[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3724142B2 - Method for producing coarse grain-resistant case-hardened steel - Google Patents

Method for producing coarse grain-resistant case-hardened steel Download PDF

Info

Publication number
JP3724142B2
JP3724142B2 JP24924297A JP24924297A JP3724142B2 JP 3724142 B2 JP3724142 B2 JP 3724142B2 JP 24924297 A JP24924297 A JP 24924297A JP 24924297 A JP24924297 A JP 24924297A JP 3724142 B2 JP3724142 B2 JP 3724142B2
Authority
JP
Japan
Prior art keywords
steel
temperature
hot working
coarsening
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24924297A
Other languages
Japanese (ja)
Other versions
JPH10152754A (en
Inventor
光男 宇野
芳彦 鎌田
雅紀 坂本
隆治 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP24924297A priority Critical patent/JP3724142B2/en
Publication of JPH10152754A publication Critical patent/JPH10152754A/en
Application granted granted Critical
Publication of JP3724142B2 publication Critical patent/JP3724142B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の属する技術分野】
【0001】
本発明は、耐粗粒化肌焼鋼鋼材の製造方法に関し、より詳しくは自動車や産業機械用の歯車やシャフト類など浸炭処理が施される部品の母材となる耐粗粒化肌焼鋼鋼材の製造方法に関する。
【従来の技術】
【0002】
自動車や産業機械用の歯車やシャフト類など浸炭処理が施される部品(以下、浸炭部品という)は、従来、熱間鍛造などの熱間加工によって粗成形され、次いで、歯切りなどの機械加工による整形加工を受けた後、浸炭処理を施されて製造されてきた。そして、前記浸炭部品の母材鋼としては、JIS規格鋼であるSCr415やSCr420に代表されるクロム鋼鋼材、SCM415やSCM420に代表されるクロムモリブデン鋼鋼材などの肌焼鋼が用いられてきた。
【0003】
しかしながら、最近、歯切りなど機械加工による整形プロセスを省略してコストダウンを図ることが指向されている。このため、浸炭部品の製造方法として、熱間での粗成形に代えて成形精度の優れた冷間加工(冷間鍛造など)による精密な成形加工を行い、次いで、浸炭処理する方法が多くなりつつある。
【0004】
ところが、従来のJIS規格鋼を母材鋼とし、上記のように冷間鍛造後に浸炭処理した浸炭部品においては、浸炭処理時に、従来型の浸炭部品(熱間加工で粗成形を受けた浸炭部品)においては認められなかった結晶粒の粗大化や異常粒成長(以下、結晶粒の粗大化と異常粒成長をまとめて「粗粒化」という)が生じ、焼入れ時の歪発生や材料特性の低下が生ずるという問題が起こり易い。
【0005】
このため、浸炭部品の母材鋼となる肌焼鋼として、従来のJIS規格鋼に代わるものが、例えば、特開昭60−21359号公報に開示されている。しかしながら、この公報で提案された鋼、なかでもNbを添加した鋼を母材鋼として用いた場合であっても、AlとNの含有量の比であるAl(%)/N(%)の値に対する配慮がなされていないため、冷間鍛造後に浸炭処理して浸炭部品を製造すると、粗粒化が生じてしまうことがあった。
【0006】
特開昭63−140031号公報には、特定量のAlとNとを含有する浸炭用鋼の圧延加熱温度と圧延終了温度を規制して、浸炭処理時の結晶粒の異常成長を阻止する浸炭用鋼の製造方法が開示されている。しかし、この公報で提案された範囲のAlとNとを含有する鋼を、規定の圧延加熱温度と圧延終了温度で製造した場合であっても、冷間鍛造後に浸炭処理して浸炭部品を製造すると、やはり粗粒化が生じてしまうことがあった。
【0007】
このため、冷間加工による精密な成形加工を行い、次いで、通常行われる条件で浸炭処理しても結晶粒の粗大化や異常粒成長が生ずることを阻止できる耐粗粒化肌焼鋼及びその肌焼鋼鋼材の製造方法を開発することが熱望されてきた。
【発明が解決しようとする課題】
【0008】
本発明は、上記の現状に鑑みなされたもので、冷間加工による精密な成形加工を行い、次いで、浸炭処理しても結晶粒の粗大化や異常粒成長を生ずることがない耐粗粒化肌焼鋼鋼材の製造方法を提供することを目的とする。
【0009】
本発明の要旨は、下記(1)及(2)に示す耐粗粒化肌焼鋼鋼材の製造方法にある。
【0010】
(1)冷間加工して成形した後に浸炭処理することによって製造する部品の母材となる耐粗粒化肌焼鋼鋼材の製造方法であって、重量%で、C:0.1〜0.3%、Si:0.1〜1.0%、Mn:0.3〜2.0%、Al:0.01〜0.06%、N:0.005〜0.03%でAl(%)/N(%):1.0〜2.0、Nb:0〜0.07%、V:0.005〜0.1%で、且つNb(%)+V(%)≧0.005%、Cu:0〜0.3%、Ni:0〜0.5%、Cr:0〜2.0%、Mo:0〜0.5%、W:0〜0.5%、Pb:0〜0.3%、Te:0〜0.08%、Ca:0〜0.01%、Bi:0〜0.3%、S:0.005〜0.08%、P:0.03%以下を含み、残部はFe及び不可避不純物からなる化学組成を有する鋼を1100℃以上の温度に加熱して熱間加工を行い、前記の熱間加工を850℃以上の温度域の温度で仕上げ、次いで、500℃までの温度域を5〜500℃/分の冷却速度で冷却することを特徴とする耐粗粒化肌焼鋼鋼材の製造方法。
【0011】
(2)冷間加工して成形した後に浸炭処理することによって製造する部品の母材となる耐粗粒化肌焼鋼鋼材の製造方法であって、重量%で、C:0.1〜0.3%、Si:0.1〜1.0%、Mn:0.3〜2.0%、Al:0.01〜0.06%、N:0.005〜0.03%でAl(%)/N(%):1.0〜2.0、Nb:0〜0.07%、V:0.005〜0.1%で、且つNb(%)+V(%)≧0.005%、Cu:0〜0.3%、Ni:0〜0.5%、Cr:0〜2.0%、Mo:0〜0.5%、W:0〜0.5%、Pb:0〜0.3%、Te:0〜0.08%、Ca:0〜0.01%、Bi:0〜0.3%、S:0.005〜0.08%、P:0.03%以下を含み、残部はFe及び不可避不純物からなる化学組成を有する鋼を1100℃以上の温度に加熱して熱間加工を行い、前記の熱間加工を850℃以上の温度域の温度で仕上げ、次いで、500℃までの温度域を5〜500℃/分の冷却速度で冷却した後、更に、1000℃以上の温度に再加熱して熱間加工を行い、この熱間加工を850℃以上の温度域の温度で仕上げ、次いで、500℃までの温度域を5〜500℃/分の冷却速度で冷却することを特徴とする耐粗粒化肌焼鋼鋼材の製造方法。
【0012】
ここで、「Al」とは、所謂「酸可溶性Al」を指す。なお、以下において上記(1)、(2)に関する発明をそれぞれ(1)の発明、(2)の発明という。また、総称して「本発明」ということがある。
【発明の実施の形態】
【0013】
本発明者らは、種々の化学組成を有する鋼を実験炉溶製し、熱間加工条件及び熱間加工後の冷却条件を変えて鋼材を作製し、通常の方法で球状化焼鈍、冷間加工と浸炭焼入れを行って、成分元素、熱間加工条件及び熱間加工後の冷却条件が浸炭焼入れ後の組織に及ぼす影響を調査した。
【0014】
その結果、下記(1)(8)の知見が得られた。
【0015】
(1)窒化物や炭窒化物を生成するAl、Nb及びVを単独添加した場合、ある程度の粗粒化防止効果が認められる。しかし、前記の各元素を単に2種以上複合添加しただけでは、粗粒化防止効果は必ずしも増大するとは限らず、かえって粗粒化してしまう場合さえある。
【0016】
(2)Al、Nb及びVの含有量を制御して、AlとNbやVとを複合添加するとともに、Nの含有量をも制御すれば、大きな粗粒化防止効果が得られる。前記した各元素の含有量の制御が適切でないと、AlとNbやVとの複合添加の効果が現れず、コストが増加するばかりである。
【0017】
(3)浸炭処理時の粗粒化防止のためには、前記したAl、Nb、V及びNの含有量の制御に加えて、AlとNの含有量の比(Al(%)/N(%))をも制御する必要がある。
【0018】
(4)溶製後の凝固過程で生成したAl、Nb及びVの窒化物や炭窒化物は凝集粗大化しているため、そのままの状態では浸炭処理時の粗粒化防止効果は小さい。しかし、前記の窒化物や炭窒化物を、熱間での加工時に一旦高温に加熱して基地であるオーステナイト中に固溶させれば、熱間加工時及びその後の冷却時に窒化物や炭窒化物を微細析出させることができるので、浸炭処理時の粗粒化防止効果は極めて大きくなる。
【0019】
(5)上記(4)の熱間加工及びその後の冷却で窒化物や炭窒化物を微細析出させた鋼材を更に所望の形状やサイズに熱間加工する必要がある場合には、熱間加工のための再加熱温度を制御して窒化物や炭窒化物の粗大化を防ぐことが重要である。
【0020】
(6)熱間加工時及びその後の冷却で窒化物や炭窒化物を微細析出させるためには、熱間加工を適正な温度域で仕上げることが重要である。仕上げ温度域が不適切であると、窒化物や炭窒化物が凝集粗大化して、粗粒化防止の効果は極めて小さくなくなってしまう。
【0021】
(7)窒化物や炭窒化物の粗大化を防止するために、熱間加工終了後は適正な冷却条件で冷却する必要がある。
【0022】
(8)成分元素と熱間加工及びその後の冷却条件を適正化した場合には、冷間加工の前工程としての球状化焼鈍を行っても窒化物や炭窒化物はあまり粗大化しないので、浸炭処理時の粗粒化が防止できる。
【0023】
本発明は、上記の知見に基づいて完成されたものである。
【0024】
以下、本発明の各要件について詳しく説明する。なお、成分含有量の「%」は「重量%」を意味する。
【0025】
(A)鋼の化学組成
C:0.1〜0.3%
Cは鋼の焼入れ性を高めるとともに、静的強度を向上させるのに有効な元素である。しかし、その含有量が0.1%未満では添加効果に乏しく、一方、0.3%を超えて添加すると鋼の靭性が低下する。したがって、Cの含有量を0.1〜0.3%とした。
【0026】
Si:0.1〜1.0%
Siは脱酸、焼入れ性の向上及び固溶強化による静的強度の向上に有効な元素である。しかし、その含有量が0.1%未満では所望の効果が得られない。一方、1.0%を超えて含有させると、浸炭性の低下を招くため疲労強度が低下してしまう。更に、冷間加工性の低下をも招く。したがって、Siの含有量を0.1〜1.0%とした。
【0027】
Mn:0.3〜2.0%
MnもSiと同様に脱酸作用を有する。又、焼入れ性を高め、強度と靱性を向上させる作用もある。しかし、その含有量が0.3%未満では添加効果に乏しい。一方、2.0を超えて含有させてもその効果は飽和し、経済性を損なうばかりである。したがって、Mn含有量を0.3〜2.0%とした。
【0028】
Al:0.01〜0.06%
Alは鋼中のNと結合してAlNを形成し、粗粒化を防止する作用を有する。この効果を発揮させるためには、Alの含有量を0.01%以上とすることが必要である。一方、0.06%を超えて含有させても、前記の効果は飽和するばかりか、切削性の低下を招くようになる。したがって、Alの含有量を0.01〜0.06%とした。なお、前記したように、ここでいう「Al」は、「酸可溶性Al」のことをいう。
【0029】
N:0.005〜0.03%
NはAl、NbやVと結合して窒化物や炭窒化物を形成し、粗粒化防止に効果を発揮する。しかし、その含有量が0.005%未満では所望の効果が得られない。一方、0.03%を超えて含有させると、鋼の変形抵抗が高くなって、冷間加工性が低下してしまう。したがって、Nの含有量を0.005〜0.03%とした。
【0030】
Al(%)/N(%):1.0〜2.0
前記したAlとNの含有量の範囲で、且つ後述するNbとVの含有量の範囲であっても、AlとNの含有量の比(Al(%)/N(%))が適正でないと浸炭処理時の粗粒化防止が果たせない場合がある。すなわち、Al(%)/N(%)の値が2.0を超えると、粗粒化防止に対するAlとNbやVとの複合添加効果が得られない。更に、冷間加工の前工程としての球状化焼鈍を行う場合には、後述の熱間加工条件及びその後の冷却条件を満たしても、窒化物や炭窒化物が極めて粗大化するため、浸炭処理時の粗粒化を防止できない。一方、Al(%)/N(%)が1.0未満では、冷間加工性が劣化して、冷間での所望形状への成形加工時に割れを生じ易くなる。この場合、熱間での粗成形に替えて冷間加工による精密な成形加工を行い、機械加工を省略してコストダウンを図ろうとする産業界の要請に応えられないことになる。したがって、Al(%)/N(%)を1.0〜2.0とした。
【0031】
Nb:0〜0.07%
Nbは添加しなくてもよい。添加すれば、窒化物や炭窒化物を形成して粗粒化を防止する作用を有する。Nの含有量を制御した鋼にAl、Vとともに複合添加すれば、極めて優れた粗粒化防止作用が得られる。但し、0.07%を超えて含有させても前記の効果が飽和して経済性を損なうばかりであるし、変形抵抗が上昇して冷間加工性が劣化するようにもなる。したがって、Nbの含有量を0〜0.07%とした。
【0032】
V:0.005〜0.1%
は、窒化物や炭窒化物を形成して粗粒化を防止する作用を有する。Nの含有量を制御した鋼にAl、Nbとともに複合添加すれば、極めて優れた粗粒化防止作用が得られる。但し、この効果を得るためには、Vは0.005%以上の含有量とする必要がある。一方、0.1%を超えて含有させても前記の効果が飽和して経済性を損なうばかりであるし、変形抵抗が上昇して冷間加工性が劣化するようにもなる。したがって、Vの含有量を0.005〜0.1%とした。
【0033】
Nb(%)+V(%):0.005%以上
Nの含有量を制御した鋼にAlとともにNb、Vを複合添加して極めて優れた粗粒化防止作用を得るために、NbとVの含有量の和(Nb(%)+V(%))を0.005%以上とした。
【0034】
Cu:0〜0.3%
Cuは添加しなくてもよい。添加すれば鋼の焼入れ性が向上する。この効果を確実に得るには、Cuは0.1%以上の含有量とすることが好ましい。しかし、多量に含有させると熱間延性を低下させて、熱間加工性が低下してしまう。特に、その含有量が0.3%を超えると熱間加工性の劣化が顕著となる。したがって、Cuの含有量を0〜0.3%とした。
【0035】
Ni:0〜0.5%
Niは添加しなくてもよい。添加すれば、鋼の焼入れ性と靭性を高める作用がある。この効果を確実に得るには、Niは0.05%以上の含有量とすることが好ましい。しかし、0.5%を超えて含有量させても前記の効果は飽和し、コストが嵩むばかりである。したがって、Ni含有量を0〜0.5%とした。
【0036】
Cr:0〜2.0%
Crも添加しなくてよい。添加すれば、鋼の焼入れ性と強度、靭性を高める作用がある。この効果を確実に得るには、Crは0.1%以上の含有量とすることが好ましい。しかし、2.0%を超えて含有させも前記の効果は飽和し、経済性を損なうばかりである。したがって、Crの含有量を0〜2.0%とした。
【0037】
Mo:0〜0.5%
Moは添加しなくてよい。添加すれば、鋼の焼入れ性と強度、靭性を高める作用がある。この効果を確実に得るには、Moの含有量を0.05%以上とすることが好ましい。しかし、その含有量が0.5%を超えると切削性の低下をきたす。したがって、Mo含有量を0〜0.5%とした。
【0038】
W:0〜0.5%
Wは添加しなくてよい。添加すれば、鋼の焼入れ性と強度、靭性を高める作用がある。この効果を確実に得るには、Wの含有量を0.05%以上とすることが好ましい。しかし、その含有量が0.5%を超えると切削性の低下をきたす。したがって、W含有量を0〜0.5%とした。
【0039】
Pb:0〜0.3%
Pbは添加しなくてもよい。しかし、添加すれば切削性を向上させる働きがある。このため、冷間加工で成形した部品の内面などを更に精密切削して仕上げたいような場合には、切削性を高めるために添加しても良い。この場合、切削性向上効果を確実に得るには、Pbの含有量は0.005%以上とすることが好ましい。しかし、その含有量が0.3%を超えると疲労特性の低下をきたす。したがって、Pb含有量を0〜0.3%とした。
【0040】
Te:0〜0.08%
Teも添加しなくてもよい。添加すればPbと同様に切削性を高める作用がある。このため、冷間加工で成形した部品の内面などを更に精密切削して仕上げたいような場合には、切削性を高めるために添加しても良い。この場合、切削性向上効果を確実に得るには、Teは0.01%以上の含有量とすることが好ましい。しかし、その含有量が0.08%を超えると、熱間加工性の低下をもたらす。したがって、Teの含有量を0〜0.08%とした。
【0041】
Ca:0〜0.01%
Caは添加しなくてもよい。添加すれば切削性を高める作用がある。このため、PbやTeと同じく冷間加工で成形した部品の内面などを更に精密切削して仕上げたいような場合には、切削性を高めるために添加しても良い。この場合、切削性向上効果を確実に得るには、Caは0.001%以上の含有量とすることが好ましい。しかし、その含有量が0.01%を超えると、熱間加工性の低下をもたらす。したがって、Caの含有量を0〜0.01%とした。
【0042】
Bi:0〜0.3%
Biも添加しなくてもよい。添加すれば切削性を高める作用を有する。このため、Pb、TeやCaと同様に冷間加工で成形した部品の内面などを更に精密切削して仕上げたいような場合には、切削性を高めるために添加しても良い。この場合、切削性向上効果を確実に得るには、Biの含有量を0.01%以上とすることが好ましい。しかし、その含有量が0.3%を超えると、熱間加工性の低下をきたす。したがって、Biの含有量を0〜0.3%とした。
【0043】
S:0.005〜0.08%
は、切削性を高める作用を有する。冷間加工で成形した部品の内面などを精密切削して仕上げるには、Sの含有量を0.005%以上とする必要がある。しかし、その含有量が0.08%を超えると、靭性の低下をきたす。したがって、Sの含有量を0.005〜0.08%とした。
【0044】
P:0.03%以下
Pは粒界に偏析し、靭性を低下させる。特に、その含有量が0.03%を超えると、靭性の著しい低下を招く。したがって、P含有量を0.030%以下とした。
【0045】
(B)熱間加工とその後の冷却
(B−1)加熱
溶製後の凝固過程で生成した鋼塊(ここでいう「鋼塊」には、JIS G 0203にあるように「鋳片」を含む)中のAl、Nb及びVの窒化物や炭窒化物は凝集粗大化しているため、そのままの状態では浸炭処理時の粗粒化防止効果は小さい。したがって、前記した(1)の発明の熱間加工及び(2)の発明の先の(1次の)熱間加工に際して、前記の窒化物や炭窒化物を一旦高温に加熱して基地であるオーステナイト中に固溶させ、熱間加工時及びその後の冷却時に窒化物や炭窒化物を微細析出させて、浸炭処理時の粗粒化防止を達成する必要がある。
【0046】
そこで、前記した(A)の化学組成を有する鋼を、(1)の発明における熱間加工及び(2)の発明における先の(1次の)熱間加工において1100℃以上の温度に加熱して、上記の窒化物や炭窒化物をオーステナイト中に固溶させることとした。なお、上記の加熱温度は1150℃以上とすることが望ましく、1200℃以上であれば一層好ましい。この加熱温度の上限には特に制限はない。しかし、脱炭やスケールロスによるコストアップの抑制、更にはエネルギーコストを抑えるために、1350℃程度を上限とすることが好ましい。
【0047】
(B−2)仕上げ温度
オーステナイト中に固溶させたAl、NbやVを熱間加工時及びその後の冷却で微細な窒化物や炭窒化物として析出させるために、熱間加工の仕上げ温度は850℃以上とする必要がある。熱間加工の仕上げ温度が850℃を下回る場合には、熱間加工時に一部析出したAl、NbやVの窒化物や炭窒化物が凝集粗大化してしまい、浸炭処理時に優れた耐粗粒化特性を得ようとする本発明の目的が達せられない場合がある。したがって、(1)の発明における熱間加工の仕上げ温度、及び(2)の発明における先の(1次の)熱間加工の仕上げ温度を850℃以上とした。なお、前記熱間加工の仕上げ温度の上限には特に制限はない。しかし、脱炭を抑制するために1050℃程度を上限とすることが好ましい。
【0048】
(B−3)熱間加工後の冷却
熱間加工を終了した後は、500℃までの温度域を5〜500℃/分の冷却速度で冷却することが必要である。この冷却の冷却速度が5℃/分を下回る場合には、Al、NbやVの窒化物や炭窒化物が凝集粗大化してしまい、浸炭処理時に優れた耐粗粒化特性を得ようとする本発明の目的が達せられない場合がある。特に、冷間加工の前工程としての球状化焼鈍を行う場合には、前記した(A)項の化学組成を有する鋼の場合であっても、窒化物や炭窒化物が粗大化するため、浸炭処理時の粗粒化を防止できない。一方、上記冷却の冷却速度が500℃/分を上回る場合には、ベイナイトやマルテンサイトなどの所謂「低温変態組織」が生じて所望のサイズに切断し難くなる場合がある。したがって、(1)の発明の熱間加工仕上げ後500℃までの温度域における冷却速度、及び(2)の発明の先の(1次の)熱間加工仕上げ後500℃までの温度域における冷却速度を、いずれも5〜500℃/分と規定した。なお、この冷却速度の上限は、300℃/分程度とすることが好ましく、100℃/分程度とすることがより好ましい。
【0049】
500℃を下回る温度域の冷却は、生産性を高めるために急冷しても良い。なお、上記の冷却速度は鋼材表面の冷却速度をいう。
【0050】
上記の(B−1)から(B−3)の工程によって(1)の発明が構成される。なお、(1)の発明は上記の熱間加工と冷却の後、更なる熱間加工(2次の熱間加工)を受けることがなく、冷間加工で所望形状に成形されその後に浸炭処理を施される浸炭部品の母材となる耐粗粒化肌焼鋼鋼材の製造方法を提供するものである。すなわち、(A)項に述べた化学組成を有し(B−1)から(B−3)の工程によって製造された(1)の発明に係る耐粗粒化肌焼鋼鋼材は、(B−3)の工程の後では更なる熱間での加工を受けることはなく、必要に応じて球状化焼鈍を施されてから、冷間鍛造を初めとする冷間加工によって所望の部品形状に成形され、更に、必要に応じて内面などを精密切削された後、浸炭焼入れされる。そして、必要に応じて低温での焼戻しや研削、研磨をして最終の部品に仕上げられる。
【0051】
一方、(B−3)の工程の後、更に所望のサイズや素形材形状にするなどの目的から、鋼材を再加熱して熱間加工(2次の熱間加工)し、その後冷却するのが(2)の発明に係る耐粗粒化肌焼鋼鋼材の製造方法である。以下、(2)の発明に係る要件について更に説明する。
【0052】
(B−4)冷却後の再加熱
溶製後の凝固過程で生成し凝集粗大化したAl、Nb及びVの窒化物や炭窒化物をオーステナイト中に固溶させ、熱間加工時及びその後の冷却時に窒化物や炭窒化物として微細析出させた後、更に所望のサイズや素形材形状とするための熱間加工(2次の熱間加工)時の再加熱温度は、1000℃以上とする必要がある。この再加熱温度が1000℃を下回る場合には、窒化物や炭窒化物の粗大化を生じたり、鋼材の変形抵抗が大きくなって圧延機などの加工機に対する負荷が過大となってしまうからである。したがって、(2)の発明において、冷却後の熱間加工(2次の熱間加工)のための再加熱温度を1000℃以上とした。なお、上記の再加熱温度は1100℃以上とすることが望ましい。この加熱温度の上限には特に制限はない。しかし、脱炭やスケールロスによるコストアップの抑制、更にはエネルギーコストを抑えるために、1250℃程度を上限とすることが好ましく、1200℃を上限とすることがより好ましい。
【0053】
(B−5)再加熱後の熱間加工の仕上げ温度
再加熱後の熱間加工(2次の熱間加工)の仕上げ温度は850℃以上とする必要がある。この温度が850℃を下回る場合には、熱間加工時に一部析出したAl、NbやVの窒化物や炭窒化物が凝集粗大化してしまい、浸炭処理時に優れた耐粗粒化特性を得ようとする本発明の目的が達せられない場合がある。したがって、(2)の発明において、再加熱後の熱間加工(2次の熱間加工)の仕上げ温度を850℃以上とした。なお、上記温度の上限にも特に制限はない。しかし、脱炭を抑制するために1050℃程度を上限とすることが好ましい。
【0054】
(B−6)再加熱後に熱間加工した後の冷却
再加熱後の熱間加工(2次の熱間加工)を終了した後、500℃までの温度域における冷却速度が5℃/分を下回る場合には、Al、NbやVの窒化物や炭窒化物が凝集粗大化してしまい、浸炭処理時に優れた耐粗粒化特性を得ようとする本発明の目的が達せられない場合がある。特に、冷間加工の前工程としての球状化焼鈍を行う場合には、前記した(A)項の化学組成を有する鋼の場合であっても、窒化物や炭窒化物が粗大化するため、浸炭処理時の粗粒化を防止できない。一方、上記の冷却速度が500℃/分を上回る場合には、ベイナイトやマルテンサイトなどの所謂「低温変態組織」が生じて所望のサイズに切断し難くなる場合がある。したがって、(2)の発明において、再加熱後の熱間加工(2次の熱間加工)を仕上げた後、500℃までの温度域における冷却速度を5〜500℃/分と規定した。なお、この冷却速度の上限は、300℃/分程度とすることが好ましく、100℃/分程度とすることがより好ましい。
【0055】
なお、500℃を下回る温度域の冷却は、生産性を高めるために急冷しても良い。ここで、冷却速度とは既に述べたように鋼材表面の冷却速度をいう。
【0056】
上記の(B−1)から(B−6)の工程によって(2)の発明が構成される。(A)項に述べた化学組成を有し(B−1)から(B−6)の工程によって製造された(2)の発明に係る耐粗粒化肌焼鋼鋼材は、必要に応じて球状化焼鈍を施されてから、冷間鍛造を初めとする冷間加工によって所望の部品形状に成形され、更に、必要に応じて内面などを精密切削された後、浸炭焼入れされる。そして、必要に応じて低温での焼戻しや研削、研磨をして最終の部品に仕上げられる。
【実施例】
【0057】
(実施例1)
表1、表2に示す化学組成を有する鋼を通常の方法により3トン試験炉を用いて溶製した。表1、表2における鋼8〜15、鋼17〜21及び鋼23は化学組成が本発明で規定する範囲内の鋼(本発明例の鋼)である。一方、表2における鋼25〜34は成分のいずれかが本発明で規定する含有量の範囲から外れた鋼(比較例の鋼)である。
【0058】
【表1】

Figure 0003724142
【0059】
【表2】
Figure 0003724142
【0060】
次いで、これらの鋼を表3〜4に記載の条件で加熱、分塊圧延、冷却して180mm角の鋼片とし、更に、表3〜4に記載の条件で再加熱、熱間圧延、冷却して直径50mmの棒鋼を製造した。ここで、180mm角の鋼片と直径50mmの棒鋼の製造において、500℃を下回る温度域の冷却は放冷とした。
【0061】
なお、本発明例の鋼である鋼8、鋼9、鋼15及び鋼22については3トン鋼塊を分割してから上記の鋼片及び棒鋼の製造に供した。
【0062】
【表3】
Figure 0003724142
【0063】
【表4】
Figure 0003724142
【0064】
上記のようにして得た鋼8〜15、鋼17〜21、鋼23及び鋼25〜34の直径50mmの棒鋼及び一部の鋼(鋼13、鋼14、鋼17、鋼18及び鋼20)の180mm角の鋼片を、通常の方法によって730℃で球状化焼鈍した。この後、180mm角の鋼片については(T/4)の部位(T=180mm)から、直径50mmの棒鋼については(R/2)の部位(R=25mm)から、それぞれ直径10mm×長さ20mmの円筒状の試験片を切り出し、500トン高速プレス機を用いて通常の方法で常温(室温)での据え込み試験を行った。ここで、据え込み率(圧縮率)は70%、75%、80%及び85%の4条件とし、各条件について試験数は20で行った。据え込み試験後、目視で割れ発生の有無を調査して冷間加工性を評価した。
【0065】
表3〜4に、上記の冷間加工性評価結果を併せて示す。なお、各条件での20の試験片のいずれかに割れを認めた場合、割れが生じた最も低い据え込み率を冷間加工性として記載した。表3〜4で冷間加工性が「>85」とあるのは、据え込み率85%の据え込み試験で、20の試験片のいずれにも割れが生じなかったことを示す。一方、冷間加工性が「≦70」とあるのは、据え込み率70%の据え込み試験で、割れが生じたことを示す。
【0066】
次いで、上記の85%の据え込み率で据え込んだ試験片を用いて、850〜1050℃まで25℃刻みに各温度で6時間加熱して浸炭処理時の加熱をシミュレートした。
【0067】
加熱処理後は油冷し、光学顕微鏡(倍率は100倍)でランダムに10視野観察して粗粒化特性を調査した。なお、粗粒化の判定基準はJIS G 0551に準じた。すなわち、視野間において3以上異なった粒度番号の視野が存在する場合に「混粒」として、異常粒成長が生じたと見なした。一方、「粗粒」と「細粒」の判定はJIS基準よりも厳しくして、結晶粒度番号6未満の場合に「粗粒鋼」として結晶粒が粗大化したと判定した。
【0068】
表3〜4に、上記の粗粒化特性の調査結果を併せて示す。なお、粗粒化発生を認めた場合、粗粒化が生じた最も低い加熱温度を「粗粒化開始温度」として記載した。表3〜4で粗粒化開始温度が「>1050」とあるのは、1050℃×6時間の加熱条件では粗粒化が生じなかったことを示す。一方、粗粒化開始温度が「≦850」とあるのは、850℃×6時間の加熱で既に粗粒化が生じていたことを示す。
【0069】
表3〜4によれば、本発明で規定する化学組成を有する鋼を、本発明で規定する条件で熱間加工及び冷却した場合には、85%の据え込み率で冷間加工しても割れを生じず、これを6時間オーステナイト化処理した場合の粗粒化開始温度は975℃以上と高く、耐粗粒化特性に優れていることが明らかである。
【0070】
これに対して、成分のいずれかが本発明で規定する含有量の範囲から外れた比較例の鋼のなかで、鋼25〜28及び鋼31〜34については、本発明で規定する条件で熱間加工及び冷却しても粗粒化開始温度が950℃以下と低く耐粗粒化特性に劣る。上記の鋼のうち、鋼26の場合には冷間加工性も低いため、冷間での所望形状への成形加工時に割れを生じ易くなる。したがって、熱間での粗成形に替えて冷間加工による精密な成形加工を行い、機械加工を省略してコストダウンを図ろうとする産業界の要請に応えられない場合が生ずる。
【0071】
一方、比較例の鋼のなかでも鋼29、鋼30については、6時間オーステナイト化処理した場合の粗粒化開始温度は1050℃を超え、耐粗粒化特性には優れているが、冷間加工性が低い。このため、前記の鋼26の場合と同様に冷間での所望形状への成形加工時に割れを生じ易くなる。したがって、熱間での粗成形に替えて冷間加工による精密な加工を行い、機械加工を省略してコストダウンを図ろうとする産業界の要請に応えられない場合が生ずる。
【0072】
(実施例2)
前記の(実施例1)で述べた鋼8及び鋼15の3トン鋼塊から分割した鋼塊を用いて、1000〜1200℃まで100℃刻みで各温度に加熱した後、通常の方法で直径100mmの鋼片に熱間鍛造した。なお、いずれの場合も熱間鍛造の仕上げ温度は950℃とした。又、鍛造終了後は500℃までの温度域を10℃/分の冷却速度で冷却し、500℃を下回る温度域の冷却は放冷とした。
【0073】
次いで、上記の直径100mmの各鋼片を950〜1100℃まで50℃刻みで各温度に再加熱した後、通常の方法で直径50mmの丸棒に熱間鍛造した。なお、熱間鍛造の仕上げ温度は815℃及び885℃の2条件とした。又、鍛造終了後は500℃までの温度域を25℃/分の冷却速度で冷却し、500℃を下回る温度域の冷却は放冷とした。
【0074】
上記のようにして得た直径50mmの丸棒を、通常の方法によって730℃で球状化焼鈍した後、(R/2)の部位(R=25mm)から直径10mm×長さ20mmの円筒状の試験片を切り出し、500トン高速プレス機を用いて通常の方法で据え込み率85%の常温(室温)据え込み加工を行った。
【0075】
次いで、前記の据え込み加工した試験片を850〜1050℃まで25℃刻みに各温度で6時間加熱して浸炭処理時の加熱をシミュレートした。
【0076】
加熱処理後は油冷し、光学顕微鏡(倍率は100倍)でランダムに10視野観察して粗粒化特性を調査した。なお、粗粒化の判定基準は前記の(実施例1)の場合と同じである。すなわち、JIS G 0551に準じて、視野間において3以上異なった粒度番号の視野が存在する場合に「混粒」として、異常粒成長が生じたと見なした。一方、「粗粒」と「細粒」の判定はJIS基準よりも厳しくして、結晶粒度番号6未満の場合に「粗粒鋼」として結晶粒が粗大化したと判定した。
【0077】
表5〜に、上記の粗粒化特性の調査結果を示す。
【0078】
【表5】
Figure 0003724142
【0079】
【表6】
Figure 0003724142
【0080】
表5〜から、本発明で規定する化学組成を有する鋼の場合であっても、本発明の規定を外れた条件で熱間加工した場合には、粗粒化開始温度が950℃以下と低く、耐粗粒化特性に劣ることが明らかである。
【0081】
(実施例3)
前記の(実施例1)で述べた鋼9の3トン鋼塊から分割した鋼塊を用いて、1200℃に加熱した後、通常の方法で直径100mmの鋼片に熱間鍛造した。なお、いずれの場合も熱間鍛造の仕上げ温度は950℃とした。又、鍛造終了後は500℃までの温度域を2℃/分あるいは15℃/分の冷却速度で冷却し、500℃を下回る温度域の冷却は放冷とした。
【0082】
次いで、上記の直径100mmの各鋼片を1100℃に再加熱した後、通常の方法で直径50mmの丸棒に熱間鍛造した。なお、熱間鍛造の仕上げ温度は900℃とした。又、鍛造終了後は500℃までの温度域を3℃/分あるいは25℃/分の冷却速度で冷却し、500℃を下回る温度域の冷却は放冷とした。
【0083】
上記のようにして得た直径50mmの丸棒を、通常の方法によって730℃で球状化焼鈍した後、(R/2)の部位(R=25mm)から直径10mm×長さ20mmの円筒状の試験片を切り出し、500トン高速プレス機を用いて通常の方法で据え込み率85%の常温(室温)据え込み加工を行った。
【0084】
次いで、前記の据え込み加工した試験片を850〜1050℃まで25℃刻みに各温度で6時間加熱して浸炭処理時の加熱をシミュレートした。
【0085】
加熱処理後は油冷し、光学顕微鏡(倍率は100倍)でランダムに10視野観察して粗粒化特性を調査した。なお、粗粒化の判定基準は前記の(実施例1)及び(実施例2)の場合と同じである。
【0086】
に、上記の粗粒化特性の調査結果を示す。
【0087】
【表7】
Figure 0003724142
【0088】
から、本発明で規定する化学組成を有する鋼の場合であっても、熱間加工後に本発明の規定を外れた条件で冷却した場合には、粗粒化開始温度が850℃以下と低く、耐粗粒化特性に劣ることが明らかである。
【0089】
【発明の効果】
本発明の方法で製造された耐粗粒化肌焼鋼鋼材は、冷間加工による精密な成形加工を行い、次いで浸炭処理しても結晶粒の粗大化や異常粒成長を生ずることがないので、自動車や産業機械用の歯車やシャフト類など浸炭処理が施される部品の母材として利用することができる。本発明の方法で製造された耐粗粒化肌焼鋼鋼材を用いれば、熱間での粗成形後に行われていた歯切りなどの機械加工による整形加工を省略することができるので、自動車や産業機械用の歯車やシャフト類などを低コストで製造することが可能である BACKGROUND OF THE INVENTION
[0001]
  The present inventionIs resistantRegarding the manufacturing method of coarse grained case-hardened steel, more specifically, the mother of parts subjected to carburizing treatment such as gears and shafts for automobiles and industrial machineryWith materialCoarse grain-resistant skinSteelThe present invention relates to a method for manufacturing a material.
[Prior art]
[0002]
  Parts to be carburized (hereinafter referred to as carburized parts) such as gears and shafts for automobiles and industrial machines are conventionally roughly formed by hot working such as hot forging, and then machined such as gear cutting. After being subjected to the shaping process, the carburizing process has been applied. As the base steel for the carburized parts, case hardening steels such as chrome steels represented by SCr415 and SCr420, which are JIS standard steels, and chromium molybdenum steels represented by SCM415 and SCM420, have been used.
[0003]
  However, recently, it has been directed to reduce costs by omitting a shaping process by machining such as gear cutting. For this reason, as a method of manufacturing carburized parts, there are many methods of carrying out precise forming processing by cold working (such as cold forging) with excellent forming accuracy instead of hot rough forming, and then carburizing. It's getting on.
[0004]
  However, in the case of carburized parts using conventional JIS standard steel as the base steel and carburized after cold forging as described above, conventional carburized parts (carburized parts subjected to rough forming by hot working) ), Grain coarsening and abnormal grain growth (hereinafter referred to as “coarse graining”) are caused by distortion and material characteristics during quenching. The problem of reduction is likely to occur.
[0005]
  For this reason, as a case hardening steel used as a base material steel for carburized parts, an alternative to the conventional JIS standard steel is disclosed in, for example, Japanese Patent Application Laid-Open No. 60-21359. However, even when the steel proposed in this publication, especially the steel added with Nb is used as the base steel, the ratio of Al (N) / N (%), which is the ratio of the content of Al and N, Since no consideration is given to the value, when carburized parts are manufactured by carburizing after cold forging, coarsening may occur.
[0006]
  Japanese Unexamined Patent Publication No. 63-140031 discloses carburizing that restricts the rolling heating temperature and rolling end temperature of carburizing steel containing specific amounts of Al and N to prevent abnormal growth of crystal grains during carburizing treatment. A steel manufacturing method is disclosed. However, even when steel containing Al and N within the range proposed in this publication is manufactured at the specified rolling heating temperature and rolling end temperature, carburized parts are manufactured by carburizing after cold forging. As a result, coarsening may still occur.
[0007]
  For this reason, precision forming by cold working is performed, and then coarse grain-resistant case-hardening steel that can prevent crystal grain coarsening and abnormal grain growth from occurring even if carburized under normal conditions, and its It has been eager to develop a method for producing case-hardened steel.
[Problems to be solved by the invention]
[0008]
  The present invention has been made in view of the above-mentioned present situation, and performs precise forming processing by cold working, and then prevents grain coarsening and abnormal grain growth even when carburizing treatment is performed. Skin burningSteelIt aims at providing the manufacturing method of.
[0009]
  The gist of the present invention is as follows.(1) andAnd(2)It exists in the manufacturing method of the coarse-grain-hardening case hardening steel material shown.
[0010]
  (1) It becomes a base material of parts manufactured by carburizing after cold working and formingCoarse grain resistanceIt is a manufacturing method of case hardening steel materials, Comprising: In weight%, C: 0.1-0.3%, Si: 0.1-1.0%, Mn: 0.3-2.0%, Al: 0.01 to 0.06%, N: 0.005 to 0.03%, Al (%) / N (%): 1.0 to 2.0, Nb: 0 to 0.07%, V: 0 0.005 to 0.1% and Nb (%) + V (%) ≧ 0.005%, Cu: 0 to 0.3%, Ni: 0 to 0.5%, Cr: 0 to 2.0% , Mo: 0 to 0.5%, W: 0 to 0.5%, Pb: 0 to 0.3%, Te: 0 to 0.08%, Ca: 0 to 0.01%, Bi: 0 to 0 0.3%, S: 0.005 to 0.08%, P: 0.03% or less, with the balance being heated by heating steel having a chemical composition composed of Fe and inevitable impurities to a temperature of 1100 ° C. or higher The above hot working is performed in a temperature range of 850 ° C. or higher. Finishing temperature, then manufacturing method of 耐粗 granulated hardened steels characterized by cooling the temperature range of up to 500 ° C. at a cooling rate of 5 to 500 ° C. / min.
[0011]
  (2) It becomes a base material for parts to be manufactured by carburizing after cold workingCoarse grain resistanceIt is a manufacturing method of case hardening steel materials, Comprising: In weight%, C: 0.1-0.3%, Si: 0.1-1.0%, Mn: 0.3-2.0%, Al: 0.01 to 0.06%, N: 0.005 to 0.03%, Al (%) / N (%): 1.0 to 2.0, Nb: 0 to 0.07%, V: 0 0.005 to 0.1% and Nb (%) + V (%) ≧ 0.005%, Cu: 0 to 0.3%, Ni: 0 to 0.5%, Cr: 0 to 2.0% , Mo: 0 to 0.5%, W: 0 to 0.5%, Pb: 0 to 0.3%, Te: 0 to 0.08%, Ca: 0 to 0.01%, Bi: 0 to 0 0.3%, S: 0.005 to 0.08%, P: 0.03% or less, with the balance being heated by heating steel having a chemical composition composed of Fe and inevitable impurities to a temperature of 1100 ° C. or higher The above hot working is performed in a temperature range of 850 ° C. or higher. After finishing at a temperature, and then cooling the temperature range up to 500 ° C. at a cooling rate of 5 to 500 ° C./min, it is further reheated to a temperature of 1000 ° C. or higher to perform hot working. Finishing at a temperature in a temperature range of 850 ° C. or higher, and then cooling the temperature range up to 500 ° C. at a cooling rate of 5 to 500 ° C./min.
[0012]
  Here, “Al” refers to so-called “acid-soluble Al”. In the following, the above (1),(2)Inventions of (1) and (2) respectively.With lightSay.Also, it may be collectively referred to as “the present invention”.
DETAILED DESCRIPTION OF THE INVENTION
[0013]
  The present inventors melt steel having various chemical compositions in an experimental furnace, produce steel materials by changing hot working conditions and cooling conditions after hot working, spheroidizing annealing, cold working by ordinary methods Processing and carburizing and quenching were performed, and the effects of component elements, hot working conditions and cooling conditions after hot working on the structure after carburizing and quenching were investigated.
[0014]
  As a result, the following(1)~(8)The knowledge of was obtained.
[0015]
  (1)When Al, Nb, and V that generate nitrides and carbonitrides are added alone, a certain degree of coarsening prevention effect is observed. However, simply adding two or more of the above elements in combination does not necessarily increase the effect of preventing coarsening, and may even cause coarsening.
[0016]
  (2)When the contents of Al, Nb and V are controlled to add Al, Nb and V in combination, and the N content is also controlled, a large effect of preventing coarsening can be obtained. If the control of the content of each element described above is not appropriate, the effect of combined addition of Al, Nb, and V does not appear, and the cost only increases.
[0017]
  (3)In order to prevent coarsening during the carburizing process, in addition to the control of the contents of Al, Nb, V and N described above, the ratio of the contents of Al and N (Al (%) / N (%)) Need to be controlled.
[0018]
  (Four)Since the nitrides and carbonitrides of Al, Nb, and V produced in the solidification process after melting are agglomerated and coarsened, the effect of preventing coarsening during the carburizing process is small in that state. However, once the nitride or carbonitride is heated to a high temperature during hot processing and then dissolved in the base austenite, the nitride or carbonitride during hot processing and subsequent cooling Since the product can be finely precipitated, the effect of preventing coarsening during the carburizing process is extremely increased.
[0019]
  (Five)the above(Four)If it is necessary to further hot-work the steel material on which the nitride or carbonitride is finely precipitated by further hot working and subsequent cooling to the desired shape and size, the reheating temperature for hot working should be reduced. It is important to control and prevent the coarsening of nitrides and carbonitrides.
[0020]
  (6)In order to finely precipitate nitrides and carbonitrides during and after hot working, it is important to finish hot working in an appropriate temperature range. If the finishing temperature range is inappropriate, nitrides and carbonitrides are agglomerated and coarsened, and the effect of preventing coarsening becomes extremely small.
[0021]
  (7)In order to prevent coarsening of nitrides and carbonitrides, it is necessary to cool under appropriate cooling conditions after the hot working is completed.
[0022]
  (8)When the component elements, hot working, and subsequent cooling conditions are optimized, nitride and carbonitride are not coarsened even during spheroidizing annealing as a pre-process of cold working. Can be prevented from coarsening.
[0023]
  The present invention has been completed based on the above findings.
[0024]
  Hereinafter, each requirement of the present invention will be described in detail. In addition, “%” of the component content means “% by weight”.
[0025]
  (A) Chemical composition of steel
  C: 0.1 to 0.3%
  C is an element effective for enhancing the hardenability of steel and improving the static strength. However, if its content is less than 0.1%, the effect of addition is poor, while if it exceeds 0.3%, the toughness of the steel decreases. Therefore, the content of C is set to 0.1 to 0.3%.
[0026]
  Si: 0.1 to 1.0%
  Si is an element effective for deoxidation, improving hardenability, and improving static strength by solid solution strengthening. However, if the content is less than 0.1%, the desired effect cannot be obtained. On the other hand, if the content exceeds 1.0%, the carburizability is lowered and the fatigue strength is lowered. Furthermore, it causes a decrease in cold workability. Therefore, the Si content is set to 0.1 to 1.0%.
[0027]
  Mn: 0.3 to 2.0%
  Mn also has a deoxidizing action like Si. It also has the effect of improving hardenability and improving strength and toughness. However, if the content is less than 0.3%, the effect of addition is poor. On the other hand, even if it contains more than 2.0, the effect is saturated and economical efficiency is only impaired. Therefore, the Mn content is set to 0.3 to 2.0%.
[0028]
  Al: 0.01 to 0.06%
  Al combines with N in the steel to form AlN and has the effect of preventing coarsening. In order to exhibit this effect, it is necessary to make Al content 0.01% or more. On the other hand, even if the content exceeds 0.06%, the above-described effect is saturated and the machinability is reduced. Therefore, the Al content is set to 0.01 to 0.06%. As described above, “Al” here means “acid-soluble Al”.
[0029]
  N: 0.005 to 0.03%
  N combines with Al, Nb and V to form nitrides and carbonitrides, and is effective in preventing coarsening. However, if the content is less than 0.005%, the desired effect cannot be obtained. On the other hand, if the content exceeds 0.03%, the deformation resistance of the steel increases and the cold workability decreases. Therefore, the N content is set to 0.005 to 0.03%.
[0030]
  Al (%) / N (%): 1.0 to 2.0
  The ratio of Al and N content (Al (%) / N (%)) is not appropriate even in the range of the content of Al and N described above and the range of the content of Nb and V described later. In some cases, it is impossible to prevent coarsening during carburizing. That is, when the value of Al (%) / N (%) exceeds 2.0, the combined effect of Al, Nb and V for preventing coarsening cannot be obtained. Furthermore, when performing spheroidizing annealing as a pre-process of cold working, since the nitride and carbonitride are extremely coarsened even if the hot working conditions and the subsequent cooling conditions described later are satisfied, carburizing treatment The coarsening of the time cannot be prevented. On the other hand, if Al (%) / N (%) is less than 1.0, the cold workability is deteriorated, and cracking is likely to occur during the forming into a desired shape in the cold. In this case, it is not possible to meet the demands of the industry for reducing the cost by carrying out precise forming processing by cold processing instead of rough hot forming and omitting machining. Therefore, Al (%) / N (%) was set to 1.0 to 2.0.
[0031]
  Nb: 0 to 0.07%
  Nb may not be added. When added, it has a function of forming a nitride or carbonitride to prevent coarsening. If steel and aluminum are controlled in combination with Al and V, an extremely excellent effect of preventing coarsening can be obtained. However0. Even if the content exceeds 07%, the above-described effects are saturated and the economic efficiency is deteriorated, and the deformation resistance is increased and the cold workability is deteriorated. Therefore, the Nb content is set to 0 to 0.07%.
[0032]
  V:0.005~ 0.1%
  VNiIt has a function of preventing coarsening by forming a fluoride or carbonitride. If steel and N and the content of N are combined and added together with Al and Nb, an extremely excellent effect of preventing coarsening can be obtained. HoweverThisTo obtain the effect ofIs VNeeds to be 0.005% or more. On the other hand, if the content exceeds 0.1%, the above effect is saturated and the economic efficiency is impaired, and the deformation resistance is increased and the cold workability is deteriorated. Therefore, the V content is0.005˜0.1%.
[0033]
  Nb (%) + V (%): 0.005% or more
  In order to obtain an extremely excellent coarsening prevention effect by adding Nb and V together with Al to steel with controlled N contentIn addition,The sum of the contents of Nb and V (Nb (%) + V (%)) is 0.005% or more.did.
[0034]
  Cu: 0 to 0.3%
  Cu may not be added. Addition improves the hardenability of the steel. In order to reliably obtain this effect, the Cu content is preferably 0.1% or more. However, if it is contained in a large amount, the hot ductility is lowered and the hot workability is lowered. In particular, when the content exceeds 0.3%, the hot workability is significantly deteriorated. Therefore, the Cu content is set to 0 to 0.3%.
[0035]
  Ni: 0 to 0.5%
  Ni need not be added. If added, it has the effect of enhancing the hardenability and toughness of the steel. In order to reliably obtain this effect, the Ni content is preferably 0.05% or more. However, even if the content exceeds 0.5%, the above effects are saturated and the cost is increased. Therefore, the Ni content is set to 0 to 0.5%.
[0036]
  Cr: 0 to 2.0%
  It is not necessary to add Cr. If added, it has the effect of enhancing the hardenability, strength and toughness of the steel. In order to reliably obtain this effect, the Cr content is preferably 0.1% or more. However, even if the content exceeds 2.0%, the above effect is saturated and the economic efficiency is only impaired. Therefore, the content of Cr is set to 0 to 2.0%.
[0037]
  Mo: 0 to 0.5%
  Mo need not be added. If added, it has the effect of enhancing the hardenability, strength and toughness of the steel. In order to reliably obtain this effect, the Mo content is preferably 0.05% or more. However, if the content exceeds 0.5%, the machinability deteriorates. Therefore, the Mo content is set to 0 to 0.5%.
[0038]
  W: 0 to 0.5%
  W does not need to be added. If added, it has the effect of enhancing the hardenability, strength and toughness of the steel. In order to reliably obtain this effect, the W content is preferably 0.05% or more. However, if the content exceeds 0.5%, the machinability deteriorates. Therefore, the W content is set to 0 to 0.5%.
[0039]
  Pb: 0 to 0.3%
  Pb may not be added. However, if added, it has a function of improving machinability. For this reason, when it is desired to finish the inner surface of a part formed by cold working by further precise cutting, it may be added in order to improve the machinability. In this case, the Pb content is preferably 0.005% or more in order to reliably obtain the machinability improving effect. However, if the content exceeds 0.3%, the fatigue characteristics are deteriorated. Therefore, the Pb content is set to 0 to 0.3%.
[0040]
  Te: 0 to 0.08%
  Te may not be added. If added, it has the effect of improving the machinability like Pb. For this reason, when it is desired to finish the inner surface of a part formed by cold working by further precise cutting, it may be added in order to improve the machinability. In this case, in order to reliably obtain the effect of improving machinability, Te is preferably set to a content of 0.01% or more. However, when the content exceeds 0.08%, the hot workability is lowered. Therefore, the Te content is set to 0 to 0.08%.
[0041]
  Ca: 0 to 0.01%
  Ca need not be added. If added, there is an effect of improving the machinability. For this reason, in the case where it is desired to further finish the inner surface of a part formed by cold working like Pb or Te by further precise cutting, it may be added to improve the cutting ability. In this case, in order to reliably obtain the machinability improving effect, the Ca content is preferably 0.001% or more. However, when the content exceeds 0.01%, the hot workability is lowered. Therefore, the content of Ca is set to 0 to 0.01%.
[0042]
  Bi: 0 to 0.3%
  Bi may not be added. If added, it has the effect of improving the machinability. For this reason, when it is desired to further precisely cut and finish the inner surface of a part formed by cold working like Pb, Te and Ca, it may be added to improve the cutting ability. In this case, in order to reliably obtain the machinability improving effect, the Bi content is preferably set to 0.01% or more. However, when the content exceeds 0.3%, the hot workability is lowered. Therefore, the Bi content is set to 0 to 0.3%.
[0043]
  S:0.005~ 0.08%
  SIs offHas the effect of improving machinabilityThe coldInternal surfaces of parts formed by hot workingSpermFinish by dense cuttingGellHas an S content of 0.005% or more.There is a need.However, when the content exceeds 0.08%, the toughness is lowered. Therefore, the S content0.005-0.08%.
[0044]
  P: 0.03% or less
  P segregates at the grain boundaries and reduces toughness. In particular, when the content exceeds 0.03%, the toughness is significantly reduced. Therefore, the P content is set to 0.030% or less.
[0045]
  (B) Hot working and subsequent cooling
  (B-1) Heating
  Nitride and carbonitride of Al, Nb, and V in steel ingots generated in the solidification process after melting (herein, “steel ingot” includes “slab” as in JIS G 0203) Is agglomerated and coarsened, the effect of preventing coarsening at the time of carburizing is small. Therefore, as described above(1)Hot working of the invention and(2)In the previous (primary) hot working of the present invention, the above nitride or carbonitride is once heated to a high temperature to be dissolved in austenite as a base, and is nitrided during hot working and after cooling. It is necessary to finely precipitate materials and carbonitrides to achieve prevention of coarsening during carburizing treatment.
[0046]
  Therefore, it has the chemical composition (A) described above.SteelThe(1)Hot working in the invention of(2)In the previous (primary) hot working in the invention, the above-described nitride or carbonitride is heated to a temperature of 1100 ° C. or more to be dissolved in austenite. The heating temperature is preferably 1150 ° C. or higher, and more preferably 1200 ° C. or higher. There is no restriction | limiting in particular in the upper limit of this heating temperature. However, it is preferable to set the upper limit at about 1350 ° C. in order to suppress cost increase due to decarburization and scale loss, and to further reduce energy costs.
[0047]
  (B-2) Finishing temperature
  In order to precipitate Al, Nb and V dissolved in austenite as fine nitrides and carbonitrides during hot working and subsequent cooling, the finishing temperature of hot working needs to be 850 ° C or higher. is there. When the finishing temperature of hot working is lower than 850 ° C., Al, Nb and V nitrides and carbonitrides partially precipitated during hot working are agglomerated and coarsened, and excellent coarse-resistant grains during carburizing treatment. In some cases, the object of the present invention for obtaining the conversion characteristics cannot be achieved. Therefore,(1)The finishing temperature of hot working in the invention of(2)The finishing temperature of the previous (primary) hot working in the present invention was set to 850 ° C. or higher. In addition, there is no restriction | limiting in particular in the upper limit of the finishing temperature of the said hot working. However, it is preferable to set the upper limit at about 1050 ° C. in order to suppress decarburization.
[0048]
  (B-3) Cooling after hot working
  After finishing the hot working, it is necessary to cool the temperature range up to 500 ° C. at a cooling rate of 5 to 500 ° C./min. When the cooling rate of this cooling is less than 5 ° C./min, the nitrides and carbonitrides of Al, Nb, and V are agglomerated and coarsened, and an attempt is made to obtain excellent grain resistance characteristics during carburizing treatment. The object of the present invention may not be achieved. In particular, when performing spheroidizing annealing as a pre-process of cold working, even in the case of steel having the chemical composition of item (A) described above, nitrides and carbonitrides are coarsened. It cannot prevent coarsening during carburizing. On the other hand, when the cooling rate of the cooling exceeds 500 ° C./min, a so-called “low temperature transformation structure” such as bainite or martensite may be generated and it may be difficult to cut into a desired size. Therefore,(1)The cooling rate in the temperature range up to 500 ° C. after the hot working finish of the invention of(2)The cooling rate in the temperature range up to 500 ° C. after the previous (primary) hot working finish of the invention was defined as 5 to 500 ° C./min. The upper limit of the cooling rate is preferably about 300 ° C./min, and more preferably about 100 ° C./min.
[0049]
  Cooling in a temperature range below 500 ° C. may be quenched in order to increase productivity. In addition, said cooling rate says the cooling rate of the steel material surface.
[0050]
  By the steps (B-1) to (B-3) above(1)The present invention is configured. In addition,(1)According to the present invention, after the above hot working and cooling, no further hot working (secondary hot working) is applied, and carburizing is performed in a desired shape by cold working and then carburized. The present invention provides a method for producing a coarse-grained case-hardened steel material that is a base material for parts. That is, it has the chemical composition described in the item (A) and is manufactured by the steps (B-1) to (B-3).(1)The coarse grain-resistant case-hardened steel material according to the invention of (B-3) is not subjected to further hot processing after the step (B-3), and is subjected to spheroidizing annealing as necessary. It is formed into a desired part shape by cold working such as cold forging, and further, the inner surface and the like are precisely cut as necessary, and then carburized and quenched. Then, if necessary, the final part is finished by tempering, grinding and polishing at a low temperature.
[0051]
  On the other hand, after the step (B-3), the steel material is reheated and hot-worked (secondary hot-working) for the purpose of further forming a desired size and shape, and then cooled. No(2)It is a manufacturing method of the coarse grain-resistant case hardening steel material which concerns on this invention. Less than,(2)The requirements according to the invention will be further described.
[0052]
  (B-4) Reheating after cooling
  Al, Nb, and V nitrides and carbonitrides, which are produced in the solidification process after melting and are agglomerated and coarsened, are dissolved in austenite and finely formed as nitrides and carbonitrides during hot working and subsequent cooling. After the precipitation, the reheating temperature at the time of hot working (secondary hot working) for obtaining a desired size or shape of the shaped material needs to be 1000 ° C. or higher. If this reheating temperature is lower than 1000 ° C., the nitrides and carbonitrides are coarsened, and the deformation resistance of the steel material increases and the load on the processing machine such as a rolling mill becomes excessive. is there. Therefore,(2)In this invention, the reheating temperature for hot working after cooling (secondary hot working) was set to 1000 ° C. or higher. The reheating temperature is desirably 1100 ° C. or higher. There is no restriction | limiting in particular in the upper limit of this heating temperature. However, in order to suppress an increase in cost due to decarburization and scale loss and to further reduce energy costs, the upper limit is preferably about 1250 ° C., and more preferably 1200 ° C.
[0053]
  (B-5) Hot working finishing temperature after reheating
  The finishing temperature of the hot working after the reheating (secondary hot working) needs to be 850 ° C. or higher. When this temperature is lower than 850 ° C., Al, Nb and V nitrides and carbonitrides partially precipitated during hot working are agglomerated and coarsened, and excellent coarse grain resistance characteristics are obtained during carburizing treatment. In some cases, the object of the present invention is not achieved. Therefore,(2)In this invention, the finishing temperature of the hot working after the reheating (secondary hot working) was set to 850 ° C. or higher. The upper limit of the temperature is not particularly limited. However, it is preferable to set the upper limit at about 1050 ° C. in order to suppress decarburization.
[0054]
  (B-6) Cooling after hot working after reheating
  After finishing the hot working after the reheating (secondary hot working), when the cooling rate in the temperature range up to 500 ° C. is lower than 5 ° C./min, nitrides or charcoal of Al, Nb, V In some cases, the nitride is agglomerated and coarsened, and the object of the present invention, which is intended to obtain excellent coarse grain resistance characteristics during carburizing treatment, may not be achieved. In particular, when performing spheroidizing annealing as a pre-process of cold working, even in the case of steel having the chemical composition of item (A) described above, nitrides and carbonitrides are coarsened. It cannot prevent coarsening during carburizing. On the other hand, when the cooling rate is higher than 500 ° C./min, a so-called “low temperature transformation structure” such as bainite or martensite may occur and it may be difficult to cut into a desired size. Therefore,(2)In this invention, after finishing the hot working after reheating (secondary hot working), the cooling rate in the temperature range up to 500 ° C. was defined as 5 to 500 ° C./min. The upper limit of the cooling rate is preferably about 300 ° C./min, and more preferably about 100 ° C./min.
[0055]
  In addition, you may quench rapidly the cooling of the temperature range below 500 degreeC in order to improve productivity. Here, the cooling rate means the cooling rate of the steel material surface as described above.
[0056]
  By the steps (B-1) to (B-6) above(2)The present invention is configured. It has the chemical composition described in the item (A) and is manufactured by the steps (B-1) to (B-6).(2)The coarse grain-resistant case-hardened steel according to the invention of the present invention is formed into a desired part shape by cold working including cold forging after being subjected to spheroidizing annealing as necessary. Accordingly, the inner surface and the like are precision cut and then carburized and quenched. Then, if necessary, the final part is finished by tempering, grinding and polishing at a low temperature.
【Example】
[0057]
  Example 1
  Steels having chemical compositions shown in Tables 1 and 2 were melted by a usual method using a 3 ton test furnace. In Table 1 and Table 2.Steel 8-15, Steel 17-21 and Steel 23The chemical composition is within the range specified in the present invention.Steel (invention steel)It is. On the other hand, steels 25 to 34 in Table 2 are out of the content range defined in the present invention by any of the components.Steel (Comparative steel)It is.
[0058]
[Table 1]
Figure 0003724142
[0059]
[Table 2]
Figure 0003724142
[0060]
  Next, these steels were heated, split-rolled and cooled under the conditions described in Tables 3 to 4 to obtain 180 mm square steel pieces, and further reheated, hot-rolled and cooled under the conditions described in Tables 3 to 4 Thus, a steel bar having a diameter of 50 mm was manufactured. Here, in the production of a 180 mm square steel piece and a 50 mm diameter steel bar, cooling in a temperature range below 500 ° C. was allowed to cool.
[0061]
  Note that the steel of the present invention example.Steel8, steel 9, steel15 andThe steel 22 was divided into 3 ton steel ingots and then used for the production of the above steel slabs and steel bars.
[0062]
[Table 3]
Figure 0003724142
[0063]
[Table 4]
Figure 0003724142
[0064]
  Steel obtained as above8-15, steel 17-21, steel 23 and steel 25~ 34 diameter 50mm steel bar and someSteel (steelSteel slabs of 13, mm 14, steel 17, steel 18, steel 18 and steel 20) were spheroidized at 730 ° C. by a conventional method. After this, from the part of (T / 4) (T = 180 mm) for the steel piece of 180 mm square, from the part of (R / 2) (R = 25 mm) for the steel bar having a diameter of 50 mm, the diameter is 10 mm × length. A 20 mm cylindrical test piece was cut out and subjected to an upsetting test at room temperature (room temperature) by a normal method using a 500-ton high-speed press. Here, the upsetting rate (compression rate) was set to four conditions of 70%, 75%, 80%, and 85%, and the number of tests was 20 for each condition. After the upsetting test, the cold workability was evaluated by visual inspection for occurrence of cracks.
[0065]
  Tables 3 to 4 also show the results of the cold workability evaluation described above. In addition, when a crack was observed in any of the 20 test pieces under each condition, the lowest upsetting rate at which the crack occurred was described as cold workability. In Tables 3 to 4, the cold workability of “> 85” indicates that no cracks occurred in any of the 20 test pieces in the upsetting test at an upsetting rate of 85%. On the other hand, the cold workability being “≦ 70” indicates that a crack occurred in an upsetting test with an upsetting rate of 70%.
[0066]
  Next, using the test piece installed at the upsetting rate of 85%, the heating at the carburizing process was simulated by heating at 850 to 1050 ° C. in increments of 25 ° C. for 6 hours at each temperature.
[0067]
  After the heat treatment, oil cooling was performed, and 10 visual fields were randomly observed with an optical microscope (magnification: 100 times) to investigate the coarsening characteristics. Note that the criteria for coarsening were in accordance with JIS G 0551. That is, it was considered that abnormal grain growth occurred as “mixed grain” when there were fields with different particle size numbers of 3 or more between the fields. On the other hand, the judgment of “coarse grain” and “fine grain” was made stricter than the JIS standard, and when the grain size number was less than 6, it was judged that the crystal grain was coarsened as “coarse grain steel”.
[0068]
  In Tables 3-4, the investigation result of said coarse grain characteristic is shown collectively. In addition, when coarsening generation | occurrence | production was recognized, the lowest heating temperature which coarsening produced was described as "the coarsening start temperature." The coarsening start temperature “> 1050” in Tables 3 to 4 indicates that no coarsening occurred under heating conditions of 1050 ° C. × 6 hours. On the other hand, the coarsening start temperature “≦ 850” indicates that coarsening has already occurred by heating at 850 ° C. × 6 hours.
[0069]
  According to Tables 3-4, when a steel having the chemical composition defined in the present invention is hot worked and cooled under the conditions defined in the present invention, it is cold worked at an upsetting rate of 85%. No cracking occurs, and when this is austenitized for 6 hours, the coarsening start temperature is as high as 975 ° C. or higher, and it is clear that the coarsening resistance is excellent.
[0070]
  On the other hand, among the steels of comparative examples in which any of the components deviates from the content range specified in the present invention, the steels 25 to 28 and the steels 31 to 34 are heated under the conditions specified in the present invention. Even if it is cold-worked and cooled, the coarsening start temperature is as low as 950 ° C. or less, and the coarsening resistance is poor. Among the above steels, in the case of steel 26, cold workability is also low, so that cracking is likely to occur during forming into a desired shape in the cold. Therefore, there is a case where it is not possible to meet the demands of the industry for reducing the cost by carrying out precise forming by cold working instead of rough hot forming and omitting machining.
[0071]
  On the other hand, among the steels of the comparative examples, the steel 29 and the steel 30 have a coarsening start temperature exceeding 1050 ° C. when the austenitizing treatment is performed for 6 hours, which is excellent in the coarsening resistance property. Low processability. For this reason, it becomes easy to produce a crack at the time of the shaping | molding process to the desired shape in cold similarly to the case of the said steel 26. FIG. Therefore, there is a case in which it is not possible to meet the demands of the industry to reduce costs by performing precision processing by cold processing instead of hot rough forming and omitting machining.
[0072]
  (Example 2)
  Described in (Example 1) aboveSteelUsing steel ingots divided from 3 ton steel ingots of 8 and 15 to 1000 to 1200 ° C. in 100 ° C. increments, each was hot forged into a steel piece having a diameter of 100 mm by a normal method. In either case, the finishing temperature for hot forging was 950 ° C. Moreover, after the forging was completed, the temperature range up to 500 ° C. was cooled at a cooling rate of 10 ° C./min, and the cooling in the temperature range below 500 ° C. was allowed to cool.
[0073]
  Next, each steel piece having a diameter of 100 mm was reheated to each temperature in increments of 50 ° C. from 950 to 1100 ° C., and then hot forged into a round bar having a diameter of 50 mm by an ordinary method. In addition, the finishing temperature of hot forging was made into two conditions, 815 degreeC and 885 degreeC. Further, after the forging was completed, the temperature range up to 500 ° C. was cooled at a cooling rate of 25 ° C./min, and the cooling in the temperature range below 500 ° C. was allowed to cool.
[0074]
  The round bar having a diameter of 50 mm obtained as described above was subjected to spheroidizing annealing at 730 ° C. by a usual method, and then a cylindrical shape having a diameter of 10 mm × length of 20 mm from the portion (R / 2) (R = 25 mm). A test piece was cut out and subjected to normal temperature (room temperature) upsetting with an upsetting rate of 85% by a normal method using a 500-ton high-speed press.
[0075]
  Next, the upsetting processed test piece was heated at 850 to 1050 ° C. in increments of 25 ° C. for 6 hours at each temperature to simulate heating during the carburizing treatment.
[0076]
  After the heat treatment, oil cooling was performed, and 10 visual fields were randomly observed with an optical microscope (magnification: 100 times) to investigate the coarsening characteristics. Note that the criteria for determining the coarsening are the same as in the case of (Example 1). That is, according to JIS G 0551, it was considered that abnormal grain growth occurred as “mixed grain” when there was a field having a grain number different by 3 or more between the fields. On the other hand, the judgment of “coarse grain” and “fine grain” was made stricter than the JIS standard, and when the grain size number was less than 6, it was judged that the crystal grain was coarsened as “coarse grain steel”.
[0077]
  Table 56Shows the results of the investigation of the coarsening characteristics.
[0078]
[Table 5]
Figure 0003724142
[0079]
[Table 6]
Figure 0003724142
[0080]
  Table 56Therefore, even in the case of a steel having a chemical composition specified in the present invention, when hot working is performed under conditions that do not comply with the present invention, the coarsening start temperature is as low as 950 ° C. It is clear that the granulation characteristics are inferior.
[0081]
  (Example 3)
  As described in Example 1 aboveOf steel 9Using a steel ingot divided from a 3-ton steel ingot, it was heated to 1200 ° C. and then hot forged into a steel piece having a diameter of 100 mm by a normal method. In either case, the finishing temperature for hot forging was 950 ° C. Further, after the forging was completed, the temperature range up to 500 ° C. was cooled at a cooling rate of 2 ° C./min or 15 ° C./min, and the cooling in the temperature range below 500 ° C. was allowed to cool.
[0082]
  Next, each steel piece with a diameter of 100 mm was reheated to 1100 ° C., and then hot forged into a round bar with a diameter of 50 mm by an ordinary method. The finishing temperature for hot forging was 900 ° C. Further, after the forging was completed, the temperature range up to 500 ° C. was cooled at a cooling rate of 3 ° C./min or 25 ° C./min, and the cooling in the temperature range below 500 ° C. was allowed to cool.
[0083]
  The round bar having a diameter of 50 mm obtained as described above was subjected to spheroidizing annealing at 730 ° C. by a usual method, and then a cylindrical shape having a diameter of 10 mm × length of 20 mm from the portion (R / 2) (R = 25 mm). A test piece was cut out and subjected to normal temperature (room temperature) upsetting with an upsetting rate of 85% by a normal method using a 500-ton high-speed press.
[0084]
  Next, the upsetting processed test piece was heated at 850 to 1050 ° C. in increments of 25 ° C. for 6 hours at each temperature to simulate heating during the carburizing treatment.
[0085]
  After the heat treatment, oil cooling was performed, and 10 visual fields were randomly observed with an optical microscope (magnification: 100 times) to investigate the coarsening characteristics. Note that the criteria for determining the coarsening are the same as those in the above (Example 1) and (Example 2).
[0086]
  table7Shows the results of the investigation of the coarsening characteristics.
[0087]
[Table 7]
Figure 0003724142
[0088]
  table7From, even in the case of steel having a chemical composition defined in the present invention, when cooled under conditions that deviate from the provision of the present invention after hot working, the coarsening start temperature is as low as 850 ° C. or less, It is clear that the coarse grain resistance is inferior.
[0089]
【The invention's effect】
  The present inventionManufactured by the method ofCoarse grained case hardening steelSteelSince it does not cause coarsening of crystal grains or abnormal grain growth even if carburizing is performed after precise forming by cold working, carburizing such as gears and shafts for automobiles and industrial machinery is performed. Parts motherWith materialCan be used. Of the present inventionManufactured by the methodBy using coarse grain-resistant case-hardened steel, gears and shafts for automobiles and industrial machinery can be omitted, since it is possible to eliminate shaping by mechanical processing such as gear cutting that has been performed after hot rough forming. Can be manufactured at low cost.

Claims (2)

冷間加工して成形した後に浸炭処理することによって製造する部品の母材となる耐粗粒化肌焼鋼鋼材の製造方法であって、重量%で、C:0.1〜0.3%、Si:0.1〜1.0%、Mn:0.3〜2.0%、Al:0.01〜0.06%、N:0.005〜0.03%でAl(%)/N(%):1.0〜2.0、Nb:0〜0.07%、V:0.005〜0.1%で、且つNb(%)+V(%)≧0.005%、Cu:0〜0.3%、Ni:0〜0.5%、Cr:0〜2.0%、Mo:0〜0.5%、W:0〜0.5%、Pb:0〜0.3%、Te:0〜0.08%、Ca:0〜0.01%、Bi:0〜0.3%、S:0.005〜0.08%、P:0.03%以下を含み、残部はFe及び不可避不純物からなる化学組成を有する鋼を1100℃以上の温度に加熱して熱間加工を行い、前記の熱間加工を850℃以上の温度域の温度で仕上げ、次いで、500℃までの温度域を5〜500℃/分の冷却速度で冷却することを特徴とする耐粗粒化肌焼鋼鋼材の製造方法。A method for producing a coarse grain-resistant case- hardened steel material, which is a base material for parts produced by cold-working and then carburizing, wherein C: 0.1 to 0.3% by weight , Si: 0.1 to 1.0%, Mn: 0.3 to 2.0%, Al: 0.01 to 0.06%, N: 0.005 to 0.03%, Al (%) / N (%): 1.0 to 2.0, Nb: 0 to 0.07%, V: 0.005 to 0.1%, and Nb (%) + V (%) ≧ 0.005%, Cu : 0-0.3%, Ni: 0-0.5%, Cr: 0-2.0%, Mo: 0-0.5%, W: 0-0.5%, Pb: 0-0. 3%, Te: 0 to 0.08%, Ca: 0 to 0.01%, Bi: 0 to 0.3%, S: 0.005 to 0.08%, P: 0.03% or less included The balance is 1% of steel having a chemical composition consisting of Fe and inevitable impurities. Heating to a temperature of 00 ° C. or higher to perform hot working, finishing the hot working at a temperature range of 850 ° C. or higher, and then cooling the temperature range to 500 ° C. to 5 to 500 ° C./min A method for producing a coarse-grained case-hardening steel material, characterized by cooling at a temperature. 冷間加工して成形した後に浸炭処理することによって製造する部品の母材となる耐粗粒化肌焼鋼鋼材の製造方法であって、重量%で、C:0.1〜0.3%、Si:0.1〜1.0%、Mn:0.3〜2.0%、Al:0.01〜0.06%、N:0.005〜0.03%でAl(%)/N(%):1.0〜2.0、Nb:0〜0.07%、V:0.005〜0.1%で、且つNb(%)+V(%)≧0.005%、Cu:0〜0.3%、Ni:0〜0.5%、Cr:0〜2.0%、Mo:0〜0.5%、W:0〜0.5%、Pb:0〜0.3%、Te:0〜0.08%、Ca:0〜0.01%、Bi:0〜0.3%、S:0.005〜0.08%、P:0.03%以下を含み、残部はFe及び不可避不純物からなる化学組成を有する鋼を1100℃以上の温度に加熱して熱間加工を行い、前記の熱間加工を850℃以上の温度域の温度で仕上げ、次いで、500℃までの温度域を5〜500℃/分の冷却速度で冷却した後、更に、1000℃以上の温度に再加熱して熱間加工を行い、この熱間加工を850℃以上の温度域の温度で仕上げ、次いで、500℃までの温度域を5〜500℃/分の冷却速度で冷却することを特徴とする耐粗粒化肌焼鋼鋼材の製造方法。A method for producing a coarse grain-resistant case- hardened steel material, which is a base material for parts produced by cold-working and then carburizing, wherein C: 0.1 to 0.3% by weight , Si: 0.1 to 1.0%, Mn: 0.3 to 2.0%, Al: 0.01 to 0.06%, N: 0.005 to 0.03%, Al (%) / N (%): 1.0 to 2.0, Nb: 0 to 0.07%, V: 0.005 to 0.1%, and Nb (%) + V (%) ≧ 0.005%, Cu : 0-0.3%, Ni: 0-0.5%, Cr: 0-2.0%, Mo: 0-0.5%, W: 0-0.5%, Pb: 0-0. 3%, Te: 0 to 0.08%, Ca: 0 to 0.01%, Bi: 0 to 0.3%, S: 0.005 to 0.08%, P: 0.03% or less included The balance is 1% of steel having a chemical composition consisting of Fe and inevitable impurities. Heating to a temperature of 00 ° C. or higher to perform hot working, finishing the hot working at a temperature range of 850 ° C. or higher, and then cooling the temperature range to 500 ° C. to 5 to 500 ° C./min After cooling, the steel is further reheated to a temperature of 1000 ° C. or higher to perform hot working, and the hot working is finished at a temperature in the temperature range of 850 ° C. or higher. A method for producing a coarse grain-resistant case-hardened steel material, which is cooled at a cooling rate of 500 ° C / min.
JP24924297A 1996-09-26 1997-09-12 Method for producing coarse grain-resistant case-hardened steel Expired - Fee Related JP3724142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24924297A JP3724142B2 (en) 1996-09-26 1997-09-12 Method for producing coarse grain-resistant case-hardened steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25415596 1996-09-26
JP8-254155 1996-09-26
JP24924297A JP3724142B2 (en) 1996-09-26 1997-09-12 Method for producing coarse grain-resistant case-hardened steel

Publications (2)

Publication Number Publication Date
JPH10152754A JPH10152754A (en) 1998-06-09
JP3724142B2 true JP3724142B2 (en) 2005-12-07

Family

ID=26539174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24924297A Expired - Fee Related JP3724142B2 (en) 1996-09-26 1997-09-12 Method for producing coarse grain-resistant case-hardened steel

Country Status (1)

Country Link
JP (1) JP3724142B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4681160B2 (en) * 2001-07-10 2011-05-11 愛知製鋼株式会社 Manufacturing method of high temperature carburizing steel and high temperature carburizing steel manufactured by the method
JP4699342B2 (en) * 2006-11-17 2011-06-08 株式会社神戸製鋼所 High strength non-tempered steel for cold forging with excellent fatigue limit ratio
JP6073167B2 (en) * 2013-03-25 2017-02-01 株式会社神戸製鋼所 Case-hardening steel with excellent surface fatigue strength and cold forgeability
EA031975B1 (en) * 2015-12-07 2019-03-29 Государственное Научное Учреждение "Объединенный Институт Машиностроения Национальной Академии Наук Беларуси" Steel part manufacturing method
JP7135485B2 (en) * 2018-06-18 2022-09-13 日本製鉄株式会社 Carburizing steel and parts

Also Published As

Publication number Publication date
JPH10152754A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
JP5126857B2 (en) Manufacturing method of case-hardened steel pipe with excellent workability
EP1746176B1 (en) Shaped steel article with excellent delayed fracture resistance and tensile strength of 1600 MPa class or more and methods of production of the same
US6866724B2 (en) Steel bar or wire rod for cold forging and method of producing the same
JP3966493B2 (en) Cold forging wire and method for producing the same
KR20020088425A (en) Hot rolled wire or steel bar for machine structural use capable of dispensing with annealing, and method for producing the same
JP4057930B2 (en) Machine structural steel excellent in cold workability and method for producing the same
JP4464864B2 (en) Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing.
JP2004204263A (en) Steel material for case hardening superior in cold workability and coarse-particle-preventing property in carburization, and manufacturing method therefor
JP4464862B2 (en) Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing.
JP2004183064A (en) Steel for case hardening having excellent cold workability and coarse grain prevention property when carburized, and production method therefor
JP3724142B2 (en) Method for producing coarse grain-resistant case-hardened steel
JPH11124623A (en) Manufacture of boron-containing steel for cold forging
JP4448047B2 (en) A steel for skin hardening that has excellent grain coarsening resistance and cold workability, and can omit softening annealing.
JP4500246B2 (en) Steel pipe for machine structural member and manufacturing method thereof
JP4464861B2 (en) Case hardening steel with excellent grain coarsening resistance and cold workability
JPH08260039A (en) Production of carburized and case hardened steel
JPH10265841A (en) Production of high strength cold forging parts
JPH0526850B2 (en)
JP7485234B1 (en) High-frequency hardening steel
JP3075139B2 (en) Coarse-grained case hardened steel, surface-hardened parts excellent in strength and toughness, and method for producing the same
JP2000282170A (en) Grain coarsening resistant case hardening steel, surface hardened parts excellent in strength and toughness, and production thereof
JPH11106863A (en) Steel for mechanical structure excellent in cold workability and its production
JP2001011571A (en) Steel for machine structure excellent in machinability, cold forgeability and hardenability
JP3217943B2 (en) Method for producing steel for machine structural use having excellent machinability, cold forgeability and fatigue properties after quenching and tempering
JP2024002995A (en) Steel for induction hardening

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040426

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees