[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3867006B2 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP3867006B2
JP3867006B2 JP2002110398A JP2002110398A JP3867006B2 JP 3867006 B2 JP3867006 B2 JP 3867006B2 JP 2002110398 A JP2002110398 A JP 2002110398A JP 2002110398 A JP2002110398 A JP 2002110398A JP 3867006 B2 JP3867006 B2 JP 3867006B2
Authority
JP
Japan
Prior art keywords
vane
rotary compressor
groove
cylinder
shaped gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002110398A
Other languages
Japanese (ja)
Other versions
JP2003307191A (en
Inventor
功 川邉
浩二 平野
久尊 加藤
吉川  和宏
一吉 竹谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2002110398A priority Critical patent/JP3867006B2/en
Priority to TW92107276A priority patent/TW574475B/en
Priority to CN 03110411 priority patent/CN1256514C/en
Publication of JP2003307191A publication Critical patent/JP2003307191A/en
Application granted granted Critical
Publication of JP3867006B2 publication Critical patent/JP3867006B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は空調用、冷凍用等に用いられるロータリコンプレッサに係わり、特にベーン溝の側壁とベーン間に形成される小楔状間隙に微小な接触角度を形成するロータリコンプレッサに関する。
【0002】
【従来の技術】
一般にロータリコンプレッサは、電動機部により回転駆動される圧縮機部に設けられたシリンダに形成されたベーン溝内を往復動するベーンにより高圧と低圧に仕切られている。
【0003】
図9に示すように、従来のロータリコンプレッサ31のベーン溝32は、断面が長方形状で細長い溝部33と、この溝部33のシリンダ内径側端部に設けられた面取り部34a、34b、反シリンダ内径側端部に設けられた面取り部35a、35bから形成され、ベーン36はローラ37と当接しながらベーン溝32内を往復動し、シリンダ室38を高圧の圧縮シリンダ室38dと低圧の吸込シリンダ室38sに仕切っている。
【0004】
しかしながら、従来のベーン溝32の形状では、図10(a)に示すように、ベーン36がシリンダ内径方向に突出するように摺動する場合には(上死点→下死点の方向)、圧縮シリンダ室38dと吸込シリンダ室38sとの圧力差によって生じるベーン36の微小な角度の傾きによって、ベーン36と面取り部35a側の溝側壁32a間に微小角を有する楔状間隙Gが形成され、ベーン36の摺動によって楔状間隙Gに油の引込みが発生して、潤滑油膜圧力が発生し易くなるが、図10(b)に示すように、ベーン36が逆方向に摺動する場合には、楔状間隙Gに油の引込みが発生せず、潤滑油膜圧力の発生もない。また、楔状間隙Gと対向し、ベーン36と面取り部34a間に形成される小楔状間隙gには油の引込みは発生するが、ベーン36と面取り部34aのなす角度が大きいため油膜圧力が発生しない。
【0005】
このため摺動部分が、境界潤滑、甚だしい場合には金属接触状態となり、ベーン36とベーン溝32の間で焼付きが生じ、また、ベーン36と面取り部34aのなす角度が大きいため、トップクリアランスボリュームが増加して摺動損失が大きくなり、コンプレッサの成績係数が低下する問題があった。
【0006】
【発明が解決しようとする課題】
そこで、摺動損失を小さくし、かつ、トップクリアランスボリュームを抑制して高効率で、ベーンとベーン溝間に焼付きがなく信頼性の高いロータリコンプレッサが要望されていた。
【0007】
本発明は上述した事情を考慮してなされたもので、摺動損失を小さくし、かつ、トップクリアランスボリュームを抑制して高効率で、ベーンとベーン溝間に焼付きがなく信頼性の高いロータリコンプレッサを提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明の1つの態様によれば、密閉ケースと、この密閉ケースに収納された電動要素と、この電動要素により駆動され、かつ、偏心運動するローラが収容され、ベーン溝内を往復動するベーンにより圧力的に仕切られたシリンダ室が設けられたロータリ式圧縮要素とを具備するロータリコンプレッサにおいて、前記ベーン溝の側壁とベーン間に小楔状間隙が形成されるように、ベーン溝のシリンダ内径側の側壁端部の吸込シリンダ室側及び圧縮シリンダ室側の両側を円弧形状にし、その曲率半径は0.1〜1.0mmであることを特徴とするロータリコンプレッサが提供される。これにより、摺動損失を小さくし、かつ、トップクリアランスボリュームを抑制して高効率で、ベーンとベーン溝間に焼付きがなく信頼性の高いロータリコンプレッサが実現される。
【0011】
また、他の好適な一例では、上記シリンダ内径側端部は、ベーン溝加工後にブラシ、砥石、サンドペーパ等の工具を用い、この工具の形状がシリンダ内径側端部に転写しないように形成される。これにより、円弧部とベーン溝の側壁直線部が接線的に滑らかに繋がり、微小な接触角度が確実に形成される。
【0012】
また、他の好適な一例では、上記ブラシの直径は、ベーン溝幅より大きく、シリンダ内径より小さい。これにより、円弧部がベーン溝の側壁直線部に接線的に滑らかに繋がるように加工される。
【0013】
【発明の実施の形態】
以下、本発明に係わるロータリコンプレッサの第1実施形態について添付図面を参照して説明する。
【0014】
図1は本発明に係わるロータリコンプレッサの第1実施形態の概念図であり、図2はその断面図である。
【0015】
図1に示すように、ロータリコンプレッサ1は、密閉ケース2の内部に電動要素3とロータリ式圧縮要素4とを内装して構成され、圧縮要素4は電動要素3から延びる回転軸5を主軸受6と副軸受7に挿通され、この主軸受6と副軸受7との間に、仕切板8を介して同一形状を有する2基のシリンダ9を配設し、各シリンダ9に設けられたシリンダ室10内において、回転軸5に形成された偏心部5aにそれぞれ円筒状のローラ11を嵌合させる一方、図2に示すように、各シリンダ9に設けられたベーン溝12内を摺動するベーン13が配設されている。このベーン13は、スプリング収納部14に収納されたスプリング15によって常時ローラ11方向に押圧され、偏心部5a及びローラ11の回転に応じて各ローラ外周面に摺接しながらベーン溝12内を往復動し、各シリンダ室10内部を吸込シリンダ室10sと圧縮シリンダ室10dとに圧力的に仕切る役割を果している。
【0016】
上記圧縮機1は、電動要素3の駆動によってローラ11をシリンダ10室内において偏心回転させることにより、吸込口16を通り、シリンダ室10内の吸込シリンダ室10sに吸入したガスを圧縮シリンダ室10d方向に移動させながら圧縮して吐出口17から吐出する。
【0017】
以下、上記2基のシリンダ4は同一形状を有するので、下段のシリンダを例にとって説明する。
【0018】
図3及び図4に示すように、ロータリコンプレッサ1のシリンダ4に設けられたベーン溝12は、断面が長方形状で細長い溝部21を有し、この溝部21の吸込シリンダ室10s側の内径側端部には、円弧部22が設けられ、また、圧縮シリンダ室10d側の内径側端部にも円弧部23が設けられている。さらに、外径側両端部には面取り部24、25が設けられている。
【0019】
なお、円弧部22が、少なくとも吸込シリンダ室10s側に形成されていればよく、必ずしも、圧縮シリンダ室10d側内径側端部には設けなくともよい。
【0020】
上記円弧部22、23は直線的な面取り部を有さず、曲率半径Rが0.1〜1.0mmの円弧形状をなしており、より好ましくは0.1〜0.5mmである。上記内径側端部に面取り部を設けず、曲率半径Rが0.1〜1.0mmの円弧形状を形成することで、従来の面取り部により形成される角度よりも小さく微小な接触角度が形成されて、摺動損失を小さくし、ベーンと溝部間に焼付きをなくすことができる。また、円弧部によるトップクリアランスボリュームの増加を抑制できて成績係数の向上が図れる。曲率半径が0.1mmより小さいと、面取り効果が発揮されず、焼付きが発生するおそれがあり、1.0mmを超えると、円弧部によるトップクリアランスボリュームの増加により成績係数が下降する。
【0021】
上記円弧部22の円弧形状の形成は、摺動溝11のシリンダ内径側端部に面取り部を設けず、溝加工後にブラシもしくは砥石、サンドペーパ等の工具を用い、工具の形状をワークに転写しない方法にて行なう。これにより、円弧部22とベーン溝12の側壁直線部が接線的に滑らかに繋がり、微小な接触角度が確実に形成される。このような円弧形状を形成する方法として、工具を剛性的に保持し、工具の形状をワークに転写するような方法で加工すると、工具の形状、工具を動す経路に極めて精密な技術が必要となり、また工具の摩耗等により形状が悪化すると円弧部とベーン溝の側壁直線部が接線的に滑らかに繋がらず、油膜圧力を発生させる微小な接触角度を形成できない。
【0022】
さらに、上記円弧形状の形成に用いるブラシは、その直径がベーン溝幅よりも大きく、シリンダ内径よりも小さいブラシを用いるのが好ましい。これにより、円弧部がベーン溝の側壁直線部に接線的に滑らかに繋がるように加工される。
【0023】
また、ブラシの回転方向は周期的に変換される。これにより、加工面にバリが発生するのを防止できる。
【0024】
このように円弧部22は曲率半径0.1〜1.0mmの円弧形状に形成されているので、ベーン13と吸込シリンダ室10s側の溝側壁12a間に微小角を有する楔状間隙Gが形成され、また、この楔状間隙Gに対向しベーン13と円弧部22間に円弧を含み微小角をなす小楔状間隙gが形成される。
【0025】
次に本発明に係わる第1実施形態のロータリコンプレッサを用いた冷媒圧縮作用について説明する。
【0026】
図1に示すように、いずれも図示しない冷凍サイクルの低温側熱交換器で蒸発し気体になって密閉ケース2に戻った冷媒は、圧縮要素3のシリンダ室10に吸込まれ、ローラ11の回転により圧縮され、高温側熱交換器に吐出される。
【0027】
この冷媒の圧縮過程において、常時スプリング15により押圧されローラ11に当接するベーン13は、偏心回転するローラ11の回転に伴なって、ベーン溝12内を摺動しながら往復動を繰返す。このベーン溝12内を往復動するベーン13は、圧縮シリンダ室28aと吸込シリンダ室28bとの圧力差によって微小な角度の傾きが生じ、ベーン13と面取り部24側の溝側壁12a間に微小角を有する楔状間隙Gが形成され、また、この楔状間隙Gに対向しベーン13と円弧部22間に円弧を含み微小な接触角度を有する楔状間隙gが形成される。
【0028】
上記のようにベーン溝12内を往復動するベーン13への給油は、図5(a)に示すように、ベーン13がシリンダ内径方向に突出するように摺動する場合には(上死点→下死点の方向)には、密閉ケース2の底部に貯えられた潤滑油がスプリング収納部14を介して供給される。この給油は、ベーン13の摺動によって楔状間隙Gに油の引込みが発生して、潤滑油膜圧力が発生し易くなり、確実に潤滑される。また図5(b)に示すように、ベーン13が下死点→上死点の方向に摺動する場合には、曲率半径が0.1〜1.0mmである円弧部22により微小な接触角度を有する小楔状間隙gが形成されているので、楔状間隙Gに油の引込みが発生し、潤滑油膜圧力も発生し、さらに、小楔状間隙gには油の引込みが発生し、小楔状間隙gの間隙幅が小さいので油膜圧力も発生し、確実に潤滑される。
【0029】
上記のように、溝側壁12aとベーン13間に微小な接触角度を有する小楔状間隙gが形成されるように、シリンダ内径側の側壁端部の少なくとも吸込シリンダ室側を円弧形状にし、その曲率半径を0.1〜1.0mmにすることにより、楔状間隙Gに油の引込みを発生させて、潤滑油膜圧力も発生させ、さらに、小楔状間隙gにも油の引込みを発生させて、小楔状間隙gにも油膜圧力を発生させ、溝側壁12aとベーン13間を確実に潤滑することができる。
【0030】
また、円弧部によるトップクリアランスボリュームの増加を抑制できて成績係数の向上が図れる。
【0031】
次に本発明に係わるロータリコンプレッサの第2実施形態について説明する。
【0032】
本第2実施形態は、上記第1実施形態がベーンと円弧部によって小楔状間隙を形成するのに対して、ベーンと1箇所で屈折する直線状の溝側壁間に小楔状間隙が形成され、この小楔状間隙の頂角θは、tanθ=1/500以下である。
【0033】
例えば、図6に示すように、溝側壁12Aaは1箇所で屈折して屈折部22Aが形成された平面からなり、この屈折部22Aとベーン13Aが当接して、この当接点(線)を頂角として楔状間隙GAが形成され、さらに、この楔状間隙GAに対向しベーン13Aと屈折部22A間に微小頂角を有する小楔状間隙gAが形成される。微小頂角θは、tanθ=1/500以下になっている。これにより、油の引込みによる油膜圧力が発生し易くなり、1/500を超えると、油膜圧力が発生しない。
【0034】
従って、ベーン13Aが下死点→上死点の方向に摺動する場合には、頂角θがtanθ=1/500以下である小楔状間隙gAが形成されているので、楔状間隙GAに油の引込みが発生し、潤滑油膜圧力も発生し、さらに、小楔状間隙gAには油の引込みが発生し、小楔状間隙gAの間隙幅が小さいので油膜圧力も発生し、確実に潤滑される。また、屈折部22Aによるトップクリアランスボリュームの増加を抑制できて成績係数の向上が図れる。
【0035】
また、上記第2実施形態の変形例について説明する。
【0036】
本変形例は、上記第2実施形態がベーンと1箇所で屈折する直線状の溝側壁間に小楔状間隙が形成されるのに対して、ベーンと複数箇所で屈折する直線状の溝側壁間に小楔状間隙が形成される。
【0037】
例えば、図7に示すように、溝側壁12Baは複数箇所、例えば、2箇所で屈折して屈折部22B1、22B2が形成された平面で形成され、この屈折部22Bとベーン13Bが当接して、この当接点(線)を頂角として楔状間隙GBが形成され、さらに、この楔状間隙GBに対向しベーン13Bと屈折部22B間に微小頂角を有する小楔状間隙GBが形成される。
【0038】
従って、ベーン13Bが下死点→上死点の方向に摺動する場合には、頂角θがtanθ=1/500以下である小楔状間隙gBが形成されているので、楔状間隙gBに油の引込みが発生し、潤滑油膜圧力も発生し、さらに、小楔状間隙gBには油の引込みが発生し、小楔状間隙gBの間隙幅が小さいので油膜圧力も発生し、確実に潤滑される。また、屈折部22Bによるトップクリアランスボリュームの増加を抑制できて成績係数の向上が図れる。
【0039】
【実施例】
図3に示すような本発明に係わる第1実施形態のロータリコンプレッサを用い、円弧部の曲率半径を変化させて成績係数の向上率を調べた。
【0040】
結果を図8に示す。
【0041】
図8からもわかるように、曲率半径が0.1〜1.0mmの範囲では、2〜3%の向上が図れることがわかった。また、0.1〜0.5mmの範囲では特に成績係数の向上効果が大きいことがわかった。
【0042】
【発明の効果】
本発明に係わるロータリコンプレッサによれば、摺動損失を小さくし、かつ、トップクリアランスボリュームを抑制して高効率で、ベーンとベーン溝間に焼付きがなく信頼性の高いロータリコンプレッサを提供することができる。
【図面の簡単な説明】
【図1】本発明に係わるロータリコンプレッサの第1実施形態の縦断面図。
【図2】本発明に係わるロータリコンプレッサの第1実施形態の横断面図。
【図3】本発明に係わるロータリコンプレッサの第1実施形態のベーン近傍の平面図。
【図4】本発明に係わるロータリコンプレッサの第1実施形態のベーンと溝側壁間に形成される小楔状間隙の概念図。
【図5】(a)及び(b)は本発明に係わるロータリコンプレッサの第1実施形態に用いられるベーンの動作状態を示す概念図。
【図6】本発明に係わるロータリコンプレッサの第2実施形態のベーンと溝側壁間に形成される小楔状間隙の概念図。
【図7】本発明に係わるロータリコンプレッサの第2実施形態の変形例を示す小楔状間隙の概念図。
【図8】本発明に係わるロータリコンプレッサを用いた実施例の試験結果図。
【図9】従来のロータリコンプレッサのベーン近傍の平面図。
【図10】(a)及び(b)は従来のロータリコンプレッサに用いられるベーンの動作状態を示す概念図。
【符号の説明】
1 ロータリコンプレッサ
2 密閉ケース
3 電動要素
4 ロータリ式圧縮要素
5 回転軸
5a 偏心部
6 主軸受
7 副軸受
8 仕切板
9 シリンダ
10 シリンダ室
10s 吸込シリンダ室
10d 圧縮シリンダ室
11 ローラ
12 ベーン溝
12a 溝側壁
13 ベーン
14 スプリング収納部
15 スプリング
16 吸込口
17 吐出口
21 溝部
22 円弧部
23 円弧部
24 面取り部
25 面取り部
G 楔状間隙
g 小楔状間隙
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotary compressor used for air conditioning, refrigeration, and the like, and more particularly, to a rotary compressor that forms a minute contact angle in a small wedge-shaped gap formed between a side wall of a vane groove and the vane.
[0002]
[Prior art]
Generally, a rotary compressor is partitioned into a high pressure and a low pressure by a vane that reciprocates in a vane groove formed in a cylinder provided in a compressor unit that is rotationally driven by an electric motor unit.
[0003]
As shown in FIG. 9, a vane groove 32 of a conventional rotary compressor 31 has an elongated groove portion 33 having a rectangular cross section, chamfered portions 34a and 34b provided on the cylinder inner diameter side end portion of the groove portion 33, and an anti-cylinder inner diameter. The vane 36 is formed by chamfered portions 35a and 35b provided at the side ends, and reciprocates in the vane groove 32 while contacting the roller 37. The cylinder chamber 38 is moved to a high pressure compression cylinder chamber 38d and a low pressure suction cylinder chamber. It is divided into 38s.
[0004]
However, in the shape of the conventional vane groove 32, as shown in FIG. 10A, when the vane 36 slides so as to protrude in the cylinder inner diameter direction (from the top dead center to the bottom dead center), the small angle of inclination of the vanes 36 caused by the pressure difference between the compression cylinder chamber 38d and the suction cylinder chamber 38s, wedge gaps G 1 having a small angle is formed between the groove side walls 32a of the vane 36 and the chamfered portion 35a side, and retraction of the oil wedge gap G 1 is generated by the sliding of the vane 36, although the lubricating oil film pressure is easily generated, as shown in FIG. 10 (b), when the vane 36 slides in the opposite direction the retraction of the oil is not generated in the wedge-like gap G 1, there is no occurrence of the lubricating oil film pressure. Further, wedge-shaped gap G 1 opposite to the vane 36 and the small wedge gaps g 1 formed between the chamfered portion 34a retraction of the oil will occur, the vanes 36 and the oil film pressure because the angle is large chamfer 34a Does not occur.
[0005]
For this reason, the sliding portion is in a boundary lubrication or in a metal contact state in a severe case, seizure occurs between the vane 36 and the vane groove 32, and the angle formed by the vane 36 and the chamfered portion 34a is large. There was a problem that the volume increases and sliding loss increases, and the coefficient of performance of the compressor decreases.
[0006]
[Problems to be solved by the invention]
Therefore, there has been a demand for a rotary compressor that reduces sliding loss, suppresses the top clearance volume, has high efficiency, and does not seize between vanes and vane grooves and has high reliability.
[0007]
The present invention has been made in consideration of the above-described circumstances, and is a highly efficient rotary that reduces sliding loss, suppresses the top clearance volume, has high efficiency, and does not seize between vanes and vane grooves. The object is to provide a compressor.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, according to one aspect of the present invention, an airtight case, an electric element housed in the airtight case, and a roller driven by the electric element and moving eccentrically are accommodated, and the vane is provided. In a rotary compressor having a rotary compression element provided with a cylinder chamber pressure-divided by a vane reciprocating in the groove, a small wedge-shaped gap is formed between the side wall of the vane groove and the vane. The rotary compressor is characterized in that both sides of the suction cylinder chamber side and the compression cylinder chamber side of the side wall end on the cylinder inner diameter side of the vane groove have an arc shape and the radius of curvature is 0.1 to 1.0 mm. Is done. As a result, a high-reliability rotary compressor is realized that reduces sliding loss and suppresses the top clearance volume with high efficiency and no seizure between the vane and the vane groove.
[0011]
In another preferable example, the cylinder inner diameter side end is formed so as not to transfer the shape of the tool to the cylinder inner diameter side end using a tool such as a brush, a grindstone, or sand paper after the vane groove processing. . Thereby, the circular arc part and the side wall straight part of the vane groove are smoothly connected tangentially, and a minute contact angle is reliably formed.
[0012]
In another preferred example, the diameter of the brush is larger than the vane groove width and smaller than the cylinder inner diameter. Thus, the arc portion is processed so as to be smoothly connected to the straight side wall portion of the vane groove in a tangential manner.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of a rotary compressor according to the present invention will be described with reference to the accompanying drawings.
[0014]
FIG. 1 is a conceptual diagram of a first embodiment of a rotary compressor according to the present invention, and FIG. 2 is a sectional view thereof.
[0015]
As shown in FIG. 1, the rotary compressor 1 is configured by incorporating an electric element 3 and a rotary compression element 4 inside a sealed case 2, and the compression element 4 has a rotating shaft 5 extending from the electric element 3 as a main bearing. 6 and sub-bearings 7, and two cylinders 9 having the same shape are arranged between the main bearing 6 and the sub-bearings 7 via a partition plate 8. In the chamber 10, the cylindrical rollers 11 are fitted into the eccentric portions 5 a formed on the rotating shaft 5, respectively, while sliding in the vane grooves 12 provided in each cylinder 9 as shown in FIG. 2. A vane 13 is provided. The vane 13 is constantly pressed in the direction of the roller 11 by the spring 15 accommodated in the spring accommodating portion 14, and reciprocates in the vane groove 12 while sliding on the outer peripheral surface of each roller according to the rotation of the eccentric portion 5 a and the roller 11. In addition, it plays the role of partitioning the inside of each cylinder chamber 10 into a suction cylinder chamber 10s and a compression cylinder chamber 10d in a pressure manner.
[0016]
The compressor 1 rotates the roller 11 in the cylinder 10 chamber eccentrically by driving the electric element 3, thereby passing the gas sucked into the suction cylinder chamber 10s in the cylinder chamber 10 through the suction port 16 toward the compression cylinder chamber 10d. Compressed while being moved, and discharged from the discharge port 17.
[0017]
Hereinafter, since the two cylinders 4 have the same shape, the lower cylinder will be described as an example.
[0018]
As shown in FIGS. 3 and 4, the vane groove 12 provided in the cylinder 4 of the rotary compressor 1 has an elongated groove portion 21 having a rectangular cross section, and an inner diameter side end of the groove portion 21 on the suction cylinder chamber 10 s side. The part is provided with an arc part 22, and an arc part 23 is also provided at the inner diameter side end part on the compression cylinder chamber 10 d side. Further, chamfered portions 24 and 25 are provided at both end portions on the outer diameter side.
[0019]
The arc portion 22 is only required to be formed at least on the suction cylinder chamber 10s side, and is not necessarily provided at the inner diameter side end portion on the compression cylinder chamber 10d side.
[0020]
The arc portions 22 and 23 do not have a linear chamfered portion, have an arc shape with a radius of curvature R of 0.1 to 1.0 mm, and more preferably 0.1 to 0.5 mm. By forming a circular arc shape with a radius of curvature R of 0.1 to 1.0 mm without providing a chamfered portion at the inner diameter side end, a contact angle smaller than an angle formed by a conventional chamfered portion is formed. Thus, sliding loss can be reduced and seizure can be eliminated between the vane and the groove. Moreover, the increase in the top clearance volume due to the arc portion can be suppressed, and the coefficient of performance can be improved. If the radius of curvature is smaller than 0.1 mm, the chamfering effect is not exhibited and seizure may occur. If it exceeds 1.0 mm, the coefficient of performance decreases due to an increase in the top clearance volume due to the arc portion.
[0021]
Forming the arc shape of the arc portion 22 does not provide a chamfered portion at the cylinder inner diameter side end portion of the sliding groove 11 and uses a tool such as a brush, a grindstone, or sandpaper after the groove processing, and does not transfer the shape of the tool to the workpiece. By the method. Thereby, the circular arc part 22 and the side wall straight part of the vane groove 12 are smoothly connected in a tangential manner, and a minute contact angle is reliably formed. As a method of forming such an arc shape, if the tool is held rigidly and the tool shape is transferred to the workpiece, extremely precise technology is required for the tool shape and the path of the tool movement. In addition, when the shape deteriorates due to wear of the tool or the like, the arc portion and the side wall straight portion of the vane groove are not smoothly connected tangentially, and a minute contact angle that generates oil film pressure cannot be formed.
[0022]
Further, it is preferable to use a brush whose diameter is larger than the vane groove width and smaller than the cylinder inner diameter. Thus, the arc portion is processed so as to be smoothly connected to the straight side wall portion of the vane groove in a tangential manner.
[0023]
Further, the rotation direction of the brush is periodically converted. Thereby, generation | occurrence | production of a burr | flash on a processed surface can be prevented.
[0024]
Thus, since the arc portion 22 is formed in an arc shape with a curvature radius of 0.1 to 1.0 mm, a wedge-shaped gap G having a minute angle is formed between the vane 13 and the groove side wall 12a on the suction cylinder chamber 10s side. Further, a small wedge-shaped gap g is formed between the vane 13 and the arc portion 22 so as to be opposed to the wedge-shaped gap G and to form a small angle including an arc.
[0025]
Next, the refrigerant compression action using the rotary compressor according to the first embodiment of the present invention will be described.
[0026]
As shown in FIG. 1, the refrigerant evaporated in a low temperature side heat exchanger of the refrigeration cycle (not shown) and turned into a gas and returned to the sealed case 2 is sucked into the cylinder chamber 10 of the compression element 3, and the roller 11 rotates. And discharged to the high temperature side heat exchanger.
[0027]
In this refrigerant compression process, the vane 13 that is constantly pressed by the spring 15 and contacts the roller 11 repeats reciprocation while sliding in the vane groove 12 as the roller 11 rotates eccentrically. The vane 13 reciprocating in the vane groove 12 has a slight angle inclination due to a pressure difference between the compression cylinder chamber 28a and the suction cylinder chamber 28b, and a small angle is formed between the vane 13 and the groove side wall 12a on the chamfered portion 24 side. A wedge-shaped gap G having a very small contact angle is formed between the vane 13 and the arc portion 22 so as to face the wedge-shaped gap G.
[0028]
As shown in FIG. 5A, the oil supply to the vane 13 reciprocating in the vane groove 12 as described above is performed when the vane 13 slides so as to protrude in the cylinder inner diameter direction (top dead center). (In the direction of the bottom dead center), the lubricating oil stored in the bottom of the sealed case 2 is supplied via the spring housing 14. This oil supply is easily lubricated because the oil is drawn into the wedge-shaped gap G due to the sliding of the vane 13 and the lubricating oil film pressure is easily generated. As shown in FIG. 5B, when the vane 13 slides from the bottom dead center to the top dead center, the arc portion 22 having a radius of curvature of 0.1 to 1.0 mm makes a minute contact. Since the small wedge-shaped gap g having an angle is formed, oil is drawn into the wedge-shaped gap G, and a lubricating oil film pressure is also generated. Further, oil is drawn into the small wedge-shaped gap g, and the small wedge-shaped gap g is generated. Since the gap width of g is small, an oil film pressure is also generated and the oil is reliably lubricated.
[0029]
As described above, at least the suction cylinder chamber side of the side wall end on the inner diameter side of the cylinder is formed in an arc shape so that a small wedge-shaped gap g having a minute contact angle is formed between the groove side wall 12a and the vane 13, and the curvature thereof By setting the radius to 0.1 to 1.0 mm, oil is drawn into the wedge-shaped gap G, the lubricating oil film pressure is also generated, and further, oil is drawn into the small wedge-shaped gap g, Oil film pressure is also generated in the wedge-shaped gap g, and the groove side wall 12a and the vane 13 can be reliably lubricated.
[0030]
Moreover, the increase in the top clearance volume due to the arc portion can be suppressed, and the coefficient of performance can be improved.
[0031]
Next, a second embodiment of the rotary compressor according to the present invention will be described.
[0032]
In the second embodiment, a small wedge-shaped gap is formed between the vane and the linear groove side wall that is refracted in one place, whereas the first embodiment forms a small wedge-shaped gap by the vane and the arc portion. The apex angle θ of the small wedge-shaped gap is tan θ = 1/500 or less.
[0033]
For example, as shown in FIG. 6, the groove side wall 12Aa is composed of a plane that is refracted at one place to form a refracting portion 22A. A wedge-shaped gap GA is formed as a corner, and a small wedge-shaped gap gA having a small apex angle is formed between the vane 13A and the refracting portion 22A so as to face the wedge-shaped gap GA. The minute apex angle θ is tan θ = 1/500 or less. As a result, an oil film pressure is easily generated due to oil drawing, and when it exceeds 1/500, no oil film pressure is generated.
[0034]
Accordingly, when the vane 13A slides from the bottom dead center to the top dead center, the small wedge-shaped gap gA having the apex angle θ of tan θ = 1/500 or less is formed. Is generated, and the lubricating oil film pressure is also generated. Further, the oil is drawn into the small wedge-shaped gap gA, and the oil film pressure is also generated because the small wedge-shaped gap gA is small. Further, the increase in the top clearance volume by the refracting portion 22A can be suppressed, and the coefficient of performance can be improved.
[0035]
A modification of the second embodiment will be described.
[0036]
In this modification, a small wedge-shaped gap is formed between the vane and the linear groove side wall that is refracted at one place, whereas the second embodiment is between the straight groove side wall that is refracted at a plurality of places. A small wedge-shaped gap is formed on the surface.
[0037]
For example, as shown in FIG. 7, the groove side wall 12Ba is formed in a plane where the refracting portions 22B1 and 22B2 are formed by being refracted at a plurality of places, for example, two places, and the refracting portion 22B and the vane 13B are in contact with each other. A wedge-shaped gap GB is formed with the contact point (line) as an apex angle, and a small wedge-shaped gap GB having a small apex angle is formed between the vane 13B and the refracting portion 22B so as to face the wedge-shaped gap GB.
[0038]
Therefore, when the vane 13B slides from the bottom dead center to the top dead center, a small wedge-shaped gap gB having an apex angle θ of tan θ = 1/500 or less is formed. Is generated, and a lubricating oil film pressure is also generated. Further, oil is drawn into the small wedge-shaped gap gB, and since the gap width of the small wedge-shaped gap gB is small, an oil film pressure is also generated and the oil is reliably lubricated. Further, the increase in the top clearance volume due to the refracting portion 22B can be suppressed, and the coefficient of performance can be improved.
[0039]
【Example】
Using the rotary compressor of the first embodiment according to the present invention as shown in FIG. 3, the improvement rate of the coefficient of performance was examined by changing the radius of curvature of the arc portion.
[0040]
The results are shown in FIG.
[0041]
As can be seen from FIG. 8, it was found that when the radius of curvature is 0.1 to 1.0 mm, an improvement of 2 to 3% can be achieved. It was also found that the effect of improving the coefficient of performance was particularly great in the range of 0.1 to 0.5 mm.
[0042]
【The invention's effect】
According to the rotary compressor according to the present invention, it is possible to provide a highly reliable rotary compressor that reduces sliding loss and suppresses the top clearance volume, and is highly efficient without seizure between the vane and the vane groove. Can do.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a first embodiment of a rotary compressor according to the present invention.
FIG. 2 is a cross-sectional view of a first embodiment of a rotary compressor according to the present invention.
FIG. 3 is a plan view of the vicinity of a vane of the first embodiment of the rotary compressor according to the present invention.
FIG. 4 is a conceptual diagram of a small wedge-shaped gap formed between the vane and the groove side wall of the first embodiment of the rotary compressor according to the present invention.
FIGS. 5A and 5B are conceptual diagrams showing an operating state of a vane used in the first embodiment of the rotary compressor according to the present invention.
FIG. 6 is a conceptual diagram of a small wedge-shaped gap formed between a vane and a groove side wall of a second embodiment of a rotary compressor according to the present invention.
FIG. 7 is a conceptual diagram of a small wedge-shaped gap showing a modification of the second embodiment of the rotary compressor according to the present invention.
FIG. 8 is a test result diagram of an example using a rotary compressor according to the present invention.
FIG. 9 is a plan view of the vicinity of a vane of a conventional rotary compressor.
FIGS. 10A and 10B are conceptual diagrams showing an operating state of a vane used in a conventional rotary compressor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotary compressor 2 Sealing case 3 Electric element 4 Rotary compression element 5 Rotary shaft 5a Eccentric part 6 Main bearing 7 Sub bearing 8 Partition plate 9 Cylinder 10 Cylinder chamber 10s Suction cylinder chamber 10d Compression cylinder chamber 11 Roller 12 Vane groove 12a Groove side wall 13 Vane 14 Spring storage portion 15 Spring 16 Suction port 17 Discharge port 21 Groove portion 22 Arc portion 23 Arc portion 24 Chamfer portion 25 Chamfer portion G Wedge-shaped gap g Small wedge-shaped gap

Claims (3)

密閉ケースと、この密閉ケースに収納された電動要素と、この電動要素により駆動され、かつ、偏心運動するローラが収容され、ベーン溝内を往復動するベーンにより圧力的に仕切られたシリンダ室が設けられたロータリ式圧縮要素とを具備するロータリコンプレッサにおいて、前記ベーン溝の側壁とベーン間に小楔状間隙が形成されるように、ベーン溝のシリンダ内径側の側壁端部の吸込シリンダ室側及び圧縮シリンダ室側の両側を円弧形状にし、その曲率半径は0.1〜1.0mmであることを特徴とするロータリコンプレッサ。A sealed case, an electric element housed in the hermetic case, a cylinder driven by the electric element and moving eccentrically, and a cylinder chamber partitioned by pressure by a vane reciprocating in the vane groove In the rotary compressor including the rotary compression element provided, the suction cylinder chamber side of the end portion of the side wall of the vane groove on the inner diameter side of the cylinder is formed so that a small wedge-shaped gap is formed between the side wall of the vane groove and the vane. A rotary compressor characterized in that both sides on the compression cylinder chamber side have an arc shape, and the radius of curvature is 0.1 to 1.0 mm. 請求項1に記載のロータリコンプレッサにおいて、上記シリンダ内径側端部は、ベーン溝加工後にブラシ、砥石、サンドペーパ等の工具を用い、この工具の形状がシリンダ内径側端部に転写しないように形成されたことを特徴とするロータリコンプレッサ。  2. The rotary compressor according to claim 1, wherein the end portion on the inner diameter side of the cylinder is formed such that a tool such as a brush, a grindstone, or sandpaper is used after the vane groove is processed, and the shape of the tool is not transferred to the end portion on the inner diameter side of the cylinder. A rotary compressor characterized by that. 請求項に記載のロータリコンプレッサにおいて、上記ブラシの直径は、ベーン溝幅より大きく、シリンダ内径より小さいことを特徴とするロータリコンプレッサ。 3. The rotary compressor according to claim 2 , wherein a diameter of the brush is larger than a vane groove width and smaller than a cylinder inner diameter.
JP2002110398A 2002-04-12 2002-04-12 Rotary compressor Expired - Lifetime JP3867006B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002110398A JP3867006B2 (en) 2002-04-12 2002-04-12 Rotary compressor
TW92107276A TW574475B (en) 2002-04-12 2003-03-31 Rotary compressor
CN 03110411 CN1256514C (en) 2002-04-12 2003-04-11 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002110398A JP3867006B2 (en) 2002-04-12 2002-04-12 Rotary compressor

Publications (2)

Publication Number Publication Date
JP2003307191A JP2003307191A (en) 2003-10-31
JP3867006B2 true JP3867006B2 (en) 2007-01-10

Family

ID=29243234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002110398A Expired - Lifetime JP3867006B2 (en) 2002-04-12 2002-04-12 Rotary compressor

Country Status (3)

Country Link
JP (1) JP3867006B2 (en)
CN (1) CN1256514C (en)
TW (1) TW574475B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007140596A1 (en) * 2006-06-08 2007-12-13 Larry Alvin Schuetzle Reciprocating compressor or pump and a portable tool powering system including a reciprocating compressor
JP2009250197A (en) * 2008-04-10 2009-10-29 Daikin Ind Ltd Rotary compressor
JP2009257274A (en) * 2008-04-21 2009-11-05 Panasonic Corp Rotary compressor
JP5071220B2 (en) * 2008-04-21 2012-11-14 パナソニック株式会社 Rotary compressor
JP2009257276A (en) * 2008-04-21 2009-11-05 Panasonic Corp Rotary compressor
JP5079670B2 (en) * 2008-11-20 2012-11-21 日立アプライアンス株式会社 Rotary compressor
CN103765012A (en) * 2011-11-28 2014-04-30 松下电器产业株式会社 Rotary compressor
CN102562537A (en) * 2012-03-23 2012-07-11 松下·万宝(广州)压缩机有限公司 Compressor

Also Published As

Publication number Publication date
CN1451873A (en) 2003-10-29
JP2003307191A (en) 2003-10-31
TW574475B (en) 2004-02-01
TW200304989A (en) 2003-10-16
CN1256514C (en) 2006-05-17

Similar Documents

Publication Publication Date Title
US6132195A (en) Rotary compressor
WO2005103496A1 (en) Rotating fluid machine
JP3867006B2 (en) Rotary compressor
JP2014034940A (en) Rotary compressor and refrigeration cycle device
CN214366711U (en) Rotary compressor
US7534100B2 (en) Rotary fluid machine
US11421688B2 (en) Vane compressor with elastic member protruding into the cylinder
WO2017061014A1 (en) Rotary compressor
CN201021665Y (en) Up and down end non plane leaf for rotary piston compressor
CN115698508B (en) Rotary compressor
KR102034799B1 (en) A Rotary Compressor Having Reduced Vane leak and Vane Friction loss
JPH10148193A (en) Rotary compressor
KR102004090B1 (en) A Rotary Compressor Having A Reduced Leaking Loss
CN109026696B (en) Compressor pump body, compressor and air conditioner
CN220522798U (en) Piston, compressor and refrigeration equipment
KR102442465B1 (en) Rotary compressor
CN218934727U (en) Compression mechanism, rotary compressor and refrigeration cycle device
JP4011975B2 (en) Rotary compressor
US11486398B2 (en) Rotary compressor with selective oil communication
US12146493B2 (en) Rotary compressor with selective oil communication
JPH0849675A (en) Rotary compressor
CN115750352A (en) Compression mechanism, rotary compressor, and refrigeration cycle device
KR102163622B1 (en) A Rotary Compressor Reduced Eccentric Friction
JPS61229984A (en) Construction of cylinder vane grooved part of rotary type closed compressor
CN111120318B (en) Compression mechanism, compressor with same, refrigeration cycle device and air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061006

R150 Certificate of patent or registration of utility model

Ref document number: 3867006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term