JP3736416B2 - 触媒温度制御装置 - Google Patents
触媒温度制御装置 Download PDFInfo
- Publication number
- JP3736416B2 JP3736416B2 JP2001312990A JP2001312990A JP3736416B2 JP 3736416 B2 JP3736416 B2 JP 3736416B2 JP 2001312990 A JP2001312990 A JP 2001312990A JP 2001312990 A JP2001312990 A JP 2001312990A JP 3736416 B2 JP3736416 B2 JP 3736416B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- exhaust gas
- internal combustion
- temperature
- exhaust
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Exhaust Silencers (AREA)
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
- Exhaust Gas After Treatment (AREA)
Description
【発明の属する技術分野】
本発明は触媒温度制御装置に関する。
【0002】
【従来の技術】
リーン空燃比のもとで燃焼が行われる内燃機関の排気通路内にNO X 吸収剤を配置し、NO X 吸収剤に流入する内燃機関の排気ガスの量を制御するための排気制御弁と、燃焼式ヒータとを具備し、NO X 吸収剤の温度を上昇させるべきときにはNO X 吸収剤にわずかな量の内燃機関の排気ガスが流入するように排気制御弁の開度を制御しながら、リッチ空燃比のもとで作動される燃焼式ヒータの排気ガスをNO X 吸収剤に供給するようにした触媒温度制御装置が公知である(特開2000−345831号公報参照)。このようにすると、内燃機関の排気ガス中の酸素と、燃焼式ヒータの排気ガス中のHC,COとがNO X 吸収剤において発熱反応し、斯くしてNO X 吸収剤の温度が上昇せしめられる。
【0003】
【発明が解決しようとする課題】
この場合、NO X 吸収剤の温度又は温度上昇速度は排気制御弁から漏れてNO X 吸収剤に流入する内燃機関の排気ガス中の酸素の量に依存し、この酸素の量は排気制御弁から漏れた内燃機関の排気ガスの量に依存し、この漏れた排気ガスの量は内燃機関から排出される排気ガスの量に依存する。従って、排気制御弁の開度を一定に保持したとしても、内燃機関の機関運転状態が変動するとNO X 吸収剤に流入する酸素の量が変動することになり、斯くしてNO X 吸収剤の温度又は温度上昇速度が変動することになるという問題点がある。
【0004】
そこで本発明の目的は、安定した触媒昇温作用を得ることができる触媒温度制御装置を提供することにある。
【0005】
【課題を解決するための手段】
上記課題を解決するために1番目の発明によれば、リーン空燃比のもとで燃焼が行われる内燃機関の排気通路内に酸化能を有する触媒を配置し、触媒に流入する内燃機関の排気ガスの量を制御するための排気制御弁と、内燃機関と異なる燃焼装置とを具備し、触媒の温度を上昇させるべきときには該触媒にわずかな量の内燃機関の排気ガスが流入するように排気制御弁の開度を制御しながら、リッチ空燃比のもとで作動される燃焼装置の排気ガスを該触媒に供給して内燃機関の排気ガス中の酸素と燃焼装置の排気ガス中の二次燃料とが該触媒内で発熱反応するようにした触媒温度制御装置において、触媒の温度を上昇させるべきときには該触媒に流入する内燃機関の排気ガス中の酸素の量が予め定められた目標量になるように、該目標量と、触媒内に流入する内燃機関の排気ガスの量と、燃焼室における平均空燃比とに基づいて排気制御弁の開度を制御している。即ち1番目の発明では、触媒に流入する内燃機関の排気ガス中の酸素の量が排気制御弁の開度を制御することによって制御される。
【0006】
また、上記課題を解決するために2番目の発明によれば、リーン空燃比のもとで燃焼が行われる内燃機関の排気通路を分岐して形成される一対の分岐排気通路内に酸化能を有する触媒をそれぞれ配置し、各触媒に流入する内燃機関の排気ガスの量を制御するための排気制御弁と、内燃機関と異なる燃焼装置とを具備し、触媒の温度を上昇させるべきときには該触媒にわずかな量の内燃機関の排気ガスが流入するように排気制御弁の開度を制御しながら、リッチ空燃比のもとで作動される燃焼装置の排気ガスを該触媒に供給して内燃機関の排気ガス中の酸素と燃焼装置の排気ガス中の二次燃料とが該触媒内で発熱反応するようにした触媒温度制御装置において、触媒の温度を上昇させるべきときには該触媒に流入する内燃機関の排気ガス中の酸素の量が予め定められた目標量になるように、該目標量と、触媒内に流入する内燃機関の排気ガスの量と、燃焼室における平均空燃比とに基づいて排気制御弁の開度を制御している。即ち2番目の発明でも、触媒に流入する内燃機関の排気ガス中の酸素の量が排気制御弁の開度を制御することによって制御される。
【0007】
また、3番目の発明によれば2番目の発明において、前記目標量を触媒の昇温目的に応じて定めている。
【0008】
また、4番目の発明によれば2又は3番目の発明において、燃焼装置に供給される空気又は燃料の量を前記目標量に基づいて制御するようにしている。即ち4番目の発明では、燃焼装置の排気ガス中に含まれるHC,COの量が前記目標量に基づいて定められる。
【0009】
また、5番目の発明によれば2から4番目の発明のいずれか一つにおいて、内燃機関から排出される排気ガスの温度を上昇させるための手段を具備し、両方の触媒の温度を同時に上昇させるべきときには一方の触媒にわずかな量の内燃機関の排気ガスが流入するように排気制御弁の開度を制御しながら、リッチ空燃比のもとで作動される燃焼装置の排気ガスを該一方の触媒に供給すると共に、他方の触媒の温度を上昇させるために内燃機関から排出される排気ガスの温度を上昇させるようにしている。
【0010】
【発明の実施の形態】
図1は本発明を圧縮着火式内燃機関に適用した場合を示している。なお、本発明は火花点火式内燃機関にも適用することもできる。
【0011】
図1を参照すると、1は機関本体、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6は電気制御式燃料噴射弁、7は吸気弁、8は吸気ポート、9は排気弁、10は排気ポートを夫々示す。吸気ポート8は対応する吸気枝管11を介してサージタンク12に連結され、サージタンク12は吸気ダクト13を介して排気ターボチャージャ14のコンプレッサ15に連結される。吸気ダクト13内にはステップモータ16により駆動されるスロットル弁17が配置され、更に吸気ダクト13周りには吸気ダクト13内を流れる吸入空気を冷却するための冷却装置18が配置される。図1に示される実施例では機関冷却水が冷却装置18内に導かれ、機関冷却水によって吸入空気が冷却される。
【0012】
一方、排気ポート10は排気マニホルド19及び排気管20を介して排気ターボチャージャ14の排気タービン21に連結され、排気タービン21の出口は分岐管22を介して第1及び第2の上流側排気ダクトDU1,DU2に接続される。これら上流側排気ダクトDU1,DU2は第1及び第2のケーシングCA1,CA2にそれぞれ接続され、これらケーシングCA1,CA2は第1及び第2の下流側排気ダクトDL1,DL2に接続され、これら下流側排気ダクトDL1,DL2は共通の排気管23に接続される。
【0013】
第1及び第2の上流側排気ダクトDU1,DU2内には第1及び第2の上流側排気制御弁VU1,VU2がそれぞれ配置され、第1及び第2の下流側排気ダクトDL1,DL2内には第1及び第2の下流側排気制御弁VL1,VL2がそれぞれ配置される。これら排気制御弁はそれぞれ対応するアクチュエータによりそれぞれ駆動される。また、第1及び第2のケーシングCA1,CA2内には、内燃機関の排気ガス中に含まれる固体炭素からなる微粒子を捕集するためのパティキュレートフィルタに担持された第1及び第2の触媒がそれぞれ収容されている。本発明による実施例では第1及び第2の触媒は第1及び第2のNO X 吸収剤NA1,NA2から形成される。しかしながら、触媒が酸化能を有する限りどのような触媒を用いてもよい。
【0014】
ここで、第1の上流側排気ダクトDU1及び第1の下流側排気ダクトDL1を第1の排気ダクトと称し、第1の上流側排気制御弁VU1及び第1の下流側排気制御弁VL1を第1の排気制御弁と称すると、第1の排気ダクト内に第1のNO X 吸収剤NA1と第1の排気制御弁とが配置されているということになる。同様に、第2の上流側排気ダクトDU2及び第2の下流側排気ダクトDL2を第2の排気ダクトと称し、第2の上流側排気制御弁VU2及び第2の下流側排気制御弁VL2を第2の排気制御弁と称すると、第2の排気ダクト内に第2のNO X 吸収剤NA2と第2の排気制御弁とが配置されているということになる。
【0015】
排気マニホルド19とサージタンク12とは排気ガス再循環(以下、EGRと称す)通路24を介して互いに連結され、EGR通路24内には電気制御式EGR制御弁25が配置される。また、EGR通路24周りにはEGR通路24内を流れるEGRガスを冷却するための冷却装置26が配置される。図1に示される実施例では機関冷却水が冷却装置26内に導かれ、機関冷却水によってEGRガスが冷却される。一方、各燃料噴射弁6は燃料供給管6aを介して燃料リザーバ、いわゆるコモンレール27に連結される。このコモンレール27内へは電気制御式の吐出量可変な燃料ポンプ28から燃料が供給され、コモンレール27内に供給された燃料は各燃料供給管6aを介して燃料噴射弁6に供給される。コモンレール27にはコモンレール27内の燃料圧を検出するための燃料圧センサ29が取付けられ、燃料圧センサ29の出力信号に基づいてコモンレール27内の燃料圧が目標燃料圧となるように燃料ポンプ28の吐出量が制御される。
【0016】
図1に示す内燃機関はNO X 吸収剤NA1,NA2に二次燃料を供給するための燃焼式ヒータ30を具備している。この燃焼式ヒータ30の空気通路31は開弁割合を変更可能な電気制御式空気絞り弁32を介して空気ポンプ33の吐出側に接続されている。一方、燃焼式ヒータ30の排気通路34は第1及び第2の上流側排気制御弁VU1,VU2よりも下流の第1及び第2の上流側排気ダクトDU1,DU2内に配置された第1及び第2の電気制御式排気ガス供給ノズルNG1,NG2に接続されている。また、燃焼式ヒータ30の燃焼室35内にはグロープラグ36が配置される。更に、空気絞り弁32下流の空気通路31と排気管23とはEGR通路37を介して連結され、EGR通路37内にはEGR通路37内を流通するEGRガスの量を制御するための電気制御式EGR弁38が配置される。一方、燃焼式ヒータ30の燃焼室35には吐出量を制御可能な燃料ポンプ39によって燃料タンク内の燃料が供給される。
【0017】
NO X 吸収剤NA1,NA2に燃焼式ヒータ30の排気ガスを供給すべきときには燃焼式ヒータ30が作動され、対応する排気ガス供給ノズルNG1,NG2が開弁される。即ち、空気ポンプ33及び燃料ポンプ39が作動され、空気絞り弁32が開弁され、グロープラグ36が作動され、斯くして燃焼式ヒータ30が作動される。ここで、空気絞り弁32の開度及び燃料ポンプ39の吐出量を制御することによって燃焼式ヒータ30に供給される空気量及び燃料量が制御される。なお、図1に示す実施例では燃焼式ヒータ30を作動すべきときにはEGR弁38が開弁され、燃焼式ヒータ30において消費される燃料量を低減するようにしている。
【0018】
電子制御ユニット40はデジタルコンピュータからなり、双方向性バス41によって互いに接続されたROM(リードオンリメモリ)42、RAM(ランダムアクセスメモリ)43、CPU(マイクロプロセッサ)44、入力ポート45及び出力ポート46を具備する。燃料圧センサ29の出力信号は対応するAD変換器47を介して入力ポート45に入力される。また、分岐管22内には内燃機関の燃焼室5における平均空燃比を検出するための空燃比センサ49が取付けられ、空燃比センサ49の出力信号は対応するAD変換器47を介して入力ポート45に入力される。第1及び第2の下流側排気ダクトDL1,DL2内には対応するNO X 吸収剤NA1,NA2から流出した排気ガスの温度を検出するための温度センサS1,S2が取付けられ、これら温度センサS1,S2の出力信号は対応するAD変換器47を介して入力ポート45に入力される。温度センサS1,S2により検出される排気ガスの温度をそれぞれ対応するNO X 吸収剤NA1,NA2の温度を表している。
【0019】
一方、アクセルペダル50にはアクセルペダル50の踏込み量Lに比例した出力電圧を発生する負荷センサ51が接続され、負荷センサ51の出力電圧は対応するAD変換器47を介して入力ポート45に入力される。更に入力ポート45にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ52が接続される。一方、出力ポート46は対応する駆動回路48を介して燃料噴射弁6、スロットル弁駆動用ステップモータ16、EGR制御弁25、燃料ポンプ28、排気制御弁VU1,VU2,VL1,VL2の各アクチュエータ、燃焼装置30の空気絞り弁32、空気ポンプ33、グロープラグ36、EGR弁38、燃料ポンプ39、及び排気ガス供給ノズルNG1,NG2にそれぞれ接続される。
【0020】
各NO X 吸収剤NA1,NA2は例えばアルミナを担体とし、この担体上に例えばカリウムK、ナトリウムNa、リチウムLi、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つと、白金Pt、パラジウムPd、ロジウムRh、イリジウムIrのような貴金属とが担持されている。
【0021】
このNO X 吸収剤は流入する排気ガスの平均空燃比がリーンのときにはNO X を吸収し、流入する排気ガス中の酸素濃度が低下すると吸収したNO X を放出するNO X の吸放出作用を行う。なお、本明細書では排気通路の或る位置よりも上流の排気通路、燃焼室5、及び吸気通路内に供給された空気と炭化水素HC及び一酸化炭素COとの比をその位置における排気ガスの空燃比と称している。
【0022】
NO X 吸収剤の詳細な吸放出メカニズムについては完全には明らかにされていない。しかしながら、現在考えられている吸放出メカニズムを、担体上に白金Pt及びバリウムBaを担持させた場合を例にとって簡単に説明すると次のようになる。
【0023】
即ち、NO X 吸収剤に流入する排気ガスの空燃比が理論空燃比よりもかなりリーンになると流入する排気ガス中の酸素濃度が大巾に増大し、酸素O2がO2 −又はO2−の形で白金Ptの表面に付着する。一方、流入する排気ガス中のNOは白金Ptの表面上でO2 −又はO2−と反応し、NO2となる(2NO+O2→2NO2)。次いで生成されたNO2の一部は白金Pt上でさらに酸化されつつ吸収剤内に吸収されて酸化バリウムBaOと結合しながら、硝酸イオンNO3 −の形で吸収剤内に拡散する。このようにしてNO X がNO X 吸収剤内に吸収される。
【0024】
これに対し、NO X 吸収剤に流入する排気ガスの空燃比がリッチ又は理論空燃比になると、排気ガス中の酸素濃度が低下してNO2の生成量が低下し、反応が逆方向(NO3 −→NO2)に進み、斯くして吸収剤内の硝酸イオンNO3 −がNO2の形で吸収剤から放出される。この放出されたNO X は排気ガス中のHC,COと反応して還元せしめられる。このようにして白金Ptの表面上にNO2が存在しなくなると吸収剤から次から次へとNO2が放出され、還元される。
【0025】
本発明による実施例では、第1の上流側排気制御弁VU1及び第1の下流側排気制御弁VL1からなる第1の排気制御弁と、第2の上流側排気制御弁VU2及び第2の下流側排気制御弁VL2からなる第2の排気制御弁とのうちいずれか一方が全開にされ、他方が閉弁される。従って、或る時点で全開にされている方の上流側及び下流側排気制御弁をVUi,VLi、上流側及び下流側排気制御弁VUi,VLiに対応するNO X 吸収剤をNAi(i=1,2)、閉弁されている方の上流側及び下流側制御弁をVUj,VLj、上流側及び下流側排気制御弁VUj,VLiに対応するNO X 吸収剤をNAjで表すとすると(j=1,2)、NO X 吸収剤NAiに内燃機関の排気ガスの大部分が導かれ、NO X 吸収剤NAjにはわずかな量の内燃機関の排気ガスが導かれるということになる。或いは、概略的に言うと、これら排気制御弁が内燃機関の排気ガスをいずれか一方のNO X 吸収剤NA1,NA2に選択的に導いているという見方もできる。
【0026】
ところで、例えば機関低負荷運転が長時間続くと、内燃機関の排気ガスの大部分が導かれているNO X 吸収剤NAiの温度が活性温度よりも低くなる場合がある。そこでNO X 吸収剤NAiの温度を活性温度以上に上昇させる必要がある。また、NO X 吸収剤NAi内に吸収されているイオウ分例えばSOXの量が許容量よりも多くなったときには、NO X 吸収剤NAiから吸収されているSOXを放出させるためにNO X 吸収剤NAiの温度をSOX放出開始温度以上に上昇させ維持する必要がある。更に、パティキュレートフィルタ上に堆積した微粒子の量が許容量よりも多くなったときにも、パティキュレートフィルタ上に堆積した微粒子を酸化除去するためにパティキュレートフィルタ即ちNO X 吸収剤NAiの温度を酸化開始温度以上に上昇させ維持する必要がある。
【0027】
そこで本発明による実施例では、NO X 吸収剤NAiの温度を上昇させるために、NO X 吸収剤NAiにわずかな量の内燃機関の排気ガスが流入するように上流側及び下流側排気制御弁VUi,VLiを閉弁しながら、燃焼式ヒータ30をリッチ空燃比のもとで作動させ、燃焼式ヒータ30の排気ガスをNO X 吸収剤NAiに供給するようにしている。即ち、図1に示される内燃機関では通常、リーン空燃比のもとで燃焼が行われており、従って燃焼式ヒータ30の排気ガス中に含まれる多量のHC,COがNO X 吸収剤NAiにおいて内燃機関の排気ガス中に含まれる酸素O2と発熱反応し、斯くしてNO X 吸収剤NAiの温度が上昇せしめられる。このように、燃焼式ヒータ30の排気ガス中に含まれるHC,COはNO X 吸収剤NAiの温度を上昇させるための二次燃料として作用する。
【0028】
この場合、排気制御弁VUi,VLiが閉弁されるのでNO X 吸収剤NAiにおける排気ガスの空間速度が低減され、従ってNO X 吸収剤NAiの温度を上昇させるのに必要な燃焼式ヒータ30の排気ガスの量を低減することができ、従って燃焼式ヒータ30における燃料消費量を低減することができる。
【0029】
なお、上流側及び下流側排気制御弁VUi,VLiが閉弁されると上述したように上流側及び下流側排気制御弁VUj,VLjが全開にされ、従って内燃機関の排気ガスの大部分がNO X 吸収剤NAjに導かれることになる。このとき、下流側遮断弁VLiが閉弁されているので、NO X 吸収剤NAj内を流通した内燃機関の排気ガスがNO X 吸収剤NAi内に逆流するのが抑制される。
【0030】
このようにNO X 吸収剤NAiの温度を上昇させるにも様々な目的があり、NO X 吸収剤NAiの温度はこれら昇温目的に応じて予め定められている目標温度、例えば活性温度以上に上昇せしめられる。この場合、ただ単にNO X 吸収剤NAiの温度を上昇させるよりも、これら昇温目的を効率的に達成できるようにNO X 吸収剤NAiの温度を上昇させるのが好ましい。そこで本発明による実施例では、NO X 吸収剤NAiの温度を、昇温目的に応じて定まる目標温度上昇速度でもって上昇させるようにしている。
【0031】
NO X 吸収剤NAiの温度及び温度上昇速度はNO X 吸収剤NAiで発熱反応する酸素の量に依存し、この酸素の量はNO X 吸収剤NAi内に流入する排気ガス中の酸素の量に依存する。また、NO X 吸収剤NAiに流入する内燃機関の排気ガス中の酸素の量はNO X 吸収剤NAi内に流入する内燃機関の排気ガスの量に依存し、この排気ガスの量は排気制御弁VUi,VLiの開度に依存する。
【0032】
そこで本発明による実施例では、NO X 吸収剤NAiの温度を目標温度上昇速度RITでもって目標温度TNT以上に上昇させるのに必要な酸素の量を目標酸素量QOXTと称すると、NO X 吸収剤NAiに流入する内燃機関の排気ガス中の酸素の量がこの目標酸素量QOXTに一致するように排気制御弁VUi,VLiの開度を制御している。
【0033】
具体的には、NO X 吸収剤NAiに流入する内燃機関の排気ガス中の酸素の量を目標酸素量QOXTに一致させるのに必要な排気制御弁VUi、VLiの開度、即ち目標開度U,Lを予め実験により求めておき、排気制御弁VUi,VLiの開度がこれら目標開度U,Lに一致せしめられる。
【0034】
この場合、目標開度U,Lは目標酸素量QOXTと、NO X 吸収剤NAi内に流入する排気ガスの量と、燃焼室5における平均空燃比EAFとの関数になる。ここで、目標酸素量QOXTは昇温目的に応じて定まる目標温度上昇速度RIT及び目標温度TNTと、NO X 吸収剤NAiの実際の温度TNiAとの関数になる。また、NO X 吸収剤NAi内に流入する排気ガスの量は内燃機関から排出された排気ガスの量に依存し、この排気ガスの量は機関運転状態、例えば機関回転数N及び吸入空気量EGaの関数となる。従って、目標開度U,Lは結局、RIT,TNT,TNiA,N,EGa,EAFの関数になる。これら目標開度U,LはRIT,TNT,TNiA,N,EGa,EAFの関数として予めROM42内に記憶されている。
【0035】
このようにして、昇温すべきNO X 吸収剤NAiに供給される酸素の量が制御される。
【0036】
これに対し、NO X 吸収剤NAiに供給される二次燃料即ちHC,COの量はNO X 吸収剤NAiに供給される酸素の量即ち目標酸素量QOXTに基づいて制御される。例えば、目標酸素量QOXTに見合う量の二次燃料がNO X 吸収剤NAiに供給される。
【0037】
NO X 吸収剤NAiに供給される二次燃料の量は燃焼式ヒータ30における空燃比HAFと、燃焼式ヒータ30に供給される燃料量及び空気量とに依存する。従って、燃焼式ヒータ30に供給すべき燃料量HQF及び空気量HGaは目標酸素量QOXTと、燃焼式ヒータ30における空燃比HAFとの関数になる。
【0038】
ここで、燃焼式ヒータ30における空燃比HAFは燃焼式ヒータ30での燃焼安定性のことを考えると、上流側排気ダクトDUi内の圧力の関数になり、この圧力は機関運転状態例えば機関回転数N及び吸入空気量EGaの関数になる。
【0039】
従って、燃焼式ヒータ30に供給すべき燃料HQF及び空気量HGaは目標温度上昇速度RITと、目標温度TNTと、NO X 吸収剤NAiの実際の温度TNiAと、機関回転数Nと、吸入空気量EGaとの関数として求めることができることになる。本発明による実施例では、燃焼式ヒータ30に供給すべき燃料量HQF及び空気量HGaをRIT,TNT,TNiA,N,EGaの関数として予め実験により求めておき、予めROM42内に記憶している。
【0040】
このようにしてNO X 吸収剤NAiの温度が上昇せしめられる。
【0041】
一方、NO X 吸収剤NAiの温度を上昇させているときに、内燃機関の排気ガスが導かれている方のNO X 吸収剤NAjの温度を上昇させるべきときには、内燃機関から排出される排気ガスの温度を上昇させ、それによりNO X 吸収剤NAjの温度が上昇するようにしている。
【0042】
内燃機関から排出される排気ガスの温度を上昇させる方法には様々な方法がある。その方法の一つは燃料噴射時期を圧縮上死点以後まで遅角させる方法である。即ち、通常主燃料Qmは図2において(I)に示されるように圧縮上死点付近で噴射される。この場合、図2の(II)に示されるように主燃料Qmの噴射時期が遅角されると後燃え期間が長くなり、斯くして内燃機関から排出される排気ガスの温度が上昇する。
【0043】
また、内燃機関から排出される排気ガスの温度を上昇させるために図2の(III)に示されるように主燃料Qmに加え、吸気上死点付近において補助燃料Qvを噴射することもできる。このように補助燃料Qvを追加的に噴射すると補助燃料Qv分だけ燃焼せしめられる燃料が増えるために内燃機関から排出される排気ガスの温度が上昇する。
【0044】
一方、このように吸気上死点付近において補助燃料Qvを噴射すると圧縮行程中に圧縮熱によってこの補助燃料Qvからアルデヒド、ケトン、パーオキサイド、一酸化炭素等の中間生成物が生成され、これら中間生成物によって主燃料Qmの反応が加速される。従ってこの場合には図2の(III)に示されるように主燃料Qmの噴射時期を大巾に遅らせても失火を生ずることなく良好な燃焼が得られる。即ち、このように主燃料Qmの噴射時期を大巾に遅らせることができるので内燃機関から排出される排気ガスの温度はかなり高くなる。
【0045】
また、図2の(IV)に示されるように主燃料Qmに加え、膨張行程中又は排気行程中に補助燃料Qpを噴射することもできる。即ち、補助燃料Qpが燃焼室又は排気通路内で燃焼するために内燃機関から排出される排気ガスの温度が上昇する。
【0046】
本発明による実施例では内燃機関から排出される排気ガスの温度を上昇させるために図2の(IV)に示される補助燃料Qpを供給するようにしている。
【0047】
図3は上述した本発明による実施例を実行するためのルーチンを示している。このルーチンは予め定められた設定時間毎の割り込みによって実行される。
【0048】
図3を参照すると、まず初めにステップ100ではパラメータi,jが決定される。即ち、この時点で第1の排気制御弁VU1,VL1が全開にされているときにはi=1,j=2とされ、第2の排気制御弁VU2,VL2が全開にされているときにはi=2,j=1とされる。続くステップ101ではNO X 吸収剤NAiの温度を上昇させるべきか否かが判断される。NO X 吸収剤NAiの温度を上昇させるべきときには次いでステップ102に進み、昇温目的に応じた目標温度TNT及び目標温度上昇速度RITが読み込まれる。続くステップ103では目標開度U,LがRIT,TNT,TNiA,N,EGa,EAFから算出される。続くステップ104では上流側排気制御弁VUiの目標開度OPLiTがUとされ、下流側排気制御弁VLiの目標開度OPLiTがLとされ、上流側及び下流側排気制御弁VUj,VLjの目標開度OPUjT,OPLjTがそれぞれ最大開度FLとされる。続くステップ105では排気制御弁VUi,VLi,VUj,VLjの開度がそれぞれの目標開度OPUiT,OPLiT,OPUjT,OPLjTになるように制御される。続くステップ106では燃焼式ヒータ30に供給すべき燃料量HQF及び空気量HGaがRIT,TNT,TNiA,N,EGaから算出される。続くステップ107では燃料及び空気をHQF及びHGaだけ供給しながら燃焼式ヒータ30が作動されると共に、排気ガス供給ノズルNGiが開弁される。このようにして燃焼式ヒータ30の排気ガスがNO X 吸収剤NAiに供給され、従ってNO X 吸収剤NAiの温度が上昇せしめられる。
【0049】
続くステップ108では、NO X 吸収剤NAjの温度を上昇させるべきか否かが判別される。NO X 吸収剤NAjの温度を上昇させるべきときには次いでステップ109に進み、補助燃料Qpが供給される。従って、内燃機関から排出される排気ガスの温度が上昇され、この内燃機関の排気ガスによりNO X 吸収剤NAjの温度が上昇される。次いでステップ101に戻る。これに対し、NO X 吸収剤NAjの温度を上昇させるべきでないときには次いでステップ110に進み、補助燃料Qpの供給が停止される。次いでステップ101に戻る。
【0050】
一方、ステップ101においてNO X 吸収剤NAiの温度を上昇させるべきでないとき又は昇温目的が達成されたときには次いでステップ111に進み、燃焼式ヒータ30が停止され、排気ガス供給ノズルNGiが閉弁される。
【0051】
これまで述べてきた本発明による実施例では、第1及び第2の下流側排気制御弁VL1,VL2又は第1及び第2の上流側排気制御弁VU1,VU2をそれぞれ別個の排気制御弁から形成している。しかしながら、図4に示されるように例えば第1及び第2の下流側排気制御弁VL1,VL2を排気管23内に配置される単一の排気制御弁VLから形成することもできる。この場合、第1のNO X 吸収剤NA1内を流通する排気ガスの量と第2のNO X 吸収剤NA2内を流通する排気ガスの量とがほぼ等しくなっている中間位置から例えば第1のNO X 吸収剤NA1内を流通する排気ガスの量を減少させる方向に排気制御弁VLが変位されると、第1の下流側排気制御弁VL1の開度が小さくされ、第1の下流側排気制御弁VL2の開度が大きくされたのと同じことになる。
【0052】
また、図4に示されるように上流側排気制御弁と下流側排気制御弁とのうちいずれか一方を省略することもできる。
【0053】
更に、上述した本発明による実施例では一対のNO X 吸収剤NA1,NA2を備えている。しかしながら、図5に示されるように単一のNO X 吸収剤NAを備えた内燃機関に本発明を適用することもできる。この場合、分岐管22と排気管23とはNO X 吸収剤NAを迂回するバイパス管60によって互いに接続され、排気管23内に単一の排気制御弁VLが配置される。この排気制御弁VLが全開にされるとバイパス管60が遮断され、閉弁されるとNO X 吸収剤NA内を流通する排気ガスの量が低減される。
【0054】
排気制御弁VLは通常全開に維持されており、NO X 吸収剤NAの温度を上昇させるべきときに閉弁される。この場合、NO X 吸収剤NAに流入する排気ガス中の酸素の量が目標酸素量QOXTになるように排気制御弁VLの開度が制御される。
【0055】
【発明の効果】
安定した触媒昇温作用を得ることができる。
【図面の簡単な説明】
【図1】 内燃機関の全体図である。
【図2】 噴射制御を説明するための図である。
【図3】 昇温制御を実行するためのフローチャートである。
【図4】 本発明による別の実施例を示す内燃機関の部分図である。
【図5】 本発明による別の実施例を示す内燃機関の部分図である。
【符号の説明】
1…機関本体
NA1,NA2…NO X 吸収剤
30…燃焼式ヒータ
VU1,VL1,VU2,VL2…排気制御弁
Claims (5)
- リーン空燃比のもとで燃焼が行われる内燃機関の排気通路内に酸化能を有する触媒を配置し、触媒に流入する内燃機関の排気ガスの量を制御するための排気制御弁と、内燃機関と異なる燃焼装置とを具備し、触媒の温度を上昇させるべきときには該触媒にわずかな量の内燃機関の排気ガスが流入するように排気制御弁の開度を制御しながら、リッチ空燃比のもとで作動される燃焼装置の排気ガスを該触媒に供給して内燃機関の排気ガス中の酸素と燃焼装置の排気ガス中の二次燃料とが該触媒内で発熱反応するようにした触媒温度制御装置において、触媒の温度を上昇させるべきときには該触媒に流入する内燃機関の排気ガス中の酸素の量が予め定められた目標量になるように、該目標量と、触媒内に流入する内燃機関の排気ガスの量と、燃焼室における平均空燃比とに基づいて排気制御弁の開度を制御する触媒温度制御装置。
- リーン空燃比のもとで燃焼が行われる内燃機関の排気通路を分岐して形成される一対の分岐排気通路内に酸化能を有する触媒をそれぞれ配置し、各触媒に流入する内燃機関の排気ガスの量を制御するための排気制御弁と、内燃機関と異なる燃焼装置とを具備し、触媒の温度を上昇させるべきときには該触媒にわずかな量の内燃機関の排気ガスが流入するように排気制御弁の開度を制御しながら、リッチ空燃比のもとで作動される燃焼装置の排気ガスを該触媒に供給して内燃機関の排気ガス中の酸素と燃焼装置の排気ガス中の二次燃料とが該触媒内で発熱反応するようにした触媒温度制御装置において、触媒の温度を上昇させるべきときには該触媒に流入する内燃機関の排気ガス中の酸素の量が予め定められた目標量になるように、該目標量と、触媒内に流入する内燃機関の排気ガスの量と、燃焼室における平均空燃比とに基づいて排気制御弁の開度を制御する触媒温度制御装置。
- 前記目標量を触媒の昇温目的に応じて定めた請求項2に記載の触媒温度制御装置。
- 燃焼装置に供給される空気又は燃料の量を前記目標量に基づいて制御するようにした請求項2又は3に記載の触媒温度制御装置。
- 内燃機関から排出される排気ガスの温度を上昇させるための手段を具備し、両方の触媒の温度を同時に上昇させるべきときには一方の触媒にわずかな量の内燃機関の排気ガスが流入するように排気制御弁の開度を制御しながら、リッチ空燃比のもとで作動される燃焼装置の排気ガスを該一方の触媒に供給すると共に、他方の触媒の温度を上昇させるために内燃機関から排出される排気ガスの温度を上昇させるようにした請求項2から4までのいずれか一項に記載の触媒温度制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001312990A JP3736416B2 (ja) | 2001-10-10 | 2001-10-10 | 触媒温度制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001312990A JP3736416B2 (ja) | 2001-10-10 | 2001-10-10 | 触媒温度制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003120269A JP2003120269A (ja) | 2003-04-23 |
JP3736416B2 true JP3736416B2 (ja) | 2006-01-18 |
Family
ID=19131550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001312990A Expired - Fee Related JP3736416B2 (ja) | 2001-10-10 | 2001-10-10 | 触媒温度制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3736416B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7963102B2 (en) | 2005-03-09 | 2011-06-21 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system for internal combustion engine |
JP4148231B2 (ja) * | 2005-03-09 | 2008-09-10 | トヨタ自動車株式会社 | 内燃機関の排気浄化システム |
JP5344831B2 (ja) * | 2008-03-18 | 2013-11-20 | 三菱重工業株式会社 | 低温作動脱硝装置、船舶、低温作動脱硝装置の運用方法 |
JP4858582B2 (ja) | 2009-07-16 | 2012-01-18 | マツダ株式会社 | 火花点火式エンジンの制御方法および火花点火式エンジン |
-
2001
- 2001-10-10 JP JP2001312990A patent/JP3736416B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003120269A (ja) | 2003-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0987419B1 (en) | Internal combustion engine | |
JP3473583B2 (ja) | 内燃機関の排気浄化装置 | |
JPH11280452A (ja) | エンジンの排気ガス浄化制御装置 | |
US6370869B1 (en) | Exhaust purification device of an engine | |
JP3514230B2 (ja) | 内燃機関の排気浄化装置 | |
CN102510936A (zh) | 内燃机的排气处理方法及其装置 | |
JP3695378B2 (ja) | 排気ガス浄化装置 | |
JP3736416B2 (ja) | 触媒温度制御装置 | |
JP2012026406A (ja) | 排気浄化装置 | |
JP3558019B2 (ja) | 還元剤供給装置の異常検出装置 | |
JP3912001B2 (ja) | 内燃機関の排気浄化装置 | |
JPH0693839A (ja) | 内燃機関の排気ガス浄化装置 | |
JP2007285174A (ja) | 内燃機関 | |
JP3798623B2 (ja) | 内燃機関の排気浄化装置 | |
JP3736415B2 (ja) | 燃焼装置付き内燃機関の制御装置 | |
JP4311066B2 (ja) | 内燃機関の排気浄化システム | |
JP3709822B2 (ja) | 触媒暖機装置 | |
JP3785870B2 (ja) | 内燃機関の排気浄化装置 | |
JP3598905B2 (ja) | 内燃機関の排気浄化装置 | |
JP3397175B2 (ja) | 内燃機関の排気浄化装置 | |
JP3613660B2 (ja) | 内燃機関の排気浄化装置 | |
JP3536739B2 (ja) | 内燃機関の排気浄化装置 | |
WO2011114381A1 (ja) | 内燃機関の排気装置 | |
JP3736421B2 (ja) | 排気ガス浄化装置 | |
JP3570306B2 (ja) | 内燃機関の排気浄化装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040609 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050615 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050712 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050907 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051004 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051017 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |