JP3854468B2 - Plated steel material having high corrosion resistance and excellent workability, and manufacturing method thereof - Google Patents
Plated steel material having high corrosion resistance and excellent workability, and manufacturing method thereof Download PDFInfo
- Publication number
- JP3854468B2 JP3854468B2 JP2001043959A JP2001043959A JP3854468B2 JP 3854468 B2 JP3854468 B2 JP 3854468B2 JP 2001043959 A JP2001043959 A JP 2001043959A JP 2001043959 A JP2001043959 A JP 2001043959A JP 3854468 B2 JP3854468 B2 JP 3854468B2
- Authority
- JP
- Japan
- Prior art keywords
- plating
- less
- steel material
- plated steel
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Coating With Molten Metal (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、建造物、護岸工事、魚網、フェンス等の屋外に暴露して使用する鋼材の耐食性を高めためっき鋼材とその製造方法に関するものである。めっき鋼材としては、金網用鉄線、コンクリート補強用ファイバー、橋梁用ワイヤ、PWSワイヤ、PC鋼線、ロープ等のめっき鋼線、H型鋼、鋼矢板等の構造用鋼材、ねじ、ボルト、スプリングなどの機械用部品、鋼板等の鋼製品である。
【0002】
【従来の技術】
めっき鋼材、特に、めっき鋼線としては、亜鉛めっき鋼線や、これよりも耐食性に優れた亜鉛−アルミニウム合金めっき鋼線が使用されている。この亜鉛−アルミニウム合金めっき鋼線は、一般に鋼線を洗浄、脱脂等により清浄化処理し、次いで、フラックス処理を行った後、第一段として亜鉛を主体とする溶融めっきを施し、次いで、第二段としてAl添加量10%のZn−Al合金浴にて溶融めっきするか、または、直接Al添加量10%のZn−Al合金浴でめっきし、次いで、めっき浴から垂直に引き上げて、冷却後、巻取る方法で製造されている。
【0003】
この亜鉛−アルミニウム合金めっき鋼線は、耐食性が良好なものであるが、その耐食性をより高くするために、めっき厚を厚くするという方法がある。所要のめっき厚を確保するための方法の一つに鋼線の移動速度(線速)を上げて鋼線をめっき浴から高速で引き上げ、溶融めっき合金の粘性により該鋼線に付着するめっき合金量を増やすという方法がある。しかし、この方法では、高速化により、めっき鋼線の長手方向に直角の断面においてめっき厚みの不均一が生じ易くなるので、めっき設備上限界がある。そのため、現行のめっき設備による亜鉛めっきや、Zn−Al合金による溶融めっきにおいては、耐食性が十分とは言えず、めっき鋼線の長寿命化の要望が強い今日、この要望を完全に満足させ得ないという問題がある。
【0004】
この問題に対処すべく、めっき浴中にMgを添加して耐食性を高めたZn−Al−Mg合金系めっき組成が、特開平10−226865号公報に提案されている。このめっき組成に基づくめっき方法は、鋼板用の薄目付けを前提としており、この方法を建造物、護岸工事、魚網、フェンス等の屋外に暴露して使用する鋼線に代表される厚めっき鋼線に適用した場合、めっき鋼線の加工時にめっき層に割れが発生するという問題がある。また、特開平7−207421号公報には、Zn−Al−Mg合金めっきを厚目付けする方法が記載されているが、この方法をそのまま鋼線のめっきに適用した場合には、Fe−Zn合金層が厚くなり、めっき鋼線の加工時にFe−Zn合金層が割れたり、剥離を起こす等の問題がある。
【0005】
【発明が解決しようとする課題】
本発明は、上述した様々な問題を踏まえ、溶融亜鉛合金めっきを施しためっき鋼材、特に、めっき鋼線において、耐食性に優れ、該めっき鋼線の加工時、めっき層および/またはめっき合金層に、割れや剥離が起きないめっき鋼線とその製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは、上記課題を解決する手段について種々検討した結果、本発明に至ったもので、その要旨は以下の通りである。
【0008】
(1)第一段として、質量%で、Al:3%以下(ただし、0を含まない)、Mg:0.5%以下(ただし、0を含まない)を含む溶融亜鉛めっきを施しためっき鋼材において、平均組成が、質量%で、Al:4〜20%、Mg:0.8〜5%、Fe:2%以下、残部Znからなり、凝固組織が柱状晶であるめっき層を有し、かつ前記めっき層−地鉄界面に質量%で、Fe:25%以下、Al:2〜30%、Mg:0.5〜5%、残部Znからなる厚さ20μm以下の合金層を有することを特徴とする高耐食性を有し加工性に優れためっき鋼材。
【0009】
(2)第一段として、質量%で、Al:3%以下(ただし、0を含まない)、Mg:0.5%以下(ただし、0を含まない)を含む溶融亜鉛めっきを施しためっき鋼材において、平均組成が、質量%で、Al:4〜20%、Mg:0.8〜5%、Fe:2%以下、を含み、下記a,b,c,dの群のそれぞれの群から選ばれた一つまたは複数の元素を含み残部Znからなる凝固組織が柱状晶であるめっき層を有し、かつ前記めっき層−地鉄界面に質量%で、Fe:25%以下、Al:2〜30%、Mg:0.5〜5%を含み、下記a,b,c,dの群のそれぞれの群から選ばれた一つまたは複数元素を含み、残部Znからなる厚さ20μm以下の合金層を有することを特徴とする高耐食性を有し加工性に優れためっき鋼材。
a:Ti,Li,Be,Na,K,Ca,Cu,La,Hfのうち1つまたは複数の元素をそれぞれ0.01〜1.0質量%含む。
b:Mo,W,Nb,Taのうち1つまたは複数の元素をそれぞれ0.01〜0.2質量%含む。
c:Pb,Biのうち1つまたは複数の元素をそれぞれ0.01〜0.2質量%含む。
d:Sr,V,Cr,Mn,Snのうち1つまたは複数の元素をそれぞれ0.01〜0.5質量%含む。
【0010】
(3)前記めっき層組織に、Al−Znを主成分とするα相、Zn単相またはMg−Zn合金相からなるβ相、および、Zn−Al−Mg三元共晶相のそれぞれが存在することを特徴とする上記(1)または(2)に記載の高耐食性を有し加工性に優れためっき鋼材。
(4)前記めっき層組織に、Al−Znを主成分とするα相、Zn単相またはMg−Zn合金相からなるβ相、および、Zn−Al−Mg三元共晶相のそれぞれが存在し、かつβ相の体積率が20%以下であることを特徴とする上記(1)〜(3)の何れかの項に記載の高耐食性を有し加工性に優れためっき鋼材。
【0011】
(5)前記めっき鋼材に更に塗装被覆、重防食被覆のいずれか1種を有すことを特徴とする上記(1)〜(4)の何れかに記載の高耐食性を有し加工性に優れためっき鋼材。
(6)前記重防食被覆が、塩化ビニル、ポリエチレン、ポリウレタン、フッ素樹脂から選ばれた少なくとも1種の高分子化合物被覆であることを特徴とする上記(5)記載の高耐食性を有し加工性に優れためっき鋼材。
【0012】
(7)前記めっき鋼材がめっき鋼線であることを特徴とする上記(1)〜(6)の何れかの項に記載の高耐食性を有し加工性に優れためっき鋼材。
(8)めっき鋼材の製造方法において、鋼材に第一段として、質量%で、Al:3%以下(ただし、0を含まない)、Mg:0.5%以下(ただし、0を含まない)を含む溶融亜鉛めっきを、めっき浴浸漬時間20秒以下で施し、次いで、第二段として、質量%で、Al:4〜20%、Mg:0.8〜5%、Fe:2%以下、残部Znからなる溶融亜鉛合金めっきを、めっき浴浸漬時間20秒以下で施し、平均組成が、質量%で、Al:4〜20%、Mg:0.8〜5%、Fe:2%以下、残部Znからなるめっき層を形成するとともに、前記めっき層−地鉄界面に質量%で、Fe:25%以下、Al:2〜30%、Mg:0.5〜5%、残部Znからなる厚さ20μm以下の合金層を形成し、その後、300℃/sec以上の冷却速度で冷却することにより前記めっき層の凝固組織を柱状晶とすることを特徴とする高耐食性を有し加工性に優れためっき鋼材の製造方法。
【0014】
(9)前記第一段としての溶融亜鉛めっきを施し、次いで、前記第二段としての溶融亜鉛合金めっきを施す工程で、めっき鋼材をめっき浴から引き上げる部分を窒素ガスによりパージし、前記めっき浴表面およびめっき鋼材の酸化を防止することを特徴とする上記(8)に記載の高耐食性を有し加工性に優れためっき鋼材の製造方法。
【0015】
(10)前記第二段の溶融亜鉛合金めっき後、めっき鋼線を前記溶融亜鉛合金めっき浴から引き上げた直後に水スプレー、気水噴霧、または水流の何れか1種の手段による直接冷却により、めっき合金を凝固させることを特徴とする上記(8)に記載の高耐食性を有し加工性に優れためっき鋼材の製造方法。
【0016】
(11)前記めっき鋼線の冷却の際の冷却開始温度をめっき合金の融点+20℃以下とすることを特徴とする上記(8)に記載の高耐食性を有し加工性に優れためっき鋼材の製造方法。
(12)めっき鋼材の製造方法において、鋼材に第一段として、質量%で、Al:3%以下(ただし、0を含まない)、Mg:0.5%以下(ただし、0を含まない)を含む溶融亜鉛めっきを、めっき浴浸漬時間20秒以下で施し、次いで、第二段として、質量%で、Al:4〜20%、Mg:0.8〜5%、Fe:2%以下を含み、下記a,b,c,dの群のそれぞれの群から選ばれた一つまたは複数の元素を含み、残部Znからなる溶融亜鉛合金めっきを、めっき浴浸漬時間20秒以下で施し、平均組成が、質量%で、Al:4〜20%、Mg:0.8〜5%、Fe:2%以下を含み、下記a,b,c,dの群のそれぞれの群から選ばれた一つまたは複数の元素を含み、残部Znからなるめっき層を形成するとともに、前記めっき層−地鉄界面に質量%で、Fe:25%以下、Al:2〜30%、Mg:0.5〜5%、残部Znからなる厚さ20μm以下の合金層を形成し、その後、300℃/sec以上の冷却速度で冷却することにより前記めっき層の凝固組織を柱状晶とすることを特徴とする高耐食性を有し加工性に優れためっき鋼材の製造方法。
a:Ti,Li,Be,Na,K,Ca,Cu,La,Hfのうち1つまたは複数の元素をそれぞれ0.01〜1.0質量%含む。
b:Mo,W,Nb,Taのうち1つまたは複数の元素をそれぞれ0.01〜0.2質量%含む。
c:Pb,Biのうち1つまたは複数の元素をそれぞれ0.01〜0.2質量%含む。
d:Sr,V,Cr,Mn,Snのうち1つまたは複数の元素をそれぞれ0.01〜0.5質量%含む。
【0018】
(13)前記第一段としての溶融亜鉛めっきを施し、次いで、前記第二段としての溶融亜鉛合金めっきを施す工程で、めっき鋼材をめっき浴から引き上げる部分を窒素ガスによりパージし、前記めっき浴表面およびめっき鋼材の酸化を防止することを特徴とする上記(12)記載の高耐食性を有し加工性に優れためっき鋼材の製造方法。
【0019】
(14)前記第二段の溶融亜鉛合金めっき後、めっき鋼材を前記溶融亜鉛合金めっき浴から引き上げた直後に水スプレー、気水噴霧、または水流の何れか1種の手段による直接冷却により、めっき合金を凝固させることを特徴とする上記(12)記載の高耐食性を有し加工性に優れためっき鋼材の製造方法。
【0020】
(15)前記めっき鋼材の冷却の際の冷却開始温度をめっき合金の融点+20℃以下とすることを特徴とする上記(12)または(14)に記載の高耐食性を有し加工性に優れためっき鋼材の製造方法。
【0021】
【発明の実施の形態】
以下に、本発明の、第一段として、質量%で、Al:3%以下(ただし、0を含まない)、Mg:0.5%以下(ただし、0を含まない)を含む溶融亜鉛めっきを施しためっき鋼材、特にめっき鋼線を中心にして詳細に説明する。本発明のめっき鋼線において、めっき層の平均組成は、質量%で、Al:4〜20%、Mg:0.8〜5%、Fe:2%以下、残部Znとしており、更に、前記めっき層−地鉄界面に質量%で、Fe:25%以下、Al:2〜30%、Mg:0.5〜5%、残部Znからなる厚さ20μm以下の合金層を有している。また、本発明のめっき鋼線においては、めっき層の平均組成は、質量%で、Al:4〜20%、Mg:0.8〜5%、Fe:2%以下に加えて、耐食性向上元素、めっき硬さ向上元素、めっき組織微細化元素、めっき加工性向上元素のいずれか一つまたは複数の元素を含み、残部Znとしており、更に、前記めっき層−地鉄界面に質量%で、Fe:25%以下、Al:2〜30%、Mg:0.5〜5%、残部Znからなる厚さ20μm以下の合金層を有している。先ず、めっき層を形成する合金元素の役割りとその含有量について説明する。
【0022】
Alは、耐食性を高め、まためっき層中の他の元素の酸化防止効果があるが、4%未満の添加ではめっき浴中におけるMgの酸化防止効果が得られない。また、Alを20%を超えて添加すると形成されるめっき層が硬く脆くなり、このため加工が行えなくなる。そのため、めっき層中のAl添加量の範囲は4〜20%とする。鋼線のめっきの場合、厚目付けを行うため望ましくは9〜14%とし、この範囲で安定しためっき層を得ることができる。
【0023】
Mgは、めっきの腐食生成物を均一に生成し、このMgを含有する腐食生成物には腐食の進行を妨げる作用があるので、Mgにはめっき合金の耐食性を向上する効果がある。しかし、0.8%未満の添加では耐食性向上の効果を得ることができず、一方、5%を超えて添加するとめっき浴表面に酸化物が生成し易くなり、ドロスを大量に発生してめっき操業が困難になる。Mgが5%を超えるとドロス発生量が多くなり、ドロス除去の頻度が高くなり、めっき操業が困難になった。耐食性とドロス発生量の両立にため、Mg添加量の範囲は0.8〜5%とする。
【0024】
Feは、めっきする際に鋼から溶出する場合、或いはめっき地金に不純物として存在する場合があるが、2%を超えると耐食性の低下を引き起こすため上限を2%とした。なお、Feの添加量の下限は特に設けないが、場合によってはFeは含まれなくとも良い。
また、本発明においては、上記Al,Mg,Feに加え、下記a,b,c,dの群のそれぞれの群から選ばれた一つまたは複数の元素を含むことができる。
a:Ti,Li,Be,Na,K,Ca,Cu,La,Hfのうち1つまたは複数の元素をそれぞれ0.01〜1.0質量%含む。
b:Mo,W,Nb,Taのうち1つまたは複数の元素をそれぞれ0.01〜0.2質量%含む。
c:Pb,Biのうち1つまたは複数の元素をそれぞれ0.01〜0.2質量%含む。
d:Sr,V,Cr,Mn,Snのうち1つまたは複数の元素をそれぞれ0.01〜0.5質量%含む。
【0025】
Tiは耐食性を向上させる効果があり、同様の効果を持つ元素としてはLi,Be,Na,K,Ca,Cu,La,Hfなどがある。そのうち1つまたは複数の元素を0.01〜1.0質量%添加することにより耐食性を向上させる。0.01%未満では効果が認められず、1.0%を越えるとめっきが凝固する際に相分離をおこす可能性があるために0.01〜1.0%とする。
【0026】
Moはメッキ層の硬さを向上させ、傷つきにくくする効果があり、同様の効果を持つものとしてはW,Nb,Taなどがあり、そのうち1つまたは複数の元素を0.01〜0.2質量%添加することによりメッキ層の硬さを向上させ、傷つきにくくする。
PbとBiにはめっき表面の結晶を細かくする効果がある。めっき面の大きい板や形鋼などのめっき鋼材においてめっき表面にめっき合金の結晶が大きく成長して、模様のように見えることがある。この現象を回避するためにZnおよびFeに固溶しないPb,Biを添加すると、めっき中にて凝固の核となり微細な結晶成長を促進し、模様が発生しない。この効果が得られる範囲が0.01〜0.2質量%である。
【0027】
Sr,V,Cr,Mn,Snには加工性を向上させる効果がある。0.01%未満では効果が認められず、0.5%を越えると偏析が顕著となりめっき鋼材を加工する際に割れやすくなるために0.01〜0.5%とする。
めっき層−地鉄界面には、Fe−Znを主とする合金層が形成される。このFe−Zn合金層の構造は厳密には、質量%で、Fe:25%以下、Al:2〜30%、Mg:0.5〜5%、残部Znからなる合金層であり、その厚さ20μm以下である。Fe−Zn合金層は脆い性質があり、Feが25%を超えると加工時に合金層が割れ、めっき剥離を引き起こすため上限を25%とした。Feの好ましい添加量は2〜25%とする。この合金層中にAlが存在することにより合金層に延性が得られるが、30%を超えると硬化相を発生し、加工性の低下をもたらすため上限を30%とした。Alの添加量は2〜30%とする。Mgには合金層の耐食性向上効果があるが、同時にこの合金層の脆化をももたらすので、脆化を起こさない上限が5%であるため5%を上限とした。Mgの添加量は0.5〜5%とする。
【0028】
上記合金層が厚い場合には、合金層が割れたり、合金層と地鉄界面または合金層とめっき界面が割れ易くなる。めっき合金層の厚みが20μmを超えると割れが多くなりめっきとして実用に耐えなくなる。この合金層は本来めっき層より耐食性が劣るために厚みが薄い方が望ましく、10μm以下、更に好ましくは3μm以下が望ましいが、理想的にはこの合金層が存在しない方が望ましい。上述した理由から合金層の厚みは加工性を損なわない上限が20μmであるため、Fe−Zn合金層の厚みは20μm以下とする。
【0029】
更に、本発明によるめっき鋼材に施されためっき層の凝固組織は柱状晶を有するように製造される。めっき層の凝固組織を柱状晶化する目的は、めっき鋼材に耐食性を付与するためである。この柱状晶組織は、溶融亜鉛めっき後、更に溶融亜鉛合金めっき処理を行い、その後冷却処理を冷却速度300℃/sec以上で行うことによりめっき層の凝固組織を柱状晶化することができる。
【0030】
図1に、めっき層の凝固組織の模式図を示した。めっき冷却速度は(a)350℃/sec、(b)150℃/secである。図1(a)の本発明で得られためっき層の凝固組織は柱状晶のめっき層の凝固組織である。凝固時に発達した樹枝状組織の間に、微細な粒状晶組織ができている。組織が細かくなり、耐食性が低い組織が連続していないため表層から腐食が進行しにくく耐食性が高い。図1(b)は粒状晶組織を呈している。凝固組織単位の粒が大きいため、耐食性が低い組織が存在した場合、表層から腐食が進行し易く樹枝状晶に比べて耐食性が低い。
【0031】
更に、本発明におけるめっき鋼材においては、Al,Mgを主成分とするのでメッキ後の冷却により、メッキ−地鉄界面に存在する合金層の外側のめっき合金層(めっき層)中に、Al−Znを主成分とするα相と、Zn単相またはMg−Zn合金相からなるβ相、およびZn−Al−Mg三元共晶相を共存させることができる。このうち、Zn−Al−Mg三元共晶相が存在することにより、腐食生成物の均一生成と腐食生成物による腐食の進展防止効果が得られる。また、β相は、他の相と比較して耐食性が劣るために、局部的な腐食を招き易い。そして、β相の体積率が20%を超えると耐食性の低下を招くのでその体積率は20%以下とする。
【0032】
めっき後の鋼材を水冷により緩冷却すると、めっき−地鉄界面に存在するFe−Zn主体の合金層の外側のめっき合金層(めっき層)の組織を柱状晶組織とすることができることは図3に示した通りである。めっき層を上記柱状晶組織にした場合、めっき中の生成する各組織が細かくなり、加工性を多少犠牲にしても耐食性の向上が顕著である。
【0033】
本発明のめっき鋼材の製造方法としては、二段めっき法を採用する。第一段として、亜鉛を主体とする溶融亜鉛めっきを施しFe−Zn合金層を形成し、次いで、第二段として、本発明で規定する平均組成を有する溶融亜鉛合金めっきを施すことにより、本発明のめっき鋼材を効率的に得ることができる。第一段と溶融亜鉛めっきで用いる溶融亜鉛としては、質量%で、Al:3%以下、Mg:0.5%以下を含む溶融亜鉛合金も使用できる。第一段の溶融亜鉛めっきでFe−Zn合金層を得る場合、該Fe−Zn合金層中にAl,Mgが含まれると、めっき合金中にAl,Mgが入り易くなるという効果がある。
【0034】
本発明のめっき鋼材の製造方法においては、めっき鋼材をめっき浴から引き上げる部分を窒素ガスによりパージし、めっき浴表面およびめっき鋼材の酸化を防止することで、加工性の向上を図ることができる。めっき直後にめっき表面に酸化物が生成したり、或いは、めっき浴表面に生成した酸化物が付着した場合、めっき鋼材の加工時に酸化物を核としてめっきが割れることがある。このため取り出し部の酸化防止は重要な要素となる。酸化防止には、窒素の他にアルゴン、ヘリウム等の不活性ガスを用いることも可能であるが、コスト面からは窒素が最も優れている。
【0035】
