[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3874685B2 - Scanning probe microscope - Google Patents

Scanning probe microscope Download PDF

Info

Publication number
JP3874685B2
JP3874685B2 JP2002082407A JP2002082407A JP3874685B2 JP 3874685 B2 JP3874685 B2 JP 3874685B2 JP 2002082407 A JP2002082407 A JP 2002082407A JP 2002082407 A JP2002082407 A JP 2002082407A JP 3874685 B2 JP3874685 B2 JP 3874685B2
Authority
JP
Japan
Prior art keywords
light
cantilever
light receiving
light emitting
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002082407A
Other languages
Japanese (ja)
Other versions
JP2003279463A (en
Inventor
由紀夫 高萩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002082407A priority Critical patent/JP3874685B2/en
Publication of JP2003279463A publication Critical patent/JP2003279463A/en
Application granted granted Critical
Publication of JP3874685B2 publication Critical patent/JP3874685B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、走査型プローブ顕微鏡に係わり、特に光てこ方式を採用した走査型プローブ顕微鏡に関する。
【0002】
【従来の技術】
走査型プローブ顕微鏡(SPM)は、被測定物質のミクロンオーダーの領域における表面の構造や物性をナノオーダーの空間分解能で知ることができる装置である。SPMは各種の顕微鏡やそれらの関連技術まで含む総称であり、その原理や検出する情報などによって多くの種類に分類されているが、いずれも探針を用いているという共通点がある。
【0003】
つまり、SPMでは微細加工によって先端がナノオーダーまで先鋭化された探針を被測定物質の表面近傍で走査させて、この探針を介して表面に関する様々な情報を得ることになる。具体的には、被測定物質と探針の間の相互作用による各種信号、被測定物質との相互作用によって探針が受ける力、力を受けることに伴う探針の変位などを利用して、間接的に表面に関する情報を得る装置がある。
【0004】
例えば、探針を表面近傍に配置したときに被測定物質表面と探針との間に生じる原子間力を利用し、探針を走査させたときの原子間力の増減を被測定物質と探針の間の距離情報に変換することで表面構造を得る原子間力顕微鏡(AFM)などは、SPMの中で多く用いられる装置である。
【0005】
AFMにおいて被測定物質表面と探針との間に生じる原子間力を検出する方法として、探針が原子間力を受けることに伴う探針の変位を利用している。AFMに限らず、他のSPM各種においても、被測定物質との相互作用によって探針が受ける力を利用する際には、探針が力を受けることによる探針の変位を検出する必要がある。探針の変位を検出する方法はいくつかあるが、現在のSPMには装置構成が簡単な光てこ方式が最も多く用いられている。
【0006】
従来用いられている光てこ方式では、レーザーダイオード(半導体レーザー)などの発光素子を用いて探針を保持するカンチレバーの背面にレーザー光を照射し、検出部が複数に分割されたフォトダイオードなどの受光装置を用いてカンチレバー背面からの反射光の角度変化を検出する。実際の装置では、このようにして得られた探針の変位をもとにして、被測定物質と探針の間の距離が一定になるように(つまり原子間力が一定になるように)位置制御が行われ、この際の移動距離から表面構造が得られる。
【0007】
しかしながら、このような従来の光てこ方式では、カンチレバー背面へのレーザー光照射が適切でない時にカンチレバーからレーザー光が漏れたり、あるいは、カンチレバー背面へのレーザー光照射が適切な場合でもプローブをレーザー光が透過したりしてしまうことがある。カンチレバーから漏れた、もしくは、透過した光は被測定物質表面に到達し、表面の反射率が高い場合には反射して受光装置に戻ることになる。このとき、プローブ背面で反射した光と被測定物質表面で反射した光とが干渉を起こすことがある。このような光が受光装置で検出されると、光干渉による周期的な光の強弱が生じていることから、検出位置によって強度の異なる光を検出することになる。カンチレバー背面からの反射光を検出する際、光干渉の影響を受けて探針変位の情報が埋もれてしまうことがあり、その結果、表面構造を正確に観測することができなくなるという問題が生じる。
【0008】
【発明が解決しようとする課題】
上述したように、従来の光てこ方式を採用した走査型プローブ顕微鏡においては、受光装置で正確な反射光を検出できず、したがって探針の変位量を正確に検出できなくなる場合があった。その結果被測定試料の正確な表面構造を観測できなくなる。
【0009】
本発明は、探針の変位量を正確に検出し、ひいては被測定試料の正確な表面構造を観測できる走査型プローブ顕微鏡を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の走査型プローブ顕微鏡は、筐体と、前記筐体内に配置され、固定端および自由端を有し、前記自由端近傍に被測定試料に間隙を持って配置される探針を保持し、前記被測定試料の表面状態に応じて前記自由端側が変位するカンチレバーと、前記カンチレバー上に固定された発光素子と、前記筐体に固定され、前記発光素子からの光を直接受光する受光装置とを有し、前記受光装置は、複数個の受光素子を並べたものであり、前記カンチレバーの傾き角に応じて、各々の受光素子が検知する、前記発光素子から発せられた光の受光量が変化するように前記複数個の受光素子が配置されていることを特徴とする。
【0011】
本発明の走査型プローブ顕微鏡は、筐体と、前記筐体内に配置され、固定端および自由端を有し、前記自由端近傍に被測定試料に間隙を持って配置される探針を保持し、前記被測定試料の表面状態に応じて前記自由端側が変位するカンチレバーと、前記カンチレバー上に固定された発光素子と、前記発光素子から発せられた光を所定の方向に反射する反射板と、前記筐体に固定され、前記反射板からの反射光を受光する受光装置とを有し、前記受光装置は、複数個の受光素子を並べたものであり、前記カンチレバーの傾き角に応じて、各々の受光素子が検知する、前記発光素子から発せられた光の受光量が変化するように前記複数個の受光素子が配置されていることを特徴とする。
【0014】
前記発光素子は、前記カンチレバーの前記探針が発光素子を固定する面の裏面側に固定されることが好ましい。
【0015】
前記発光素子からの光を前記検出器に向けて集光する集光装置を有することが好ましい。
【0016】
すなわち、従来の光てこ方式を採用した走査型プローブ顕微鏡では、発光素子からカンチレバーに照射光を当て、カンチレバーからの反射光を受光装置で検出しようとしていたため、受光装置で受ける光には、カンチレバーからの反射光と、カンチレバー以外の場所で反射した反射光とが干渉してしまうため、カンチレバーの位置(反射位置)を正確に検出することができなかった。
【0017】
これに対し、本発明では、カンチレバーに発光素子を設けたため、受光装置は発光素子からの照射光を直接受ける、あるいは任意のサイズの反射板による反射光を受けるため、意図しない場所で生じた反射光との干渉が無くなり、カンチレバーの位置(発光素子の位置)を正確に検出することが可能になる。
【0018】
【発明の実施の形態】
図1は、原子間力顕微鏡の概念図であり、この図面を用いて、以下に本発明の第1の実施形態を説明する。
【0019】
試料台1の水平は上面を有しており、この水平な上面には例えば半導体ウエハや、ハードディスク記録媒体のような薄板状の被測定試料2が、観測しようとする面を上面になるようにして載置されている。
また、試料台1は、CPU3からの駆動信号に応じて駆動する駆動装置3によって水平面(X−Y平面)での移動も、垂直方向(Z軸方向)の移動も可能であり、前記被測定試料を所望の位置に移動させることができる。
【0020】
被測定試料2の上面を観測するためのプローブがその上側に配置されている。プローブは、カンチレバー5、探針6およびカンチレバー支持部材12とを具備している。
【0021】
カンチレバー5は所定のばね係数を持った弾性板であり、その一端はカンチレバー支持部材12によって固定されている。また、カンチレバー5の他端は自由端になっており、この自由端近傍には、探針6が設けられている。
【0022】
この探針6は、その先端が被測定試料2に向くように、さらに探針6の先端と被測定試料2との間に所定の間隙が形成されるように配置されている。以降、この時のカンチレバーの状態を「初期のカンチレバーの状態」と呼ぶ。
【0023】
カンチレバーとしては、例えば長さ(自由端から固定端までの長さ)100μm〜500μm、幅(探針が形成される面の幅)20μm〜100μm、厚さ1μm〜10μm程度のシリコンなどが使用できる。探針は、通常先端極率が1nm〜10nm程度で長さ10μm〜20μm程度の形状で針状あるいは錐状のものが使用され、例えばシリコンや、シリコン表面に耐磨耗性のためにダイヤモンドコートを施したものが使用できる。
【0024】
また、カンチレバー5、探針6およびカンチレバー支持部材12は、それぞれを接合したものであっても良いし、一体成形したものであっても良い。
【0025】
試料台1がX−Y面で移動することで被測定試料2の上面を探針6で走査すると、探針6は被測定試料2の表面状態に応じた力を受ける。
【0026】
例えば原子間力顕微鏡では、被測定試料2表面に凹凸が存在すると、探針6と被測定試料2との距離が変化して両者間の原子間力が変化し、探針6は力を受ける。そして、探針6が受けた力に応じてカンチレバー5の自由端が上下方向にZ軸方向に変位する。その結果、自由端近傍においてカンチレバー5の傾き角が初期のカンチレバーの状態から変化する。具体的には、被測定試料表面高さが大きくなると探針と被測定試料との原子間力が大きくなりカンチレバー5の傾き角は大きくなり、逆に被測定試料表面高さが小さくなると探針と被測定試料との原子間力が小さくなり、カンチレバー5の傾きは小さくなる。
【0027】
ここで、原子間力顕微鏡での測定に適した試料表面凹凸は1nm〜10μm程度である。
【0028】
なお、「自由端近傍」とは、このカンチレバー5の傾き角の変化を後述する受光装置によって認識できる程度の範囲を指すが、自由端に近いほど、力による傾き角の変化量が大きくなるので、より自由端側に近い領域と設定することが好ましい。
【0029】
一方、カンチレバー5の自由端の近傍上面には、レーザーダイオードなどの発光素子8が固定されており、発光素子8から発せられた光は、筐体7に固定された受光装置9によって直接受光される。
【0030】
この時、発光素子8から発せられた光が複数の受光素子に照射されるような場合には、図示するように発光素子8から受光装置9までの光路に光学レンズなど集光手段10を配置して、所望の範囲に光を照射させることで、カンチレバー5のより正確な傾き角を得ることができる。ここで「直接受光する」とは、反射させずに受光することであり、単に光学レンズを通過した光の受光は、「直接受光する」の表現に含まれるものである。
【0031】
この発光素子8は、カンチレバー5の長さ方向と発光素子8の発光方向との為す角が一定となるように固定されていれば、カンチレバー5に造りこまれたものであっても良いし、カンチレバー5の表面に別途配置したものであっても良い。
【0032】
受光装置9は、フォトダイオードなどの受光素子を複数個並べたものであり、発光素子8から発せられた光が、カンチレバー5の傾き角に応じてそれぞれの受光素子が検知する受光量が変化するように配置されている。また、複数の受光素子が検知結果は個別にCPU3に送られる。
【0033】
CPU3では受光装置の受光状態から、初期のカンチレバーの状態に対して、カンチレバー5が被測定試料から近づいたのか、遠のいたのかを判断する。そして、カンチレバーの初期の状態に近づくように、すなわち探針6とカンチレバー5との距離が前述した初期の間隔になるように、試料台1をZ軸方向に移動させる。
【0034】
さらに、CPUでは移動中も受光装置8の受光状態を観測し、カンチレバーの初期の状態での受光状態と同じ受光状態になったところで、Z軸方向の移動を止める。すなわち、探針6と被測定試料2表面との距離が前述した「所定の間隙」になる。
【0035】
このZ軸方向の移動量が、被測定試料2表面の高さ変動であり、CPU3では、被測定試料表面の位置(x、y)に移動したときの、Z軸方向の変動量zを対応させて記憶することで、被測定試料2表面の凹凸状態を表すことが可能になる。
【0036】
上述したように、第1の実施形態においては、カンチレバーからの反射光を受光せず、発光素子から発せられた光を直接受光装置で受光するため、被測定試料表面など意図しない場所での反射光によって受光に悪影響を及ばすことが無くなり、被測定試料表面の凹凸状態を測定することが可能になる。
【0037】
次に第2の実施形態について、図2を用いて説明する。
【0038】
図2は、原子間力顕微鏡の概念図であり、第1の実施形態で述べたのと同じものについては同一符号を付して詳細な説明は省略する。
【0039】
本実施形態においては、発光素子8から発せられた光を受光装置9で直接受光せず、一度ミラーなどの反射板11に反射させた反射光を受光装置9で受光する点で第1の実施形態と異なっている。このように反射板を設けることで、受光装置9の配置場所を任意の位置に設定することが可能である。
【0040】
従来の光てこ方式の走査型プローブ顕微鏡では、重量や形状に制限があるカンチレバー5に光を反射させていたが、この反射板11はこれらの制限が無いため、発光素子8から発せられる光を確実に反射できる程度の大きさ、厚さに設定できるため、意図しない場所で生じる反射光が受光装置9に入射することを防ぐことができる。
【0041】
第1の実施形態および第2の実施形態における、集光装置の変形例について図3を用いて説明する。
【0042】
図3は、カンチレバーの自由端側の概略斜視図であり、前述したように、カンチレバー5の片面には探針6が、背面には発光素子8が配置されている。さらに、カンチレバー5の背面には、半球形の殻10’が発光素子8を覆うように固定されており、殻10’の天井にレンズ10が形成されている。
【0043】
レンズ10が筐体などに固定されていると、カンチレバー5が変位した時に発光素子8とレンズ10の相対位置が変わるため、発光素子8から発した光の集束点が光軸からずれてしまう恐れがあるが、このようにカンチレバー5にレンズ10を固定することで、光の集束点が光軸と常に一致するため、受光装置9によっる受光状態を正確に検出することが可能になる。
【0044】
上述したように、各実施形態においては、カンチレバーからの反射光を受光せず、発光素子から発せられた光を直接受光装置で受光するため、意図しない場所での反射光によって受光に悪影響を及ばすことが無くなり、被測定試料表面の凹凸状態を測定することが可能になる。
【0045】
また、本発明は、原子間力顕微鏡に限らず、光てこ方式を採用した走査型プローブ顕微鏡であれば、磁気力顕微鏡、電気力顕微鏡、あるいは水平力顕微鏡などにも適応することができる。
【0046】
【発明の効果】
上述したように、本発明の走査型プローブ顕微鏡は、探針の変位量を正確に検出し、ひいては被測定試料の正確な表面構造を観測できる。
【図面の簡単な説明】
【図1】 本発明の第1の実施形態の原子間力顕微鏡を示す概略図。
【図2】 本発明の第2の実施形態の原子間力顕微鏡を示す概念図。
【図3】 集光装置の変形例を示す斜視図。
【符号の説明】
1…試料台
2…被測定試料
3…CPU
4…駆動装置
5…カンチレバー
6…探針
7…筐体
8…発光素子
9…受光装置
10…レンズ
11…ミラー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a scanning probe microscope, and more particularly to a scanning probe microscope employing an optical lever system.
[0002]
[Prior art]
A scanning probe microscope (SPM) is a device that can know the structure and physical properties of a surface of a substance to be measured in a micron-order region with nano-order spatial resolution. SPM is a generic name including various microscopes and related technologies, and is classified into many types according to the principle and information to be detected, but all have a common point that a probe is used.
[0003]
In other words, in SPM, a probe whose tip is sharpened to the nano-order by fine processing is scanned in the vicinity of the surface of the substance to be measured, and various information relating to the surface is obtained through this probe. Specifically, using various signals due to the interaction between the substance to be measured and the probe, the force received by the probe due to the interaction with the substance to be measured, the displacement of the probe accompanying the force, etc. There are devices that obtain information about the surface indirectly.
[0004]
For example, the atomic force generated between the surface of the substance to be measured and the probe when the probe is placed near the surface is used, and the increase or decrease in the atomic force when the probe is scanned is measured with the substance to be measured. An atomic force microscope (AFM) or the like that obtains a surface structure by converting distance information between needles is a device often used in SPM.
[0005]
As a method for detecting the atomic force generated between the surface of the substance to be measured and the probe in the AFM, the displacement of the probe that accompanies the atomic force received by the probe is used. Not only the AFM but also other SPM types, when using the force received by the probe due to the interaction with the substance to be measured, it is necessary to detect the displacement of the probe due to the force received by the probe. . Although there are several methods for detecting the displacement of the probe, an optical lever method with a simple device configuration is most often used in the current SPM.
[0006]
In the conventional optical lever system, a laser beam is irradiated on the back surface of a cantilever holding a probe using a light emitting element such as a laser diode (semiconductor laser), and a detection unit is divided into a plurality of photodiodes. The angle change of the reflected light from the back surface of the cantilever is detected using the light receiving device. In an actual device, based on the probe displacement obtained in this way, the distance between the substance to be measured and the probe is constant (that is, the atomic force is constant). Position control is performed, and the surface structure is obtained from the movement distance at this time.
[0007]
However, with such a conventional optical lever system, the laser beam leaks from the cantilever when the laser beam irradiation to the back surface of the cantilever is not appropriate, or the laser beam is applied to the probe even when the laser beam irradiation to the back surface of the cantilever is appropriate. Or may penetrate. Light leaking from or passing through the cantilever reaches the surface of the substance to be measured, and when the reflectance of the surface is high, it is reflected and returns to the light receiving device. At this time, the light reflected on the back surface of the probe and the light reflected on the surface of the substance to be measured may cause interference. When such light is detected by the light receiving device, periodic light intensity is generated due to optical interference, and thus light with different intensities is detected depending on the detection position. When detecting the reflected light from the back surface of the cantilever, information on the probe displacement may be buried under the influence of optical interference, resulting in a problem that the surface structure cannot be observed accurately.
[0008]
[Problems to be solved by the invention]
As described above, in the scanning probe microscope employing the conventional optical lever system, the reflected light cannot be detected accurately by the light receiving device, and therefore the displacement of the probe cannot be detected accurately. As a result, the accurate surface structure of the sample to be measured cannot be observed.
[0009]
It is an object of the present invention to provide a scanning probe microscope that can accurately detect the amount of displacement of a probe and thus observe the accurate surface structure of a sample to be measured.
[0010]
[Means for Solving the Problems]
The scanning probe microscope of the present invention is A housing and disposed in the housing; A cantilever having a fixed end and a free end, holding a probe arranged with a gap in the sample to be measured in the vicinity of the free end, and the free end side being displaced according to the surface state of the sample to be measured; A light emitting element fixed on the cantilever; Fixed to the housing, A light receiving device that directly receives light from the light emitting element. The light receiving device includes a plurality of light receiving elements arranged, and the amount of light emitted from the light emitting elements detected by each light receiving element changes according to the tilt angle of the cantilever. The plurality of light receiving elements are arranged as follows It is characterized by that.
[0011]
The scanning probe microscope of the present invention is A housing and disposed in the housing; A cantilever having a fixed end and a free end, holding a probe arranged with a gap in the sample to be measured in the vicinity of the free end, and the free end side being displaced according to the surface state of the sample to be measured; A light emitting element fixed on the cantilever, and a reflector that reflects light emitted from the light emitting element in a predetermined direction; Fixed to the housing, A light receiving device for receiving the reflected light from the reflecting plate. The light receiving device includes a plurality of light receiving elements arranged, and the amount of light emitted from the light emitting elements detected by each light receiving element changes according to the tilt angle of the cantilever. The plurality of light receiving elements are arranged as follows It is characterized by that.
[0014]
The light emitting element is preferably fixed to the back side of the surface on which the probe of the cantilever fixes the light emitting element.
[0015]
It is preferable to have a condensing device that condenses the light from the light emitting element toward the detector.
[0016]
That is, in the conventional scanning probe microscope employing the optical lever method, the light emitted from the light emitting element is applied to the cantilever and the reflected light from the cantilever is detected by the light receiving device. Since the reflected light from the light interferes with the reflected light reflected at a place other than the cantilever, the position of the cantilever (reflection position) could not be detected accurately.
[0017]
On the other hand, in the present invention, since the light emitting element is provided on the cantilever, the light receiving device directly receives the irradiation light from the light emitting element or receives the reflected light from the reflector of any size, so that the reflection generated in an unintended place. Interference with light is eliminated, and the position of the cantilever (the position of the light emitting element) can be accurately detected.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a conceptual diagram of an atomic force microscope, and a first embodiment of the present invention will be described below using this drawing.
[0019]
The horizontal surface of the sample stage 1 has an upper surface, and on this horizontal upper surface, for example, a surface of the sample 2 to be measured such as a semiconductor wafer or a hard disk recording medium is to be observed. It is placed.
Further, the sample stage 1 can be moved in the horizontal plane (XY plane) or in the vertical direction (Z-axis direction) by the driving device 3 driven in accordance with a driving signal from the CPU 3. The sample can be moved to a desired position.
[0020]
A probe for observing the upper surface of the sample 2 to be measured is arranged on the upper side. The probe includes a cantilever 5, a probe 6, and a cantilever support member 12.
[0021]
The cantilever 5 is an elastic plate having a predetermined spring coefficient, and one end thereof is fixed by a cantilever support member 12. The other end of the cantilever 5 is a free end, and a probe 6 is provided near the free end.
[0022]
The probe 6 is arranged such that a predetermined gap is formed between the tip of the probe 6 and the sample 2 to be measured so that the tip thereof faces the sample 2 to be measured. Hereinafter, the state of the cantilever at this time is referred to as an “initial cantilever state”.
[0023]
As the cantilever, for example, silicon having a length (length from the free end to the fixed end) of 100 μm to 500 μm, a width (width of the surface on which the probe is formed) of 20 μm to 100 μm, and a thickness of about 1 μm to 10 μm can be used. . The probe has a tip polarity of about 1 nm to 10 nm and a length of about 10 μm to 20 μm and is needle-shaped or conical, for example, silicon or a diamond-coated silicon surface for wear resistance. Can be used.
[0024]
Further, the cantilever 5, the probe 6 and the cantilever support member 12 may be joined to each other or may be integrally formed.
[0025]
When the upper surface of the sample 2 to be measured is scanned with the probe 6 as the sample stage 1 moves in the XY plane, the probe 6 receives a force according to the surface state of the sample 2 to be measured.
[0026]
For example, in an atomic force microscope, if there is unevenness on the surface of the sample 2 to be measured, the distance between the probe 6 and the sample 2 to be measured changes, the atomic force between them changes, and the probe 6 receives a force. . Then, the free end of the cantilever 5 is displaced in the vertical direction in the Z-axis direction according to the force received by the probe 6. As a result, the inclination angle of the cantilever 5 changes from the initial state of the cantilever near the free end. Specifically, when the surface height of the sample to be measured increases, the atomic force between the probe and the sample to be measured increases and the tilt angle of the cantilever 5 increases. And the atomic force between the sample and the sample to be measured is reduced, and the inclination of the cantilever 5 is reduced.
[0027]
Here, the sample surface irregularities suitable for measurement with an atomic force microscope are about 1 nm to 10 μm.
[0028]
Note that “near the free end” refers to a range in which the change in the tilt angle of the cantilever 5 can be recognized by a light receiving device described later. However, the closer the free end, the greater the change in the tilt angle due to force. It is preferable to set the region closer to the free end side.
[0029]
On the other hand, a light emitting element 8 such as a laser diode is fixed on the upper surface near the free end of the cantilever 5, and light emitted from the light emitting element 8 is directly received by a light receiving device 9 fixed to the housing 7. The
[0030]
At this time, when light emitted from the light emitting element 8 is irradiated to a plurality of light receiving elements, a condensing means 10 such as an optical lens is disposed in the optical path from the light emitting element 8 to the light receiving device 9 as shown in the figure. Then, by irradiating light in a desired range, a more accurate tilt angle of the cantilever 5 can be obtained. Here, “directly receiving light” means receiving light without reflection, and simply receiving light that has passed through the optical lens is included in the expression “directly receiving light”.
[0031]
The light emitting element 8 may be formed in the cantilever 5 as long as the angle between the length direction of the cantilever 5 and the light emitting direction of the light emitting element 8 is fixed. It may be separately arranged on the surface of the cantilever 5.
[0032]
The light receiving device 9 includes a plurality of light receiving elements such as photodiodes arranged, and the amount of received light detected by each light receiving element of the light emitted from the light emitting element 8 changes according to the inclination angle of the cantilever 5. Are arranged as follows. The detection results of the plurality of light receiving elements are individually sent to the CPU 3.
[0033]
The CPU 3 determines from the light receiving state of the light receiving device whether the cantilever 5 is approaching or far from the sample to be measured with respect to the initial state of the cantilever. Then, the sample stage 1 is moved in the Z-axis direction so as to approach the initial state of the cantilever, that is, so that the distance between the probe 6 and the cantilever 5 becomes the initial interval described above.
[0034]
Further, the CPU observes the light receiving state of the light receiving device 8 during movement, and stops moving in the Z-axis direction when the light receiving state becomes the same as the light receiving state in the initial state of the cantilever. That is, the distance between the probe 6 and the surface of the sample 2 to be measured is the “predetermined gap” described above.
[0035]
This amount of movement in the Z-axis direction is the height fluctuation of the surface of the sample 2 to be measured, and the CPU 3 corresponds to the amount of fluctuation z in the Z-axis direction when moving to the position (x, y) of the surface of the sample to be measured. By storing them, it is possible to represent the uneven state of the surface of the sample 2 to be measured.
[0036]
As described above, in the first embodiment, the reflected light from the cantilever is not received, and the light emitted from the light emitting element is directly received by the light receiving device. The light does not adversely affect the light reception, and the uneven state of the surface of the sample to be measured can be measured.
[0037]
Next, a second embodiment will be described with reference to FIG.
[0038]
FIG. 2 is a conceptual diagram of an atomic force microscope. The same components as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
[0039]
In the present embodiment, the first embodiment is that the light emitted from the light emitting element 8 is not directly received by the light receiving device 9 but the reflected light once reflected by the reflecting plate 11 such as a mirror is received by the light receiving device 9. It is different from the form. By providing the reflection plate in this way, the arrangement location of the light receiving device 9 can be set at an arbitrary position.
[0040]
In the conventional optical probe type scanning probe microscope, the light is reflected on the cantilever 5 which is limited in weight and shape. However, since the reflecting plate 11 does not have these restrictions, the light emitted from the light emitting element 8 is not reflected. Since the size and thickness can be set such that the light can be reliably reflected, it is possible to prevent reflected light generated at an unintended place from entering the light receiving device 9.
[0041]
A modification of the light collecting device in the first embodiment and the second embodiment will be described with reference to FIG.
[0042]
FIG. 3 is a schematic perspective view of the free end side of the cantilever. As described above, the probe 6 is arranged on one side of the cantilever 5 and the light emitting element 8 is arranged on the back side. Further, a hemispherical shell 10 ′ is fixed on the back surface of the cantilever 5 so as to cover the light emitting element 8, and a lens 10 is formed on the ceiling of the shell 10 ′.
[0043]
If the lens 10 is fixed to a housing or the like, the relative position of the light emitting element 8 and the lens 10 changes when the cantilever 5 is displaced, and therefore the convergence point of light emitted from the light emitting element 8 may be shifted from the optical axis. However, by fixing the lens 10 to the cantilever 5 in this way, the light converging point always coincides with the optical axis, so that the light receiving state by the light receiving device 9 can be accurately detected.
[0044]
As described above, in each embodiment, the reflected light from the cantilever is not received, and the light emitted from the light emitting element is directly received by the light receiving device. Therefore, the received light is adversely affected by the reflected light at an unintended place. It is possible to measure the uneven state on the surface of the sample to be measured.
[0045]
The present invention is not limited to an atomic force microscope, and can be applied to a magnetic force microscope, an electric force microscope, a horizontal force microscope, or the like as long as it is a scanning probe microscope employing an optical lever system.
[0046]
【The invention's effect】
As described above, the scanning probe microscope of the present invention can accurately detect the amount of displacement of the probe and thus observe the accurate surface structure of the sample to be measured.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an atomic force microscope according to a first embodiment of the present invention.
FIG. 2 is a conceptual diagram showing an atomic force microscope according to a second embodiment of the present invention.
FIG. 3 is a perspective view showing a modified example of the light collecting device.
[Explanation of symbols]
1 ... Sample stand
2 ... Sample to be measured
3 ... CPU
4 ... Drive device
5 ... cantilever
6 ... Probe
7 ... Case
8 ... Light emitting element
9. Light receiving device
10 ... Lens
11 ... Mirror

Claims (4)

筐体と、前記筐体内に配置され、固定端および自由端を有し、前記自由端近傍に被測定試料に間隙を持って配置される探針を保持し、前記被測定試料の表面状態に応じて前記自由端側が変位するカンチレバーと、前記カンチレバー上に固定された発光素子と、前記筐体に固定され、前記発光素子からの光を直接受光する受光装置とを有し、前記受光装置は、複数個の受光素子を並べたものであり、前記カンチレバーの傾き角に応じて、各々の受光素子が検知する、前記発光素子から発せられた光の受光量が変化するように前記複数個の受光素子が配置されていることを特徴とする走査型プローブ顕微鏡。  A housing and a probe disposed within the housing, having a fixed end and a free end, and having a gap disposed in the sample to be measured with a gap in the vicinity of the free end, to maintain the surface state of the sample to be measured The cantilever whose free end side is displaced in response, a light emitting element fixed on the cantilever, and a light receiving device fixed to the housing and directly receiving light from the light emitting element, the light receiving device The plurality of light receiving elements are arranged, and the plurality of light receiving elements detected by each light receiving element are detected in accordance with an inclination angle of the cantilever so that the amount of received light emitted from the light emitting elements changes. A scanning probe microscope, comprising a light receiving element. 筐体と、前記筐体内に配置され、固定端および自由端を有し、前記自由端近傍に被測定試料に間隙を持って配置される探針を保持し、前記被測定試料の表面状態に応じて前記自由端側が変位するカンチレバーと、前記カンチレバー上に固定された発光素子と、前記発光素子から発せられた光を所定の方向に反射する反射板と、前記筐体に固定され、前記反射板からの反射光を受光する受光装置とを有し、前記受光装置は、複数個の受光素子を並べたものであり、前記カンチレバーの傾き角に応じて、各々の受光素子が検知する、前記発光素子から発せられた光の受光量が変化するように前記複数個の受光素子が配置されていることを特徴とする走査型プローブ顕微鏡。  A housing and a probe disposed within the housing, having a fixed end and a free end, and having a gap disposed in the sample to be measured with a gap in the vicinity of the free end, to maintain the surface state of the sample to be measured Accordingly, the cantilever whose free end side is displaced, a light emitting element fixed on the cantilever, a reflecting plate that reflects light emitted from the light emitting element in a predetermined direction, and fixed to the casing, the reflection A light receiving device that receives the reflected light from the plate, the light receiving device is a plurality of light receiving elements arranged, and each of the light receiving elements detects according to an inclination angle of the cantilever, A scanning probe microscope, wherein the plurality of light receiving elements are arranged so that the amount of light received from the light emitting elements changes. 前記発光素子は、前記カンチレバーの前記探針を固定する面の裏面側に固定されることを特徴とする請求項1又は請求項2記載の走査型プローブ顕微鏡。  The scanning probe microscope according to claim 1, wherein the light emitting element is fixed to a back side of a surface of the cantilever where the probe is fixed. 前記発光素子からの光を前記検出器に向けて集光する集光装置を有することを特徴とする請求項1又は請求項2記載の走査型プローブ顕微鏡。  The scanning probe microscope according to claim 1, further comprising a condensing device that condenses light from the light emitting element toward the detector.
JP2002082407A 2002-03-25 2002-03-25 Scanning probe microscope Expired - Fee Related JP3874685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002082407A JP3874685B2 (en) 2002-03-25 2002-03-25 Scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002082407A JP3874685B2 (en) 2002-03-25 2002-03-25 Scanning probe microscope

Publications (2)

Publication Number Publication Date
JP2003279463A JP2003279463A (en) 2003-10-02
JP3874685B2 true JP3874685B2 (en) 2007-01-31

Family

ID=29230601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002082407A Expired - Fee Related JP3874685B2 (en) 2002-03-25 2002-03-25 Scanning probe microscope

Country Status (1)

Country Link
JP (1) JP3874685B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100805834B1 (en) 2006-01-09 2008-02-21 삼성전자주식회사 Apparatus for testing a light receiving element and method of the same

Also Published As

Publication number Publication date
JP2003279463A (en) 2003-10-02

Similar Documents

Publication Publication Date Title
JP2516292B2 (en) Atomic force microscope
US5994691A (en) Near-field scanning optical microscope
JP5580296B2 (en) Probe detection system
EP0665417A2 (en) Atomic force microscope combined with optical microscope
KR100192097B1 (en) Configuration measuring method and apparatus for optically detecting a displacement of a probe due to an atomic force
JPH05231863A (en) Apparatus and method for measuring limit dimension
US6642517B1 (en) Method and apparatus for atomic force microscopy
JP2008051556A (en) Optical displacement detecting mechanism, and surface information measuring device using the same
JPH0682249A (en) Interatomic force microscope
JP3497734B2 (en) Scanning probe microscope
JP2020512563A (en) Apparatus and method for scanning probe microscope
US7614287B2 (en) Scanning probe microscope displacement detecting mechanism and scanning probe microscope using same
KR20150033680A (en) High throughput scanning probe microscopy device
CN110869772B (en) Scanning probe system for controlling inclination angle of probe tip
JP3874685B2 (en) Scanning probe microscope
US7581438B2 (en) Surface texture measuring probe and microscope utilizing the same
JP2010096570A (en) Profilometer
JP2008051690A (en) Optical displacement detecting mechanism, and surface information measuring device using the same
JP2005147979A (en) Scanning probe microscope
JPWO2010067570A1 (en) Output processing method of scanning probe microscope and scanning probe microscope
JP2000234994A (en) Method for measuring displacement of cantilever in scanning probe microscope
JP4262621B2 (en) Atomic force microscope
JP3450460B2 (en) Scanning probe microscope
JPH06258068A (en) Interatomic force microscope
JP2021131288A (en) Sweep noise microscope and use method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040616

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050414

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061024

LAPS Cancellation because of no payment of annual fees