JP3852115B2 - 画像信号処理装置 - Google Patents
画像信号処理装置 Download PDFInfo
- Publication number
- JP3852115B2 JP3852115B2 JP52748696A JP52748696A JP3852115B2 JP 3852115 B2 JP3852115 B2 JP 3852115B2 JP 52748696 A JP52748696 A JP 52748696A JP 52748696 A JP52748696 A JP 52748696A JP 3852115 B2 JP3852115 B2 JP 3852115B2
- Authority
- JP
- Japan
- Prior art keywords
- image signal
- field
- memory
- signal
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000015654 memory Effects 0.000 claims description 281
- 238000000034 method Methods 0.000 claims description 67
- 230000002787 reinforcement Effects 0.000 claims description 36
- 238000001914 filtration Methods 0.000 claims description 29
- 230000003111 delayed effect Effects 0.000 claims description 15
- 230000003014 reinforcing effect Effects 0.000 claims description 13
- 238000003672 processing method Methods 0.000 claims description 12
- 230000001360 synchronised effect Effects 0.000 claims description 4
- 230000008707 rearrangement Effects 0.000 claims 5
- 230000002194 synthesizing effect Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 38
- 238000000926 separation method Methods 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000002131 composite material Substances 0.000 description 7
- 238000007726 management method Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 230000012447 hatching Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/015—High-definition television systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/01—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
- H04N7/0127—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level by changing the field or frame frequency of the incoming video signal, e.g. frame rate converter
- H04N7/0132—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level by changing the field or frame frequency of the incoming video signal, e.g. frame rate converter the field or frame frequency of the incoming video signal being multiplied by a positive integer, e.g. for flicker reduction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N11/00—Colour television systems
- H04N11/06—Transmission systems characterised by the manner in which the individual colour picture signal components are combined
- H04N11/12—Transmission systems characterised by the manner in which the individual colour picture signal components are combined using simultaneous signals only
- H04N11/14—Transmission systems characterised by the manner in which the individual colour picture signal components are combined using simultaneous signals only in which one signal, modulated in phase and amplitude, conveys colour information and a second signal conveys brightness information, e.g. NTSC-system
- H04N11/16—Transmission systems characterised by the manner in which the individual colour picture signal components are combined using simultaneous signals only in which one signal, modulated in phase and amplitude, conveys colour information and a second signal conveys brightness information, e.g. NTSC-system the chrominance signal alternating in phase, e.g. PAL-system
- H04N11/167—Transmission systems characterised by the manner in which the individual colour picture signal components are combined using simultaneous signals only in which one signal, modulated in phase and amplitude, conveys colour information and a second signal conveys brightness information, e.g. NTSC-system the chrominance signal alternating in phase, e.g. PAL-system a resolution-increasing signal being multiplexed to the PAL-system signal, e.g. PAL-PLUS-system
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/01—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
- H04N7/0105—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level using a storage device with different write and read speed
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/01—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
- H04N7/0117—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving conversion of the spatial resolution of the incoming video signal
- H04N7/0122—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving conversion of the spatial resolution of the incoming video signal the input and the output signals having different aspect ratios
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N11/00—Colour television systems
- H04N11/06—Transmission systems characterised by the manner in which the individual colour picture signal components are combined
- H04N11/18—Transmission systems characterised by the manner in which the individual colour picture signal components are combined using simultaneous and sequential signals, e.g. SECAM-system
- H04N11/186—Decoding means therefor
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Computer Graphics (AREA)
- Television Systems (AREA)
- Television Signal Processing For Recording (AREA)
- Color Television Systems (AREA)
Description
この発明は、例えばPALplus方式のテレビジョン信号を処理するのに適用される画像信号処理装置に関し、特に、画像信号処理装置の走査線補間処理と、大面積フリッカーを改善するフリッカーフリー処理を共通化して使用メモリ数を削減した画像信号処理装置および処理方法に関する。
背景技術
国内外におけるテレビジョン放送では、現行の放送と両立性を保ちつつ、1チャンネルの周波数帯域例えば6MHzの中で、高画質および画面のワイド化が図るテレビジョン方式が考えられている。これは、現行のテレビジョン放送に対して、アスペクト比(画面の縦横の長さの比)が(9:16)と、横長なワイド画面であることが大きな特徴である。現行のPAL方式が採用されている西欧諸国などにおいては、次世代のテレビジョン方式としてPALplus方式が提案されている。
近年、電気通信技術の目覚ましい発展により、無線系、有線系のニューメディアが続々登場している。欧州では現行放送方式であるPAL(Phase Alternation by Line)方式と両立性を維持しながら画像のワイドアスペクト化と高解像度を図ったPALプラス(PALplus)放送方式が実験放送を経て実用段階を迎えようとしている。このPALplus放送方式をデコードするPALplus方式テレビジョン受像機では、走査線補間処理を施すことにより必要情報を抽出して放送信号の復調がなされる。また、フリッカーフリー処理は、PAL方式の50Hzの垂直走査周波数による大面積フリッカーを改善するものであり高画質化に不可欠の技術として、多くのPALplus方式テレビジョン受像機で採用されている。
この発明は画像信号処理装置全般に適用して好適なものであるが、画像信号処理装置の一例として実用段階を迎えようとしているPALplus方式テレビジョン受像機を採り挙げ説明を行う。PALplus方式テレビジョン受像機の概要については「欧米における次世代テレビ方式の動向」としてテレビジョン学会誌Vol.46、No.3、PP.276〜283(1992)に掲載されている。
この文献に記載されているように、PALplus方式は、次の信号処理が全て行われることを条件としている。これらは、レターボックス変換、垂直補強信号処理、動き適応Y/Cエンコード処理、識別信号および基準信号の伝送である。識別信号および基準信号の伝送以外の3個の処理は、信号源の種類によりテレビジョンカメラの画像を扱うカメラモードと、映画フィルムの画像を扱うフィルムモードによって切り換えられる。カメラモードでは、50フィールド/秒であり、フィルムモードでは、25コマ/秒である。
この発明を適用することが可能なPALplus方式テレビジョン受像機の概要について第9図ないし第13図を参照して説明する。
先ず、第9図を参照してPALplus方式テレビジョン受像機の走査線補間処理について説明する。第9図Aは、PALplus放送信号のフレーム構成を模式的に示す図であり、第9図Bは、次に述べる3:1のシャッフリング処理を模式的に示す図であり、第9図Cは、アスペクト比16:9の表示例を示す図である。
図9Aに示すように、PALplus放送信号は主画部Xと、この主画部Xの上下に配置された無画部Vとで構成される。無画部Vには垂直解像度を補強するための補強信号(以下、ヘルパー信号と称する)Wが重畳されている。PALplus方式では、有効走査線数が576本であり、主画部Xの走査線数が430本であり、無画部Vの走査線数が144本である。すなわち、送信側では、アスペクト比が(16:9)、走査線数625本、有効走査線数576本のコンポーネント信号を垂直変換によって、走査線数を3/4に減らす。従って、有効走査線数が430本となる。
フィルムモードでは、フレーム単位の垂直変換を行う。垂直方向のフィルタリング処理によって、430lph(line per height)以上の高域成分を分離し、輝度信号のヘルパー信号とする。カメラモードでは、フィールド単位の垂直変換を行う。垂直方向のフィルタリング処理によって、215lph〜288lphの高域成分を分離し、輝度信号のヘルパー信号とする。
PALplus方式テレビジョン受像機では、有効走査線数を430本から576本へ補間するために、メモリを用いたシャッフリング処理を行う。つまり、第9図Bに示すように、アスペクト比が(4:3)の画面中に主画部Xの情報の3ライン毎に1ラインのヘルパー信号Wの情報を1ライン挿入する。例えば主画部Xの情報をライン1〜3と入力した後、ヘルパー信号W内の情報を1ライン挿入し、同様にして主画部Xの情報を3ライン、ヘルパー信号W内の情報を1ライン挿入する。この処理を(3:1シャッフリング処理)と称する。
更に、第9図Cに示すように、シャッフリング処理した画像を垂直フィルタリング手段によってフィルタリング処理することにより、アスペクト比が(16:9)のワイド画像を再現することができる。つまり、16:9のワイド画面の受像機を所有する視聴者(ユーザ)は、上述のようなデコード処理を行いワイド画像を再生できる。一方、4:3のアスペクト比の既存の受像機を所有するユーザは、そのまま第9図Aのようなレターボックス形式でもって画像を再生することができる。
次に、第10図を参照してPALplus放送信号のフレーム構成の詳細を説明する。第10図はPALplus放送信号のフレーム構成を示す図である。
第10図において、PALplus放送信号の第1フィールドは、215ラインからなる主画部X、この主画部Xの上下にあって各々36ラインからなる無画部Vとで構成される。第23ラインにはPALplus放送信号、後述するモード信号および3次元プリコミングの有無等を検出する識別制御信号(WSS信号と称される)Zが挿入されている。PALplus放送信号の主画部Xにおいては、アスペクト比16:9の(215本/フィールド)の走査線よりなる複合映像信号が伝送される。主画部Xの上下の36本の無画部Vでは、主画部Xの輝度信号の垂直解像度を補強する補強信号としてのヘルパー信号が送信される。第2フィールドも同様に構成される。
PALplus方式テレビジョン受像機では、主画部Xの輝度信号(215本/フィールド)とヘルパー信号(上下72本/フィールド)の合計287本の信号から、(287本/フィールド)の走査線よりなる16:9の輝度信号を形成する。色差信号に関しては、主画部の色信号(215本/フィールド)から(287本/フィールド)の走査線よりなる16:9の画像を得る。
このような走査線補間処理は、通常フレーム単位で行うが、1つのフレーム内で第1フィールド(以下、「Aフィールド」と記す)と第2フィールド(以下、「Bフィールド」と記す)の画像が大きく異なる画像(動画像等)の場合には、フレーム単位で処理を行うと画質を大きく損なう虞れがある。そのため、PALplus方式では2フィールド間の相関を示すモード信号(1ビット)を識別制御信号Z内に多重し、確実な処理を可能にしている。上述したフィルムモードの場合、AフィールドおよびBフィールドで同一の画像であるため、2フィールド間の相関があり、カメラモードの場合では、2フィールド間の相関がない。フィルムモードでは、同一フレーム内のAフィールドとBフィールドの画像を用いてフレーム内補間(後述の垂直フィルタリング処理)が行われる。オリジナル画像が24フレーム/秒のテレシネによる画像等がこれに該当する。また、カメラモードでは、フィールド内補間(後述の垂直フィルタリング処理)が行われる。
次に、第11図を参照してPALplus方式テレビジョン受像機の走査線補間処理部の概略について説明する。
第11図Aは、PALplus方式テレビジョン受像機の走査線補間処理部の概略を示し、第11図Bは、フィールドメモリの読出し時に輝度信号とヘルパー信号のシャッフリング処理を行う状態を模式的に示し、第11図Cは、第11図Bの立ち上がり部の拡大図を示す。なお、第11図B及びC中の縦軸は輝度信号とヘルパー信号のライン番号(輝度信号1〜215、上下のヘルパー信号=各々1〜36)、横軸は時間tを示している。尚、これらの図面では、説明を簡単にするため、垂直プランキング期間について示していない。
第11図Aに示すように、走査線補間処理部は、入力端子1、フィールドメモリ(図中では単にFMと略記する)2、3および4、垂直フィルタリング処理部5、並びに出力端子6によって構成される。入力端子1からは、無画部に重畳されたヘルパー信号を有する輝度信号Yと、色差信号Ev、Euが供給される。これらの信号は、A/D変換によりデジタル信号に変換されている。フィールドメモリ2、3および4によって、上述した3:1のシャッフリング処理がなされる。フィールドメモリ2は、1フィールド遅延用のもので、例えばFIFOにより構成される。フィールド3および4は、ランダムアクセス可能なメモリにより構成される。この3フィールド分のフィールドメモリ2、3および4を必要とする理由は、前述のフィルムモード、カメラモードの各モードと対応した補間処理を行うためである。
第11図Aの構成において、入力部1から例えばヘルパー信号を含む輝度信号Y(8ビット)、色差信号Eu(B−Y信号)、Ev(R−Y信号)の各々2ビットの合計12ビットの入力信号が入力される。主に静止画や映画ソースを扱うフィルムモードでは、フレーム内補間を行うため1フィールド遅延素子であるフィールドメモリ2に入力される。フィールドメモリ2において遅延された映像信号は、フィールドメモリ3に入力される。一方、現フィールドは、フィールドメモリ4に入力される。従って、フィールドメモリ4に対して、フィールド(1A、1B、2A、2B、・・)の映像信号が供給されると、フィールドメモリ3に対しては、1フィールド遅延された(/、1A、1B、2A、2B、・・)の映像信号が供給される。
つまり、フィールドメモリ3とフィールドメモリ4には、同一フレームのAフィールドとBフィールドが同時に書込まれる。そして、同一フレームのA、Bフィールドの映像信号は、それぞれフィールドメモリ3およびフィールドメモリ4からの読出し時に輝度信号とヘルパー信号のシャッフリング処理がなされる。フィルムモードの読出し時では、同一の内容が2フィールド期間にわたってフィールドメモリ3および4から読出される。それによって、フィルムモードにおいて、垂直フィルタリング処理部5は、AおよびBの両フィールドの走査線の情報を使用して、各フィールドの出力を算出する。
また、動画像を扱うカメラモードでは、入力映像信号を岐路Eを介してフィールドメモリ4に入力し、フィールドメモリ4によってシャッフリング処理を施す。このフィールドメモリ4からの映像信号が次段の垂直フィルタリング処理部5に入力される。垂直フィルタリング処理部5では、1フィールド分の映像情報を用いた垂直フィルタリング処理することによって必要な画像情報を出力端子9に出力する。ここでは、輝度信号処理を例に説明したが、色差信号についてもヘルパー信号のシャッフリング処理を除いてほぼ同様の処理によって走査線補間がなされる。
第11図Bは、フィールドメモリ3および4の読出し時になされる輝度信号とヘルパー信号のシャッフリング処理を説明するものである。輝度信号は、フィールドメモリ3、4から実線で示すように読出され、ヘルパー信号は、破線で示すように、シャッフリング処理されて読出される。
第11図Cは、第11図B中の○で囲んだ部分を拡大して示す。第11図Cに示すように、輝度信号の先頭の3ライン(第10図におけるライン番号60、61、62の情報を読出した後、上ヘルパー信号の先頭のライン(ライン番号24)の情報を読出し、さらに、続いて次の輝度信号3ライン(ライン番号63、64、65)の情報を読出し、さらに上ヘルパー信号の次のライン(ライン番号25)の情報を読出す。このように、3ラインの輝度信号の情報を読出し、1ラインのヘルパー信号の情報を読出す動作を繰り返すことによって、シャッフリング処理を行うことができる。なお、輝度信号Yとヘルパー信号とをフィールドメモリに書込む際に書込みアドレスを制御することによっても、同様にシャッフリング処理を行い、読出しを順次行うようにしても良い。
なお、PALplus方式の特徴的な規約として、フィルムモードにおいて上述のような複雑なメモリ処理を行う場合には、第9図Aにおける上下ヘルパー信号を除外しても良いと言う規約がある。後述するこの発明の第4の実施例はこの規約を利用して使用メモリ数の削減を図るものである。
PAL方式あるいはPALplus方式の場合では、フィールド周波数が50Hzであり、大面積の画像の場合、フリッカーが視認されることがある。このため、フリッカーを除去することによって、高画質化を図る、フリッカーフリーが知られている。フリッカーフリーは、基本的にはフィールド周波数を100Hzに変換することによって達成される。第12図を参照してフリッカーフリー処理の概略を説明する。
第12図Aは、フリッカーフリー処理回路を示し、第12図Bは、各フィールドにおける入力映像信号を示し、第12図Cは、Aフィールドの出力映像信号を示し、第12図Dは、Bフィールドの出力映像信号を示し、第12図Eは、通常処理(通常のPAL方式、PALplus方式のカメラモード)における出力を示し、第12図Fは、PALplus方式のフィルムモードにおける出力を示す。
第12図Aに示すように、フリッカーフリー処理回路の構成は、入力端子7、フィールドメモリ8、フィールドメモリ9、フリッカーフリー処理部10、そして出力端子11とにより構成される。
入力端子7から輝度信号Y=8ビットおよびEv信号、Eu信号各々2ビットの合計12ビットの映像信号が入力される。第12図Bは、入力信号のフィールド変化を示す。この入力信号が入力されたとき、AフィールドをAフィールド用のフィールドメモリ8に書込み、BフィールドをBフィールド用のフィールドメモリ9に書込む。これらの映像信号は、フリッカーを除去するためにメディアンフィルタによる加算/平均値処理を行う必要がある。そのため、フィールドメモリ8から第12図Cに示すように、2倍の速度で、Aフィールドの信号を4回続けて読出し、同様にフィールドメモリ9から第12図Dのように、2倍の速度で、Bフィールドの信号を4回続けて読出す。これらの映像信号がフリッカーフリー処理部10に入力され、このフリッカーフリー処理部10では次のようなメディアンフィルタ処理が行われる。
通常処理では、フィールド期間▲1▼では、フィールド1Aをそのまま出力し、フィールド期間▲2▼、▲3▼では、フィールド1Aと1Bをフリッカーフリー処理部8内のメディアンフィルタにより加算/平均値処理を行い、それによって得られる信号(1A*1Bと表す)を出力する。メディアンフィルタは、2つのフィールドの画素の中間値を選択する処理である。例えばフィールド▲2▼の場合、Aフィールドの注目画素と近傍画素およびBフィールドの画素の中間値を選択する処理である。
フィールド期間▲4▼では、フィールド1Bをそのまま出力し、フィールド期間▲5▼では、フィールド2Aをそのまま出力する。更に、フィールド期間▲6▼、▲7▼では、メディアンフィルタによって処理を行い、2A*2Bの信号として出力する。このように、フィールド周波数を2倍に上げることによって、フリッカーを除去することができる。
なお、フィルムモードにおける映像信号は、AフィールドとBフィールドの時間的な内容が同一であるため、メディアンフィルタによる処理は不要である。従って、第12図Fに示すように、1A、1B、1A、1B、2A、2B、2A、2Bとそのまま交互にフィールド倍速で読出しが行われる。
ここで、前述の第11図を参照した説明から明らかなように、PALplus方式のフィルムモードでは、同一フレームのAフィールドとBフィールドの両方を用いて走査線補間を行う必要があることから、フィールドメモリ2、フィールドメモリ3、フィールドメモリ4の合計3フィールド分のフィールドメモリが必要である。一方、第12図を参照した説明から明らかなように、フリッカーフリー処理においてメディアンフィルタ処理を行う場合には、AフィールドとBフィールドを混合してフィルタリング処理する必要があることから、フィールドメモリ8、フィールドメモリ9の2フィールド分のフィールドメモリが必要である。
以下、これらの両方の条件を満たす回路構成の一例について説明する。第13図はPALplus方式テレビジョン受像機の一例である分離型回路を示すブロック図である。
第13図に示すように、この分離型回路の構成は、入力端子1、シャッフリング処理におけるAフィールドの処理に必要な例えば3Mbitのフィールドメモリであるフィールドメモリ2、フィールドメモリ3およびフィールドメモリ4、垂直フィルタリング処理部5、フリッカーフリー処理に必要なフィールドメモリ8およびフィールドメモリ9、フリッカーフリー処理部10、そして出力端子11によって構成される。
そして、フィルムモードの場合、入力端子1からの前述のような12ビットの映像信号が1フィールド遅延素子である、フィールドメモリ2に入力される。フィールドメモリ2において遅延された映像信号はフィールドメモリ3に入力される。一方、現フィールドの映像信号はフィールドメモリ4に入力される。フィールドメモリ3およびフィールドメモリ4により、2フィールド分の映像情報が同時化されて次段の垂直フィルタリング処理部5に入力される。この垂直フィルタリング処理部5では、ライン毎に係数を乗じて数ライン分の加算処理を行うことによりシャッフリング処理で損なわれた画像の連続性を確保して画像を滑らかにするような処理を行う。垂直フィルタリング処理部5からの通常のインタレース信号の出力がフィールドメモリ8およびフィールドメモリ9に供給される。一方、カメラモードの場合は、入力端子1からの画像情報を岐路Eを介してフィールドメモリ4を介して1フィールド単位のまま次段の垂直フィルタリング処理部5に入力する。
フィールドメモリ8およびフィールドメモリ9から、前述のように倍速で読出しが行われ、読出し出力がフリッカーフリー処理部10に入力される。このフリッカーフリー処理部8では、第12図で説明したようなフリッカーフリー処理を行い、処理で得られた出力が出力端子11から出力される。このように、PALplus方式テレビジョン受像機の一例として示した分離型回路では、5フィールド分のフィールドメモリが必要である。1フィールドメモリ容量を例えば3Mbitとすると、3×5=15Mbitsの大容量メモリを必要とすることになる。
PALplus方式テレビジョン受像機では、例えばフィルムモードでは、同一フレームのAフィールドとBフィールドの両方を用いて垂直フィルタリング処理する必要があることから合計3フィールド分のフィールドメモリが必要である。一方、カメラモード等の信号のフリッカーフリー処理を行う場合には、AフィールドとBフィールドを混合してフィルタリング処理する必要があることから、更に2フィールドのフィールドメモリが必要である。このように、PALplus方式の走査線補間処理と、フリッカーフリーの処理とを行った場合には、5フィールド分のフィールドメモリを必要とし、集積回路化を困難にするとともに、コスト高となるという問題点があった。
従って、この発明の目的は、以上のような問題点を解決することを課題とするものであり、特に、PALplus方式テレビジョン受像機のメモリ構成および管理方法を改良して必要とするフィールドメモリを削減することが可能な画像信号処理装置および処理方法を提供することにある。
発明の開示
この発明は、インターレース方式の入力画像信号に含まれる補強信号を抽出し、抽出された補強信号により解像度補強を行い、さらに、フリッカー低減の信号処理を行うようにした画像信号処理装置において、
解像度補強のために、主画部の複数本の水平走査線毎に補強信号の1水平走査線を配置するように、並び替えを行うシャッフリング処理と、フリッカー低減のために必要なフィールド周波数の倍速化の処理とで、共用されるメモリを備えることを特徴とする画像信号処理装置である。
この発明は、補強信号を有する色差線順次方式のテレビジョン信号に対して適用できる。
また、この発明において共用されるメモリは、第1の実施例に示されるように、
入力画像信号が供給され、書込みに対して所定時間遅れて読出しを開始するように制御され、第1および第2のフィールドに関してシャッフリング処理を行うと共に、倍速で同一の第1および第2のフィールドがそれぞれ2回連続するように読出しを行う第1のメモリと、
第1のメモリから画像信号が供給され、第1のフィールドに関して倍速で同一の第1のフィールドが4回連続するように読出しを行う第2のメモリと、
第1のメモリから画像信号が供給され、第2のフィールドに関して倍速で同一の第2のフィールドが4回連続するように読出しを行う第3のメモリとから構成され、
第2および第3のメモリから読出された画像信号が走査線補間手段に供給される。
また、この発明において共用されるメモリは、第2の実施例に示されるように、
入力画像信号を1フィールド遅延する第1のメモリと、
第1のメモリから画像信号が供給され、書込みに対して所定時間遅れて読出しを開始するように制御され、第1のフィールドに関してシャッフリング処理を行うと共に、倍速で同一の第1のフィールドが4回連続するように読出しを行う第2のメモリと、
入力画像信号が供給され、書込みに対して所定時間遅れて読出しを開始するように制御され、第2のフィールドに関してシャッフリング処理を行うと共に、倍速で同一の第2のフィールドが4回連続するように読出しを行う第3のメモリとから構成され、
第2および第3のメモリから読出された画像信号が走査線補間手段に供給される。
さらに、この発明では、フィールド遅延量が1フィールドとなるように、処理の結果発生する遅延量と1フィールドの遅延量との差の遅延量を有する遅延手段を入力側に設ける。
さらに、この発明では、シャッフリング処理を行うメモリが読出し中に到来した補強信号を、メモリの退避領域に退避して、その後読出すようにする。
また、この発明において共用されるメモリは、第3の実施例に示されるように、
入力画像信号が供給され、書込みに対して所定時間遅れて読出しを開始するように制御され、第1および第2のフィールドに関してシャッフリング処理を行う第1のメモリと、
第1のメモリから画像信号が供給され、第1のフィールドに関して倍速で同一の第1のフィールドがそれぞれ4回連続するように読出しを行う第2のメモリと、
第1のメモリから画像信号が供給され、第2のフィールドに関して倍速で同一の第2のフィールドが4回連続するように読出しを行う第3のメモリと、
第2のメモリから画像信号が供給され、第3のメモリの読出し出力と同期した出力を発生する遅延用の第4のメモリとから構成され、
第3および第4のメモリから読出された画像信号が走査線補間手段に供給される。
また、この発明において共用されるメモリは、第4の実施例に示されるように、
走査線補間がフレーム内処理でなされるフィルムモードでは、入力画像信号を1フィールド遅延し、走査線補間がフィールド内処理でなされるカメラモードでは、1フィールドに不足した遅延量を補足するために使用される第1のメモリと、
第1のメモリからの画像信号と入力画像信号とが供給され、フィルムモードでは、入力画像信号を選択し、カメラモードでは、第1のメモリからの画像信号を選択する切替え手段と、
第1のメモリからの画像信号が供給され、シャッフリング処理のためのランダムアクセスが可能な第2のメモリと、
切替え手段により選択された画像信号が供給され、シャッフリング処理のためのランダムアクセスが可能な第3のメモリとから構成され、
第2および第3のメモリから読出された画像信号が走査線補間手段に供給される。
この発明は、補強信号を有する色差線順次同時化方式のテレビジョン信号に対しても適用できる。
この発明は、インターレース方式の入力画像信号に含まれる補強信号を抽出し、抽出された補強信号により解像度補強を行い、さらに、フリッカー低減の信号処理を行うようにした画像信号処理方法において、
解像度補強のために、主画部の複数本の水平走査線毎に補強信号の1水平走査線を配置するように、並び替えを行うシャッフリングのステップと、
シャッフリングのために使用するメモリを共用して、フリッカー低減のために必要なフィールド周波数の倍速化の処理を行うステップとからなることを特徴とする画像信号処理方法である。
この発明は、シャッフリングとフリッカーフリーとでメモリを共用することによって、使用するメモリの量を大幅に削減することができ、また、メモリ制御回路等のハードウエアを簡略化することができる。
【図面の簡単な説明】
第1図は、この発明のPALplus方式テレビジョン受像機の画像信号処理装置の要部を示すブロック図である。
第2図Aおよび第2図Bは、この発明の第1の実施例のブロック図、並びに各部のライン番号と時間の関係を示す模式図である。
第3図Aおよび第3図Bは、この発明の第1の実施例のメモリ制御方法の詳細を示す模式図、並びにメモリ領域を示す図である。
第4図Aおよび第4図Bは、この発明の第2の実施例の要部を示すブロック図、並びにメモリ制御方法を示す模式図である。
第5図Aおよび第5図Bは、第2の実施例のメモリ制御方法の詳細を示す模式図、並びにメモリ領域を示す図である。
第6図Aおよび第6図Bは、この発明の第3の実施例の要部を示すブロック図、並びにメモリ制御方法を示す模式図である。
第7図Aおよび第7図Bは、この発明の第4の実施例のブロック図、並びにメモリ制御方法を示す模式図である。
第8図は、この発明をSECAM方式テレビジョン受像機に適用した第5の実施例のブロック図である。
第9図A、第9図Bおよび第9図Cは、PALplus放送信号のフレームを模式的に示す略線図、3:1のシャッフリング処理を模式的に示す略線図、並びにアスペクト比16:9の表示例を示す略線図である。
第10図は、PALplus放送信号のフレーム構成を示す略線図である。
第11図A、第11図Bおよび第11図Cは、PALplus方式テレビジョン受像機の復調器の概略を示すブロック図、主画部のシャッフリング処理された状態を、破線はシャッフリング処理されたヘルパー信号を模式的に示す略線図、並びに立ち上がり部の拡大図を示す。
第12図A〜第12Fは、PALplus方式テレビジョン受像機のフリッカーフリー処理回路のブロック図、各フィールドにおける入力映像信号、Aフィールドの出力映像信号、Bフィールドの出力映像信号、通常処理における出力、並びにフィルムモードにおける出力をそれぞれ示す略線図である。
第13図は、PALplus方式テレビジョン受像機の一例である分離型回路を示すブロック図である。
発明を実施するための最良の形態
以下、第1図ないし第8図を参照して、この発明のPALplus方式テレビジョン受像機の実施例を説明する。初めに、第1図を参照して、この発明によるPALplus方式テレビジョン受像機の画像信号処理装置の要部について説明する。
入力端子20からのPALplus複合映像信号が3次元Y/C分離を用いたカラープラス処理を行うカラープラス処理部22、ヘルパー信号処理部23、各種タイミングを生成して出力するタイミングジェネレータ24、フィルムモード/カメラモードの識別を行うモードデコーダ25に供給される。カラープラス処理部22からの輝度信号およびヘルパー信号処理部23からのヘルパー信号が破線で囲んで示す処理回路部31の入力部21に供給される。カラープラス処理部22からの色差信号Eu、Evが色信号の走査線補間処理部26に供給される。処理部26からの色差信号Eu、Evが処理回路部31のフリッカーフリー処理部28に供給される。
入力部21からの輝度信号およびヘルパー信号が輝度信号の走査線補間処理部27に供給される。この処理部27からの輝度信号がフリッカーフリー処理部28に供給される。この輝度信号走査線補間処理部27内には、記憶手段としてのメモリおよびメモリ管理手段からなる管理手段27aが備えられている。フリッカーフリー処理部28の出力部29からの倍速輝度信号2Yおよび倍速色差信号2Eu、2Evがマトリクス部30に供給され、倍速RGB信号2R、2G、2Bが得られる。図示しないが、倍速RGB信号が供給される表示処理部が設けられ、表示処理部に対して、CRT、液晶等の表示装置が接続される。
モードデコーダ25により生成されたモード識別信号がカラープラス処理部22、ヘルパー信号処理部23、タイミングジェネレータ24、輝度信号走査線補間処理部27、フリッカーフリー処理部28に対して供給される。
上述した構成のPALplus方式テレビジョン受像機の画像信号処理装置の動作を説明する。
入力端子20から入力されたPALplus複合映像信号は、カラープラス処理部22、ヘルパー信号処理部23、タイミングジェネレータ24、およびモードデコーダ25に並列に入力される。カラープラス処理部22では、送信側で3次元プリコミングされて送信されてきた複合映像信号をその特性に対応した3次元フィルタ等を用いて3次元Y/C分離を行う。プリコミングは、輝度信号と色信号をフィールドメモリを用いたそれぞれフィールド間で演算することによって行う。但し、送信側で3次元プリコミングが行われない場合には、2次元Y/C分離が行われる。この3次元プリコミングの有無は前述の識別制御信号Zによって知ることができる。
また、カラープラス処理部22および輝度信号走査線補間処理部27では各モードに対応した処理を行う。フィルムモードでは、走査線補間は、同一フレーム内のAフィールドとBフィールドの画像からフレーム内処理を行ない、Y/C分離も動き非適応で行われる。カメラモードでは、フレーム内の2つのフィールドは別々のタイミングの画像であり、Y/C分離は動き適応処理され、走査線補間がフィールド内処理によりなされる。
ヘルパー信号処理部23では、PALplus複合映像信号の上下無画部にあって色搬送信号により変調されて伝送される補強信号の復調および振幅調整を行う(本明細書中ではこの処理を経た補強信号をヘルパー信号と呼称する)。カラープラス処理部22から出力された輝度信号Yおよびヘルパー信号処理部23の出力(ヘルパー信号)は、入力部21を介してこの発明に係わる処理回路31に入力される。タイミングジェネレータ24では、PALplus方式テレビジョン受像機に必要な各種タイミング信号を生成して出力する。更に、モードデコーダ25では、垂直ブランキング部分(第23ライン)に多重されている識別制御信号Zをデコードし、必要な情報を各部に伝達する。
色信号走査線補間処理部26では、フィールド内走査線補間処理等によって、1フィールドあたり215本であった色信号を4/3倍の287本に変換して出力する。但し、色信号走査線補間処理部26では、ヘルパー信号が用いられない。輝度信号走査線補間処理部27では、内部の記憶手段としてのメモリやメモリ制御手段からなる管理手段27aによって各種メモリを制御することにより、1フィールドあたり215本であった主画部(主に輝度信号)の映像情報を、無画部に内挿されて伝送されるヘルパー信号72本の持つ輝度信号と併せて合計287本の輝度信号に変換して出力する。また、輝度信号走査線補間処理部27には垂直フィルタを備えており、シャッフリング処理で損なわれた画像の連続性を確保し、ヘルパー信号によって垂直高域成分を補強した画像を生成して出力する。
フリッカーフリー処理部28では、色信号走査線補間処理部26や輝度信号走査線補間処理部27で得られた1フィールドあたり287本からなる16:9の輝度信号Y、色差信号Eu、Evに対してフィールド倍速変換処理を施す。フリッカーフリー処理部28によって、1秒あたり100フィールドのフィールド周波数に変換する。これにより、50Hzのフィールド周波数に起因する大面積フリッカーを除去する。
マトリクス部30においては、フリッカーフリー処理部28から出力部29を介して出力されたフィールド倍速信号2Y、色差信号2Eu、2Evを液晶表示装置や陰極線管(CRT)等の表示素子に入力するための倍速RGB信号2R、2G、2Bに変換して出力する。
以上が一般的なPALplus方式テレビジョン受像機の構成および動作であるが、PALplus対応テレビジョン受像機という呼称を得るために必須の構成部分は、ヘルパー信号処理部23、色信号走査線補間処理部26および輝度信号走査線補間処理部27である。従って、これらの必須構成部分を中心として様々な構成のPALplus方式テレビジョン受像機が考えられる。この発明は、これらの必須構成部分を含むあらゆる構成のテレビジョン受像機を対象とするものであり、特に、輝度信号走査線補間処理部27、輝度信号走査線補間処理部内にあるメモリを含んだ管理手段27aおよびフリッカーフリー処理部28のメモリの使用量を減少する方式に関するものである。なお、この発明に係わる処理回路部31を破線で示し、また、管理手段27aは輝度信号走査線補間処理部27に一体的に形成されているものとする。以下に処理回路部31のいくつかの実施例について説明する。
第1の実施例
第2図および第3図を参照してこの発明のテレビジョン受像機の第1の実施例の構成を説明する。
第2図Aは、第1の実施例における処理回路部31の構成を示すブロック図であり、第2図Bは、各部のライン番号と時間の関係を示す模式図である。
第2図Aに示すように、第1の実施例は、主画部やヘルパー信号が入力される入力部21、133ラインの遅延素子である133ラインディレイ32、ライン単位でランダムアクセス可能なフィールドメモリ33、フィールドメモリ34、フィールドメモリ35、垂直フィルタ・メディアン処理部36、出力部29等を備えて構成される。
次に、この発明の第1の実施例の動作を説明する。
第2図AおよびBに示すように、入力部21から入力された映像信号は133ラインディレイ32に入力される。この133ラインディレイ32では、1フィールド(312ライン)に不足する133ラインのディレイ量を補足して同図Bに示すような映像信号▲1▼をライン単位でランダムアクセス可能なフィールドメモリ33に入力する。フィールドメモリ33ではライン単位でアドレスジャンプすることにより、前述の上下無画部のヘルパー信号を主画部(輝度信号)にシャッフリング処理するとともに、倍速映像信号▲2▼として2回連続して読出す。
フィールドメモリ34およびフィールドメモリ35は、フィールドメモリ33から2回連続して読出された映像信号を4回連続した映像信号に引き伸ばす動作を行う。つまり、フィールドメモリ34では、2回連続したAフィールドの映像信号を2回連続して読出すことによって、同一のAフィールドが4回、連続する映像信号▲3▼を生成して出力する。同じく、フィールドメモリ35では、2回連続したBフィールドの映像信号を2回連続して読出すことによって、同一のBフィールドが4回、連続する映像信号▲4▼を生成して出力する。
そして、4回連続したAフィールドの映像信号▲3▼と4回連続したBフィールドの映像信号▲4▼が次段の垂直フィルタ・メディアン処理部36に入力されて、シャッフリング処理で損なわれた画像の連続性を確保して画像を滑らかにするような処理を行い、通常のインタレース信号として出力部29より出力する。
更に、第3図を参照してこの発明の第1の実施例のメモリ制御方法の詳細を説明する。
第3図Aは、フィールドメモリ33のメモリ制御方法の詳細を示す模式図であり、第3図Bは、このメモリ33のメモリ領域を示す図である。
第3図Aの最上段は、入力信号のライン番号を示し、その下側に書込み動作を示す。この書込み動作において、Aフィールドの上部ヘルパー信号W1を第3図Bに示すメモリ領域H1に書込み、主画部X1(輝度信号)の情報をメモリ領域Mに書込み、下部ヘルパー信号W1′をメモリ領域H2に各々書込む。更に、斜線を付して示すBフィールドの上部ヘルパー信号W2を同図Bのメモリの退避領域H3に書込み、主画部X2(輝度信号)の情報をメモリ領域Mに書込み、下部ヘルパー信号W2′をメモリ領域H2に各々書込む。
第3図Aに示す読出し例1は、入力信号の書込みが開始してから最も早く読出しを開始する例である。この読出し例1において、読出しの最低条件である書込み前の読出しは困難である点を考慮すると、最も早く読出しを開始できるのは、領域H2への書込みと読出しを同時にスタートする場合である。この時のフィールド1Aの読出し開始タイミングは以下のように計算される。第3図の最上部に記した数字は、時間を入力信号のライン番号(1フィールドのライン番号を1,2,3,・・・,311,312としている。)を単位として表したものである。
領域H2の書込み開始と、領域H2の読出し開始を同時に行うという条件から、領域H2の読出し開始は、275ラインとなる。これに先立ち、144ライン分の読出しが既に終了している必要があるので、フィールド倍速読出しの144ライン分(入力信号を基準とした72ライン分)先行してフィールド1Aの読出しが開始される必要がある。これらを考慮すると、
275(領域H2の読出し開始ライン)−24(フィールド1Aの書込み開始ライン)−72(領域H2の読出しに先行する、フィールド1Aの読出し)=179ライン
となる。Aフィールドの上部ヘルパー信号W1をメモリ領域H1から、主画部X1(輝度信号)をメモリ領域Mから、下部ヘルパー信号W1′をメモリ領域H2から、各々倍速で2回連続して読出す。この読出し時に、3:1シャッフリング処理がなされる。このように、読出しを179ライン遅れて開始するために、133ラインディレイ32を設けて、合計の遅延時間を1フィールド(312ライン)に合わせている。
ここで、フィールド1Aを読出し中にBフィールドの上部ヘルパー信号W2が到来するが、この上部ヘルパー信号W2を一旦、メモリの退避領域H3に退避させておく。引き続きBフィールドの読出しに移り、上部ヘルパー信号W2を先程退避したメモリの退避領域H3から読出し、Bフィールドの主画部X2はメモリの領域Mから、下部ヘルパー信号W2′はメモリの領域H2から、各々倍速で2回連続して読出しを行う。
次に、「読出し例2」は、フィールドメモリ33の読出しを書込みに対して最も遅く開始するものである。この例においても、読出しの最低条件である書込み前の読出しは困難である点を考慮すると、最も遅く読出しを開始できるのは、Bフィールドの主画部X2が到来するときに同時にフィールド1Aの2回目の読出しを開始する場合である。この時のフィールド1Aの1回目の読出しのタイミングは以下のように計算される。
第3図の読出し例2に示すように372ライン目にフィールド1Aの2回目の読出しを開始するためには、それに先行してフィールド1Aの1回目の読出しを312ライン(ブランキング区間を含む)分終了しておく必要がある。この312ラインは倍速であるので、入力信号を基準としたライン数では156本に相当する。以上の点を考慮すると、
372(フィールド1Aの2回目の読出し開始ライン)−24(フィールド1Aの書込み開始ライン)−156(フィールド1Aの2回目の読出しに先行する、ブランキング区間を含むフィールド1Aの読出しライン数)=192ライン
が最も遅く読出しを開始する場合の遅延量である。この場合では、133ラインディレイの代わりに、120ラインディレイが必要とされる。この時点から読出しを開始した場合を以下に説明する。この例では、Bフィールドの主画部X2(輝度信号)が到来する前にAフィールドの主画部X1(輝度信号)の読出しを完了する必要がある点を考慮すると、192ラインを読出しのスタート地点として読出しを開始する。まず、Aフィールドのヘルパー信号W1をメモリ領域H1から、主画部X1(輝度信号)をメモリ領域Mから、シャッフリング処理された下部ヘルパー信号W1′をメモリ領域H2から、各々倍速で2回連続して読出す。この読出し時に3:1シャッフリングがなされる。
ここで、フィールド1Aを読出し中にBフィールドの上部ヘルパー信号W2が到来するが、この上部ヘルパー信号W2を一旦、メモリの退避領域H3に退避させておく。引き続きBフィールドの読出しに移り、上部ヘルパー信号W2を先程退避したメモリの退避領域H3から読出し、Bフィールドの主画部X2はメモリの領域Mから、下部ヘルパー信号W2′はメモリの領域H2から、各々倍速で2回連続して読出しを行う。このように、Bフィールドの主画部X2(輝度信号)の書込みを始める前にAフィールドの読出しを開始しなければならないという制約から、この192ラインの開始点が最もディレイ量の大きいケースとなる。
このように、本実施例では、フィールドメモリを5個使用していたのを、(3個+120〜133ラインディレイ)のメモリ量に削減することができる。
第2の実施例
第4図および第5図を参照してこの発明の第2の実施例について説明する。第4図Aは、第2の実施例における処理回路部31の構成を示すブロック図であり、第4図Bは、各部のライン番号と時間の関係を示す模式図である。
第4図Aに示すように、第2の実施例は、主画部(輝度信号)およびヘルパー信号が入力される入力部21、109ラインの遅延量の133ラインディレイ42、フィールドメモリ43、ライン単位でランダムアクセス可能なフィールドメモリ44およびフィールドメモリ45、垂直フィルタ・メディアン処理部46、そして出力部29等を備えて構成される。
このような構成において、入力部21から入力された映像信号は、133ラインディレイ42に入力され、この133ラインディレイ42では、1フィールド(312ライン)にとって不足分の133ディレイ量を補足して、第4図B▲1▼に示される映像信号を生成し、生成された映像信号を次段のフィールドメモリ43および45に入力する。つまり、この発明の第2の実施例は、179ラインのディレイ量を有している。このディレイ量では1フィールド(312ライン)に満たないことから、不足分の109ライン分を109ラインディレイ42において補足し、1フィールドのディレイとなるように構成する。それによって、VTR信号の入力時等のAFC(Automatic Freqency Control)エラー等の映像乱れを回避することができる。
フィールドメモリ43は、Aフィールドの信号を1フィールド分遅延することによって、第4図B▲2▼に示す如き1フィールドずれた映像信号を生成する。このフィールドメモリ43の出力が次段のライン単位でランダムアクセス可能なフィールドメモリ44に出力する。このフィールドメモリ44では、ライン単位でアドレスジャンプがなされ、前述のヘルパー信号をシャッフリング処理で主画部内に取り込むとともに、フィールドメモリ44から倍速信号として4回連続して読出す(同図B▲3▼)。
Bフィールドの信号は、そのままランダムアクセス可能なフィールドメモリ45に入力される。フィールドメモリ45では、ライン単位でアドレスジャンプがなされ、前述のヘルパー信号をシャッフリング処理で主画部内に取り込むとともに、フィールドメモリ45から倍速信号として4回連続して読出す(同図B▲4▼)。
第4図Bにおいて、4回連続して読出されたAフィールドの信号▲3▼と、4回連続して読出されたBフィールドの信号▲4▼は同時に垂直フィルタ・メディアン処理部46に入力される。この垂直フィルタ・メディアン処理部46では、シャッフリング処理で損なわれた画像の連続性を確保する処理(画像を滑らかにする)を施されて通常のインタレース映像信号として出力部29に出力する。
このように第2の実施例では、AフィールドおよびBフィールドの映信信号が4回連続して同時に垂直フィルタ・メディアン処理部46に入力されるため、前述の第11図で述べた同一フレームのAフィールドとBフィールドの映像信号を同時に使用して処理を行うフィルムモードの垂直フィルタリング処理と、第12図で述べたフリッカーフリーの処理を同時に行うことができる。但し、このような処理を実現するためには特別なメモリ制御を行う必要があり、このメモリ制御方法が本実施例の骨子である。
第5図を参照して、第2の実施例によるメモリ制御方法をより詳細に説明する。第5図Aは、第2の実施例のメモリ制御方法の詳細を示す模式図であり、第5図Bは、メモリ領域を示す図である。
第5図Aの“FM(A)44−書込み”において、Aフィールドの上部ヘルパー信号W1を同図Bのフィールドメモリ44の領域H1に書込み、主画部X1(輝度信号)の情報をメモリ領域Mに書込み、更に下部ヘルパー信号W1′をメモリ領域H2に各々書込む。
前述したように、同図Aの“FM(A)44−読出し”において、読出しのスタート地点は、書込みが開始してから179〜192ライン後とされる。本実施例では、書込み開始から179ライン後をスタート地点として読出しを開始する。上部ヘルパー信号W1をメモリのH1領域から、主画部X1(輝度信号)をメモリのM領域から、下部ヘルパー信号W1′をメモリのH2領域から、各々倍速で4回連続して読出す。読出しアドレスを制御することによって、前述したような3:1シャッフリング処理を行うことができる。
そして、フィールド1Aを連続して読出し中に、斜線を付して示すように、次のフィールド2Aの上部ヘルパー信号W2が来るが、この上部ヘルパー信号W2を一旦、メモリ44の退避領域H3に退避させる。
引き続き、同様に書込まれたフィールド2Aの読出しにおいては、上部ヘルパー信号W2を先程退避したメモリの退避領域H3(36ライン分)から読出し、フィールド2Aの主画部X2(輝度信号)はメモリのM領域から、下部ヘルパー信号W2′はH2領域から、各々倍速で4回連続して読出しを行う。Bフィールドにおいても同様の手法によって書込みおよび読出しを行う。
このように、本実施例では特別なメモリ制御を以て、垂直フィルタリングに必要なフィールドメモリとフリッカーフリー処理に必要なフィールドメモリを共用して用いるようにしたため、前述したようなPALplus方式テレビジョン受像機のフィールドメモリの使用数5個に比して、3個のフィールド+133ラインディレイで構成することが可能となり、フィールドメモリ数を削減することができる。更に、VTRの使用を除外すれば133ラインディレイが不要となるので、133ラインディレイを削減することができ、3個のフィールドメモリを使用すれば良く、更なるメモリ量の削減を実現することができる。
実施例3
第3の実施例は第1および第2の実施例における133ラインディレイに変えてフィールドメモリを採用した例であり、これを第6図を参照して説明する。第6図Aは、第3の実施例の構成を示すブロック図であり、第6図Bは、各部のメモリ制御方法を示す模式図である。
第3の実施例は、映像信号が入力される入力部11、ライン単位でランダムアクセス可能なフィールドメモリ53、フィールドメモリ54、フィールドメモリ55、フィールドメモリ56、垂直フィルタ・メディアン処理部57、そして出力部19等を備えて構成される。
第6図を参照して第3の実施例の動作を説明する。
入力部11から入力された第6図Bに示す映像信号▲1▼は、ライン単位でランダムアクセス可能なフィールドメモリ53に入力される。このフィールドメモリ53ではライン単位でアドレスジャンプがなされることにより、上下無画部のヘルパー信号を主画部(輝度信号)にシャッフリング処理するとともに、通常速度(倍速処理を行わないという意味)で読出すことによって映像信号▲2▼として出力する。その結果、映像信号▲1▼に対して1/2フィールドずれた映像信号▲2▼が生成される。
フィールドメモリ54から、1/2フィールドずれた映像信号▲2▼を倍速処理して4回連続して読出すことにより、映像信号▲3▼を生成する。フィールドメモリ56では、2フィールド分の遅延処理を行い映像信号▲4▼を出力する。フィールドメモリ55では、Bフィールド信号を倍速処理して4回連続して読出すことにより、映像信号▲5▼を生成して出力する。そして、Aフィールドが4回連続する映像信号▲4▼と、Bフィールドが4回連続する映像信号▲5▼が垂直フィルタ・メディアン処理部57に入力される。この垂直フィルタ・メディアン処理部57において、シャッフリング処理で損なわれた画像の連続性を確保し、フィールド倍速された映像信号として出力部19から出力する。
第3の実施例は、フィールドメモリ53によってシャッフリング処理を行うと共に、1/2フィールドの遅延を入力信号に対して有する映像信号▲2▼を生成する。それによって、第1および第2の実施例における133ラインディレイを不要とすることが可能となる。さらに、5個のフィールドメモリを使用する必要がある構成に比して、4個のフィールドメモリで構成できるため1個のフィールドメモリを削減することが可能となる。
実施例4
第4の実施例は、PALplus方式テレビジョン受像機のフィルムモードではヘルパー信号を用いた処理を行わなくても良いという規約を利用した例であり、これを第7図を参照して説明する。
第7図Aは、第4の実施例の構成を示し、第7図Bは、各部のメモリ制御方法を示す模式図である。
第4の実施例は、第7図Aに示すように、映像信号が入力される入力部11、フィールドディレイであるフィールドメモリ63、ライン単位でランダムアクセス可能なフィールドメモリ64、フィールドメモリ65、カメラモードとフィルムモードの切替えを行う切替え手段62、垂直フィルタ・メディアン処理部66、そして出力部19等を備えて構成される。切替え手段62は、モードデコーダ15からのモードを指示する信号によって制御される。
このような構成の第4の実施例の動作を説明する。
フィルムモードにおいて、入力部11から入力された映像信号▲1▼はフィールドディレイ素子としてのフィールドメモリ63に入力される。フィールドメモリ63では1フィールド分の遅延処理を行って映像信号▲2▼を出力する。フィールドメモリ63の出力が次段のフィールドメモリ64に入力される。
フィールドメモリ64では、Aフィールドの主画部の映像信号のみを倍速変換すると共に、1/2フィールド遅延を生じさせ、4回連続して読出す。これにより、映像信号▲2▼に対して1/2フィールド遅延したヘルパー信号を含まない倍速映像信号▲3▼が生成される。但し、このような処理は、ヘルパー信号を演算しないで主画部のみを取り扱う場合においてのみ可能となる。一方、現フィールド(Bフィールド)は、そのままフィールドメモリ65に入力される。フィールドメモリ65では、同様に主画部のみの映像信号を倍速変換すると共に、1/2フィールド遅延を生じさせ、4回連続して読出す。これにより、映像信号▲2▼に対して1/2フィールド遅延したヘルパー信号を含まない倍速映像信号▲4▼が生成される。
カメラモードにおいて、入力部11から入力された映像信号▲1▼がフィールドメモリ64に供給されると共に、切り替え手段62を介してフィールドメモリ65に入力され、フィールドメモリ65によってシャッフリング処理がなされて次段の垂直フィルタ・メディアン処理部66に出力される。但し、ディレイ量は179〜192ラインを厳守しなければならない。垂直フィルタ・メディアン処理部66では、シャッフリング処理で損なわれた画像の連続性を確保して、フィールド倍速信号として出力部19に出力する。
ここで、フィールドメモリ63は、走査線補間をフレーム内処理によって行うフィルムモードでは使用するが、走査線補間をフィールド内処理によって行うカメラモードでは必要としないメモリである。そこで、カメラモード時にはこのフィールドメモリ63を133ラインディレイ素子として使用し、全体として1フィールドのディレイ量を確保する。このように、第4の実施例は、切替え手段62によってモードを切り替え、フィールドメモリ63を133ラインディレイとして併用し、カメラモードで本来必要な133ラインディレイを不要とすることができる。
第4の実施例は、必要とするフィールドメモリの個数を5個から3個へ削減することができる。
実施例5
第5の実施例はPALplus方式テレビジョン受像機に代えて、SECAM方式テレビジョン受像機にこの発明を適用した例である。第8図は、第5の実施例の構成を示すブロック図である。
第5の実施例は、図1のヘルパー信号処理部23、タイミングジェネレータ24、モードデコーダ25、マトリクス部30等のPALplus方式テレビジョン受像機の構成要素に対して、SECAM複合映像信号が入力される入力端子70と、Y/C分離・カラーデコード処理部72と、この発明が適用された走査線補間処理部76とが新たな構成要素として追加される。
そして、入力端子70から入力されたSECAM複合映像信号は、Y/C分離・カラーデコード処理部72、ヘルパー信号処理部73、タイミングジェネレータ74、そしてモードデコーダ75に並列に入力される。
Y/C分離・カラーデコード処理部72では、3次元Y/C分離等によって、輝度信号および色信号が分離され、色信号が復調されることで色差信号B−Y(Eu)、R−Y(Ev)が形成され、さらに、色順序判別信号ID信号に基づいてSECAMスイッチ等により同時化して色復調がなされる。Y/C分離・カラーデコード処理部72からの輝度信号Yおよび色差信号Eu、Evが次段のこの発明の走査線補間処理部76に出力される。そして、走査線補間処理部76によって、前述と同様な動作で走査線補間処理がなされ、倍速輝度信号2Y、倍速色差信号2Eu信号、2Ev信号としてマトリクス部77に出力される。以降の説明は重複するため省略する。
この発明は上述した第1〜第5の実施例に限定されず、種々の実施形態を採ることができる。例えば、PALplus方式やSECAM方式テレビジョン受像機について説明したが、PAL−SECAM両用のテレビジョン受像機にも適用が可能である。また、以上の説明では、画像信号処理装置の一例としてテレビジョン受像機について説明したが、他のAV機器例えばビデオ機器や記録媒体一体型モニター装置、プロジョクター装置等にも応用が可能である。更に、この発明は以上示した実施形態にとらわれず様々な形態に発展出来ることは言うまでもない。
以上説明したように、この発明は、別々に処理されていたヘルパー信号処理とフリッカーフリー処理を管理手段による所定のメモリ制御の下で統合して処理する。従って、この発明は、メモリを合理的に管理することが可能となりシステムの効率的な運用を図ることができるとともに使用するフィールドメモリ数を削減することができる。
Claims (10)
- アスペクト比が(16:9)の主画部の上下に所定数の水平走査線数の無画部がそれぞれ存在する形式で伝送される画像信号が入力され、入力画像信号の上記無画部に重畳された補強信号を抽出し、抽出された上記補強信号を上記主画部の水平走査線の所定本数毎に挿入する走査線補間を行い、走査線補間された信号を垂直フィルタリング処理することにより垂直解像度補強を行い、さらに、フリッカー低減のためのフィールド周波数の倍速化処理を行うようにした画像信号処理装置において、
上記入力画像信号が入力され、書込みに対して所定時間遅れて上記入力画像信号の読出しを開始するように制御され、第1および第2のフィールドに関して、上記主画部の所定本数の水平走査線毎に上記補強信号の1水平走査線を配置するように並び替えを行うシャッフリング処理を行うと共に、上記第1および第2のフィールドのフィールド周波数を倍速にして上記第1および第2のフィールドのそれぞれの同一の画像が2回連続するように読出しを行い、倍速画像信号を出力する第1のメモリと、
上記第1のメモリから出力された上記倍速画像信号が入力され、上記倍速画像信号のうち上記第1のフィールドの同一の画像が4回連続するように読出しを行い、画像信号を出力する第2のメモリと、
上記第1のメモリから出力された上記倍速画像信号が入力され、上記倍速画像信号のうち上記第2のフィールドの同一の画像が4回連続するように読出しを行い、画像信号を出力する第3のメモリと、
上記第2および第3のメモリから出力されたそれぞれの画像信号を合成することによって出力画像信号を形成する垂直フィルタ・メディアン処理部とからなることを特徴とする画像信号処理装置。 - アスペクト比が(16:9)の主画部の上下に所定数の水平走査線数の無画部がそれぞれ存在する形式で伝送される画像信号が入力され、入力画像信号の上記無画部に重畳された補強信号を抽出し、抽出された上記補強信号を上記主画部の水平走査線の所定本数毎に挿入する走査線補間を行い、走査線補間された信号を垂直フィルタリング処理することにより垂直解像度補強を行い、さらに、フリッカー低減のためのフィールド周波数の倍速化処理を行うようにした画像信号処理方法において、
上記入力画像信号が第1のメモリに入力され、書込みに対して所定時間遅れて上記主画部の所定本数の水平走査線毎に上記補強信号の1水平走査線を配置するように並び替えを行うシャッフリング処理を行うと共に、上記第1および第2のフィールドのフィールド周波数を倍速にして上記第1および第2のフィールドのそれぞれの同一の画像が2回連続するように読出しを行い、倍速画像信号を出力し、
上記第1のメモリから出力された上記倍速画像信号が第2のメモリに入力され、上記倍速画像信号のうち上記第1のフィールドの同一の画像が4回連続するように読出しを行い、画像信号を出力し、
上記第1のメモリから出力された上記倍速画像信号が第3のメモリに入力され、上記倍速画像信号のうち上記第2のフィールドの同一の画像が4回連続するように読出しを行い、画像信号を出力し、
上記第2および第3のメモリから出力されたそれぞれの画像信号を垂直フィルタ・メディアン垂直フィルタ・メディアン処理部によって合成することによって出力画像信号を形成することを特徴とする画像信号処理方法。 - アスペクト比が(16:9)の主画部の上下に所定数の水平走査線数の無画部がそれぞれ存在する形式で伝送される画像信号が入力され、入力画像信号の上記無画部に重畳された補強信号を抽出し、抽出された上記補強信号を上記主画部の水平走査線の所定本数毎に挿入する走査線補間を行い、走査線補間された信号を垂直フィルタリング処理することにより垂直解像度補強を行い、さらに、フリッカー低減のためのフィールド周波数の倍速化処理を行うようにした画像信号処理装置において、
入力された上記入力画像信号を1フィールド遅延して、画像信号を出力する第1のメモリと、
上記第1のメモリから出力された上記画像信号が入力され、書込みに対して所定時間遅れて上記画像信号のうち第1のフィールドの読出しを開始するように制御され、上記第1のフィールドに関して、上記主画部の所定本数の水平走査線毎に上記補強信号の1水平走査線を配置するように並び替えを行うシャッフリング処理を行うと共に、上記第1のフィールドのフィールド周波数を倍速にして上記第1のフィールドの同一の画像が4回連続するように読出しを行い、倍速画像信号を出力する第2のメモリと、
上記入力画像信号が入力され、書込み対して所定時間遅れて上記画像信号のうち第2のフィールドの読出しを開始するように制御され、上記第2のフィールドに関して、上記主画部の所定本数の水平走査線毎に上記補強信号の1水平走査線を配置するように並び替えを行うシャッフリング処理を行うと共に、上記第2のフィールドのフィールド周波数を倍速にして上記第2のフィールドの同一の画像が4回連続するように読出しを行い、倍速画像信号を出力する第3のメモリと、
上記第2および第3のメモリから出力されたそれぞれの画像信号を合成することによって出力画像信号を形成する垂直フィルタ・メディアン処理部とからなることを特徴とする画像信号処理装置。 - アスペクト比が(16:9)の主画部の上下に所定数の水平走査線数の無画部がそれぞれ存在する形式で伝送される画像信号が入力され、入力画像信号の上記無画部に重畳された補強信号を抽出し、抽出された上記補強信号を上記主画部の水平走査線の所定本数毎に挿入する走査線補間を行い、走査線補間された信号を垂直フィルタリング処理することにより垂直解像度補強を行い、さらに、フリッカー低減のためのフィールド周波数の倍速化処理を行うようにした画像信号処理方法において、
第1のメモリに入力された上記入力画像信号を1フィールド遅延して、画像信号を出力し、
上記第1のメモリから出力された上記画像信号が第2のメモリに入力され、書込みに対して所定時間遅れて上記画像信号のうち第1のフィールドの読出しを開始するように制御され、上記第1のフィールドに関して、上記主画部の所定本数の水平走査線毎に上記補強信号の1水平走査線を配置するように並び替えを行うシャッフリング処理を行うと共に、上記第1のフィールドのフィールド周波数を倍速にして上記第1のフィールドの同一の画像が4回連続するように読出しを行い、倍速画像信号を出力し、
上記入力画像信号が第3のメモリに入力され、書込み対して所定時間遅れて上記画像信号のうち第2のフィールドの読出しを開始するように制御され、上記第2のフィールドに関して、上記主画部の所定本数の水平走査線毎に上記補強信号の1水平走査線を配置するように並び替えを行うシャッフリング処理を行うと共に、上記第2のフィールドのフィールド周波数を倍速にして上記第2のフィールドの同一の画像が4回連続するように読出しを行い、倍速画像信号を出力し、
上記第2および第3のメモリから出力されたそれぞれの画像信号を垂直フィルタ・メディアン垂直フィルタ・メディアン処理部によって合成することによって出力画像信号を形成することを特徴とする画像信号処理方法。 - 請求項1または3に記載の装置において、
処理の結果発生する遅延量と1フィールドの遅延量との差の遅延量を有する遅延手段を入力側に設けることを特徴とする画像信号処理装置。 - 請求項1または3に記載の装置において、
上記シャッフリング処理を行うメモリが読出し中に到来した上記補強信号を、上記メモリの退避領域に退避して、その後読出すようにすることを特徴とする画像信号処理装置。 - アスペクト比が(16:9)の主画部の上下に所定数の水平走査線数の無画部がそれぞれ存在する形式で伝送される画像信号が入力され、入力画像信号の上記無画部に重畳された補強信号を抽出し、抽出された上記補強信号を上記主画部の水平走査線の所定本数毎に挿入する走査線補間を行い、走査線補間された信号を垂直フィルタリング処理することにより垂直解像度補強を行い、さらに、フリッカー低減のためのフィールド周波数の倍速化処理を行うようにした画像信号処理装置において、
上記入力画像信号が入力され、書込みに対して所定時間遅れて上記入力画像信号の読出しを開始するように制御され、第1および第2のフィールドに関して、上記主画部の所定本数の水平走査線毎に上記補強信号の1水平走査線を配置するように並び替えを行うシャッフリング処理を行い、画像信号を出力する第1のメモリと、
上記第1のメモリから出力された上記画像信号が入力され、フィールド周波数の倍速化処理により上記第1のフィールドの同一の画像が4回連続するように読出しを行い、画像信号を出力する第2のメモリと、
上記第1のメモリから出力された上記画像信号が入力され、フィールド周波数の倍速化処理により上記第2のフィールドの同一の画像が4回連続するように読出しを行い、画像信号を出力する第3のメモリと
上記第2のメモリから出力された上記画像信号が入力され、上記第3のメモリから出力された画像信号に同期するように、遅延した画像信号を出力する第4のメモリと、
上記第3および第4のメモリから出力されたそれぞれの画像信号を合成することによって出力画像信号を形成する垂直フィルタ・メディアン処理部とからなることを特徴とする画像信号処理装置。 - アスペクト比が(16:9)の主画部の上下に所定数の水平走査線数の無画部がそれぞれ存在する形式で伝送される画像信号が入力され、入力画像信号の上記無画部に重畳された補強信号を抽出し、抽出された上記補強信号を上記主画部の水平走査線の所定本数毎に挿入する走査線補間を行い、走査線補間された信号を垂直フィルタリング処理することにより垂直解像度補強を行い、さらに、フリッカー低減のためのフィールド周波数の倍速化処理を行うようにした画像信号処理方法において、
上記入力画像信号が第1のメモリに入力され、書込みに対して所定時間遅れて上記入力画像信号の読出しを開始するように制御され、第1および第2のフィールドに関して、上記主画部の所定本数の水平走査線毎に上記補強信号の1水平走査線を配置するように並び替えを行うシャッフリング処理を行い、画像信号を出力し、
上記第1のメモリから出力された上記画像信号が第2のメモリに入力され、フィールド周波数の倍速化処理により上記第1のフィールドの同一の画像が4回連続するように読出しを行い、画像信号を出力し、
上記第1のメモリから出力された上記画像信号が第3のメモリに入力され、フィールド周波数の倍速化処理により上記第2のフィールドの同一の画像が4回連続するように読出しを行い、画像信号を出力し、
上記第2のメモリから出力された上記画像信号が第4のメモリに入力され、上記第3のメモリから出力された画像信号に同期するように、遅延した画像信号を出力し、
上記第3および第4のメモリから出力されたそれぞれの画像信号を垂直フィルタ・メディアン垂直フィルタ・メディアン処理部によって合成することによって出力画像信号を形成することを特徴とする画像信号処理方法。 - アスペクト比が(16:9)の主画部の上下に所定数の水平走査線数の無画部がそれぞれ存在する形式で伝送される画像信号が入力され、入力画像信号の上記無画部に重畳された補強信号を抽出し、抽出された上記補強信号を上記主画部の水平走査線の所定本数毎に挿入する走査線補間を行い、走査線補間された信号を垂直フィルタリング処理することにより垂直解像度補強を行い、さらに、フリッカー低減のためのフィールド周波数の倍速化処理を行うようにした画像信号処理装置において、
上記入力画像信号が入力され、走査線補間がフレーム内処理でなされるフィルムモードでは、上記入力画像信号を1フィールド遅延して画像信号を出力し、走査線補間がフィールド内処理でなされるカメラモードでは、1フィールドに不足した遅延量を遅延して画像信号を出力する第1のメモリと、
上記第1のメモリから出力された上記画像信号と上記入力画像信号とが供給され、上記フィルムモードでは、上記入力画像信号を選択し、上記カメラモードでは、上記第1のメモリから出力された上記画像信号を選択する切り替え手段と、
上記第1のメモリから出力された画像信号が入力され、上記カメラモードのみ上記第1のフィールドに関して、上記主画部の所定本数の水平走査線毎に上記補強信号の1水平走査線を配置するように並び替えを行うシャッフリング処理を行い、上記フィルムモードおよび上記カメラモードにおいて、上記第1のフィールドのフィールド周波数を倍速にして上記第1のフィールドの同一の画像が4回連続するように読出しを行い、倍速画像信号を出力する、ランダムアクセスが可能な第2のメモリと、
上記切り替え手段により選択された画像信号が入力され、上記カメラモードのみ上記第2のフィールドに関して、上記主画部の所定本数の水平走査線毎に上記補強信号の1水平走査線を配置するように並び替えを行うシャッフリング処理を行い、上記フィルムモードおよび上記カメラモードにおいて、上記第2のフィールドのフィールド周波数を倍速にして上記第2のフィールドの同一の画像が4回連続するように読出しを行い、倍速画像信号を出力する、ランダムアクセスが可能な第3のメモリと、
上記第2および第3のメモリから出力されたそれぞれの画像信号を合成することによって出力画像信号を形成する垂直フィルタ・メディアン処理部とからなることを特徴とする画像信号処理装置。 - アスペクト比が(16:9)の主画部の上下に所定数の水平走査線数の無画部がそれぞれ存在する形式で伝送される画像信号が入力され、入力画像信号の上記無画部に重畳された補強信号を抽出し、抽出された上記補強信号を上記主画部の水平走査線の所定本数毎に挿入する走査線補間を行い、走査線補間された信号を垂直フィルタリング処理することにより垂直解像度補強を行い、さらに、フリッカー低減のためのフィールド周波数の倍速化処理を行うようにした画像信号処理方法において、
上記入力画像信号が第1のメモリに入力され、走査線補間がフレーム内処理でなされるフィルムモードでは、上記入力画像信号を1フィールド遅延して画像信号を出力し、走査線補間がフィールド内処理でなされるカメラモードでは、1フィールドに不足した遅延量を遅延して画像信号を出力し、
上記第1のメモリから出力された上記画像信号と上記入力画像信号とが切り替え手段に供給され、上記フィルムモードでは、上記入力画像信号を選択し、上記カメラモードでは、上記第1のメモリから出力された上記画像信号を選択し、
上記第1のメモリから出力された上記画像信号がランダムアクセスが可能な第2のメモリに入力され、上記カメラモードのみ上記第1のフィールドに関して、上記主画部の所定本数の水平走査線毎に上記補強信号の1水平走査線を配置するように並び替えを行うシャッフリング処理を行い、上記フィルムモードおよび上記カメラモードにおいて、上記第1のフィールドのフィールド周波数を倍速にして上記第1のフィールドの同一の画像が4回連続するように読出しを行い、倍速画像信号を出力し、
上記切り替え手段により選択された画像信号がランダムアクセスが可能な第3のメモリに入力され、上記カメラモードのみ上記第2のフィールドに関して、上記主画部の所定本数の水平走査線毎に上記補強信号の1水平走査線を配置するように並び替えを行うシャッフリング処理を行い、上記フィルムモードおよび上記カメラモードにおいて、上記第2のフィールドのフィールド周波数を倍速にして上記第2のフィールドの同一の画像が4回連続するように読出しを行い、倍速画像信号を出力し、
上記第2および第3のメモリから出力されたそれぞれの画像信号を垂直フィルタ・メディアン処理部によって合成することによって出力画像信号を形成することを特徴とする画像信号処理方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6901695 | 1995-03-28 | ||
PCT/JP1996/000822 WO1996031054A1 (fr) | 1995-03-28 | 1996-03-28 | Processeur de signaux d'image |
Publications (1)
Publication Number | Publication Date |
---|---|
JP3852115B2 true JP3852115B2 (ja) | 2006-11-29 |
Family
ID=13390379
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP52748696A Expired - Fee Related JP3852115B2 (ja) | 1995-03-28 | 1996-03-28 | 画像信号処理装置 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0763937A4 (ja) |
JP (1) | JP3852115B2 (ja) |
KR (1) | KR100377815B1 (ja) |
FI (1) | FI964724A (ja) |
WO (1) | WO1996031054A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101222983B1 (ko) | 2006-11-06 | 2013-01-17 | 엘지디스플레이 주식회사 | 액정표시장치 및 그의 구동 방법 |
KR102104986B1 (ko) * | 2009-02-06 | 2020-04-27 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 표시 장치 구동 방법 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0720271B2 (ja) * | 1988-10-11 | 1995-03-06 | パイオニア株式会社 | Pal方式テレビジョン受像機におけるフリッカーフリー回路 |
DE3840054C1 (ja) * | 1988-11-28 | 1989-09-07 | Institut Fuer Rundfunktechnik Gmbh, 8000 Muenchen, De | |
JPH0427288A (ja) * | 1990-05-23 | 1992-01-30 | Hitachi Ltd | ワイドアスペクト比テレビジョン信号の伝送方法及び装置 |
JPH0583745A (ja) * | 1991-09-24 | 1993-04-02 | Mitsubishi Electric Corp | テレビジヨン受像機 |
DE4243804C2 (de) * | 1992-12-23 | 1995-08-17 | Grundig Emv | Empfänger zur Verarbeitung von nach dem Letterbox-Verfahren übertragenen Fernsehsignalen |
-
1996
- 1996-03-28 JP JP52748696A patent/JP3852115B2/ja not_active Expired - Fee Related
- 1996-03-28 EP EP96907688A patent/EP0763937A4/en not_active Withdrawn
- 1996-03-28 WO PCT/JP1996/000822 patent/WO1996031054A1/ja not_active Application Discontinuation
- 1996-03-28 KR KR1019960706732A patent/KR100377815B1/ko not_active IP Right Cessation
- 1996-11-27 FI FI964724A patent/FI964724A/fi unknown
Also Published As
Publication number | Publication date |
---|---|
FI964724A (fi) | 1997-01-22 |
KR100377815B1 (ko) | 2003-09-22 |
EP0763937A4 (en) | 2000-02-23 |
KR970703675A (ko) | 1997-07-03 |
EP0763937A1 (en) | 1997-03-19 |
WO1996031054A1 (fr) | 1996-10-03 |
FI964724A0 (fi) | 1996-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2779212B2 (ja) | ワイド画面/標準画面テレビジョン信号受信装置 | |
US6310654B1 (en) | Decoder device and receiver using the same | |
KR930001446B1 (ko) | 다화면 텔레비젼 수상기 | |
CA1230669A (en) | Progressive scan television display system | |
JPH0366270A (ja) | 2画面テレビ | |
GB2326304A (en) | Video signal processor for received interlaced format video signals from different sources | |
JPH10191268A (ja) | 映像信号処理装置および処理方法 | |
JP3852115B2 (ja) | 画像信号処理装置 | |
JPS5879390A (ja) | テレビジヨン送受信方式 | |
EP0659015A1 (en) | Frame synchronizer and a signal switching apparatus | |
JP2525431B2 (ja) | Rgbマルチ端子入力対応型順次走査変換テレビジョン受像機 | |
JP2820479B2 (ja) | 高品位/標準テレビジョン共用受信装置 | |
JP2872269B2 (ja) | 標準/高品位テレビジョン受信装置 | |
JPS6314587A (ja) | テレビジヨン伝送方式 | |
JP2941415B2 (ja) | テレビジョン信号処理装置 | |
JP2888545B2 (ja) | テレビジョン受信機の信号方式適応装置 | |
KR920010940B1 (ko) | 픽쳐 인 픽쳐 표시기능을 가지는 tv표시장치 및 픽쳐 인 픽쳐 표시방법. | |
JP2624533B2 (ja) | 両立性を備えた画像信号伝送方式 | |
JP2938092B2 (ja) | 高精細テレビジョン信号処理装置 | |
JPH0486089A (ja) | 映像信号変換装置 | |
JP2002359819A (ja) | 順次走査変換回路、セットトップボックス、テレビジョン受像機、及び順次走査変換方法 | |
JPH02260980A (ja) | テレビジョン受像機 | |
JPH11164266A (ja) | 映像信号処理装置 | |
JPH03243083A (ja) | Muse/edtv方式変換装置 | |
JPH07255041A (ja) | テレビジョン信号処理方法及び装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050329 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050527 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060425 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060626 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060815 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060828 |
|
LAPS | Cancellation because of no payment of annual fees |