本発明のめっき鋼材を二段めっき法で得る場合において、めっき合金の成長を適切なものにするには、第一段として亜鉛を主体とする溶融亜鉛めっきを、めっき浴浸漬時間20秒以下で施し、次いで、第二段として溶融亜鉛合金めっきを、めっき浴浸漬時間20秒以下で施すことが必要である。これより、長時間でめっきを施すと、合金層の厚みが厚くなり20μmをを超えてしまうので第一段として亜鉛を主体とする溶融めっきを、めっき浴浸漬時間20秒以下で、次いで、第二段として溶融亜鉛合金めっきを、めっき浴浸漬時間20秒以下で施す。
【0036】
また、めっき後、めっき鋼材の冷却に際しては、めっき組織が微細化して柱状晶化するように300℃/sec以上の冷却速度で冷却可能な冷却手段を採用すればよく、例えば、水スプレー、気水噴霧、または水流の何れかの手段による直接冷却により、めっき合金を凝固させる手段が採用されるが、好ましくは水スプレー或いは気水噴霧により、前記冷却時の冷却開始温度をめっき合金の融点+20℃とすることによりより安定しためっき層を得ることができる。
【0037】
なお、本発明で使用されるめっき鋼材の成分組成としては、低炭素鋼の鋼材であれば適用可能であり、代表的には、質量%で、C:0.02〜0.25%、Si:1%以下、Mn:0.6%以下、P:0.04%以下、S:0.04%以下、残部Feおよび不可避的不純物からなる鋼材が好ましい。
また、本発明においては最終的にめっき鋼線表面に塗装被覆を施すか、或いは塩化ビニル、ポリエチレン、ポリウレタン、フッ素樹脂から選ばれた少なくとも1種の高分子化合物被覆としての重防食被覆を施すことにより更に耐食性を向上させることができる。
【0038】
本発明は、めっき鋼材、特に鋼線を中心に説明したが、鋼板を始め鋼管や鋼構造物などにも十分適用が可能であることは勿論である。
【0039】
【実施例】
〈実施例1〉
鋼線材 JIS G 3505 SWRM6 の表面に純Znメッキ施した4mm径の鋼線に、表1に示す条件にてZn−Al−Mg系亜鉛合金メッキを施し評価した。比較としてメッキ組成、Fe−Zn合金層を変えたものを同様に評価した。メッキ組織の観察はメッキ線のC断面を研磨後EPMAにて観察した。合金層の組成分析はビーム径を2μmとして定量分析を行った。耐食性は、250時間の連続塩水噴霧にて試験前後の重量差から単位面積あたりメッキが腐食された量を腐食減量とした。本試験では20g/m2 以下を合格として合否を判定した。
【0040】
加工性の評価は、作成したメッキ線を6mm径の鋼線に6回巻き付け、その表面を目視観察により割れの有無を判定した。また、割れ判定後のサンプルにセロハンテープを張り付けた後に、はがした際にメッキの剥離の有無を観察し、割れが1本以下、剥離がないことを合格の条件とした。
表1にメッキ組成、合金層組成および厚みメッキの組織およびβ相体積率と耐食性、加工性、メッキ浴のドロス生成との関係を示す。本発明例はいずれも良好な耐食性、加工性を示し、ドロス生成も少なかった。
【0041】
比較例の1〜5はメッキ合金組成が本発明範囲外のものである。比較例1,2はAlまたはMg量が下限より低く耐食性が劣る。比較例3〜5はAl,MgまたはFe量が上限より高く耐食性の低下をおこしている。比較例の6,7はメッキ合金層の厚みが本発明の範囲外の場合であり、加工性が劣る結果となった。比較例の8〜10は、メッキ組織中のβ相が本発明の範囲外であり、耐食性が劣る。
【0042】
表2は伸線加工による耐食性の差を比較したものである。同じ組成のメッキの冷却速度を変えて、組織を粒状晶としたものと柱状晶としたメッキ鋼線を作成し、250時間の連続塩水噴霧試験を行った。その結果、いずれも基準は満たしているが、柱状晶より粒状晶の方が伸線加工性に優れることが示された。
【0043】
【表1】
【0044】
【表2】
【0045】
〈実施例2〉
鋼線材JIS G 3505 SWRM6の表面に純Znメッキ施した4mm 径の鋼線に、表3に示す条件にてZn−Al−Mg系亜鉛合金メッキを施し評価した。比較としてメッキ組成、Fe-Zn 合金層を変えたものを同様に評価した。メッキ組織の観察はメッキ線のC断面を研磨後EPMAにて観察した。合金層の組成分析はビーム径を2μmとして定量分析を行った。耐食性は、250時間の連続塩水噴霧にて試験前後の重量差から単位面積あたりメッキが腐食された量を腐食減量とした。本試験では20g/m2以下を合格として合否を判定した。
【0046】
【表3】
【0047】
加工性の評価は、作成したメッキ線を6mm径の鋼線に6回巻き付け、その表面を目視観察により割れの有無を判定した。また、割れ判定後のサンプルにセロハンテープを張り付けた後に、はがした際にメッキの剥離の有無を観察し、割れが1本以下、剥離がないことを合格の条件とした。
表4にメッキ組成、合金層組成および厚みメッキの組織およびβ相体積率と耐食性、加工性、メッキ浴のドロス生成との関係を示す。本発明例はいずれも良好な耐食性、加工性を示し、ドロス生成も少なかった。
【0048】
【表4】
【0049】
比較例の11〜15はメッキ合金組成が本発明範囲外のものである。比較例11、12はAlまたはMg量が下限より低く耐食性が劣る。比較例13〜15はAl、MgまたはFe量が上限より高く耐食性の低下をおこしている。比較例の16、17はメッキ合金層の厚みが本発明の範囲外の場合であり、加工性が劣る結果となった。比較例の18〜20は、メッキ組織中のβ相が本発明の範囲外であり、耐食性が劣る。
【0050】
表5は伸線加工による耐食性の差を比較したものである。同じ組成のメッキの冷却速度を変えて、組織を粒状晶としたものと柱状晶としたメッキ鋼線を作成し、250時間の連続塩水噴霧試験を行った。その結果、いずれも基準は満たしているが、柱状晶より粒状晶の方が伸線加工性に優れることが示された。
【0051】
【表5】
【0052】
【発明の効果】
以上説明したように、本発明によれば高耐食性を有する加工性に優れた亜鉛めっき鋼材、特に、亜鉛めっき鋼線を得ることができる。
【図面の簡単な説明】
【図1】(a)は、柱状晶組織を有するめっき鋼線の組織の断面を示す模式図であり、
(b)は、粒状晶組織を有するめっき鋼線の組織の断面を示す模式図である。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a plated steel material having improved corrosion resistance of a steel material used by being exposed outdoors such as a building, revetment work, a fish net, and a fence, and a method for producing the same. Plating steel materials include steel wire for wire mesh, fiber for reinforcing concrete, wire for bridge, PWS wire, PC steel wire, plating steel wire such as rope, structural steel such as H-shaped steel, steel sheet pile, screw, bolt, spring, etc. Steel products such as machine parts and steel plates.
[0002]
[Prior art]
As a plated steel material, in particular, a galvanized steel wire, a galvanized steel wire or a zinc-aluminum alloy plated steel wire having better corrosion resistance is used. This zinc-aluminum alloy-plated steel wire is generally cleaned by cleaning, degreasing, etc., then flux-treated, and then hot-plated mainly with zinc as the first stage, Hot-dip plating in a Zn-Al alloy bath with 10% Al addition as two stages or plating directly with a Zn-Al alloy bath with 10% Al addition and then pulling up vertically from the plating bath and cooling After that, it is manufactured by a winding method.
[0003]
This zinc-aluminum alloy-plated steel wire has good corrosion resistance, but there is a method of increasing the plating thickness in order to increase the corrosion resistance. One method for securing the required plating thickness is to increase the moving speed (wire speed) of the steel wire, pull the steel wire out of the plating bath at a high speed, and adhere to the steel wire due to the viscosity of the hot dipped alloy There is a way to increase the amount. However, this method has a limitation on the plating equipment because non-uniform plating thickness is likely to occur in a cross section perpendicular to the longitudinal direction of the plated steel wire due to high speed. Therefore, in today's galvanizing with existing plating equipment and hot dip plating with Zn-Al alloy, it cannot be said that corrosion resistance is sufficient, and today there is a strong demand for longer life of plated steel wires. There is no problem.
[0004]
In order to cope with this problem, a Zn-Al-Mg alloy-based plating composition in which Mg is added to a plating bath to improve corrosion resistance is proposed in Japanese Patent Laid-Open No. 10-226865. The plating method based on this plating composition is premised on thinning for steel plates, and this method is a thick-plated steel wire typified by steel wires that are exposed to the outdoors such as buildings, revetments, fish nets, and fences. When applied to, there is a problem that cracks occur in the plating layer during the processing of the plated steel wire. Japanese Patent Application Laid-Open No. 7-207421 describes a method for thickening Zn—Al—Mg alloy plating. When this method is applied as it is to steel wire plating, an Fe—Zn alloy is used. There is a problem that the layer becomes thick and the Fe—Zn alloy layer is cracked or peeled off when the plated steel wire is processed.
[0005]
[Problems to be solved by the invention]
In view of the various problems described above, the present invention is excellent in corrosion resistance in a plated steel material subjected to hot dip zinc alloy plating, particularly a plated steel wire, and is applied to a plated layer and / or a plated alloy layer during processing of the plated steel wire. An object of the present invention is to provide a plated steel wire that does not crack or peel and a method for producing the same.
[0006]
[Means for Solving the Problems]
As a result of various studies on means for solving the above problems, the present inventors have arrived at the present invention, and the gist thereof is as follows.
[0008]
(1) As a first stage, plating by hot dip galvanizing containing, in mass%, Al: 3% or less (however, not including 0), Mg: 0.5% or less (however, not including 0) In steel materials, the average composition is mass%, Al: 4 to 20%, Mg: 0.8 to 5%, Fe: 2% or less, the balance is Zn, and the solidified structure is a columnar crystal. And having an alloy layer of Fe: 25% or less, Al: 2 to 30%, Mg: 0.5 to 5%, and the remainder Zn of 20 μm or less in mass% at the plating layer-base iron interface. Plating steel with high corrosion resistance and excellent workability.
[0009]
(2) As a first stage, plating by hot dip galvanization containing, by mass%, Al: 3% or less (however, not including 0), Mg: 0.5% or less (however, not including 0) In steel materials, the average composition is mass%, Al: 4-20%, Mg: 0.8-5%, Fe: 2% or less, and each group of the following groups a, b, c, d A solidified structure comprising one or a plurality of elements selected from the group consisting of the remaining Zn has a plating layer having a columnar crystal, and mass% at the plating layer-base metal interface, Fe: 25% or less, Al: 2 to 30%, Mg: 0.5 to 5%, including one or more elements selected from the following groups a, b, c, and d, and a thickness of 20 μm or less consisting of the balance Zn A plated steel material having high corrosion resistance and excellent workability, characterized by having an alloy layer of
a: Each of Ti, Li, Be, Na, K, Ca, Cu, La, and Hf contains one or more elements of 0.01 to 1.0 mass%.
b: One or more elements of Mo, W, Nb, and Ta are each included in an amount of 0.01 to 0.2% by mass.
c: One or more elements of Pb and Bi are each included in an amount of 0.01 to 0.2% by mass.
d: One or more elements of Sr, V, Cr, Mn, and Sn are each included in an amount of 0.01 to 0.5 mass%.
[0010]
( 3 ) In the plating layer structure, there are an α phase mainly composed of Al—Zn, a β phase composed of a Zn single phase or an Mg—Zn alloy phase, and a Zn—Al—Mg ternary eutectic phase. A plated steel material having high corrosion resistance and excellent workability as described in (1) or ( 2 ) above.
( 4 ) In the plating layer structure, each of an α phase mainly composed of Al—Zn, a β phase composed of a Zn single phase or an Mg—Zn alloy phase, and a Zn—Al—Mg ternary eutectic phase exists. In addition, the plated steel material having high corrosion resistance and excellent workability according to any one of the above (1) to ( 3 ), wherein the volume fraction of the β phase is 20% or less.
[0011]
( 5 ) The plated steel material further has any one of a coating coating and a heavy anticorrosion coating, and has high corrosion resistance and excellent workability according to any one of the above (1) to ( 4 ) Plated steel.
( 6 ) The heavy anticorrosion coating is at least one polymer compound coating selected from vinyl chloride, polyethylene, polyurethane, and fluororesin, and has high corrosion resistance and processability as described in ( 5 ) above Excellent plated steel material.
