/JP3601734B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09129254A (en) | 1997-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100907690B1 (en) | Combined Cycle Power Plant | |
JP4546736B2 (en) | Steam generator for PEM fuel cell power equipment | |
PL164615B1 (en) | Method of and apparatus for generating electric power | |
JPS62274563A (en) | Composite power generating plant | |
JPH09129255A (en) | Power generating system for combined cycle of indirect combustion gas turbine and doubled fuel cell | |
JP2005038817A (en) | Fuel cell, normal pressure turbine, hybrid system | |
CN115101781A (en) | A system and method for cogeneration based on flat-tube SOFC | |
JP4154680B2 (en) | Fuel cell power generator that injects steam into the anode exhaust gas line | |
JP2000331698A (en) | Fuel cell power generator using gas turbine exhaust gas | |
JPH11238520A (en) | Fuel cell generator | |
JP3601734B2 (en) | Fuel cell power generation equipment | |
JP3564812B2 (en) | Fuel cell power generation equipment | |
JP3573239B2 (en) | Fuel cell power generator | |
JP3331576B2 (en) | Fuel cell power generation equipment | |
JPH11273701A (en) | Fuel cell generator | |
JPH07208200A (en) | Combustion device for turbine compressor and combustion method | |
JPH09231989A (en) | Fuel cell power generation equipment | |
JP3882307B2 (en) | Fuel cell power generation facility | |
CN100433433C (en) | Fuel cell/constant pressure turbine/hybrid system | |
JP3582131B2 (en) | Molten carbonate fuel cell power generator | |
JPH0896822A (en) | Fuel cell generator | |
JPH0992313A (en) | Fuel cell power generation equipment | |
JP3263936B2 (en) | Fuel cell generator | |
JPH10302820A (en) | Fuel cell power generation equipment | |
JPH08339815A (en) | Fuel cell generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040511 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040609 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040809 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040903 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040916 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071001 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071001 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071001 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081001 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091001 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |