[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003279463A - Scanning probe microscope - Google Patents

Scanning probe microscope

Info

Publication number
JP2003279463A
JP2003279463A JP2002082407A JP2002082407A JP2003279463A JP 2003279463 A JP2003279463 A JP 2003279463A JP 2002082407 A JP2002082407 A JP 2002082407A JP 2002082407 A JP2002082407 A JP 2002082407A JP 2003279463 A JP2003279463 A JP 2003279463A
Authority
JP
Japan
Prior art keywords
sample
light
measured
probe
cantilever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002082407A
Other languages
Japanese (ja)
Other versions
JP3874685B2 (en
Inventor
Yukio Takahagi
由紀夫 高萩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002082407A priority Critical patent/JP3874685B2/en
Publication of JP2003279463A publication Critical patent/JP2003279463A/en
Application granted granted Critical
Publication of JP3874685B2 publication Critical patent/JP3874685B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a scanning probe microscope capable of detecting accurately the displacement quantity of a probe, and thereby observing the accurate surface structure of a measuring sample. <P>SOLUTION: In an atomic force microscope wherein an optical lever system is adopted, a light emitting element 8 is provided on the back side of a cantilever 5, and a light receiving device 9 is directly irradiated with light from the light emitting element 8, to thereby suppress decline of light receiving sensitivity of the light receiving device 9 caused by reflection of unintended light. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、走査型プローブ顕
微鏡に係わり、特に光てこ方式を採用した走査型プロー
ブ顕微鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning probe microscope, and more particularly to a scanning probe microscope that employs an optical lever method.

【0002】[0002]

【従来の技術】走査型プローブ顕微鏡(SPM)は、被測
定物質のミクロンオーダーの領域における表面の構造や
物性をナノオーダーの空間分解能で知ることができる装
置である。SPMは各種の顕微鏡やそれらの関連技術ま
で含む総称であり、その原理や検出する情報などによっ
て多くの種類に分類されているが、いずれも探針を用い
ているという共通点がある。
2. Description of the Related Art A scanning probe microscope (SPM) is a device capable of knowing the surface structure and physical properties of a substance to be measured in a micron-order region with a nano-order spatial resolution. The SPM is a general term including various microscopes and their related technologies, and is classified into many types according to its principle and information to be detected, but they all have a common point of using a probe.

【0003】つまり、SPMでは微細加工によって先端
がナノオーダーまで先鋭化された探針を被測定物質の表
面近傍で走査させて、この探針を介して表面に関する様
々な情報を得ることになる。具体的には、被測定物質と
探針の間の相互作用による各種信号、被測定物質との相
互作用によって探針が受ける力、力を受けることに伴う
探針の変位などを利用して、間接的に表面に関する情報
を得る装置がある。
That is, in SPM, a probe whose tip is sharpened to the nano order by fine processing is scanned near the surface of the substance to be measured, and various information about the surface is obtained through this probe. Specifically, various signals due to the interaction between the substance to be measured and the probe, the force received by the probe due to the interaction with the substance to be measured, the displacement of the probe due to receiving the force, etc. There are devices that indirectly obtain information about the surface.

【0004】例えば、探針を表面近傍に配置したときに
被測定物質表面と探針との間に生じる原子間力を利用
し、探針を走査させたときの原子間力の増減を被測定物
質と探針の間の距離情報に変換することで表面構造を得
る原子間力顕微鏡(AFM)などは、SPMの中で多く用
いられる装置である。
For example, the atomic force generated between the surface of the substance to be measured and the probe when the probe is placed near the surface is utilized to measure the increase or decrease in the atomic force when the probe is scanned. An atomic force microscope (AFM), which obtains a surface structure by converting it into distance information between a substance and a probe, is a device often used in SPM.

【0005】AFMにおいて被測定物質表面と探針との
間に生じる原子間力を検出する方法として、探針が原子
間力を受けることに伴う探針の変位を利用している。A
FMに限らず、他のSPM各種においても、被測定物質
との相互作用によって探針が受ける力を利用する際に
は、探針が力を受けることによる探針の変位を検出する
必要がある。探針の変位を検出する方法はいくつかある
が、現在のSPMには装置構成が簡単な光てこ方式が最
も多く用いられている。
As a method for detecting the atomic force generated between the surface of the substance to be measured and the probe in the AFM, the displacement of the probe due to the atomic force being applied to the probe is used. A
Not only FM but also other SPMs, when utilizing the force received by the probe due to the interaction with the substance to be measured, it is necessary to detect the displacement of the probe due to the force received by the probe. . Although there are several methods for detecting the displacement of the probe, the optical lever method, which has a simple device configuration, is most often used in the current SPM.

【0006】従来用いられている光てこ方式では、レー
ザーダイオード(半導体レーザー)などの発光素子を用い
て探針を保持するカンチレバーの背面にレーザー光を照
射し、検出部が複数に分割されたフォトダイオードなど
の受光装置を用いてカンチレバー背面からの反射光の角
度変化を検出する。実際の装置では、このようにして得
られた探針の変位をもとにして、被測定物質と探針の間
の距離が一定になるように(つまり原子間力が一定にな
るように)位置制御が行われ、この際の移動距離から表
面構造が得られる。
In the conventional optical lever method, a light emitting element such as a laser diode (semiconductor laser) is used to irradiate the back surface of a cantilever holding a probe with laser light, and a photodetector having a plurality of detection portions is divided. An angle change of the reflected light from the back surface of the cantilever is detected using a light receiving device such as a diode. In an actual device, based on the displacement of the probe thus obtained, the distance between the substance to be measured and the probe should be constant (that is, the atomic force should be constant). Position control is performed, and the surface structure is obtained from the moving distance at this time.

【0007】しかしながら、このような従来の光てこ方
式では、カンチレバー背面へのレーザー光照射が適切で
ない時にカンチレバーからレーザー光が漏れたり、ある
いは、カンチレバー背面へのレーザー光照射が適切な場
合でもプローブをレーザー光が透過したりしてしまうこ
とがある。カンチレバーから漏れた、もしくは、透過し
た光は被測定物質表面に到達し、表面の反射率が高い場
合には反射して受光装置に戻ることになる。このとき、
プローブ背面で反射した光と被測定物質表面で反射した
光とが干渉を起こすことがある。このような光が受光装
置で検出されると、光干渉による周期的な光の強弱が生
じていることから、検出位置によって強度の異なる光を
検出することになる。カンチレバー背面からの反射光を
検出する際、光干渉の影響を受けて探針変位の情報が埋
もれてしまうことがあり、その結果、表面構造を正確に
観測することができなくなるという問題が生じる。
However, in such a conventional optical lever method, when the irradiation of the laser beam on the back surface of the cantilever is not appropriate, the laser light leaks from the cantilever, or even when the irradiation of the laser light on the back surface of the cantilever is appropriate, the probe is not used. The laser light may pass through. The light leaking from or passing through the cantilever reaches the surface of the substance to be measured, and if the surface has a high reflectance, it is reflected and returns to the light receiving device. At this time,
The light reflected on the back surface of the probe may interfere with the light reflected on the surface of the substance to be measured. When such light is detected by the light receiving device, since light intensity is periodically generated due to optical interference, light having different intensity depending on the detection position is detected. When detecting the reflected light from the back surface of the cantilever, the information of the probe displacement may be buried under the influence of optical interference, and as a result, the problem that the surface structure cannot be accurately observed occurs.

【0008】[0008]

【発明が解決しようとする課題】上述したように、従来
の光てこ方式を採用した走査型プローブ顕微鏡において
は、受光装置で正確な反射光を検出できず、したがって
探針の変位量を正確に検出できなくなる場合があった。
その結果被測定試料の正確な表面構造を観測できなくな
る。
As described above, in the conventional scanning probe microscope adopting the optical lever method, the light receiving device cannot detect the reflected light accurately, and therefore the displacement of the probe can be accurately measured. It could not be detected.
As a result, the accurate surface structure of the sample to be measured cannot be observed.

【0009】本発明は、探針の変位量を正確に検出し、
ひいては被測定試料の正確な表面構造を観測できる走査
型プローブ顕微鏡を提供することを目的とする。
The present invention accurately detects the displacement of the probe,
Furthermore, it aims at providing the scanning probe microscope which can observe the exact surface structure of a to-be-measured sample.

【0010】[0010]

【課題を解決するための手段】本発明の走査型プローブ
顕微鏡は、固定端および自由端を有し、前記自由端近傍
に被測定試料に間隙を持って配置される探針を保持し、
前記被測定試料の表面状態に応じて前記自由端側が変位
するカンチレバーと、前記カンチレバー上に固定された
発光素子と、前記発光素子からの光を直接受光する受光
装置とを有することを特徴とする。
A scanning probe microscope of the present invention has a fixed end and a free end, and holds a probe arranged in the vicinity of the free end with a gap in a sample to be measured,
It has a cantilever whose free end side is displaced according to the surface state of the sample to be measured, a light emitting element fixed on the cantilever, and a light receiving device for directly receiving light from the light emitting element. .

【0011】本発明の走査型プローブ顕微鏡は、固定端
および自由端を有し、前記自由端近傍に被測定試料に間
隙を持って配置される探針を保持し、前記被測定試料の
表面状態に応じて前記自由端側が変位するカンチレバー
と、前記カンチレバー上に固定された発光素子と、前記
発光素子から発せられた光を所定の方向に反射する反射
板と、前記反射板からの反射光を受光する受光装置とを
有することを特徴とする。
The scanning probe microscope of the present invention has a fixed end and a free end, holds a probe arranged in the vicinity of the free end with a gap in the sample to be measured, and maintains the surface state of the sample to be measured. The free end side of which is displaced according to, a light emitting element fixed on the cantilever, a reflecting plate for reflecting light emitted from the light emitting element in a predetermined direction, and reflected light from the reflecting plate. And a light receiving device for receiving light.

【0012】本発明の走査型プローブ顕微鏡は、被測定
試料を配置する表面を有すると共に、前記被測定試料を
測定面方向に移動する試料台と、前記被測定試料と所定
の間隙をもって近接配置され、前記被測定試料の表面状
態に応じた力を受ける探針と、固定端および自由端を有
し、前記自由端近傍の前記被測定試料側の面に前記探針
を保持し、前記力の変化量に応じて前記自由端側が変位
するカンチレバーと、前記カンチレバー上に固定された
発光素子と、前記発光素子からの光を直接受光する受光
装置と、前記自由端側が変位することで、前記受光装置
の受光状態の変化を検知する検知装置と、前記受光装置
の受光状態が前記自由端の変位前の受光状態となるよう
に、前記被測定試料と前記探針との距離を調整する前記
試料台の制御部と、前記被測定試料の測定位置に対応さ
せて、前記制御部によって調整された前記試料台の移動
距離を記憶する記憶部とを有することを特徴とする。
The scanning probe microscope of the present invention has a surface on which a sample to be measured is placed, a sample stage for moving the sample to be measured in the direction of the measuring surface, and a sample stand arranged close to the sample to be measured with a predetermined gap. , A probe that receives a force according to the surface state of the sample to be measured, and a fixed end and a free end, and holds the probe on the surface of the sample to be measured side near the free end, A cantilever whose free end side is displaced according to the amount of change, a light emitting element fixed on the cantilever, a light receiving device for directly receiving light from the light emitting element, and the free end side being displaced so that the light receiving A detection device that detects a change in the light receiving state of the device, and the sample that adjusts the distance between the sample to be measured and the probe so that the light receiving state of the light receiving device is the light receiving state before the displacement of the free end. With the controller of the platform Wherein in correspondence with measurement position of the measured sample, and having a storage unit for storing an adjusted travel distance of the sample stage by the control unit.

【0013】本発明の走査型プローブ顕微鏡は、被測定
試料を配置する表面を有すると共に、前記被測定試料を
測定面方向に移動する試料台と、前記被測定試料と所定
の間隙をもって近接配置され、前記被測定試料の表面状
態に応じた力を受ける探針と、固定端および自由端を有
し、前記自由端近傍の前記被測定試料側の面に前記探針
を保持し、前記力の変化量に応じて前記自由端側が変位
するカンチレバーと、前記カンチレバー上に固定された
発光素子と、前記発光素子から発せられた光を所定の方
向に反射する反射板と、前記反射板からの反射光を受光
する受光装置と、前記自由端側が変位することで、前記
受光装置の受光状態の変化を検知する検知装置と、前記
受光装置の受光状態が前記自由端の変位前の受光状態と
なるように、前記被測定試料と前記探針との距離を調整
する前記試料台の制御部と、前記被測定試料の測定位置
に対応させて、前記制御部によって調整された前記試料
台の移動距離を記憶する記憶部とを有することを特徴と
する。
A scanning probe microscope according to the present invention has a surface on which a sample to be measured is placed, a sample stage for moving the sample to be measured in the direction of the measuring surface, and a sample stand arranged close to the sample to be measured with a predetermined gap. , A probe that receives a force according to the surface state of the sample to be measured, and a fixed end and a free end, and holds the probe on the surface of the sample to be measured side near the free end, A cantilever whose free end side is displaced according to the amount of change, a light emitting element fixed on the cantilever, a reflector for reflecting the light emitted from the light emitting element in a predetermined direction, and a reflection from the reflector. A light receiving device for receiving light and a detecting device for detecting a change in the light receiving state of the light receiving device by displacing the free end side, and a light receiving state of the light receiving device becomes a light receiving state before the displacement of the free end. As above A control unit of the sample stage that adjusts the distance between the measurement sample and the probe, and a storage unit that stores the moving distance of the sample stage adjusted by the control unit in association with the measurement position of the sample to be measured. And having.

【0014】前記発光素子は、前記カンチレバーの前記
探針が発光素子を固定する面の裏面側に固定されること
が好ましい。
It is preferable that the light emitting element is fixed on the back surface side of the surface on which the probe of the cantilever fixes the light emitting element.

【0015】前記発光素子からの光を前記検出器に向け
て集光する集光装置を有することが好ましい。
It is preferable to have a condenser for condensing the light from the light emitting element toward the detector.

【0016】すなわち、従来の光てこ方式を採用した走
査型プローブ顕微鏡では、発光素子からカンチレバーに
照射光を当て、カンチレバーからの反射光を受光装置で
検出しようとしていたため、受光装置で受ける光には、
カンチレバーからの反射光と、カンチレバー以外の場所
で反射した反射光とが干渉してしまうため、カンチレバ
ーの位置(反射位置)を正確に検出することができなか
った。
That is, in the conventional scanning probe microscope adopting the conventional optical lever method, the light emitted from the light emitting element is applied to the cantilever and the reflected light from the cantilever is detected by the light receiving device. Is
Since the reflected light from the cantilever interferes with the reflected light reflected at a place other than the cantilever, the position of the cantilever (reflected position) cannot be accurately detected.

【0017】これに対し、本発明では、カンチレバーに
発光素子を設けたため、受光装置は発光素子からの照射
光を直接受ける、あるいは任意のサイズの反射板による
反射光を受けるため、意図しない場所で生じた反射光と
の干渉が無くなり、カンチレバーの位置(発光素子の位
置)を正確に検出することが可能になる。
On the other hand, according to the present invention, since the cantilever is provided with the light emitting element, the light receiving device directly receives the irradiation light from the light emitting element, or receives the light reflected by the reflecting plate of an arbitrary size, so that it is not intended. The interference with the generated reflected light disappears, and the position of the cantilever (the position of the light emitting element) can be accurately detected.

【0018】[0018]

【発明の実施の形態】図1は、原子間力顕微鏡の概念図
であり、この図面を用いて、以下に本発明の第1の実施
形態を説明する。
FIG. 1 is a conceptual diagram of an atomic force microscope, and the first embodiment of the present invention will be described below with reference to this drawing.

【0019】試料台1の水平は上面を有しており、この
水平な上面には例えば半導体ウエハや、ハードディスク
記録媒体のような薄板状の被測定試料2が、観測しよう
とする面を上面になるようにして載置されている。ま
た、試料台1は、CPU3からの駆動信号に応じて駆動
する駆動装置3によって水平面(X−Y平面)での移動
も、垂直方向(Z軸方向)の移動も可能であり、前記被
測定試料を所望の位置に移動させることができる。
The sample table 1 has a horizontal upper surface, and on the horizontal upper surface, a thin plate-shaped sample to be measured 2 such as a semiconductor wafer or a hard disk recording medium is to be observed on the upper surface. It is placed so that. Further, the sample table 1 can be moved in a horizontal plane (XY plane) or in a vertical direction (Z-axis direction) by the drive device 3 that is driven according to a drive signal from the CPU 3, and thus the measured object can be measured. The sample can be moved to the desired position.

【0020】被測定試料2の上面を観測するためのプロ
ーブがその上側に配置されている。プローブは、カンチ
レバー5、探針6およびカンチレバー支持部材12とを
具備している。
A probe for observing the upper surface of the sample 2 to be measured is arranged above the probe. The probe includes a cantilever 5, a probe 6, and a cantilever support member 12.

【0021】カンチレバー5は所定のばね係数を持った
弾性板であり、その一端はカンチレバー支持部材12に
よって固定されている。また、カンチレバー5の他端は
自由端になっており、この自由端近傍には、探針6が設
けられている。
The cantilever 5 is an elastic plate having a predetermined spring coefficient, and one end thereof is fixed by a cantilever support member 12. The other end of the cantilever 5 is a free end, and a probe 6 is provided near the free end.

【0022】この探針6は、その先端が被測定試料2に
向くように、さらに探針6の先端と被測定試料2との間
に所定の間隙が形成されるように配置されている。以
降、この時のカンチレバーの状態を「初期のカンチレバ
ーの状態」と呼ぶ。
The probe 6 is arranged so that its tip faces the sample to be measured 2 and a predetermined gap is formed between the tip of the probe 6 and the sample to be measured 2. Hereinafter, the state of the cantilever at this time will be referred to as the “initial state of the cantilever”.

【0023】カンチレバーとしては、例えば長さ(自由
端から固定端までの長さ)100μm〜500μm、幅
(探針が形成される面の幅)20μm〜100μm、厚
さ1μm〜10μm程度のシリコンなどが使用できる。
探針は、通常先端極率が1nm〜10nm程度で長さ1
0μm〜20μm程度の形状で針状あるいは錐状のもの
が使用され、例えばシリコンや、シリコン表面に耐磨耗
性のためにダイヤモンドコートを施したものが使用でき
る。
As the cantilever, for example, silicon (length from free end to fixed end) 100 μm to 500 μm, width (width of surface on which the probe is formed) 20 μm to 100 μm, thickness 1 μm to 10 μm, etc. Can be used.
The tip usually has a tip polarity of about 1 nm to 10 nm and a length of 1
Needles or cones having a shape of about 0 μm to 20 μm are used. For example, silicon or a silicon surface coated with diamond for abrasion resistance can be used.

【0024】また、カンチレバー5、探針6およびカン
チレバー支持部材12は、それぞれを接合したものであ
っても良いし、一体成形したものであっても良い。
Further, the cantilever 5, the probe 6 and the cantilever support member 12 may be joined to each other or integrally molded.

【0025】試料台1がX−Y面で移動することで被測
定試料2の上面を探針6で走査すると、探針6は被測定
試料2の表面状態に応じた力を受ける。
When the sample table 1 is moved in the XY plane and the upper surface of the sample 2 to be measured is scanned by the probe 6, the probe 6 receives a force corresponding to the surface state of the sample 2 to be measured.

【0026】例えば原子間力顕微鏡では、被測定試料2
表面に凹凸が存在すると、探針6と被測定試料2との距
離が変化して両者間の原子間力が変化し、探針6は力を
受ける。そして、探針6が受けた力に応じてカンチレバ
ー5の自由端が上下方向にZ軸方向に変位する。その結
果、自由端近傍においてカンチレバー5の傾き角が初期
のカンチレバーの状態から変化する。具体的には、被測
定試料表面高さが大きくなると探針と被測定試料との原
子間力が大きくなりカンチレバー5の傾き角は大きくな
り、逆に被測定試料表面高さが小さくなると探針と被測
定試料との原子間力が小さくなり、カンチレバー5の傾
きは小さくなる。
For example, in the atomic force microscope, the measured sample 2
If the surface has irregularities, the distance between the probe 6 and the sample 2 to be measured changes, the atomic force between the two changes, and the probe 6 receives the force. Then, according to the force received by the probe 6, the free end of the cantilever 5 is vertically displaced in the Z-axis direction. As a result, the tilt angle of the cantilever 5 changes from the initial state of the cantilever near the free end. Specifically, when the height of the sample surface to be measured becomes large, the interatomic force between the probe and the sample to be measured becomes large, and the tilt angle of the cantilever 5 becomes large. And the interatomic force between the sample to be measured and the cantilever 5 becomes smaller.

【0027】ここで、原子間力顕微鏡での測定に適した
試料表面凹凸は1nm〜10μm程度である。
Here, the sample surface irregularities suitable for measurement with an atomic force microscope are about 1 nm to 10 μm.

【0028】なお、「自由端近傍」とは、このカンチレ
バー5の傾き角の変化を後述する受光装置によって認識
できる程度の範囲を指すが、自由端に近いほど、力によ
る傾き角の変化量が大きくなるので、より自由端側に近
い領域と設定することが好ましい。
The term "near the free end" refers to a range in which a change in the tilt angle of the cantilever 5 can be recognized by a light receiving device described later. The closer the free end is, the smaller the change amount of the tilt angle due to the force. Since it becomes large, it is preferable to set it as a region closer to the free end side.

【0029】一方、カンチレバー5の自由端の近傍上面
には、レーザーダイオードなどの発光素子8が固定され
ており、発光素子8から発せられた光は、筐体7に固定
された受光装置9によって直接受光される。
On the other hand, a light emitting element 8 such as a laser diode is fixed to the upper surface near the free end of the cantilever 5, and the light emitted from the light emitting element 8 is received by a light receiving device 9 fixed to the housing 7. Received directly.

【0030】この時、発光素子8から発せられた光が複
数の受光素子に照射されるような場合には、図示するよ
うに発光素子8から受光装置9までの光路に光学レンズ
など集光手段10を配置して、所望の範囲に光を照射さ
せることで、カンチレバー5のより正確な傾き角を得る
ことができる。ここで「直接受光する」とは、反射させ
ずに受光することであり、単に光学レンズを通過した光
の受光は、「直接受光する」の表現に含まれるものであ
る。
At this time, when the light emitted from the light emitting element 8 is applied to a plurality of light receiving elements, as shown in the figure, a condensing means such as an optical lens is provided in the optical path from the light emitting element 8 to the light receiving device 9. A more accurate tilt angle of the cantilever 5 can be obtained by disposing 10 and irradiating light in a desired range. Here, “directly receive light” means to receive light without reflection, and simply receiving light that has passed through the optical lens is included in the expression “directly receive light”.

【0031】この発光素子8は、カンチレバー5の長さ
方向と発光素子8の発光方向との為す角が一定となるよ
うに固定されていれば、カンチレバー5に造りこまれた
ものであっても良いし、カンチレバー5の表面に別途配
置したものであっても良い。
If the light emitting element 8 is fixed so that the angle formed by the length direction of the cantilever 5 and the light emitting direction of the light emitting element 8 is fixed, even if built in the cantilever 5. Alternatively, it may be separately arranged on the surface of the cantilever 5.

【0032】受光装置9は、フォトダイオードなどの受
光素子を複数個並べたものであり、発光素子8から発せ
られた光が、カンチレバー5の傾き角に応じてそれぞれ
の受光素子が検知する受光量が変化するように配置され
ている。また、複数の受光素子が検知結果は個別にCP
U3に送られる。
The light receiving device 9 is formed by arranging a plurality of light receiving elements such as photodiodes, and the light emitted from the light emitting element 8 is detected by each light receiving element according to the tilt angle of the cantilever 5. Are arranged to change. In addition, the detection results of multiple light receiving elements are
Sent to U3.

【0033】CPU3では受光装置の受光状態から、初
期のカンチレバーの状態に対して、カンチレバー5が被
測定試料から近づいたのか、遠のいたのかを判断する。
そして、カンチレバーの初期の状態に近づくように、す
なわち探針6とカンチレバー5との距離が前述した初期
の間隔になるように、試料台1をZ軸方向に移動させ
る。
The CPU 3 determines from the light receiving state of the light receiving device whether the cantilever 5 is closer to or far from the sample to be measured with respect to the initial state of the cantilever.
Then, the sample stage 1 is moved in the Z-axis direction so that it approaches the initial state of the cantilever, that is, the distance between the probe 6 and the cantilever 5 becomes the above-mentioned initial distance.

【0034】さらに、CPUでは移動中も受光装置8の
受光状態を観測し、カンチレバーの初期の状態での受光
状態と同じ受光状態になったところで、Z軸方向の移動
を止める。すなわち、探針6と被測定試料2表面との距
離が前述した「所定の間隙」になる。
Further, the CPU observes the light receiving state of the light receiving device 8 even during the movement, and when the light receiving state becomes the same as the light receiving state in the initial state of the cantilever, the movement in the Z-axis direction is stopped. That is, the distance between the probe 6 and the surface of the measured sample 2 becomes the above-mentioned “predetermined gap”.

【0035】このZ軸方向の移動量が、被測定試料2表
面の高さ変動であり、CPU3では、被測定試料表面の
位置(x、y)に移動したときの、Z軸方向の変動量z
を対応させて記憶することで、被測定試料2表面の凹凸
状態を表すことが可能になる。
This amount of movement in the Z-axis direction is the height variation of the surface of the sample 2 to be measured, and in the CPU 3, the amount of variation in the Z-axis direction when moving to the position (x, y) on the surface of the sample to be measured. z
It is possible to represent the unevenness state of the surface of the sample to be measured 2 by storing in correspondence with.

【0036】上述したように、第1の実施形態において
は、カンチレバーからの反射光を受光せず、発光素子か
ら発せられた光を直接受光装置で受光するため、被測定
試料表面など意図しない場所での反射光によって受光に
悪影響を及ばすことが無くなり、被測定試料表面の凹凸
状態を測定することが可能になる。
As described above, in the first embodiment, the reflected light from the cantilever is not received, and the light emitted from the light emitting element is directly received by the light receiving device. It is possible to measure the unevenness of the surface of the sample to be measured without adversely affecting the light reception due to the reflected light at.

【0037】次に第2の実施形態について、図2を用い
て説明する。
Next, a second embodiment will be described with reference to FIG.

【0038】図2は、原子間力顕微鏡の概念図であり、
第1の実施形態で述べたのと同じものについては同一符
号を付して詳細な説明は省略する。
FIG. 2 is a conceptual diagram of an atomic force microscope,
The same components as those described in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.

【0039】本実施形態においては、発光素子8から発
せられた光を受光装置9で直接受光せず、一度ミラーな
どの反射板11に反射させた反射光を受光装置9で受光
する点で第1の実施形態と異なっている。このように反
射板を設けることで、受光装置9の配置場所を任意の位
置に設定することが可能である。
In this embodiment, the light emitted from the light emitting element 8 is not directly received by the light receiving device 9, but the reflected light once reflected by the reflecting plate 11 such as a mirror is received by the light receiving device 9. 1 embodiment. By providing the reflection plate in this way, it is possible to set the location of the light receiving device 9 to an arbitrary position.

【0040】従来の光てこ方式の走査型プローブ顕微鏡
では、重量や形状に制限があるカンチレバー5に光を反
射させていたが、この反射板11はこれらの制限が無い
ため、発光素子8から発せられる光を確実に反射できる
程度の大きさ、厚さに設定できるため、意図しない場所
で生じる反射光が受光装置9に入射することを防ぐこと
ができる。
In the conventional optical lever type scanning probe microscope, the light is reflected by the cantilever 5 whose weight and shape are limited. However, since the reflector 11 has no such limitation, the light emitting element 8 emits the light. Since the size and thickness can be set so that the reflected light can be reliably reflected, reflected light generated at an unintended place can be prevented from entering the light receiving device 9.

【0041】第1の実施形態および第2の実施形態にお
ける、集光装置の変形例について図3を用いて説明す
る。
A modified example of the light collecting device in the first and second embodiments will be described with reference to FIG.

【0042】図3は、カンチレバーの自由端側の概略斜
視図であり、前述したように、カンチレバー5の片面に
は探針6が、背面には発光素子8が配置されている。さ
らに、カンチレバー5の背面には、半球形の殻10’が
発光素子8を覆うように固定されており、殻10’の天
井にレンズ10が形成されている。
FIG. 3 is a schematic perspective view of the free end side of the cantilever. As described above, the probe 6 is arranged on one surface of the cantilever 5 and the light emitting element 8 is arranged on the back surface thereof. Further, on the back surface of the cantilever 5, a hemispherical shell 10 ′ is fixed so as to cover the light emitting element 8, and a lens 10 is formed on the ceiling of the shell 10 ′.

【0043】レンズ10が筐体などに固定されている
と、カンチレバー5が変位した時に発光素子8とレンズ
10の相対位置が変わるため、発光素子8から発した光
の集束点が光軸からずれてしまう恐れがあるが、このよ
うにカンチレバー5にレンズ10を固定することで、光
の集束点が光軸と常に一致するため、受光装置9によっ
る受光状態を正確に検出することが可能になる。
If the lens 10 is fixed to a housing or the like, the relative position between the light emitting element 8 and the lens 10 changes when the cantilever 5 is displaced, so that the focal point of the light emitted from the light emitting element 8 deviates from the optical axis. By fixing the lens 10 to the cantilever 5 in this way, the focus point of the light always coincides with the optical axis, so that the light receiving state by the light receiving device 9 can be accurately detected. become.

【0044】上述したように、各実施形態においては、
カンチレバーからの反射光を受光せず、発光素子から発
せられた光を直接受光装置で受光するため、意図しない
場所での反射光によって受光に悪影響を及ばすことが無
くなり、被測定試料表面の凹凸状態を測定することが可
能になる。
As described above, in each embodiment,
Since the light emitted from the light emitting element is received directly by the light receiving device without receiving the reflected light from the cantilever, there is no adverse effect on the light reception due to the reflected light in an unintended place, and the unevenness of the measured sample surface It becomes possible to measure the condition.

【0045】また、本発明は、原子間力顕微鏡に限ら
ず、光てこ方式を採用した走査型プローブ顕微鏡であれ
ば、磁気力顕微鏡、電気力顕微鏡、あるいは水平力顕微
鏡などにも適応することができる。
The present invention is not limited to the atomic force microscope, but can be applied to a magnetic force microscope, an electric force microscope, a horizontal force microscope, etc. as long as it is a scanning probe microscope adopting an optical lever method. it can.

【0046】[0046]

【発明の効果】上述したように、本発明の走査型プロー
ブ顕微鏡は、探針の変位量を正確に検出し、ひいては被
測定試料の正確な表面構造を観測できる。
As described above, the scanning probe microscope of the present invention can accurately detect the displacement amount of the probe and, by extension, observe the accurate surface structure of the sample to be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1の実施形態の原子間力顕微鏡を
示す概略図。
FIG. 1 is a schematic diagram showing an atomic force microscope according to a first embodiment of the present invention.

【図2】 本発明の第2の実施形態の原子間力顕微鏡を
示す概念図。
FIG. 2 is a conceptual diagram showing an atomic force microscope according to a second embodiment of the present invention.

【図3】 集光装置の変形例を示す斜視図。FIG. 3 is a perspective view showing a modified example of the light collecting device.

【符号の説明】[Explanation of symbols]

1…試料台 2…被測定試料 3…CPU 4…駆動装置 5…カンチレバー 6…探針 7…筐体 8…発光素子 9…受光装置 10…レンズ 11…ミラー 1… Sample stand 2 ... Measured sample 3 ... CPU 4 ... Drive device 5 ... cantilever 6 ... Tip 7 ... Case 8 ... Light emitting element 9 ... Light receiving device 10 ... Lens 11 ... Mirror

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】固定端および自由端を有し、前記自由端近
傍に被測定試料に間隙を持って配置される探針を保持
し、前記被測定試料の表面状態に応じて前記自由端側が
変位するカンチレバーと、 前記カンチレバー上に固定された発光素子と、 前記発光素子からの光を直接受光する受光装置とを有す
ることを特徴とする走査型プローブ顕微鏡。
1. A probe having a fixed end and a free end, which is arranged near the free end and is arranged in the sample to be measured with a gap, and the free end side is arranged in accordance with the surface state of the sample to be measured. A scanning probe microscope comprising: a cantilever that is displaced, a light-emitting element fixed on the cantilever, and a light-receiving device that directly receives light from the light-emitting element.
【請求項2】固定端および自由端を有し、前記自由端近
傍に被測定試料に間隙を持って配置される探針を保持
し、前記被測定試料の表面状態に応じて前記自由端側が
変位するカンチレバーと、 前記カンチレバー上に固定された発光素子と、 前記発光素子から発せられた光を所定の方向に反射する
反射板と、 前記反射板からの反射光を受光する受光装置とを有する
ことを特徴とする走査型プローブ顕微鏡。
2. A probe having a fixed end and a free end, the probe being arranged in the vicinity of the free end and having a gap in the sample to be measured is held, and the free end side is arranged in accordance with the surface state of the sample to be measured. It has a cantilever that is displaced, a light emitting element fixed on the cantilever, a reflector that reflects the light emitted from the light emitting element in a predetermined direction, and a light receiving device that receives the reflected light from the reflector. A scanning probe microscope characterized by the above.
【請求項3】前記発光素子は、前記カンチレバーの前記
探針を固定する面の裏面側に固定されることを特徴とす
る請求項1又は請求項2記載の走査型プローブ顕微鏡。
3. The scanning probe microscope according to claim 1, wherein the light emitting element is fixed to a back surface side of a surface of the cantilever on which the probe is fixed.
【請求項4】前記発光素子からの光を前記検出器に向け
て集光する集光装置を有することを特徴とする請求項1
又は請求項2記載の走査型プローブ顕微鏡。
4. A light condensing device for condensing light from the light emitting element toward the detector.
Alternatively, the scanning probe microscope according to claim 2.
【請求項5】被測定試料を配置する表面を有すると共
に、前記被測定試料を測定面方向に移動する試料台と、 前記被測定試料と所定の間隙をもって近接配置され、前
記被測定試料の表面状態に応じた力を受ける探針と、 固定端および自由端を有し、前記自由端近傍の前記被測
定試料側の面に前記探針を保持し、前記力の変化量に応
じて前記自由端側が変位するカンチレバーと、 前記カンチレバー上に固定された発光素子と、 前記発光素子からの光を直接受光する受光装置と、 前記自由端側が変位することで、前記受光装置の受光状
態の変化を検知する検知装置と、 前記受光装置の受光状態が前記自由端の変位前の受光状
態となるように、前記被測定試料と前記探針との距離を
調整する前記試料台の制御部と、 前記被測定試料の測定位置に対応させて、前記制御部に
よって調整された前記試料台の移動距離を記憶する記憶
部とを有することを特徴とする走査型プローブ顕微鏡。
5. A surface of the sample to be measured, the sample table having a surface on which the sample to be measured is placed, and a sample table for moving the sample to be measured in a measurement surface direction, the sample table being arranged in proximity to the sample to be measured with a predetermined gap. It has a probe that receives a force according to the state, a fixed end and a free end, and holds the probe on the surface of the sample to be measured side near the free end. A cantilever whose end side is displaced, a light emitting element fixed on the cantilever, a light receiving device for directly receiving light from the light emitting element, and a change in the light receiving state of the light receiving device by displacing the free end side. A detection device for detecting, a light receiving state of the light receiving device is a light receiving state before the displacement of the free end, a control unit of the sample table that adjusts a distance between the sample to be measured and the probe, At the measurement position of the sample to be measured A scanning probe microscope according to claim 1, further comprising: a storage unit that stores a movement distance of the sample stage adjusted by the control unit.
【請求項6】被測定試料を配置する表面を有すると共
に、前記被測定試料を測定面方向に移動する試料台と、 前記被測定試料と所定の間隙をもって近接配置され、前
記被測定試料の表面状態に応じた力を受ける探針と、 固定端および自由端を有し、前記自由端近傍の前記被測
定試料側の面に前記探針を保持し、前記力の変化量に応
じて前記自由端側が変位するカンチレバーと、 前記カンチレバー上に固定された発光素子と、 前記発光素子から発せられた光を所定の方向に反射する
反射板と、 前記反射板からの反射光を受光する受光装置と、 前記自由端側が変位することで、前記受光装置の受光状
態の変化を検知する検知装置と、 前記受光装置の受光状態が前記自由端の変位前の受光状
態となるように、前記被測定試料と前記探針との距離を
調整する前記試料台の制御部と、 前記被測定試料の測定位置に対応させて、前記制御部に
よって調整された前記試料台の移動距離を記憶する記憶
部とを有することを特徴とする走査型プローブ顕微鏡。
6. A surface of the sample to be measured, the sample table having a surface on which the sample to be measured is arranged, and a sample table for moving the sample to be measured in a measurement surface direction, the sample table being arranged in proximity to the sample to be measured with a predetermined gap. It has a probe that receives a force according to the state, a fixed end and a free end, and holds the probe on the surface of the sample to be measured side near the free end. A cantilever whose end side is displaced, a light emitting element fixed on the cantilever, a reflecting plate for reflecting light emitted from the light emitting element in a predetermined direction, and a light receiving device for receiving reflected light from the reflecting plate. A measuring device that detects a change in the light receiving state of the light receiving device by displacing the free end side, and the light receiving state of the light receiving device becomes the light receiving state before the displacement of the free end, And the distance between the probe and And a storage unit for storing the moving distance of the sample stage adjusted by the control unit in association with the measurement position of the sample to be measured. Type probe microscope.
JP2002082407A 2002-03-25 2002-03-25 Scanning probe microscope Expired - Fee Related JP3874685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002082407A JP3874685B2 (en) 2002-03-25 2002-03-25 Scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002082407A JP3874685B2 (en) 2002-03-25 2002-03-25 Scanning probe microscope

Publications (2)

Publication Number Publication Date
JP2003279463A true JP2003279463A (en) 2003-10-02
JP3874685B2 JP3874685B2 (en) 2007-01-31

Family

ID=29230601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002082407A Expired - Fee Related JP3874685B2 (en) 2002-03-25 2002-03-25 Scanning probe microscope

Country Status (1)

Country Link
JP (1) JP3874685B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100805834B1 (en) 2006-01-09 2008-02-21 삼성전자주식회사 Apparatus for testing a light receiving element and method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100805834B1 (en) 2006-01-09 2008-02-21 삼성전자주식회사 Apparatus for testing a light receiving element and method of the same
US7408365B2 (en) 2006-01-09 2008-08-05 Samsung Electronics Co., Ltd. Image sensor testing method and apparatus

Also Published As

Publication number Publication date
JP3874685B2 (en) 2007-01-31

Similar Documents

Publication Publication Date Title
KR101488059B1 (en) Probe detection system
US7323684B2 (en) Scanning probe microscope and specimen observation method and semiconductor device manufacturing method using said scanning probe microscope
US5994691A (en) Near-field scanning optical microscope
KR100192097B1 (en) Configuration measuring method and apparatus for optically detecting a displacement of a probe due to an atomic force
US7928409B2 (en) Real-time, active picometer-scale alignment, stabilization, and registration in one or more dimensions
EP0665417A2 (en) Atomic force microscope combined with optical microscope
JPH05231863A (en) Apparatus and method for measuring limit dimension
JPH0682249A (en) Interatomic force microscope
Quercioli et al. Monitoring of an atomic force microscope cantilever with a compact disk pickup
US7614287B2 (en) Scanning probe microscope displacement detecting mechanism and scanning probe microscope using same
JP3497734B2 (en) Scanning probe microscope
KR20180132921A (en) Optical Shift Correction System and Method
JP3874685B2 (en) Scanning probe microscope
JP2010096570A (en) Profilometer
JP2008134190A (en) Cantilever holder and scanning probe microscope equipped therewith
JP2008051690A (en) Optical displacement detecting mechanism, and surface information measuring device using the same
JP3998931B2 (en) Scanning probe microscope
JP2000234994A (en) Method for measuring displacement of cantilever in scanning probe microscope
Higurashi et al. Nanometer-displacement detection of optically trapped metallic particles based on critical angle method for small force detection
JP4262621B2 (en) Atomic force microscope
Huang et al. Development of an optical pickup system for measuring the displacement of the micro cantilever in scanning probe microscope
JP2016520216A (en) Evaluation system and method for evaluating a substrate
JP3450460B2 (en) Scanning probe microscope
JPH03296612A (en) Atomic force microscope
JP2016033468A (en) Scanning probe microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040616

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050414

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Effective date: 20060428

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20060526

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060621

A131 Notification of reasons for refusal

Effective date: 20060801

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061024

LAPS Cancellation because of no payment of annual fees