[0012]
(7) The plated steel material having high corrosion resistance and excellent workability according to any one of (1) to (6), wherein the plated steel material is a plated steel wire.
(8) In the manufacturing method of the plated steel material, as a first stage in the steel material, in mass%, Al: 3% or less (however, not including 0), Mg: 0.5% or less (however, not including 0) Hot-dip galvanizing containing a plating bath soaked in a plating bath immersion time of 20 seconds or less, and then, as a second stage, by mass%, Al: 4-20%, Mg: 0.8-5%, Fe: 2% or less, Hot-dip zinc alloy plating composed of the balance Zn is applied in a plating bath immersion time of 20 seconds or less, and the average composition is mass%, Al: 4 to 20%, Mg: 0.8 to 5%, Fe: 2% or less, While forming the plating layer which consists of remainder Zn, the thickness which consists of Fe: 25% or less, Al: 2-30%, Mg: 0.5-5%, remainder Zn in the said plating layer-base metal interface in the mass%. An alloy layer having a thickness of 20 μm or less is formed, and then cooled at a cooling rate of 300 ° C./sec or more. Method for producing a plated steel material with excellent workability has a high corrosion resistance, characterized in that the solidified structure of the plating layer and the columnar crystals by.
[0014]
( 9 ) In the step of performing hot dip galvanization as the first stage and then hot dip zinc alloy plating as the second stage, the portion where the plated steel material is pulled up from the plating bath is purged with nitrogen gas, and the plating bath The method for producing a plated steel material having high corrosion resistance and excellent workability as described in (8) above, wherein oxidation of the surface and the plated steel material is prevented.
[0015]
( 10 ) After the second stage of hot dip zinc alloy plating, immediately after the plated steel wire is pulled up from the hot dip zinc alloy plating bath, by direct cooling by any one means of water spray, air spray, or water flow, The method for producing a plated steel material having high corrosion resistance and excellent workability according to (8), wherein the plated alloy is solidified.
[0016]
( 11 ) The cooling start temperature at the time of cooling the plated steel wire is the melting point of the plating alloy + 20 ° C. or less. The plated steel material having high corrosion resistance and excellent workability as described in (8) above Production method.
( 12 ) In the manufacturing method of the plated steel material, as a first stage in the steel material, in mass%, Al: 3% or less (however, not including 0), Mg: 0.5% or less (however, not including 0) The hot dip galvanizing is performed at a plating bath immersion time of 20 seconds or less, and then, as a second stage, by mass%, Al: 4 to 20%, Mg: 0.8 to 5%, Fe: 2% or less Including, one or more elements selected from each of the following groups a, b, c, d, and a hot dip zinc alloy plating composed of the balance Zn is applied for a plating bath immersion time of 20 seconds or less, and the average The composition is one selected from each of the following groups a, b, c, d including Al: 4-20%, Mg: 0.8-5%, Fe: 2% or less in terms of mass%. And forming a plating layer comprising the remaining Zn and containing one or a plurality of elements, and the plating layer- An alloy layer consisting of Fe: 25% or less, Al: 2 to 30%, Mg: 0.5 to 5% and the balance Zn is formed at the iron interface in a mass of 20 μm or less, and then 300 ° C./sec. A method for producing a plated steel material having high corrosion resistance and excellent workability, characterized in that the solidification structure of the plating layer is formed into columnar crystals by cooling at the above cooling rate.
a: Each of Ti, Li, Be, Na, K, Ca, Cu, La, and Hf contains one or more elements of 0.01 to 1.0 mass%.
b: One or more elements of Mo, W, Nb, and Ta are each included in an amount of 0.01 to 0.2% by mass.
c: One or more elements of Pb and Bi are each included in an amount of 0.01 to 0.2% by mass.
d: One or more elements of Sr, V, Cr, Mn, and Sn are each included in an amount of 0.01 to 0.5 mass%.
[0018]
( 13 ) In the step of performing hot dip galvanization as the first stage and then hot dip zinc alloy plating as the second stage, the portion where the plated steel material is pulled up from the plating bath is purged with nitrogen gas, and the plating bath The method for producing a plated steel material having high corrosion resistance and excellent workability as described in ( 12 ) above, wherein oxidation of the surface and the plated steel material is prevented.
[0019]
( 14 ) After the second stage of hot dip zinc alloy plating, immediately after the plated steel material is lifted from the hot dip zinc alloy plating bath, plating is performed by direct cooling by means of any one of water spray, air spray, or water flow. The method for producing a plated steel material having high corrosion resistance and excellent workability as described in ( 12 ) above, wherein the alloy is solidified.
[0020]
( 15 ) The cooling start temperature at the time of cooling the plated steel material is set to the melting point of the plating alloy + 20 ° C. or less, and has high corrosion resistance and excellent workability as described in ( 12 ) or ( 14 ) above Manufacturing method of plated steel.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
In the following, as a first step of the present invention, hot dip galvanizing containing, by mass%, Al: 3% or less (however, not including 0), Mg: 0.5% or less (however, not including 0) This will be described in detail with reference to the plated steel material subjected to the above , particularly the plated steel wire. In the plated steel wire of the present invention, the average composition of the plating layer is, in mass%, Al: 4 to 20%, Mg: 0.8 to 5%, Fe: 2% or less, and the balance Zn. An alloy layer having a thickness of 20 μm or less composed of Fe: 25% or less, Al: 2 to 30%, Mg: 0.5 to 5%, and the balance Zn in mass% at the layer-base iron interface. In the plated steel wire of the present invention, the average composition of the plating layer is mass%, and Al: 4 to 20%, Mg: 0.8 to 5%, Fe: 2% or less, and an element for improving corrosion resistance , Including any one or more of a plating hardness improving element, a plating structure refinement element, and a plating processability improving element, the balance being Zn, and in addition, in a mass% at the plating layer-base metal interface, Fe : 25% or less, Al: 2 to 30%, Mg: 0.5 to 5%, and an alloy layer having a thickness of 20 μm or less composed of the balance Zn. First, the role and content of the alloy element forming the plating layer will be described.
[0022]
Al enhances corrosion resistance and has an effect of preventing the oxidation of other elements in the plating layer. However, if it is added in an amount of less than 4%, the effect of preventing the oxidation of Mg in the plating bath cannot be obtained. Further, when Al is added in excess of 20%, the formed plating layer becomes hard and brittle, and therefore, the processing cannot be performed. Therefore, the range of Al addition amount in a plating layer shall be 4-20%. In the case of steel wire plating, the thickness is preferably set to 9 to 14%, and a stable plating layer can be obtained in this range.
[0023]
Mg uniformly generates a corrosion product of plating, and the corrosion product containing Mg has an action of hindering the progress of corrosion. Therefore, Mg has an effect of improving the corrosion resistance of the plating alloy. However, if the addition is less than 0.8%, the effect of improving the corrosion resistance cannot be obtained. On the other hand, if the addition exceeds 5%, an oxide is easily generated on the surface of the plating bath, and a large amount of dross is generated and plating is performed. Operation becomes difficult. When Mg exceeds 5%, the amount of dross generated increases, the frequency of dross removal increases, and the plating operation becomes difficult. In order to achieve both corrosion resistance and dross generation amount, the range of Mg addition amount is set to 0.8 to 5%.
[0024]
Fe may be eluted from the steel during plating or may be present as an impurity in the plating metal, but if it exceeds 2%, the corrosion resistance is lowered, so the upper limit was made 2%. In addition, although the minimum of the addition amount of Fe is not specifically provided, Fe may not be contained depending on the case.
In the present invention, in addition to the Al, Mg, and Fe, one or more elements selected from the following groups a, b, c, and d can be included.
a: Each of Ti, Li, Be, Na, K, Ca, Cu, La, and Hf contains one or more elements of 0.01 to 1.0 mass%.
b: One or more elements of Mo, W, Nb, and Ta are each included in an amount of 0.01 to 0.2% by mass.
c: One or more elements of Pb and Bi are each included in an amount of 0.01 to 0.2% by mass.
d: One or more elements of Sr, V, Cr, Mn, and Sn are each included in an amount of 0.01 to 0.5 mass%.
[0025]
Ti has an effect of improving the corrosion resistance, and elements having the same effect include Li, Be, Na, K, Ca, Cu, La, Hf and the like. Among them, the corrosion resistance is improved by adding 0.01 to 1.0 mass% of one or more elements. If it is less than 0.01%, no effect is observed, and if it exceeds 1.0%, phase separation may occur when the plating solidifies, so 0.01 to 1.0 %.
[0026]
Mo has the effect of improving the hardness of the plating layer and making it hard to be damaged. Examples of similar effects include W, Nb, Ta, etc. Among them, one or more elements are added in an amount of 0.01 to 0.2. Addition of mass% improves the hardness of the plating layer and makes it hard to be damaged.
Pb and Bi have the effect of making the crystal on the plating surface finer. In a plated steel material such as a plate having a large plating surface or a shaped steel, a crystal of the plating alloy grows greatly on the plating surface and may appear as a pattern. In order to avoid this phenomenon, when Pb and Bi that are not dissolved in Zn and Fe are added, they become solidification nuclei during plating and promote fine crystal growth, so that no pattern is generated. The range in which this effect is obtained is 0.01 to 0.2% by mass.
[0027]
Sr, V, Cr, Mn, and Sn have an effect of improving workability. If it is less than 0.01%, the effect is not recognized, and if it exceeds 0.5%, segregation becomes prominent and it becomes easy to break when processing the plated steel material, so the content is made 0.01 to 0.5%.
An alloy layer mainly composed of Fe—Zn is formed at the plating layer-base iron interface. Strictly speaking, the structure of this Fe-Zn alloy layer is an alloy layer consisting of Fe: 25% or less, Al: 2 to 30%, Mg: 0.5 to 5%, and the balance Zn in mass%. The thickness is 20 μm or less. The Fe—Zn alloy layer has brittle properties, and when Fe exceeds 25%, the alloy layer cracks during processing and causes plating peeling, so the upper limit was made 25%. The preferable addition amount of Fe is 2 to 25%. When Al is present in the alloy layer, ductility is obtained in the alloy layer. However, if it exceeds 30%, a hardened phase is generated and the workability is lowered, so the upper limit is made 30%. The addition amount of Al is 2 to 30%. Mg has an effect of improving the corrosion resistance of the alloy layer, but also causes embrittlement of the alloy layer. Therefore, the upper limit that does not cause embrittlement is 5%, so 5% was made the upper limit. The amount of Mg added is 0.5 to 5%.
[0028]
When the alloy layer is thick, the alloy layer is easily cracked, or the alloy layer and the ground iron interface or the alloy layer and the plating interface is easily cracked. When the thickness of the plating alloy layer exceeds 20 μm, cracks increase and the plating cannot be practically used. Since this alloy layer is inherently inferior in corrosion resistance to the plated layer, it is desirable that the thickness is thinner, preferably 10 μm or less, more preferably 3 μm or less, but ideally it is desirable that this alloy layer does not exist. For the reasons described above, the upper limit of the thickness of the alloy layer that does not impair the workability is 20 μm, so the thickness of the Fe—Zn alloy layer is 20 μm or less.
[0029]
Furthermore, the solidification structure of the plating layer applied to the plated steel material according to the present invention is manufactured to have columnar crystals. The purpose of crystallizing the solidified structure of the plating layer is to impart corrosion resistance to the plated steel material. This columnar crystal structure can be subjected to a hot dip zinc alloy plating treatment after the hot dip galvanizing, and then the cooling treatment is performed at a cooling rate of 300 ° C./sec or more, whereby the solidified structure of the plating layer can be made into a columnar crystal.
[0030]
In FIG. 1, the schematic diagram of the solidification structure | tissue of a plating layer was shown. The plating cooling rates are (a) 350 ° C./sec and (b) 150 ° C./sec. The solidification structure of the plating layer obtained by the present invention in FIG. 1A is the solidification structure of the columnar crystal plating layer. A fine granular crystal structure is formed between the dendritic structures developed during solidification. Since the structure becomes finer and the structure with low corrosion resistance is not continuous, corrosion does not easily proceed from the surface layer and the corrosion resistance is high. FIG. 1B shows a granular crystal structure. Since the grains of the solidified structure unit are large, when a structure with low corrosion resistance exists, corrosion tends to proceed from the surface layer, and the corrosion resistance is lower than that of dendrites.
[0031]
Further, in the plated steel material according to the present invention, Al and Mg are the main components, so that by cooling after plating, in the plated alloy layer (plated layer) outside the alloy layer existing at the plating-ground iron interface, Al— An α phase mainly composed of Zn, a β phase composed of a Zn single phase or an Mg—Zn alloy phase, and a Zn—Al—Mg ternary eutectic phase can coexist. Among these, the presence of the Zn—Al—Mg ternary eutectic phase provides the uniform formation of corrosion products and the effect of preventing the progress of corrosion due to the corrosion products. Further, the β phase is inferior in corrosion resistance as compared with other phases, and thus is liable to cause local corrosion. And if the volume fraction of the β phase exceeds 20%, the corrosion resistance is lowered, so the volume fraction is made 20% or less.
[0032]
FIG. 3 shows that when the steel material after plating is slowly cooled by water cooling, the structure of the plating alloy layer (plating layer) outside the Fe—Zn-based alloy layer existing at the plating-base metal interface can be made into a columnar crystal structure. It is as shown in. When the plating layer has the columnar crystal structure, each structure produced during plating becomes finer, and the improvement in corrosion resistance is significant even if the workability is somewhat sacrificed.
[0033]
As a method for producing the plated steel material of the present invention, a two-step plating method is adopted. As the first stage, hot dip galvanization mainly composed of zinc is performed to form an Fe-Zn alloy layer, and then as the second stage, hot galvanizing alloy plating having an average composition defined in the present invention is performed. The plated steel material of the invention can be obtained efficiently. As the hot dip zinc used in the first stage and hot dip galvanization, a hot dip zinc alloy containing Al: 3% or less and Mg: 0.5% or less can also be used. When an Fe—Zn alloy layer is obtained by the first stage hot dip galvanization, if Al and Mg are contained in the Fe—Zn alloy layer, there is an effect that Al and Mg can easily enter the plating alloy.
[0034]
In the method for producing a plated steel material according to the present invention, workability can be improved by purging the plated steel material from the plating bath with nitrogen gas to prevent oxidation of the plating bath surface and the plated steel material. When an oxide is generated on the plating surface immediately after plating or an oxide generated on the plating bath surface is adhered, the plating may be cracked using the oxide as a nucleus during processing of the plated steel material. For this reason, prevention of oxidation at the take-out part is an important factor. In addition to nitrogen, an inert gas such as argon or helium can be used to prevent oxidation, but nitrogen is the most excellent in terms of cost.
[0035]
In the case of obtaining the plated steel material of the present invention by the two-step plating method, in order to make the growth of the plating alloy appropriate, the hot dip galvanization mainly composed of zinc as the first step is performed with a plating bath immersion time of 20 seconds or less. Next, it is necessary to perform hot dip zinc alloy plating as a second stage with a plating bath immersion time of 20 seconds or less. From this, when plating is performed for a long time, the thickness of the alloy layer increases and exceeds 20 μm, so that the hot dip plating mainly composed of zinc as the first stage is performed with a plating bath immersion time of 20 seconds or less, and then In two steps, hot dip zinc alloy plating is performed with a plating bath immersion time of 20 seconds or less.
[0036]
In addition, when cooling the plated steel material after plating, a cooling means capable of cooling at a cooling rate of 300 ° C./sec or more may be employed so that the plated structure is refined and columnar crystallized. A means for solidifying the plating alloy by direct cooling by means of water spraying or water flow is adopted, but the cooling start temperature at the time of cooling is preferably set to the melting point of the plating alloy +20 by water spraying or air-water spraying. A more stable plating layer can be obtained by setting it to ° C.
[0037]
In addition, as a component composition of the plating steel materials used by this invention, if it is a steel material of a low carbon steel, it is applicable, and it is typically mass%, C: 0.02-0.25%, Si A steel material comprising 1% or less, Mn: 0.6% or less, P: 0.04% or less, S: 0.04% or less, the balance Fe and inevitable impurities is preferable.
In the present invention, the surface of the plated steel wire is finally coated, or a heavy anticorrosion coating is applied as at least one polymer compound coating selected from vinyl chloride, polyethylene, polyurethane, and fluororesin. Thus, the corrosion resistance can be further improved.
[0038]
Although the present invention has been described centering on plated steel materials, particularly steel wires, it is needless to say that the present invention can be sufficiently applied to steel pipes, steel pipes and steel structures.
[0039]
【Example】
<Example 1>
The steel wire rod JIS G 3505 SWRM6 was subjected to Zn-Al-Mg-based zinc alloy plating under the conditions shown in Table 1 on a 4 mm diameter steel wire plated with pure Zn and evaluated. For comparison, the plating composition and the Fe—Zn alloy layer were similarly evaluated. The plated structure was observed by EPMA after polishing the C section of the plated wire. The composition analysis of the alloy layer was carried out quantitatively with a beam diameter of 2 μm. Corrosion resistance was defined as the amount of corrosion reduction by the amount of corrosion of the plating per unit area from the difference in weight before and after the test by continuous salt spray for 250 hours. In this test, 20 g / m 2 or less was determined to be acceptable, and pass / fail was determined.
