[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003307191A - Rotary compressor - Google Patents

Rotary compressor

Info

Publication number
JP2003307191A
JP2003307191A JP2002110398A JP2002110398A JP2003307191A JP 2003307191 A JP2003307191 A JP 2003307191A JP 2002110398 A JP2002110398 A JP 2002110398A JP 2002110398 A JP2002110398 A JP 2002110398A JP 2003307191 A JP2003307191 A JP 2003307191A
Authority
JP
Japan
Prior art keywords
vane
rotary compressor
shaped gap
inner diameter
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002110398A
Other languages
Japanese (ja)
Other versions
JP3867006B2 (en
Inventor
Isao Kawabe
功 川邉
Koji Hirano
浩二 平野
Hisataka Katou
久尊 加藤
Kazuhiro Yoshikawa
吉川  和宏
Kazuyoshi Takeya
一吉 竹谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2002110398A priority Critical patent/JP3867006B2/en
Priority to TW92107276A priority patent/TW574475B/en
Priority to CN 03110411 priority patent/CN1256514C/en
Publication of JP2003307191A publication Critical patent/JP2003307191A/en
Application granted granted Critical
Publication of JP3867006B2 publication Critical patent/JP3867006B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reliable and efficient rotary compressor having reduced slide loss, suppressed top clearance volume, and causing no seizure between a vane and a groove portion. <P>SOLUTION: In order to form a wedge-shaped small gap between the vane and a side wall of the vane groove in the rotary compressor, a side wall end part of a cylinder inner diameter side, which is at least on the suction cylinder chamber side, is made to be a circular arc shape, and the radius of curvature is 0.1-1.0 mm. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は空調用、冷凍用等に
用いられるロータリコンプレッサに係わり、特にベーン
溝の側壁とベーン間に形成される小楔状間隙に微小な接
触角度を形成するロータリコンプレッサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary compressor used for air conditioning, refrigeration, and the like, and more particularly to a rotary compressor that forms a minute contact angle in a small wedge-shaped gap formed between a side wall of a vane groove and a vane. .

【0002】[0002]

【従来の技術】一般にロータリコンプレッサは、電動機
部により回転駆動される圧縮機部に設けられたシリンダ
に形成されたベーン溝内を往復動するベーンにより高圧
と低圧に仕切られている。
2. Description of the Related Art Generally, a rotary compressor is partitioned into high pressure and low pressure by vanes which reciprocate in a vane groove formed in a cylinder provided in a compressor part which is driven to rotate by an electric motor part.

【0003】図9に示すように、従来のロータリコンプ
レッサ31のベーン溝32は、断面が長方形状で細長い
溝部33と、この溝部33のシリンダ内径側端部に設け
られた面取り部34a、34b、反シリンダ内径側端部
に設けられた面取り部35a、35bから形成され、ベ
ーン36はローラ37と当接しながらベーン溝32内を
往復動し、シリンダ室38を高圧の圧縮シリンダ室38
dと低圧の吸込シリンダ室38sに仕切っている。
As shown in FIG. 9, a vane groove 32 of a conventional rotary compressor 31 has an elongated groove portion 33 having a rectangular cross section, and chamfered portions 34a, 34b provided on the cylinder inner diameter side end portion of the groove portion 33. The vane 36 is formed of chamfered portions 35a, 35b provided at the end portion on the inner side of the inner side of the cylinder, and the vane 36 reciprocates in the vane groove 32 while being in contact with the roller 37.
It is divided into the suction cylinder chamber 38s of d and low pressure.

【0004】しかしながら、従来のベーン溝32の形状
では、図10(a)に示すように、ベーン36がシリン
ダ内径方向に突出するように摺動する場合には(上死点
→下死点の方向)、圧縮シリンダ室38dと吸込シリン
ダ室38sとの圧力差によって生じるベーン36の微小
な角度の傾きによって、ベーン36と面取り部35a側
の溝側壁32a間に微小角を有する楔状間隙Gが形成
され、ベーン36の摺動によって楔状間隙Gに油の引
込みが発生して、潤滑油膜圧力が発生し易くなるが、図
10(b)に示すように、ベーン36が逆方向に摺動す
る場合には、楔状間隙Gに油の引込みが発生せず、潤
滑油膜圧力の発生もない。また、楔状間隙Gと対向
し、ベーン36と面取り部34a間に形成される小楔状
間隙gには油の引込みは発生するが、ベーン36と面
取り部34aのなす角度が大きいため油膜圧力が発生し
ない。
However, in the conventional vane groove 32, as shown in FIG. 10A, when the vane 36 slides so as to project in the cylinder inner diameter direction (from the top dead center to the bottom dead center). Direction), the minute angle inclination of the vane 36 caused by the pressure difference between the compression cylinder chamber 38d and the suction cylinder chamber 38s causes a wedge-shaped gap G 1 having a minute angle between the vane 36 and the groove side wall 32a on the chamfered portion 35a side. When the vane 36 is formed, the sliding of the vane 36 causes the oil to be drawn into the wedge-shaped gap G 1 to easily generate the lubricating oil film pressure, but as shown in FIG. 10B, the vane 36 slides in the opposite direction. In this case, the oil is not drawn into the wedge-shaped gap G 1 and the lubricating oil film pressure is not generated. Further, although oil is drawn into the small wedge-shaped gap g 1 formed between the vane 36 and the chamfered portion 34a, facing the wedge-shaped gap G 1 , the oil film pressure is large because the angle formed by the vane 36 and the chamfered portion 34a is large. Does not occur.

【0005】このため摺動部分が、境界潤滑、甚だしい
場合には金属接触状態となり、ベーン36とベーン溝3
2の間で焼付きが生じ、また、ベーン36と面取り部3
4aのなす角度が大きいため、トップクリアランスボリ
ュームが増加して摺動損失が大きくなり、コンプレッサ
の成績係数が低下する問題があった。
For this reason, the sliding portion is in contact with the metal in the case of boundary lubrication and in extreme cases, and the vane 36 and the vane groove 3 are brought into contact with each other.
Seizure occurs between the two, and the vane 36 and the chamfer 3
Since the angle formed by 4a is large, there is a problem that the top clearance volume increases, sliding loss increases, and the coefficient of performance of the compressor decreases.

【0006】[0006]

【発明が解決しようとする課題】そこで、摺動損失を小
さくし、かつ、トップクリアランスボリュームを抑制し
て高効率で、ベーンとベーン溝間に焼付きがなく信頼性
の高いロータリコンプレッサが要望されていた。
Therefore, there is a demand for a highly reliable rotary compressor that reduces sliding loss, suppresses the top clearance volume, is highly efficient, and has no seizure between the vanes. Was there.

【0007】本発明は上述した事情を考慮してなされた
もので、摺動損失を小さくし、かつ、トップクリアラン
スボリュームを抑制して高効率で、ベーンとベーン溝間
に焼付きがなく信頼性の高いロータリコンプレッサを提
供することを目的とする。
The present invention has been made in consideration of the above-mentioned circumstances, and it is possible to reduce sliding loss, suppress the top clearance volume, and achieve high efficiency, and there is no seizure between the vanes and the vane grooves. It is an object of the present invention to provide a high-performance rotary compressor.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明の1つの態様によれば、密閉ケースと、この
密閉ケースに収納された電動要素と、この電動要素によ
り駆動され、かつ、偏心運動するローラが収容され、ベ
ーン溝内を往復動するベーンにより圧力的に仕切られた
シリンダ室が設けられたロータリ式圧縮要素とを具備す
るロータリコンプレッサにおいて、前記ベーン溝の側壁
とベーン間に小楔状間隙が形成されるように、シリンダ
内径側の側壁端部の少なくとも吸込シリンダ室側を円弧
形状にし、その曲率半径は0.1〜1.0mmであるこ
とを特徴とするロータリコンプレッサが提供される。こ
れにより、摺動損失を小さくし、かつ、トップクリアラ
ンスボリュームを抑制して高効率で、ベーンとベーン溝
間に焼付きがなく信頼性の高いロータリコンプレッサが
実現される。
To achieve the above object, according to one aspect of the present invention, a closed case, an electric element housed in the closed case, driven by the electric element, and A rotary compressor having a rotary compression element that accommodates an eccentrically moving roller and has a cylinder chamber that is pressureally partitioned by a vane that reciprocates in the vane groove, in a rotary compressor between a side wall of the vane groove and the vane. Provided is a rotary compressor characterized in that at least a suction cylinder chamber side of a side wall end portion on the cylinder inner diameter side is formed into an arc shape so that a small wedge-shaped gap is formed, and a radius of curvature thereof is 0.1 to 1.0 mm. To be done. As a result, it is possible to realize a highly reliable rotary compressor that reduces sliding loss, suppresses the top clearance volume, is highly efficient, and has no seizure between the vanes.

【0009】また、本発明の他の態様によれば、密閉ケ
ースと、この密閉ケースに収納された電動要素と、この
電動要素により駆動され、かつ、偏心運動するローラが
収容され、ベーン溝内を往復動するベーンにより圧力的
に仕切られたシリンダ室が設けられたロータリ式圧縮要
素とを具備するロータリコンプレッサにおいて、前記ベ
ーン溝の側壁の少なくとも吸込シリンダ室側のシリンダ
内径側端部とベーン間に小楔状間隙が形成され、この小
楔状間隙の頂角θは、tanθ=1/500以下である
ことを特徴とするロータリコンプレッサが提供される。
これにより、摺動損失を小さくし、かつ、トップクリア
ランスボリュームを抑制して高効率で、ベーンとベーン
溝間に焼付きがなく信頼性の高いロータリコンプレッサ
が実現される。
According to another aspect of the present invention, a hermetically sealed case, an electric element housed in the hermetically sealed case, a roller driven by the electric element and eccentrically moved are accommodated in the vane groove. A rotary compression element provided with a cylinder chamber partitioned by a vane that reciprocates through a cylinder, the space between the vane and a cylinder inner diameter side end of the side wall of the vane groove at least on the suction cylinder chamber side. A small wedge-shaped gap is formed in the rotary wedge compressor, and the apex angle θ of the small wedge-shaped gap is tan θ = 1/500 or less.
As a result, it is possible to realize a highly reliable rotary compressor that reduces sliding loss, suppresses the top clearance volume, is highly efficient, and has no seizure between the vanes.

【0010】好適な一例では、上記ベーン溝のシリンダ
内径側端部は、連続する複数の折曲平面で形成される。
これにより、微小な接触角度を有する小楔状間隙が形成
される。
In a preferred example, the cylinder inner diameter side end of the vane groove is formed by a plurality of continuous bending planes.
Thereby, a small wedge-shaped gap having a minute contact angle is formed.

【0011】また、他の好適な一例では、上記シリンダ
内径側端部は、ベーン溝加工後にブラシ、砥石、サンド
ペーパ等の工具を用い、この工具の形状がシリンダ内径
側端部に転写しないように形成される。これにより、円
弧部とベーン溝の側壁直線部が接線的に滑らかに繋が
り、微小な接触角度が確実に形成される。
In another preferred example, a tool such as a brush, a grindstone, or sand paper is used for the cylinder inner diameter side end portion after the vane groove processing, so that the shape of the tool is not transferred to the cylinder inner diameter side end portion. It is formed. As a result, the arcuate portion and the sidewall straight portion of the vane groove are smoothly connected tangentially, and a minute contact angle is reliably formed.

【0012】また、他の好適な一例では、上記ブラシの
直径は、ベーン溝幅より大きく、シリンダ内径より小さ
い。これにより、円弧部がベーン溝の側壁直線部に接線
的に滑らかに繋がるように加工される。
[0012] In another preferable example, the diameter of the brush is larger than the width of the vane groove and smaller than the inner diameter of the cylinder. As a result, the arcuate portion is machined so as to be tangentially and smoothly connected to the sidewall straight portion of the vane groove.

【0013】[0013]

【発明の実施の形態】以下、本発明に係わるロータリコ
ンプレッサの第1実施形態について添付図面を参照して
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a rotary compressor according to the present invention will be described below with reference to the accompanying drawings.

【0014】図1は本発明に係わるロータリコンプレッ
サの第1実施形態の概念図であり、図2はその断面図で
ある。
FIG. 1 is a conceptual view of a first embodiment of a rotary compressor according to the present invention, and FIG. 2 is a sectional view thereof.

【0015】図1に示すように、ロータリコンプレッサ
1は、密閉ケース2の内部に電動要素3とロータリ式圧
縮要素4とを内装して構成され、圧縮要素4は電動要素
3から延びる回転軸5を主軸受6と副軸受7に挿通さ
れ、この主軸受6と副軸受7との間に、仕切板8を介し
て同一形状を有する2基のシリンダ9を配設し、各シリ
ンダ9に設けられたシリンダ室10内において、回転軸
5に形成された偏心部5aにそれぞれ円筒状のローラ1
1を嵌合させる一方、図2に示すように、各シリンダ9
に設けられたベーン溝12内を摺動するベーン13が配
設されている。このベーン13は、スプリング収納部1
4に収納されたスプリング15によって常時ローラ11
方向に押圧され、偏心部5a及びローラ11の回転に応
じて各ローラ外周面に摺接しながらベーン溝12内を往
復動し、各シリンダ室10内部を吸込シリンダ室10s
と圧縮シリンダ室10dとに圧力的に仕切る役割を果し
ている。
As shown in FIG. 1, the rotary compressor 1 is constructed by internally mounting an electric element 3 and a rotary compression element 4 inside a hermetically sealed case 2, and the compression element 4 extends from the electric element 3 to a rotary shaft 5. Is inserted into the main bearing 6 and the sub bearing 7, and two cylinders 9 having the same shape are arranged between the main bearing 6 and the sub bearing 7 with a partition plate 8 provided between the main bearing 6 and the sub bearing 7. In the formed cylinder chamber 10, the eccentric portion 5a formed on the rotating shaft 5 has a cylindrical roller 1
1 are fitted together, as shown in FIG.
A vane 13 is disposed so as to slide in the vane groove 12 provided in the. This vane 13 is a spring storage unit 1.
The roller 15 is always held by the spring 15 stored in
Is pressed in the direction, and reciprocates in the vane groove 12 while slidingly contacting the outer peripheral surface of each roller according to the rotation of the eccentric portion 5a and the roller 11, and the inside of each cylinder chamber 10 is sucked into the suction cylinder chamber 10s.
And the compression cylinder chamber 10d.

【0016】上記圧縮機1は、電動要素3の駆動によっ
てローラ11をシリンダ10室内において偏心回転させ
ることにより、吸込口16を通り、シリンダ室10内の
吸込シリンダ室10sに吸入したガスを圧縮シリンダ室
10d方向に移動させながら圧縮して吐出口17から吐
出する。
In the compressor 1, by driving the electric element 3 to eccentrically rotate the roller 11 in the cylinder 10 chamber, the gas sucked into the suction cylinder chamber 10s in the cylinder chamber 10 through the suction port 16 is compressed. It is compressed while being moved in the direction of the chamber 10d and discharged from the discharge port 17.

【0017】以下、上記2基のシリンダ4は同一形状を
有するので、下段のシリンダを例にとって説明する。
Since the two cylinders 4 have the same shape, the lower cylinder will be described as an example.

【0018】図3及び図4に示すように、ロータリコン
プレッサ1のシリンダ4に設けられたベーン溝12は、
断面が長方形状で細長い溝部21を有し、この溝部21
の吸込シリンダ室10s側の内径側端部には、円弧部2
2が設けられ、また、圧縮シリンダ室10d側の内径側
端部にも円弧部23が設けられている。さらに、外径側
両端部には面取り部24、25が設けられている。
As shown in FIGS. 3 and 4, the vane groove 12 provided in the cylinder 4 of the rotary compressor 1 is
The cross section has a rectangular shape and has an elongated groove portion 21.
Of the circular arc portion 2 at the inner diameter side end of the suction cylinder chamber 10s side.
2 is also provided, and an arcuate portion 23 is also provided at the inner diameter side end portion on the compression cylinder chamber 10d side. Further, chamfers 24 and 25 are provided at both ends on the outer diameter side.

【0019】なお、円弧部22が、少なくとも吸込シリ
ンダ室10s側に形成されていればよく、必ずしも、圧
縮シリンダ室10d側内径側端部には設けなくともよ
い。
It is sufficient that the arcuate portion 22 is formed at least on the suction cylinder chamber 10s side, and need not be provided on the inner diameter side end portion on the compression cylinder chamber 10d side.

【0020】上記円弧部22、23は直線的な面取り部
を有さず、曲率半径Rが0.1〜1.0mmの円弧形状
をなしており、より好ましくは0.1〜0.5mmであ
る。上記内径側端部に面取り部を設けず、曲率半径Rが
0.1〜1.0mmの円弧形状を形成することで、従来
の面取り部により形成される角度よりも小さく微小な接
触角度が形成されて、摺動損失を小さくし、ベーンと溝
部間に焼付きをなくすことができる。また、円弧部によ
るトップクリアランスボリュームの増加を抑制できて成
績係数の向上が図れる。曲率半径が0.1mmより小さ
いと、面取り効果が発揮されず、焼付きが発生するおそ
れがあり、1.0mmを超えると、円弧部によるトップ
クリアランスボリュームの増加により成績係数が下降す
る。
The arcuate portions 22 and 23 do not have a linear chamfered portion and have an arcuate shape having a radius of curvature R of 0.1 to 1.0 mm, more preferably 0.1 to 0.5 mm. is there. By forming a circular arc shape with a radius of curvature R of 0.1 to 1.0 mm without providing a chamfered portion on the inner diameter side end portion, a minute contact angle smaller than the angle formed by the conventional chamfered portion is formed. As a result, sliding loss can be reduced and seizure between the vane and the groove can be eliminated. Further, it is possible to suppress an increase in the top clearance volume due to the circular arc portion and improve the coefficient of performance. If the radius of curvature is smaller than 0.1 mm, the chamfering effect may not be exhibited and seizure may occur. If the radius of curvature exceeds 1.0 mm, the coefficient of performance decreases due to an increase in the top clearance volume due to the arc portion.

【0021】上記円弧部22の円弧形状の形成は、摺動
溝11のシリンダ内径側端部に面取り部を設けず、溝加
工後にブラシもしくは砥石、サンドペーパ等の工具を用
い、工具の形状をワークに転写しない方法にて行なう。
これにより、円弧部22とベーン溝12の側壁直線部が
接線的に滑らかに繋がり、微小な接触角度が確実に形成
される。このような円弧形状を形成する方法として、工
具を剛性的に保持し、工具の形状をワークに転写するよ
うな方法で加工すると、工具の形状、工具を動す経路に
極めて精密な技術が必要となり、また工具の摩耗等によ
り形状が悪化すると円弧部とベーン溝の側壁直線部が接
線的に滑らかに繋がらず、油膜圧力を発生させる微小な
接触角度を形成できない。
In forming the arc shape of the arc portion 22, the chamfered portion is not provided at the end portion of the sliding groove 11 on the cylinder inner diameter side, and after the groove processing, a tool such as a brush, a grindstone, or sand paper is used to shape the tool Do not transfer to.
As a result, the circular arc portion 22 and the side wall straight line portion of the vane groove 12 are smoothly connected tangentially, and a minute contact angle is reliably formed. As a method of forming such an arc shape, if the tool is rigidly held and processed by a method that transfers the shape of the tool to the workpiece, extremely precise technology is required for the shape of the tool and the path of moving the tool. When the shape is deteriorated due to wear of the tool or the like, the arcuate portion and the side wall straight portion of the vane groove are not smoothly connected tangentially, and a minute contact angle for generating the oil film pressure cannot be formed.

【0022】さらに、上記円弧形状の形成に用いるブラ
シは、その直径がベーン溝幅よりも大きく、シリンダ内
径よりも小さいブラシを用いるのが好ましい。これによ
り、円弧部がベーン溝の側壁直線部に接線的に滑らかに
繋がるように加工される。
Further, it is preferable that the brush used for forming the arc shape has a diameter larger than the vane groove width and smaller than the cylinder inner diameter. As a result, the arcuate portion is machined so as to be tangentially and smoothly connected to the sidewall straight portion of the vane groove.

【0023】また、ブラシの回転方向は周期的に変換さ
れる。これにより、加工面にバリが発生するのを防止で
きる。
Further, the rotation direction of the brush is periodically changed. Thereby, it is possible to prevent burrs from being generated on the processed surface.

【0024】このように円弧部22は曲率半径0.1〜
1.0mmの円弧形状に形成されているので、ベーン1
3と吸込シリンダ室10s側の溝側壁12a間に微小角
を有する楔状間隙Gが形成され、また、この楔状間隙G
に対向しベーン13と円弧部22間に円弧を含み微小角
をなす小楔状間隙gが形成される。
As described above, the arcuate portion 22 has a radius of curvature of 0.1 to 0.1.
Since it is formed in an arc shape of 1.0 mm, the vane 1
3, and a wedge-shaped gap G having a small angle is formed between the groove side wall 12a on the suction cylinder chamber 10s side.
Facing each other, a small wedge-shaped gap g is formed between the vane 13 and the circular arc portion 22 that includes a circular arc and forms a minute angle.

【0025】次に本発明に係わる第1実施形態のロータ
リコンプレッサを用いた冷媒圧縮作用について説明す
る。
Next, the refrigerant compression action using the rotary compressor of the first embodiment according to the present invention will be described.

【0026】図1に示すように、いずれも図示しない冷
凍サイクルの低温側熱交換器で蒸発し気体になって密閉
ケース2に戻った冷媒は、圧縮要素3のシリンダ室10
に吸込まれ、ローラ11の回転により圧縮され、高温側
熱交換器に吐出される。
As shown in FIG. 1, the refrigerant evaporated in the low temperature side heat exchanger of the refrigeration cycle (not shown) to become a gas and return to the closed case 2 is in the cylinder chamber 10 of the compression element 3.
Are sucked into, compressed by the rotation of the roller 11, and discharged to the high temperature side heat exchanger.

【0027】この冷媒の圧縮過程において、常時スプリ
ング15により押圧されローラ11に当接するベーン1
3は、偏心回転するローラ11の回転に伴なって、ベー
ン溝12内を摺動しながら往復動を繰返す。このベーン
溝12内を往復動するベーン13は、圧縮シリンダ室2
8aと吸込シリンダ室28bとの圧力差によって微小な
角度の傾きが生じ、ベーン13と面取り部24側の溝側
壁12a間に微小角を有する楔状間隙Gが形成され、ま
た、この楔状間隙Gに対向しベーン13と円弧部22間
に円弧を含み微小な接触角度を有する楔状間隙gが形成
される。
During the compression process of the refrigerant, the vane 1 is constantly pressed by the spring 15 and abuts against the roller 11.
Numeral 3 repeats reciprocating motion while sliding in the vane groove 12 with the rotation of the eccentrically rotating roller 11. The vane 13 that reciprocates in the vane groove 12 is provided in the compression cylinder chamber 2
The pressure difference between 8a and the suction cylinder chamber 28b causes a slight angle inclination to form a wedge-shaped gap G having a minute angle between the vane 13 and the groove sidewall 12a on the chamfered portion 24 side. A wedge-shaped gap g including a circular arc and having a minute contact angle is formed between the vane 13 and the circular arc portion 22 facing each other.

【0028】上記のようにベーン溝12内を往復動する
ベーン13への給油は、図5(a)に示すように、ベー
ン13がシリンダ内径方向に突出するように摺動する場
合には(上死点→下死点の方向)には、密閉ケース2の
底部に貯えられた潤滑油がスプリング収納部14を介し
て供給される。この給油は、ベーン13の摺動によって
楔状間隙Gに油の引込みが発生して、潤滑油膜圧力が発
生し易くなり、確実に潤滑される。また図5(b)に示
すように、ベーン13が下死点→上死点の方向に摺動す
る場合には、曲率半径が0.1〜1.0mmである円弧
部22により微小な接触角度を有する小楔状間隙gが形
成されているので、楔状間隙Gに油の引込みが発生し、
潤滑油膜圧力も発生し、さらに、小楔状間隙gには油の
引込みが発生し、小楔状間隙gの間隙幅が小さいので油
膜圧力も発生し、確実に潤滑される。
As described above, oil is supplied to the vane 13 which reciprocates in the vane groove 12 when the vane 13 slides so as to project in the cylinder inner diameter direction as shown in FIG. 5A. From the top dead center to the bottom dead center), the lubricating oil stored in the bottom portion of the closed case 2 is supplied through the spring storage portion 14. In this oil supply, the sliding of the vanes 13 causes the oil to be drawn into the wedge-shaped gap G, which easily causes the pressure of the lubricating oil film, and is reliably lubricated. Further, as shown in FIG. 5B, when the vane 13 slides from the bottom dead center to the top dead center, minute contact is made by the arc portion 22 having a radius of curvature of 0.1 to 1.0 mm. Since the small wedge-shaped gap g having an angle is formed, oil is drawn into the wedge-shaped gap G,
Lubricating oil film pressure is also generated, and oil is drawn into the small wedge-shaped gap g, and since the small wedge-shaped gap g has a small gap width, oil film pressure is also generated and reliable lubrication is achieved.

【0029】上記のように、溝側壁12aとベーン13
間に微小な接触角度を有する小楔状間隙gが形成される
ように、シリンダ内径側の側壁端部の少なくとも吸込シ
リンダ室側を円弧形状にし、その曲率半径を0.1〜
1.0mmにすることにより、楔状間隙Gに油の引込み
を発生させて、潤滑油膜圧力も発生させ、さらに、小楔
状間隙gにも油の引込みを発生させて、小楔状間隙gに
も油膜圧力を発生させ、溝側壁12aとベーン13間を
確実に潤滑することができる。
As described above, the groove side wall 12a and the vane 13 are formed.
At least the suction cylinder chamber side of the side wall end portion on the cylinder inner diameter side is formed into an arc shape so that a small wedge-shaped gap g having a minute contact angle is formed therebetween, and the radius of curvature thereof is 0.1 to 10.
By setting the thickness to 1.0 mm, oil is drawn into the wedge-shaped gap G, a lubricating oil film pressure is also generated, and further oil is drawn into the small wedge-shaped gap g, and the oil film is also formed in the small wedge-shaped gap g. A pressure can be generated to reliably lubricate the space between the groove side wall 12a and the vane 13.

【0030】また、円弧部によるトップクリアランスボ
リュームの増加を抑制できて成績係数の向上が図れる。
Further, the increase of the top clearance volume due to the arcuate portion can be suppressed, and the coefficient of performance can be improved.

【0031】次に本発明に係わるロータリコンプレッサ
の第2実施形態について説明する。
Next, a second embodiment of the rotary compressor according to the present invention will be described.

【0032】本第2実施形態は、上記第1実施形態がベ
ーンと円弧部によって小楔状間隙を形成するのに対し
て、ベーンと1箇所で屈折する直線状の溝側壁間に小楔
状間隙が形成され、この小楔状間隙の頂角θは、tan
θ=1/500以下である。
In the second embodiment, the small wedge-shaped gap is formed by the vane and the circular arc portion in the first embodiment, whereas the small wedge-shaped gap is formed between the vane and the linear groove side wall that bends at one place. The apex angle θ of this small wedge-shaped gap is tan
θ = 1/500 or less.

【0033】例えば、図6に示すように、溝側壁12A
aは1箇所で屈折して屈折部22Aが形成された平面か
らなり、この屈折部22Aとベーン13Aが当接して、
この当接点(線)を頂角として楔状間隙GAが形成さ
れ、さらに、この楔状間隙GAに対向しベーン13Aと
屈折部22A間に微小頂角を有する小楔状間隙gAが形
成される。微小頂角θは、tanθ=1/500以下に
なっている。これにより、油の引込みによる油膜圧力が
発生し易くなり、1/500を超えると、油膜圧力が発
生しない。
For example, as shown in FIG. 6, the groove side wall 12A
a is composed of a flat surface on which a refraction portion 22A is formed by refraction at one location, and the refraction portion 22A and the vane 13A contact each other,
A wedge-shaped gap GA is formed with the abutment point (line) as the apex angle, and a small wedge-shaped gap gA having a small apex angle is formed between the vane 13A and the bending portion 22A so as to face the wedge-shaped gap GA. The minute apex angle θ is tan θ = 1/500 or less. As a result, the oil film pressure is more likely to be generated due to the drawing of oil, and when it exceeds 1/500, the oil film pressure is not generated.

【0034】従って、ベーン13Aが下死点→上死点の
方向に摺動する場合には、頂角θがtanθ=1/50
0以下である小楔状間隙gAが形成されているので、楔
状間隙GAに油の引込みが発生し、潤滑油膜圧力も発生
し、さらに、小楔状間隙gAには油の引込みが発生し、
小楔状間隙gAの間隙幅が小さいので油膜圧力も発生
し、確実に潤滑される。また、屈折部22Aによるトッ
プクリアランスボリュームの増加を抑制できて成績係数
の向上が図れる。
Therefore, when the vane 13A slides from the bottom dead center to the top dead center, the apex angle θ is tan θ = 1/50.
Since the small wedge-shaped gap gA of 0 or less is formed, the oil is drawn into the wedge-shaped gap GA, the lubricating oil film pressure is also generated, and the oil is drawn into the small wedge-shaped gap gA.
Since the gap width of the small wedge-shaped gap gA is small, oil film pressure is also generated, and the lubrication is surely performed. Further, it is possible to suppress an increase in the top clearance volume due to the refraction portion 22A, and improve the coefficient of performance.

【0035】また、上記第2実施形態の変形例について
説明する。
A modification of the second embodiment will be described.

【0036】本変形例は、上記第2実施形態がベーンと
1箇所で屈折する直線状の溝側壁間に小楔状間隙が形成
されるのに対して、ベーンと複数箇所で屈折する直線状
の溝側壁間に小楔状間隙が形成される。
In this modification, a small wedge-shaped gap is formed between the vane and the linear groove sidewall that bends at one place in the second embodiment, whereas the small wedge-shaped gap is formed between the vane and the linear sidewall that bends at a plurality of places. A small wedge-shaped gap is formed between the side walls of the groove.

【0037】例えば、図7に示すように、溝側壁12B
aは複数箇所、例えば、2箇所で屈折して屈折部22B
1、22B2が形成された平面で形成され、この屈折部
22Bとベーン13Bが当接して、この当接点(線)を
頂角として楔状間隙GBが形成され、さらに、この楔状
間隙GBに対向しベーン13Bと屈折部22B間に微小
頂角を有する小楔状間隙GBが形成される。
For example, as shown in FIG. 7, the groove side wall 12B
a is refracted at a plurality of places, for example, two places, and is a refraction portion 22B.
1, 22B2 are formed on a flat surface, and the bent portion 22B and the vane 13B come into contact with each other to form a wedge-shaped gap GB with this abutting point (line) as an apex angle. A small wedge-shaped gap GB having a small apex angle is formed between the vane 13B and the bending portion 22B.

【0038】従って、ベーン13Bが下死点→上死点の
方向に摺動する場合には、頂角θがtanθ=1/50
0以下である小楔状間隙gBが形成されているので、楔
状間隙gBに油の引込みが発生し、潤滑油膜圧力も発生
し、さらに、小楔状間隙gBには油の引込みが発生し、
小楔状間隙gBの間隙幅が小さいので油膜圧力も発生
し、確実に潤滑される。また、屈折部22Bによるトッ
プクリアランスボリュームの増加を抑制できて成績係数
の向上が図れる。
Therefore, when the vane 13B slides from the bottom dead center to the top dead center, the apex angle θ is tan θ = 1/50.
Since the small wedge-shaped gap gB of 0 or less is formed, the oil is drawn into the wedge-shaped gap gB, the lubricating oil film pressure is also generated, and the oil is drawn into the small wedge-shaped gap gB.
Since the gap width of the small wedge-shaped gap gB is small, oil film pressure is also generated, and the lubrication is surely performed. Further, it is possible to suppress an increase in the top clearance volume due to the refraction portion 22B and improve the coefficient of performance.

【0039】[0039]

【実施例】図3に示すような本発明に係わる第1実施形
態のロータリコンプレッサを用い、円弧部の曲率半径を
変化させて成績係数の向上率を調べた。
EXAMPLE Using the rotary compressor according to the first embodiment of the present invention as shown in FIG. 3, the improvement rate of the coefficient of performance was examined by changing the radius of curvature of the arc portion.

【0040】結果を図8に示す。The results are shown in FIG.

【0041】図8からもわかるように、曲率半径が0.
1〜1.0mmの範囲では、2〜3%の向上が図れるこ
とがわかった。また、0.1〜0.5mmの範囲では特
に成績係数の向上効果が大きいことがわかった。
As can be seen from FIG. 8, the radius of curvature is 0.
It has been found that an improvement of 2 to 3% can be achieved in the range of 1 to 1.0 mm. It was also found that the effect of improving the coefficient of performance is particularly large in the range of 0.1 to 0.5 mm.

【0042】[0042]

【発明の効果】本発明に係わるロータリコンプレッサに
よれば、摺動損失を小さくし、かつ、トップクリアラン
スボリュームを抑制して高効率で、ベーンとベーン溝間
に焼付きがなく信頼性の高いロータリコンプレッサを提
供することができる。
According to the rotary compressor of the present invention, the sliding loss is reduced, the top clearance volume is suppressed, the efficiency is high, and there is no seizure between the vanes and the vane grooves, which is highly reliable. A compressor can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わるロータリコンプレッサの第1実
施形態の縦断面図。
FIG. 1 is a vertical sectional view of a first embodiment of a rotary compressor according to the present invention.

【図2】本発明に係わるロータリコンプレッサの第1実
施形態の横断面図。
FIG. 2 is a transverse cross-sectional view of the first embodiment of the rotary compressor according to the present invention.

【図3】本発明に係わるロータリコンプレッサの第1実
施形態のベーン近傍の平面図。
FIG. 3 is a plan view of the vicinity of the vane of the first embodiment of the rotary compressor according to the present invention.

【図4】本発明に係わるロータリコンプレッサの第1実
施形態のベーンと溝側壁間に形成される小楔状間隙の概
念図。
FIG. 4 is a conceptual diagram of a small wedge-shaped gap formed between a vane and a groove side wall of the rotary compressor according to the first embodiment of the present invention.

【図5】(a)及び(b)は本発明に係わるロータリコ
ンプレッサの第1実施形態に用いられるベーンの動作状
態を示す概念図。
5A and 5B are conceptual diagrams showing an operating state of a vane used in the first embodiment of the rotary compressor according to the present invention.

【図6】本発明に係わるロータリコンプレッサの第2実
施形態のベーンと溝側壁間に形成される小楔状間隙の概
念図。
FIG. 6 is a conceptual diagram of a small wedge-shaped gap formed between a vane and a groove side wall of a second embodiment of a rotary compressor according to the present invention.

【図7】本発明に係わるロータリコンプレッサの第2実
施形態の変形例を示す小楔状間隙の概念図。
FIG. 7 is a conceptual diagram of a small wedge-shaped gap showing a modified example of the second embodiment of the rotary compressor according to the present invention.

【図8】本発明に係わるロータリコンプレッサを用いた
実施例の試験結果図。
FIG. 8 is a test result diagram of an example using the rotary compressor according to the present invention.

【図9】従来のロータリコンプレッサのベーン近傍の平
面図。
FIG. 9 is a plan view of the vicinity of a vane of a conventional rotary compressor.

【図10】(a)及び(b)は従来のロータリコンプレ
ッサに用いられるベーンの動作状態を示す概念図。
10 (a) and 10 (b) are conceptual diagrams showing operating states of vanes used in a conventional rotary compressor.

【符号の説明】[Explanation of symbols]

1 ロータリコンプレッサ 2 密閉ケース 3 電動要素 4 ロータリ式圧縮要素 5 回転軸 5a 偏心部 6 主軸受 7 副軸受 8 仕切板 9 シリンダ 10 シリンダ室 10s 吸込シリンダ室 10d 圧縮シリンダ室 11 ローラ 12 ベーン溝 12a 溝側壁 13 ベーン 14 スプリング収納部 15 スプリング 16 吸込口 17 吐出口 21 溝部 22 円弧部 23 円弧部 24 面取り部 25 面取り部 G 楔状間隙 g 小楔状間隙 1 Rotary compressor 2 sealed case 3 electric elements 4 Rotary compression element 5 rotation axes 5a Eccentric part 6 Main bearing 7 Secondary bearing 8 partition boards 9 cylinders 10 cylinder chamber 10s suction cylinder chamber 10d compression cylinder chamber 11 Laura 12 vane grooves 12a Groove side wall 13 vanes 14 Spring storage 15 spring 16 Suction port 17 outlet 21 groove 22 Arc 23 Arc 24 Chamfer 25 Chamfer G wedge-shaped gap g Small wedge-shaped gap

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 久尊 静岡県富士市蓼原336番地 東芝キヤリア 株式会社内 (72)発明者 吉川 和宏 静岡県富士市蓼原336番地 東芝キヤリア 株式会社内 (72)発明者 竹谷 一吉 静岡県富士市蓼原336番地 東芝キヤリア 株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hisashi Kato             336 Tatehara, Fuji City, Shizuoka Prefecture Toshiba Carrier             Within the corporation (72) Inventor Kazuhiro Yoshikawa             336 Tatehara, Fuji City, Shizuoka Prefecture Toshiba Carrier             Within the corporation (72) Inventor Kazuyoshi Takeya             336 Tatehara, Fuji City, Shizuoka Prefecture Toshiba Carrier             Within the corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 密閉ケースと、この密閉ケースに収納さ
れた電動要素と、この電動要素により駆動され、かつ、
偏心運動するローラが収容され、ベーン溝内を往復動す
るベーンにより圧力的に仕切られたシリンダ室が設けら
れたロータリ式圧縮要素とを具備するロータリコンプレ
ッサにおいて、前記ベーン溝の側壁とベーン間に小楔状
間隙が形成されるように、シリンダ内径側の側壁端部の
少なくとも吸込シリンダ室側を円弧形状にし、その曲率
半径は0.1〜1.0mmであることを特徴とするロー
タリコンプレッサ。
1. A closed case, an electric element housed in the closed case, driven by the electric element, and
A rotary compressor having a rotary compression element that accommodates an eccentrically moving roller and has a cylinder chamber that is pressureally partitioned by a vane that reciprocates in the vane groove, in a rotary compressor between a side wall of the vane groove and the vane. At least the suction cylinder chamber side of the side wall end portion on the cylinder inner diameter side has an arc shape so that a small wedge-shaped gap is formed, and the radius of curvature thereof is 0.1 to 1.0 mm.
【請求項2】 密閉ケースと、この密閉ケースに収納さ
れた電動要素と、この電動要素により駆動され、かつ、
偏心運動するローラが収容され、ベーン溝内を往復動す
るベーンにより圧力的に仕切られたシリンダ室が設けら
れたロータリ式圧縮要素とを具備するロータリコンプレ
ッサにおいて、前記ベーン溝の側壁の少なくとも吸込シ
リンダ室側のシリンダ内径側端部とベーン間に小楔状間
隙が形成され、この小楔状間隙の頂角θは、tanθ=
1/500以下であることを特徴とするロータリコンプ
レッサ。
2. A closed case, an electric element housed in the closed case, driven by the electric element, and
A rotary compressor having a rotary compression element that accommodates an eccentrically moving roller, and is provided with a cylinder chamber that is pressure-partitioned by a vane that reciprocates in the vane groove, in at least a suction cylinder of a sidewall of the vane groove. A small wedge-shaped gap is formed between the chamber inner diameter side end and the vane, and the apex angle θ of this small wedge-shaped gap is tan θ =
A rotary compressor characterized by being 1/500 or less.
【請求項3】 請求項2に記載のロータリコンプレッサ
において、上記ベーン溝のシリンダ内径側端部は、連続
する複数の折曲平面で形成されることを特徴とするロー
タリコンプレッサ。
3. The rotary compressor according to claim 2, wherein an end of the vane groove on the cylinder inner diameter side is formed by a plurality of continuous bending planes.
【請求項4】 請求項1に記載のロータリコンプレッサ
において、上記シリンダ内径側端部は、ベーン溝加工後
にブラシ、砥石、サンドペーパ等の工具を用い、この工
具の形状がシリンダ内径側端部に転写しないように形成
されたことを特徴とするロータリコンプレッサ。
4. The rotary compressor according to claim 1, wherein the cylinder inner diameter side end portion uses a tool such as a brush, a grindstone, or sand paper after the vane groove processing, and the shape of the tool is transferred to the cylinder inner diameter side end portion. A rotary compressor characterized by being formed so as not to.
【請求項5】 請求項4に記載のロータリコンプレッサ
において、上記ブラシの直径は、ベーン溝幅より大き
く、シリンダ内径より小さいことを特徴とするロータリ
コンプレッサ。
5. The rotary compressor according to claim 4, wherein the brush has a diameter larger than a vane groove width and smaller than a cylinder inner diameter.
JP2002110398A 2002-04-12 2002-04-12 Rotary compressor Expired - Lifetime JP3867006B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002110398A JP3867006B2 (en) 2002-04-12 2002-04-12 Rotary compressor
TW92107276A TW574475B (en) 2002-04-12 2003-03-31 Rotary compressor
CN 03110411 CN1256514C (en) 2002-04-12 2003-04-11 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002110398A JP3867006B2 (en) 2002-04-12 2002-04-12 Rotary compressor

Publications (2)

Publication Number Publication Date
JP2003307191A true JP2003307191A (en) 2003-10-31
JP3867006B2 JP3867006B2 (en) 2007-01-10

Family

ID=29243234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002110398A Expired - Lifetime JP3867006B2 (en) 2002-04-12 2002-04-12 Rotary compressor

Country Status (3)

Country Link
JP (1) JP3867006B2 (en)
CN (1) CN1256514C (en)
TW (1) TW574475B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125782A1 (en) * 2008-04-10 2009-10-15 ダイキン工業株式会社 Rotary compressor
JP2009257276A (en) * 2008-04-21 2009-11-05 Panasonic Corp Rotary compressor
JP2009257273A (en) * 2008-04-21 2009-11-05 Panasonic Corp Rotary compressor
JP2009257274A (en) * 2008-04-21 2009-11-05 Panasonic Corp Rotary compressor
JP2010121546A (en) * 2008-11-20 2010-06-03 Hitachi Appliances Inc Rotary compressor
CN102562537A (en) * 2012-03-23 2012-07-11 松下·万宝(广州)压缩机有限公司 Compressor
WO2013080519A1 (en) * 2011-11-28 2013-06-06 パナソニック株式会社 Rotary compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007140596A1 (en) * 2006-06-08 2007-12-13 Larry Alvin Schuetzle Reciprocating compressor or pump and a portable tool powering system including a reciprocating compressor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125782A1 (en) * 2008-04-10 2009-10-15 ダイキン工業株式会社 Rotary compressor
JP2009257276A (en) * 2008-04-21 2009-11-05 Panasonic Corp Rotary compressor
JP2009257273A (en) * 2008-04-21 2009-11-05 Panasonic Corp Rotary compressor
JP2009257274A (en) * 2008-04-21 2009-11-05 Panasonic Corp Rotary compressor
JP2010121546A (en) * 2008-11-20 2010-06-03 Hitachi Appliances Inc Rotary compressor
WO2013080519A1 (en) * 2011-11-28 2013-06-06 パナソニック株式会社 Rotary compressor
JPWO2013080519A1 (en) * 2011-11-28 2015-04-27 パナソニックIpマネジメント株式会社 Rotary compressor
CN102562537A (en) * 2012-03-23 2012-07-11 松下·万宝(广州)压缩机有限公司 Compressor

Also Published As

Publication number Publication date
CN1451873A (en) 2003-10-29
TW574475B (en) 2004-02-01
TW200304989A (en) 2003-10-16
CN1256514C (en) 2006-05-17
JP3867006B2 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
US6132195A (en) Rotary compressor
JP2003307191A (en) Rotary compressor
CN214366711U (en) Rotary compressor
JP7142100B2 (en) Refrigerant compressor and refrigeration system using the same
JP2014034940A (en) Rotary compressor and refrigeration cycle device
KR100321687B1 (en) Fluid pump
CN212803582U (en) Rotary compressor
CN212690342U (en) Rotary compressor
JP2008099380A (en) Motor for compressor and compressor
CN201021665Y (en) Up and down end non plane leaf for rotary piston compressor
CN102852793A (en) Rotary compressor
JP2010261393A (en) Hermetic compressor and refrigerating cycle device
JP2004052675A (en) Gas compressor
JPH10148193A (en) Rotary compressor
JP6896056B2 (en) Rotary compressor and manufacturing method of rotary compressor
CN220522798U (en) Piston, compressor and refrigeration equipment
JPH11294353A (en) Rotary compressor
JPH03160186A (en) Fluid compressor
CN221400911U (en) Wear-resisting piece of compressor
WO2018138840A1 (en) Rotary compressor
JP2005083197A (en) Enclosed type rotary compressor
JP4011975B2 (en) Rotary compressor
CN116517835A (en) Piston, compressor and refrigeration equipment
JP2005264740A (en) Hermetic compressor
JPH1113663A (en) Rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061006

R150 Certificate of patent or registration of utility model

Ref document number: 3867006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term