[0040]
For the evaluation of workability, the prepared plated wire was wound around a 6 mm diameter steel wire 6 times, and the presence or absence of cracks was determined by visual observation of the surface. In addition, after the cellophane tape was attached to the sample after the crack determination, the presence or absence of peeling of the plating was observed when the sample was peeled off.
Table 1 shows the relationship between the plating composition, the alloy layer composition, the thickness plating structure, the β phase volume fraction, corrosion resistance, workability, and dross generation in the plating bath. Each of the inventive examples exhibited good corrosion resistance and processability, and produced little dross.
[0041]
In Comparative Examples 1 to 5, the plating alloy composition is outside the scope of the present invention. In Comparative Examples 1 and 2, the amount of Al or Mg is lower than the lower limit and the corrosion resistance is inferior. In Comparative Examples 3 to 5, the amount of Al, Mg or Fe is higher than the upper limit and the corrosion resistance is reduced. Comparative Examples 6 and 7 were cases where the thickness of the plated alloy layer was outside the range of the present invention, and the workability was inferior. In Comparative Examples 8 to 10, the β phase in the plated structure is outside the range of the present invention, and the corrosion resistance is inferior.
[0042]
Table 2 compares the difference in corrosion resistance due to wire drawing. By changing the cooling rate of the plating having the same composition, a steel plate having a grain structure and a columnar crystal were prepared, and a continuous salt spray test for 250 hours was performed. As a result, it was shown that although all the standards were satisfied, granular crystals were superior to columnar crystals in wire drawing workability.
[0043]
[Table 1]
[0044]
[Table 2]
[0045]
<Example 2>
The surface of steel wire JIS G 3505 SWRM6 was evaluated by applying Zn-Al-Mg zinc alloy plating to the 4 mm diameter steel wire plated with pure Zn under the conditions shown in Table 3. For comparison, evaluations were similarly made with different plating compositions and different Fe-Zn alloy layers. The plated structure was observed by EPMA after polishing the C section of the plated wire. The composition analysis of the alloy layer was carried out quantitatively with a beam diameter of 2 μm. Corrosion resistance was defined as the amount of corrosion reduction by the amount of corrosion of the plating per unit area from the difference in weight before and after the test by continuous salt spray for 250 hours. In this test, 20 g / m 2 or less was accepted and pass / fail was judged.
[0046]
[Table 3]
[0047]
For the evaluation of workability, the prepared plated wire was wound around a 6 mm diameter steel wire 6 times, and the presence or absence of cracks was determined by visual observation of the surface. In addition, after the cellophane tape was attached to the sample after the crack determination, the presence or absence of peeling of the plating was observed when the sample was peeled off.
Table 4 shows the relationship between the plating composition, the alloy layer composition, the thickness plating structure, the β phase volume fraction, corrosion resistance, workability, and dross generation in the plating bath. Each of the inventive examples exhibited good corrosion resistance and processability, and produced little dross.
[0048]
[Table 4]
[0049]
Comparative Examples 11 to 15 have plating alloy compositions outside the scope of the present invention. In Comparative Examples 11 and 12, the amount of Al or Mg is lower than the lower limit and the corrosion resistance is inferior. In Comparative Examples 13 to 15, the amount of Al, Mg or Fe is higher than the upper limit and the corrosion resistance is reduced. Comparative Examples 16 and 17 were cases where the thickness of the plated alloy layer was outside the range of the present invention, and the workability was inferior. In Comparative Examples 18 to 20, the β phase in the plated structure is outside the range of the present invention, and the corrosion resistance is inferior.
[0050]
Table 5 compares the difference in corrosion resistance due to wire drawing. By changing the cooling rate of the plating having the same composition, a steel plate having a grain structure and a columnar crystal were prepared, and a continuous salt spray test for 250 hours was performed. As a result, it was shown that although all the standards were satisfied, granular crystals were superior to columnar crystals in wire drawing workability.
[0051]
[Table 5]
[0052]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a galvanized steel material having high corrosion resistance and excellent workability, particularly a galvanized steel wire.
[Brief description of the drawings]
FIG. 1 (a) is a schematic diagram showing a cross section of a structure of a plated steel wire having a columnar crystal structure;
(B) is a schematic diagram which shows the cross section of the structure | tissue of the plated steel wire which has a granular crystal structure.
Claims (15)
a:Ti,Li,Be,Na,K,Ca,Cu,La,Hfのうち1つまたは複数の元素をそれぞれ0.01〜1.0質量%含む。
b:Mo,W,Nb,Taのうち1つまたは複数の元素をそれぞれ0.01〜0.2質量%含む。
c:Pb,Biのうち1つまたは複数の元素をそれぞれ0.01〜0.2質量%含む。
d:Sr,V,Cr,Mn,Snのうち1つまたは複数の元素をそれぞれ0.01〜0.5質量%含む。 As a first stage, in a plated steel material subjected to hot dip galvanization containing Al: 3% or less (excluding 0), Mg: 0.5% or less (excluding 0) in mass% , The average composition is, in mass%, Al: 4-20%, Mg: 0.8-5%, Fe: 2% or less, and selected from the following groups a, b, c, d The solidified structure comprising one or more elements and the balance Zn comprising a columnar crystal has a plating layer, and mass% at the plating layer-base iron interface, Fe: 25% or less, Al: 2-30 %, Mg: 0.5 to 5%, one or a plurality of elements selected from each of the following groups a, b, c, and d, and the alloy layer having a thickness of 20 μm or less made of the remaining Zn A plated steel material having high corrosion resistance and excellent workability.
a: Each of Ti, Li, Be, Na, K, Ca, Cu, La, and Hf contains one or more elements of 0.01 to 1.0 mass%.
b: One or more elements of Mo, W, Nb, and Ta are each included in an amount of 0.01 to 0.2% by mass.
c: One or more elements of Pb and Bi are each included in an amount of 0.01 to 0.2% by mass.
d: One or more elements of Sr, V, Cr, Mn, and Sn are each included in an amount of 0.01 to 0.5 mass%.
a:Ti,Li,Be,Na,K,Ca,Cu,La,Hfのうち1つまたは複数の元素をそれぞれ0.01〜1.0質量%含む。
b:Mo,W,Nb,Taのうち1つまたは複数の元素をそれぞれ0.01〜0.2質量%含む。
c:Pb,Biのうち1つまたは複数の元素をそれぞれ0.01〜0.2質量%含む。
d:Sr,V,Cr,Mn,Snのうち1つまたは複数の元素をそれぞれ0.01〜0.5質量%含む。In the manufacturing method of the plated steel material, as a first stage, the steel material is melted by mass%, including Al: 3% or less (excluding 0), Mg: 0.5% or less (excluding 0). Zinc plating is performed with a plating bath immersion time of 20 seconds or less, and then, as a second stage, by mass%, including Al: 4-20%, Mg: 0.8-5%, Fe: 2% or less, A hot dip zinc alloy plating containing one or more elements selected from each of the groups a, b, c, d and the balance Zn is applied in a plating bath immersion time of 20 seconds or less, and the average composition is One or more selected from each of the following groups a, b, c, and d, including Al: 4 to 20%, Mg: 0.8 to 5%, Fe: 2% or less. In addition to forming a plating layer comprising the remaining Zn and the balance Zn, at the plating layer-steel interface An alloy layer of Fe: 25% or less, Al: 2 to 30%, Mg: 0.5 to 5%, and the balance Zn, with a thickness of 20 μm or less, is formed and then cooled to 300 ° C./sec or more. A method for producing a plated steel material having high corrosion resistance and excellent workability, wherein the solidified structure of the plating layer is formed into columnar crystals by cooling at a speed.
a: Each of Ti, Li, Be, Na, K, Ca, Cu, La, and Hf contains one or more elements of 0.01 to 1.0 mass%.
b: One or more elements of Mo, W, Nb, and Ta are each included in an amount of 0.01 to 0.2% by mass.
c: One or more elements of Pb and Bi are each included in an amount of 0.01 to 0.2% by mass.
d: One or more elements of Sr, V, Cr, Mn, and Sn are each included in an amount of 0.01 to 0.5 mass%.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001043959A JP3854468B2 (en) | 2000-03-31 | 2001-02-20 | Plated steel material having high corrosion resistance and excellent workability, and manufacturing method thereof |
CA002368506A CA2368506C (en) | 2000-02-29 | 2001-02-28 | Plated steel material excellent in corrosion resistance and workability and method to produce the same |
US10/018,404 US6610423B2 (en) | 2000-02-29 | 2001-02-28 | Plated steel product having high corrosion resistance and excellent formability and method for production thereof |
KR10-2001-7013853A KR100446789B1 (en) | 2000-02-29 | 2001-02-28 | Plated steel product having high corrosion resistance and excellent formability and method for production thereof |
EP01908166.0A EP1193323B1 (en) | 2000-02-29 | 2001-02-28 | Plated steel product having high corrosion resistance and excellent formability and method for production thereof |
PCT/JP2001/001529 WO2001064971A1 (en) | 2000-02-29 | 2001-02-28 | Plated steel product having high corrosion resistance and excellent formability and method for production thereof |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000099375 | 2000-03-31 | ||
JP2000-135190 | 2000-05-08 | ||
JP2000135190 | 2000-05-08 | ||
JP2000-99375 | 2000-05-08 | ||
JP2001043959A JP3854468B2 (en) | 2000-03-31 | 2001-02-20 | Plated steel material having high corrosion resistance and excellent workability, and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002030405A JP2002030405A (en) | 2002-01-31 |
JP3854468B2 true JP3854468B2 (en) | 2006-12-06 |
Family
ID=27342941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001043959A Expired - Lifetime JP3854468B2 (en) | 2000-02-29 | 2001-02-20 | Plated steel material having high corrosion resistance and excellent workability, and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3854468B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002060978A (en) * | 2000-08-17 | 2002-02-28 | Nippon Steel Corp | Steel having metallic coating and excellent in corrosion resistance |
JP3699691B2 (en) * | 2002-04-05 | 2005-09-28 | サクラテック株式会社 | High corrosion resistance hot dipped steel wire and method for producing the same |
JP2003328101A (en) * | 2002-05-16 | 2003-11-19 | Nippon Steel Corp | Hot dip coated steel wire and production method thereof |
JP5686438B2 (en) * | 2011-06-22 | 2015-03-18 | 株式会社淀川製鋼所 | Al-Zn alloy plated steel sheet and method and apparatus for manufacturing the same |
KR101758529B1 (en) | 2014-12-24 | 2017-07-17 | 주식회사 포스코 | Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT PHOSPHATABILITY AND SPOT WELDABILITY AND METHOD FOR MANUFACTURING SAME |
WO2016105157A1 (en) * | 2014-12-24 | 2016-06-30 | 주식회사 포스코 | Zinc alloy plated steel sheet having excellent phosphatability and spot weldability and method for manufacturing same |
MY165610A (en) | 2015-04-08 | 2018-04-16 | Nippon Steel & Sumitomo Metal Corp | Zn-Al-Mg COATED STEEL SHEET, AND METHOD OF PRODUCING Zn-Al-Mg COATED STEEL SHEET |
CN111566252B (en) | 2017-12-20 | 2022-06-07 | 日本制铁株式会社 | Fusion plated steel wire and method for producing same |
CN112575273A (en) * | 2020-10-28 | 2021-03-30 | 河钢股份有限公司 | Medium-aluminum zinc-aluminum-magnesium coated steel plate with excellent coating plasticity and production method thereof |
JPWO2023191027A1 (en) * | 2022-03-31 | 2023-10-05 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5817252B2 (en) * | 1977-07-20 | 1983-04-06 | 株式会社神戸製鋼所 | High corrosion resistance alloy plated steel products |
JPS5835257B2 (en) * | 1977-07-22 | 1983-08-01 | 株式会社神戸製鋼所 | High corrosion resistance alloy plated steel products |
JPS57110658A (en) * | 1980-12-27 | 1982-07-09 | Mitsui Mining & Smelting Co Ltd | Galvanized substance |
JPS59173253A (en) * | 1983-03-22 | 1984-10-01 | Sumitomo Electric Ind Ltd | Preparation of highly corrosion resistant zinc plated material |
JP2732398B2 (en) * | 1987-04-21 | 1998-03-30 | 日本電信電話株式会社 | High corrosion resistant zinc-aluminum alloy plated steel wire |
JPH0774421B2 (en) * | 1988-09-02 | 1995-08-09 | 川崎製鉄株式会社 | Hot-dip galvanized steel sheet with excellent resistance to adhesion over time and blackening resistance |
JP2769842B2 (en) * | 1989-03-31 | 1998-06-25 | 新日本製鐵株式会社 | Manufacturing method of alloy plated steel wire |
JP2858043B2 (en) * | 1990-11-16 | 1999-02-17 | 東京製綱株式会社 | Cooling method of zinc-aluminum alloy plated steel wire |
JPH07207421A (en) * | 1994-01-13 | 1995-08-08 | Mitsui Mining & Smelting Co Ltd | Galvanizing method |
JPH09256132A (en) * | 1996-03-25 | 1997-09-30 | Sumitomo Metal Ind Ltd | Hot dip aluminum-zinc alloy plated steel sheet and its production |
JPH09272986A (en) * | 1996-04-05 | 1997-10-21 | Tokyo Seiko Co Ltd | High corrosion resistant zinc-aluminum alloy plate wire and its production |
JPH10226860A (en) * | 1997-02-17 | 1998-08-25 | Kowa Kogyosho:Kk | Coated article and its production |
JPH10265926A (en) * | 1997-03-25 | 1998-10-06 | Nisshin Steel Co Ltd | Production of hot dip zn-al-mg coated steel strip excellent in corrosion resistance and appearance |
JP3273745B2 (en) * | 1997-05-09 | 2002-04-15 | 株式会社神戸製鋼所 | Zn-Al hot-dip galvanized steel with excellent surface appearance and blackening resistance |
JP3561421B2 (en) * | 1998-08-18 | 2004-09-02 | 新日本製鐵株式会社 | Painted steel plate with excellent corrosion resistance |
-
2001
- 2001-02-20 JP JP2001043959A patent/JP3854468B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002030405A (en) | 2002-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3704311B2 (en) | Plated steel wire with high corrosion resistance and excellent workability and manufacturing method thereof | |
EP1193323B1 (en) | Plated steel product having high corrosion resistance and excellent formability and method for production thereof | |
JP2010070810A (en) | Plated steel having high corrosion resistance and excellent workability and method for producing the same | |
JP3854468B2 (en) | Plated steel material having high corrosion resistance and excellent workability, and manufacturing method thereof | |
JP3769199B2 (en) | High corrosion resistance plated steel material and method for producing the same | |
JP3769197B2 (en) | High corrosion resistance plated steel material and method for producing the same | |
JP7052942B1 (en) | Plated steel | |
JP2023504496A (en) | Hot-dip galvanized steel sheet with excellent bending workability and corrosion resistance, and method for producing the same | |
JP3737987B2 (en) | Hot-dip galvanized steel wire with high corrosion resistance and excellent workability | |
JP3854469B2 (en) | Plated steel material having high corrosion resistance and excellent workability, and manufacturing method thereof | |
JP3769198B2 (en) | High corrosion resistance plated steel material and method for producing the same | |
JP3857882B2 (en) | Plated steel material having high corrosion resistance and excellent workability, and manufacturing method thereof | |
CA1303916C (en) | Zn-al hot-dip galvanized steel sheet having improved resistance against secular peeling and method for producing the same | |
JP3399895B2 (en) | Hot-dip galvanized steel wire having high corrosion resistance and method for producing the same | |
CN113677820B (en) | Coated steel material | |
JP3769222B2 (en) | Zinc alloy-plated steel with high corrosion resistance and excellent workability and method for producing the same | |
CN1362997A (en) | Plated steel product having high resistance and excellent formability and method for production thereof | |
JP2003328101A (en) | Hot dip coated steel wire and production method thereof | |
CN116113719A (en) | Plated steel sheet | |
JP2022067841A (en) | Plated steel material and method for manufacturing the same | |
JP7385167B1 (en) | Hot-dipped steel | |
JP3024967B1 (en) | Hot-dip galvanizing method and galvanized material | |
JP2004353022A (en) | HOT-DIP Zn-Al ALLOY PLATED STEEL MATERIAL AND MANUFACTURING METHOD THEREFOR | |
WO2004033745A1 (en) | HOT-DIPPED Sn-Zn PLATING PROVIDED STEEL PLATE OR SHEET EXCELLING IN CORROSION RESISTANCE AND WORKABILITY | |
TW495559B (en) | Coated steel material having corrosion resistance and improved workability and a method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051004 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060606 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060802 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060829 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060908 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3854468 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100915 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100915 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110915 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120915 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120915 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130915 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130915 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130915 Year of fee payment: 7 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130915 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |