[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH10265841A - Production of high strength cold forging parts - Google Patents

Production of high strength cold forging parts

Info

Publication number
JPH10265841A
JPH10265841A JP9171497A JP9171497A JPH10265841A JP H10265841 A JPH10265841 A JP H10265841A JP 9171497 A JP9171497 A JP 9171497A JP 9171497 A JP9171497 A JP 9171497A JP H10265841 A JPH10265841 A JP H10265841A
Authority
JP
Japan
Prior art keywords
cold
hardness
less
heat treatment
cold forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9171497A
Other languages
Japanese (ja)
Inventor
Kazue Nomura
一衛 野村
Katsumi Bando
克巳 坂東
Hiroaki Sakai
宏明 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP9171497A priority Critical patent/JPH10265841A/en
Publication of JPH10265841A publication Critical patent/JPH10265841A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the cold forging part which has good cold forgability represented in term of deformation resistance, high dimensional precision and high strength without conducting a heat treatment of hardening, tempering, etc., causing large strain deformation. SOLUTION: A stock, which has a composition consisting of, by weight, 0.12-0.40% C, 0.01-0.35% Si, 0.1-1.40% Mn, <=0.003% P, <=0.035% S, <=0.015% N, <=0.003% O, further, one kind or two kinds or more among 0.005-0.200% Al, 0.0005-0.0050% B, 0.005-0.05% Ti, 0.005-0.05% Zr and the balance Fe with inevitable impurities and has a ferritic.pearitic structure of a hardness of HV120-HV180, is subjected to a cold forging process of >=50% cold working rate and a heat treatment process having an aging treatment index K value of 400-800 defined in a formula K=T×log(t) (where, T is a heating temp. deg.C, its range is 200-450 deg.C, (t) is a heating time (min)) and then is made to a hardness of HV260.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、優れた強度特性を有す
る高強度冷間鍛造部品の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-strength cold-forged part having excellent strength characteristics.

【0002】[0002]

【従来の技術】自動車等に使用されるスピンドル、ジョ
イント、ヨーク、シャフト、スリーブ、フランジ類等の
機械構造部品の多くは、S45C等の炭素鋼が用いられてい
る。またその製造方法としては、鋼材を熱間鍛造するこ
とにより概略形状に成形した後、焼入焼きもどし等の熱
処理を施すことにより、所定の強度が確保される。しか
る後、切削加工等により所望の部品形状にされる。また
必要に応じて、高周波焼入が施される場合もある。
2. Description of the Related Art Carbon steel such as S45C is used for many mechanical structural parts such as spindles, joints, yokes, shafts, sleeves, and flanges used in automobiles and the like. As a method of manufacturing the steel, a steel material is formed into a general shape by hot forging, and then heat treatment such as quenching and tempering is performed to secure a predetermined strength. Thereafter, a desired part shape is formed by cutting or the like. If necessary, induction hardening may be performed.

【0003】これら機械構造用部品の製造工程におい
て、切削加工等の機械加工コストは非常に高く、例えば
「H.K.Tonshoff and C.Stanske:Proc. Int. Conf. on H
ighProductivity Machining, Materials and Machinin
g, ASM,(1985),p.207-222 」において、熱間鍛造部品の
コストの内、切削加工コストが42〜67% を占めることが
示されている。そこで、これら部品の成形を熱間鍛造で
はなく、冷間鍛造にて最終部品形状にできるだけ近い形
状に成形することにより、切削加工の簡略化をはかるこ
とが、近年進められている。
[0003] In the manufacturing process of these mechanical structural parts, machining costs such as cutting are extremely high. For example, "HKTonshoff and C. Stanske: Proc. Int. Conf. On H.
ighProductivity Machining, Materials and Machinin
g, ASM, (1985), pp. 207-222, show that cutting costs account for 42-67% of the cost of hot forged parts. Therefore, in recent years, it has been promoted to simplify the cutting work by forming these parts into a shape as close as possible to the final part shape by cold forging instead of hot forging.

【0004】冷間鍛造は、鋼を室温〜300 ℃程度の低い
温度にて成形するため、熱間鍛造におけるスケールの発
生が回避でき、高い寸法精度が達成できる。反面、鋼の
変形抵抗が著しく高くなるため、型寿命の低下あるいは
型の折損といったような不具合が問題となる。また鋼の
変形能不足により鍛造品に割れが発生するといった問題
点もある。
In cold forging, since steel is formed at a low temperature of room temperature to about 300 ° C., generation of scale in hot forging can be avoided, and high dimensional accuracy can be achieved. On the other hand, since the deformation resistance of the steel is significantly increased, problems such as shortening of the service life of the mold and breakage of the mold become problems. There is also a problem that cracks occur in forged products due to insufficient deformability of steel.

【0005】従って、冷間鍛造に供される鋼材は、変形
抵抗が低く、かつ変形能が高いことが要求される。特に
S45C等のC 含有量が比較的高い炭素鋼は熱間圧延のまま
では硬さが高く冷間加工性が悪いため、冷間鍛造する場
合には、球状化焼鈍等の熱処理によって硬さを低下させ
てから冷間鍛造を行うのが通常であった。しかしなが
ら、熱処理によって硬さを低下させた後の素材を使用し
ても、その後の冷間鍛造条件によっては十分な冷間鍛造
性が確保できない場合があるため、特に変形抵抗の低減
および変形能の向上を目的とした冷鍛用鋼の研究開発が
進められている。
[0005] Therefore, steel materials used for cold forging are required to have low deformation resistance and high deformability. Especially
Carbon steels with a relatively high C content, such as S45C, have high hardness and poor cold workability when hot rolled, so when cold forging, the hardness is reduced by heat treatment such as spheroidizing annealing. Normally, cold forging was performed after the cooling. However, even if a material whose hardness has been reduced by heat treatment is used, sufficient cold forgeability may not be ensured depending on the subsequent cold forging conditions. Research and development of cold forging steels for the purpose of improvement are underway.

【0006】例えば特開昭49-62318号、特開昭53-12521
6 号、特公平1-38847 号、特公平5-57350 号、特公平5-
76522 号、特公平7-45695 号、特開平1-225750号、特開
平2-129341号、特開平2-145744号、特開平2-274836号、
特開平5-59486 号、特開平7-97656 号、特開平7-242989
号公報記載の発明が開示されている。これら公報に記載
の鋼は、主にSiおよびMnを低減して変形抵抗を低減さ
せ、不純物として含有されるS 、P 、N 、O 等を極力低
減して変形能を向上させることにより冷間鍛造性の向上
を図ったものである。
For example, JP-A-49-62318, JP-A-53-12521
No. 6, No. 1-38847, No. 5-57350, No. 5-
No. 76522, Japanese Patent Publication No. 7-45695, Japanese Patent Application Laid-Open No. 1-225750, Japanese Patent Application Laid-Open No. 2-129341, Japanese Patent Application Laid-Open No. 2-145744, Japanese Patent Application Laid-Open No. 2-74836,
JP-A-5-59486, JP-A-7-97656, JP-A-7-242989
The invention described in Japanese Patent Application Laid-Open Publication No. H10-209,837 is disclosed. The steels described in these publications reduce the deformation resistance mainly by reducing Si and Mn, and reduce the S, P, N, O, etc. contained as impurities as much as possible to improve the deformability, thereby reducing the coldness. This is to improve forgeability.

【0007】さらに、SiおよびMnの低減により焼入性が
不足する場合があり、それに対して特公平5-57350 号、
特開平1-225750号ではCrを、特開昭53-125216 号、特公
平1-38847 号、特開平2-274836号、特公平7-45695 号で
はCr、B を、特開平2-145744号ではMoを、特開平2-1293
41号ではMo、B を、特開平5-59486 号ではCr、Mo、B
を、特開昭49-62318、特開平7-242989号ではNi、Cr、M
o、B を、特公平5-76522号、特開平7-97656 号ではCu、
Ni、Cr、Mo、B を添加して必要な焼入性を確保してい
る。
Further, hardenability may be insufficient due to reduction of Si and Mn.
In JP-A 1-225750, Cr, JP-A-53-125216, JP-B-1-38847, JP-A-2-74836, JP-B7-45695 in Cr, B, JP-A-2-145744 Then, Mo is disclosed in
No. 41 describes Mo, B, and JP, 5-59486, Cr, Mo, B
In JP-A-49-62318 and JP-A-7-242989, Ni, Cr, M
o, B, JP-B 5-76522, JP-A 7-97656, Cu,
Ni, Cr, Mo and B are added to secure the necessary hardenability.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、冷間鍛
造によって寸法精度の優れた鍛造品が得られても、その
後、強度を確保するために焼入焼き戻し等の熱処理を行
うと、熱処理ひずみの発生により、寸法精度が大きく低
下することが懸念される。従って、冷間鍛造の優れた寸
法精度を有効に活用するためには、熱処理ひずみの大き
な焼入焼き戻し等の熱処理を行わずに、所定の強度を得
る必要がある。
However, even if a forged product having excellent dimensional accuracy is obtained by cold forging, if a heat treatment such as quenching and tempering is performed to secure the strength, the heat treatment strain is reduced. Due to the occurrence, there is a concern that the dimensional accuracy is greatly reduced. Therefore, in order to effectively utilize the excellent dimensional accuracy of cold forging, it is necessary to obtain a predetermined strength without performing a heat treatment such as quenching and tempering with a large heat treatment strain.

【0009】その方法の一つとして、冷間鍛造により導
入される加工硬化を利用して、熱処理を行わずに冷間鍛
造のままで強度を確保することが考えられ、実用化され
ている部品も多い。しかしながら冷間鍛造により得られ
る硬さと冷間鍛造の加工荷重とは良い相関があること
が、例えば「工藤英明、大和久重雄 他:冷間鍛造ハン
ドブック(1973)、アグネ、p.60〜」に示されている。し
たがって冷間鍛造により高い強度を得ようとすると必然
的に、加工荷重が高くなり冷間鍛造が困難となる。また
前述した冷間鍛造性を向上させた各種発明鋼はいずれ
も、各種方法により鋼の硬さを低下させて、変形抵抗の
低減をはかるものであり、結果的に冷間鍛造のままで得
られる強度は低いものとなる。
As one of the methods, it is conceivable to use work hardening introduced by cold forging to secure the strength as it is in cold forging without performing a heat treatment. There are many. However, there is a good correlation between the hardness obtained by cold forging and the working load of cold forging, as shown in, for example, "Hideaki Kudo, Hisashige Yamato and others: Cold Forging Handbook (1973), Agne, p.60-" Have been. Therefore, if a high strength is to be obtained by cold forging, the processing load is inevitably increased, and cold forging becomes difficult. In addition, each of the various inventive steels having improved cold forgeability described above is intended to reduce the hardness of the steel by various methods to reduce the deformation resistance, and consequently to obtain cold forged as it is. The resulting strength is low.

【0010】他方、冷間鍛造した後に、ひずみ発生の極
力小さな熱処理、すなわち鋼の変態温度以下の熱処理を
加えることが考えられる。特開平5-171275号においては
鋼にNi、AlおよびCuを比較的多く含有させ、これら合金
あるいは合金化合物の析出強化を利用した時効硬化型の
冷間鍛造用鋼が開示されているが、合金含有量が多いた
め非常に高価な鋼材となっている。特開平1-100221号お
よび特開平1-100222号においては鋼をフェライトとベイ
ナイトの微細混合組織とし、冷間鍛造後に焼き戻し処理
をすることにより、強度を確保することが開示されてい
る。これらの発明においては、焼き戻しにより冷間鍛造
のままに比べて、特に耐力が大きく増加しているが、引
張強さの増加量は小さい。さらにフェライトとベイナイ
トの微細混合組織を用いているため、鋼の変形抵抗が比
較的高く、冷鍛性は決して良好とは言えない。また特開
平7-70636 号には所定の化学成分を有する鋼を冷間鍛造
した後、時効処理することにより弾性係数を向上させる
ことが開示されているが、強度の向上については検討さ
れていない。
On the other hand, it is conceivable to apply a heat treatment as small as possible to generate strain after cold forging, that is, a heat treatment at a temperature lower than the transformation temperature of steel. Japanese Patent Application Laid-Open No. 5-171275 discloses an age hardening type cold forging steel containing relatively large amounts of Ni, Al and Cu in steel and utilizing precipitation strengthening of these alloys or alloy compounds. Due to its high content, it is a very expensive steel material. JP-A-1-100221 and JP-A-1-100222 disclose that the steel has a fine mixed structure of ferrite and bainite and is subjected to a tempering treatment after cold forging to secure the strength. In these inventions, the proof stress is greatly increased, but the amount of increase in the tensile strength is small, as compared with the case of cold forging by tempering. Further, since a fine mixed structure of ferrite and bainite is used, the deformation resistance of the steel is relatively high, and the cold forgeability is not always good. Japanese Patent Application Laid-Open No. 7-70636 discloses that a steel having a predetermined chemical composition is cold forged and then subjected to an aging treatment to improve the elastic modulus, but no study has been made on improving the strength. .

【0011】したがって、冷間鍛造時においては冷間成
形性が良好で、かつ焼入焼き戻し等のひずみの大きな熱
処理を行ことなく、高強度な冷間鍛造品を得ることは従
来の技術では困難であり、それらを解決できる技術開発
が望まれている。
Therefore, it is difficult to obtain a high-strength cold-forged product having good cold-formability and high-strength heat treatment such as quenching and tempering at the time of cold forging. It is difficult, and there is a demand for technology development that can solve them.

【0012】[0012]

【課題を解決するための手段】本発明者らは前記課題を
解決することを目的として、鋭意研究を重ねた結果、以
下の知見を得ることにより本発明を完成した。
Means for Solving the Problems The present inventors have conducted intensive studies with the aim of solving the above-mentioned problems, and as a result, obtained the following findings, and completed the present invention.

【0013】冷間加工された鋼に比較的低温の熱処理を
行うと強度が増加する現象は、ひずみ時効として知られ
ており、例えば「講座・現代の金属学 材料編 第4巻
鉄鋼材料、社団法人日本金属学会、(1985)、p.58」に
説明されている。これによるとひずみ時効は鋼に固溶し
ているC およびN 冷間加工により導入された転位に固着
することにより生じることが示されている。しかし、こ
れらの現象は低炭素鋼における研究であり、特にC 含有
量あるいは組織が大きく異なる中炭素機械構造用鋼にお
ける挙動は不明な点が多い。
The phenomenon of increasing the strength of a cold-worked steel when subjected to a relatively low-temperature heat treatment is known as strain aging, and is described, for example, in “Lecture: Modern Metallurgical Materials, Vol. The Japan Institute of Metals, (1985), p.58 ". The results show that strain aging is caused by the solid solution of C and N in the steel, which is fixed to dislocations introduced by cold working. However, these phenomena have been studied in low carbon steels, and the behavior of medium carbon steels with a large difference in C content or structure is largely unknown.

【0014】しかし、ひずみ時効は冷間鍛造において
は、変形抵抗を増加させる要因の一つとして、従来は極
力、抑制する方向での検討が主となっている。本発明者
らは中炭素機械構造用鋼におけるひずみ時効現象につい
て鋭意研究を重ねた結果、以下の知見を得ることによ
り、本発明を完成した。
However, strain aging is one of the factors that increase the deformation resistance in cold forging, and studies on suppressing it as much as possible have hitherto been mainly conducted. The present inventors have conducted intensive studies on the strain aging phenomenon in a medium-carbon mechanical structural steel, and as a result, obtained the following knowledge, thereby completing the present invention.

【0015】所定量のAl、B 、Ti、Zrの一種または二種
以上を含有することにより鋼中のNが固定された中炭素
鋼を用い、これらの鋼をHV180 以下の硬さを有するフェ
ライト・パーライト組織に調整することにより、変形抵
抗が低く、変形能に優れる鍛造素材が得られる。そして
これらの鍛造素材に加工度が比較的高い冷間鍛造を行う
ことにより、冷間加工による加工硬化を得ると同時に、
多くの加工転位が導入される。通常であればこれら加工
転位上に、速やかに固溶N が集積して、加工中にすでに
ひずみ時効が生じて、変形抵抗の増加をもたらす。しか
し、本発明では、Al、B 、Ti、Zrの一種または二種以上
により固溶N を窒化物として強くトラップしているた
め、加工中のひずみ時効が抑制される。CについてはNに
比べて拡散が遅いことによりひずみ時効が抑制され、加
工中のひずみ時効にはほとんど寄与しない。そしてこれ
らの鋼を用いて製造された冷間鍛造品を限定された温度
および時間にて熱処理することにより、冷間加工による
強度上昇に加えてさらに、大きな時効硬化が生じ、強度
に優れた冷間鍛造部品を得ることができる。なお、時効
硬化を生じる熱処理条件は極めて限定されており、不足
であればひずみ時効硬化が小さく、また過剰であれ過時
効ひずみ回復・再結晶によりかえって軟化が生じる可能
性がある。
A medium-carbon steel containing a predetermined amount of one or more of Al, B, Ti, and Zr and having N fixed in the steel is used. These steels are made of ferrite having a hardness of HV180 or less. -By adjusting the pearlite structure, a forged material with low deformation resistance and excellent deformability can be obtained. And by performing cold forging with relatively high workability on these forged materials, at the same time as obtaining work hardening by cold working,
Many processing dislocations are introduced. Normally, solid solution N rapidly accumulates on these processing dislocations, and strain aging already occurs during processing, resulting in an increase in deformation resistance. However, in the present invention, since one or more of Al, B, Ti, and Zr strongly trap solid solution N 2 as a nitride, strain aging during processing is suppressed. As for C, diffusion is slower than that of N, so that strain aging is suppressed, and hardly contributes to strain aging during processing. By subjecting a cold forged product manufactured using these steels to a heat treatment at a limited temperature and for a limited time, in addition to an increase in strength due to cold working, a further large age hardening occurs, and a cold forged material having excellent strength is produced. A forged part can be obtained. The heat treatment conditions that cause age hardening are extremely limited. If insufficient, the strain age hardening is small, and if it is excessive, there is a possibility that overaging strain recovery and recrystallization may cause softening.

【0016】以上説明した新しい知見を得ることにより
完成した本発明は、重量比にしてC:0.12〜0.40% 、Si:
0.01 〜0.35% 、Mn:0.10 〜1.40% 、P:0.030%以下、S:
0.035%以下、N:0.015%以下、O:0.003%以下を含有し、さ
らにAl:0.005〜0.200%、B:0.0005〜0.0050% 、Ti:0.005
〜0.05% 、Zr:0.005 〜0.05% の一種または二種以上を
含有し、残部がFeおよび不純物元素からなる硬さHV120
〜HV180のフェライト・パーライト組織を有する素材
を、冷間加工率が50% 以上となる冷間鍛造工程と、下記
の式で求められる時効処理指数K値が400 〜800 にある
の熱処理工程を順に施すことにより、硬さがHV260 以上
とすることを特徴とする高強度冷間鍛造部品の製造方
法。 K=T× logt ただし、Tは加熱温度(℃)を示し、その範囲は200 〜
450 ℃である。tは加熱時間(分)を示す。また、被削
性を改善するために、Pb:0.25%以下、Bi: 0.15% 以下、
Ca:0.01%以下の一種または二種以上を含有することがで
きる。
The present invention, which has been completed by obtaining the new findings described above, has a C: 0.12 to 0.40% by weight, Si:
0.01 to 0.35%, Mn: 0.10 to 1.40%, P: 0.030% or less, S:
0.035% or less, N: 0.015% or less, O: 0.003% or less, Al: 0.005 to 0.200%, B: 0.0005 to 0.0050%, Ti: 0.005
Hardness HV120 containing one or more of Zr: 0.005 to 0.05%, the balance being Fe and impurity elements.
~ HV180 material having a ferrite-pearlite structure, a cold forging process in which the cold working ratio is 50% or more, and a heat treatment process in which the aging treatment index K value obtained by the following formula is 400 to 800 A method for manufacturing a high-strength cold-forged part, wherein the hardness is increased to HV260 or more by applying. K = T × logt where T indicates a heating temperature (° C.), and the range is 200 to
450 ° C. t indicates a heating time (minute). Also, in order to improve machinability, Pb: 0.25% or less, Bi: 0.15% or less,
Ca: One or more of 0.01% or less can be contained.

【0017】以下に本発明における冷間鍛造部品製造方
法の限定理由について説明する。 C:0.12% 〜0.40% 以下 C は必要な強度を確保および時効硬化能を得るために必
要な元素であり、0.12% 以上の含有が必要である。しか
し0.40% を超えると、鍛造素材の硬さが増加することに
より変形抵抗が増加して、冷間鍛造性が損なわれる恐れ
があるため、上限を0.40% とした。
The reasons for limiting the method of manufacturing a cold forged part according to the present invention will be described below. C: 0.12% to 0.40% or less C is an element necessary for securing necessary strength and obtaining age hardening ability, and it is necessary to contain 0.12% or more. However, if it exceeds 0.40%, the deformation resistance increases due to the increase in hardness of the forged material, and the cold forgeability may be impaired. Therefore, the upper limit was set to 0.40%.

【0018】Si:0.01 〜0.35% Siは製鋼工程において補助脱酸材として有効な元素であ
るため、0.01% を下限とした。しかし過剰の含有は変形
抵抗を増大させるため、上限を0.35% とした。
Si: 0.01 to 0.35% Since Si is an effective element as an auxiliary deoxidizer in the steel making process, the lower limit is set to 0.01%. However, an excessive content increases the deformation resistance, so the upper limit is set to 0.35%.

【0019】Mn:0.10 〜1.40% MnはSiと同様の補助脱酸材として有効な元素であり、ま
た鋼に必要な強度あるいは焼入れ性を付与するために効
果的な元素あるため、0.10% 以上の含有が必要である。
しかし過剰の含有は、変形抵抗を増加させて、冷間鍛造
性を損なう恐れがあるため、1.10% を上限とした。
Mn: 0.10 to 1.40% Mn is an element effective as an auxiliary deoxidizing material similar to Si, and is an element effective for imparting necessary strength or hardenability to steel. Is required.
However, an excessive content may increase the deformation resistance and impair the cold forgeability, so the upper limit is 1.10%.

【0020】P :0.030% 以下 P は不可避的に不純物として含有する元素であるが、微
量の含有によってフェライト硬さを増加させ、冷間鍛造
性に悪影響を及ぼす元素である。従って冷間鍛造性のみ
考慮すれば極力低減することが好ましいが、極端な低減
は製鋼コストのの増加を招くため、工程能力を考慮し
て、上限を0.030%とした。好ましくは0.015%以下とする
のが良い。
P: 0.030% or less P is an element inevitably contained as an impurity, but is an element which increases the ferrite hardness by a small amount and adversely affects the cold forgeability. Therefore, it is preferable to reduce as much as possible if only the cold forgeability is taken into consideration. However, since an extreme reduction leads to an increase in steel making cost, the upper limit is set to 0.030% in consideration of the process capability. Preferably, it is set to 0.015% or less.

【0021】S :0.035% 以下 S は不可避的に不純物として含有する元素であるが、Mn
S の介在物を生成し、それらが冷間鍛造割れの起点とな
ることにより、冷間鍛造性に悪影響を及ぼす。従って冷
間鍛造性のみ考慮すれば極力低減することが好ましい。
しかし、S は被削性の向上に対しては効果的な元素であ
り、極端な低減は被削性の悪化をもたらす恐れがあるた
め、上限を0.035%としたが、被削性があまり問題となら
ない場合は0.010%以下が好ましい。
S: 0.035% or less S is an element inevitably contained as an impurity.
By generating inclusions of S, which become the starting point of cold forging cracks, it adversely affects cold forgeability. Therefore, it is preferable to reduce as much as possible if only the cold forgeability is considered.
However, S is an effective element for improving machinability, and an extreme reduction may cause deterioration of machinability. Therefore, the upper limit is set to 0.035%. If not, the content is preferably 0.010% or less.

【0022】N :0.015% 以下 N は固溶N として存在すると、鍛造素材の硬さが増加す
るとともに、冷間鍛造中において、ひずみ時効を生じ
て、冷間鍛造性を悪化させるため、極力低いことが望ま
しい。本発明においては、Al、B 、TiないしはZrの含有
により固溶N を窒化物として固定しているため、極端な
低減は必要ないが、N 含有量が過度に多いいと窒化物と
して固定されない固溶N の量が増加する恐れがあるた
め、0.015%を上限とした。
N: 0.015% or less When N is present as solid solution N, the hardness of the forged material increases and, during cold forging, strain aging occurs to deteriorate the cold forgeability. It is desirable. In the present invention, since solid solution N 2 is fixed as nitride by the inclusion of Al, B 2, Ti or Zr, no extreme reduction is necessary, but if the N content is excessively large, the solid solution N is not fixed as nitride. Since the amount of dissolved N may increase, the upper limit is set to 0.015%.

【0023】0 :0.003% 以下 O は不可避的に不純物として含有する元素であるが、微
量の含有によって酸化物系介在物を生成し、冷間鍛造性
に悪影響を及ぼす元素である。したがって冷間鍛造性を
確保するために極力低減することが必要であるが、製鋼
コストの上昇を招く恐れがあるため、0.003%を上限とし
た。冷間鍛造性のみを考慮するならば、さらに低減をは
かり0.001%以下が好ましい。
0: 0.003% or less O is an element inevitably contained as an impurity, but is an element that generates oxide-based inclusions when contained in a trace amount and adversely affects cold forgeability. Therefore, it is necessary to reduce as much as possible in order to ensure cold forgeability, but there is a possibility that steelmaking costs will increase, so the upper limit was made 0.003%. If only the cold forgeability is taken into account, it is further reduced and preferably 0.001% or less.

【0024】Al:0.005〜0.200% Alは製鋼時の脱酸材として有効な元素であるが、さらに
固溶N を固定することにより、変形抵抗の低減および冷
間鍛造中に生じるひずみ時効を低減する効果がある。そ
れら効果を発揮するためには0.005%以上の含有が必要で
あるが、過剰の添加は酸化物系介在物の凝集・粗大化が
生じて、変形能を低下させる恐れがあるため上限を0.20
0%とした。
Al: 0.005 to 0.200% Al is an effective element as a deoxidizing material in steel making. However, by further fixing solid solution N, deformation resistance is reduced and strain aging generated during cold forging is reduced. Has the effect of doing In order to exert these effects, the content of 0.005% or more is necessary.However, excessive addition causes aggregation and coarsening of oxide-based inclusions, which may lower the deformability, so that the upper limit is 0.20.
0%.

【0025】B :0.0005 〜0.0050% B はN との親和力が強く、Alと同様に固溶N の固定に効
果がある元素である。それら効果を得るためには0.0005
% 以上の含有が必要である。しかし過剰の含有は、B 炭
素化合物を過剰に生成し、かえって冷間鍛造性を低下さ
せる恐れがあるため、0.0100% を上限とした。なおB に
は焼入性を向上させる働きがあるため、その使用にあた
っては、要求される焼入性を考慮する必要がある。
B: 0.0005% to 0.0050% B is an element which has a strong affinity for N and has an effect of fixing solid solution N like Al. 0.0005 to get those effects
% Or more is required. However, the excessive content may excessively generate the B carbon compound and may lower the cold forgeability, so the upper limit is set to 0.0100%. Since B has the function of improving the hardenability, it is necessary to consider the required hardenability when using B.

【0026】Ti:0.005% 〜0.05% TiはAlと同様にN の固定に効果のある元素であり、その
効果を得るには0.005%以上の含有が必要である。しか
し、過剰の添加は、Ti炭窒化物の析出強化により冷間鍛
造性を阻害する恐れがあるため、0.05% を上限とした。
Ti: 0.005% to 0.05% Ti is an element having an effect of fixing N 2, like Al. To obtain the effect, the content of 0.005% or more is required. However, excessive addition may impair the cold forgeability due to precipitation strengthening of Ti carbonitride, so the upper limit was made 0.05%.

【0027】Zr:0.005〜0.05% ZrはTiと同様にN の固定に効果のある元素であり、その
効果を得るには0.005%以上の含有が必要である。しか
し、過剰の添加は、Zr炭窒化物の析出強化により冷間鍛
造性を阻害する恐れがあるため、0.05% を上限とした。
Zr: 0.005 to 0.05% Zr is an element that is effective in fixing N 2, like Ti, and it is necessary to contain 0.005% or more to obtain the effect. However, an excessive addition may impair cold forgeability due to precipitation strengthening of Zr carbonitride, so the upper limit was made 0.05%.

【0028】Pb:0.25%以下 Pbは被削性を向上させるのに効果のある元素であるが、
過度の添加は冷間鍛造性を損なう恐れがあり、可能な限
り添加しないのが好ましい。しかしながら被削性の確保
が重要な場合も多々あることから、必要に応じて0.25%
以下の範囲内で添加できるものとした。
Pb: 0.25% or less Pb is an element effective in improving machinability.
Excessive addition may impair the cold forgeability, so it is preferable not to add as much as possible. However, in many cases, it is important to ensure machinability, so 0.25%
It can be added within the following range.

【0029】Bi:0.15%以下 Biは被削性を向上させるのに効果のある元素であるが、
過度の添加は冷間鍛造性を損なう恐れがあり、可能な限
り添加しないのが好ましい。しかしながら被削性の確保
が重要な場合も多々あることから、必要に応じて0.15%
以下の範囲内で添加できるものとした。
Bi: 0.15% or less Bi is an element effective in improving machinability,
Excessive addition may impair the cold forgeability, so it is preferable not to add as much as possible. However, it is often important to ensure machinability, so 0.15%
It can be added within the following range.

【0030】Ca:0.01%以下 Caは被削性を向上させるのに効果のある元素であるが、
過度の添加は冷間鍛造性を損なう恐れがあり、可能な限
り添加しないのが好ましい。しかしながら被削性の確保
が重要な場合も多々あることから、必要に応じて0.01%
以下の範囲内で添加できるものとした。
Ca: 0.01% or less Ca is an element effective in improving machinability,
Excessive addition may impair the cold forgeability, so it is preferable not to add as much as possible. However, in many cases, it is important to ensure machinability, so 0.01%
It can be added within the following range.

【0031】鍛造素材の製造方法として、上記の組成を
満足する鋼の硬さをHV120 〜HV180にする理由は以下の
通りである。冷間鍛造性の観点からは鍛造素材の硬さが
低い方が良好となるが、HV120 未満ではその後の冷間鍛
造および熱処理によってもHV260 以上の硬さを得ること
が困難となる。またHV180 を超えると、冷間鍛造性の悪
化を招くため上限をHV180 とした。
The reason for setting the hardness of steel satisfying the above composition to HV120 to HV180 as a method of manufacturing a forged material is as follows. From the viewpoint of cold forgeability, the lower the hardness of the forging material, the better. However, if it is less than HV120, it becomes difficult to obtain a hardness of HV260 or more even by subsequent cold forging and heat treatment. In addition, if it exceeds HV180, the cold forgeability deteriorates, so the upper limit was set to HV180.

【0032】組織についてはベイナイトあるいはマルテ
ンサイト組織は硬質組織であり、その混在は冷間鍛造性
の悪化を招く恐れがある。また通常、冷間鍛造用素材に
良く用いられている球状化焼鈍組織は、冷間鍛造性の観
点からは非常に良好であるが、加工硬化能が比較的小さ
く、必要な部品強度が得られない可能性があること、お
よび球状化焼鈍は非常にコストの高い熱処理であること
から本発明の範囲からは除外した。本発明のフェライト
・パーライト組織は熱間圧延あるいは熱間鍛造のまま、
あるいは必要に応じて制御圧延、制御冷却等の実施によ
り得ることができる。本組織は、良好な冷間鍛造性と冷
間鍛造後の硬さの向上を得ることが出来る。また、さら
に所定の硬さ範囲に調整するために、焼きならしあるい
は焼なまし処理を用いることにより、更なる良好な冷間
鍛造性と冷間鍛造後の硬さの向上を得ることが出来る。
なお鍛造素材の形状は、冷間鍛造部品形状に応じて、圧
延鋼材、切削加工品、あるいは鍛造品等の各種形状を取
りうる。
Regarding the microstructure, the bainite or martensite microstructure is a hard microstructure, and its coexistence may cause deterioration of cold forgeability. In addition, the spheroidized annealed structure, which is usually used for cold forging materials, is very good from the viewpoint of cold forgeability, but has relatively small work hardening ability and can obtain the necessary component strength. Is excluded from the scope of the present invention because it is not possible and spheroidizing annealing is a very expensive heat treatment. The ferrite-pearlite structure of the present invention is hot-rolled or hot-forged,
Alternatively, it can be obtained by performing controlled rolling, controlled cooling, or the like as necessary. This structure can provide good cold forgeability and improved hardness after cold forging. Further, in order to further adjust the hardness to a predetermined range, by using normalizing or annealing treatment, it is possible to obtain further good cold forgeability and improvement in hardness after cold forging. .
The shape of the forged material can take various shapes such as a rolled steel material, a cut product, or a forged product, depending on the shape of the cold forged part.

【0033】冷間鍛造工程において、冷間加工率を50%
以上とする理由は以下の通りである。冷間鍛造による加
工硬化と冷間鍛造後の所定の熱処理による時効硬化によ
り硬さHV260 以上の十分な強度を得るためには、鋼中の
加工転位を著しく増加させる必要があり、冷間加工率と
しては50% 以上ですることが必要である。なお部品形状
によっては部品全体の冷間加工率を50% 以上とすること
が困難な場合も十分に考えられるが、その場合は少なく
とも部品機能上、強度が要求される部分について50% 以
上の冷間加工率が満足されれば良い。
In the cold forging process, the cold working ratio is increased to 50%.
The reason for the above is as follows. In order to obtain sufficient strength with a hardness of HV260 or more by work hardening by cold forging and age hardening by predetermined heat treatment after cold forging, it is necessary to significantly increase work dislocations in steel. It is necessary to do at least 50%. Depending on the shape of the part, it can be considered that it is difficult to make the cold working rate of the whole part 50% or more. What is necessary is that the working ratio is satisfied.

【0034】冷間鍛造後の熱処理工程において、時効硬
化指数K値が400 〜800 とする理由は以下の通りであ
る。この熱処理によるひずみ時効はC 原子の鋼中におけ
る拡散および集積・析出に支配されるため、熱処理工程
における熱処理温度T(℃)と熱処理時間(t)が非常
に重要となる。したがって、熱処理温度Tと熱処理時間
tとの関係を示す時効処理指数K値は、K=T×log
tで表され、時効処理指数Kが400に満たない場合は、C
の拡散が不十分で十分な時効硬化が得られず、また800
を超えると、析出物の凝集・粗大化が生じて十分な硬化
得られず、さらに冷間鍛造にて導入された加工硬化につ
いてもひずみ回復あるいは再結晶により軟化する恐れが
ある。
The reason why the age hardening index K is set to 400 to 800 in the heat treatment step after the cold forging is as follows. Since the strain aging due to this heat treatment is governed by the diffusion, accumulation and precipitation of C atoms in the steel, the heat treatment temperature T (° C.) and the heat treatment time (t) in the heat treatment step are very important. Therefore, the aging treatment index K value indicating the relationship between the heat treatment temperature T and the heat treatment time t is K = T × log
If the aging index K is less than 400,
Diffusion is insufficient and sufficient age hardening cannot be obtained.
If it exceeds 300, the precipitates will be aggregated and coarsened, and sufficient hardening cannot be obtained, and work hardening introduced by cold forging may be softened by strain recovery or recrystallization.

【0035】[0035]

【実施例】次に本発明の実施例を以下に詳述する。鋼と
比較し、実施例でもって明らかにする。
Next, embodiments of the present invention will be described in detail. It will be clarified by examples in comparison with steel.

【実施例1】表1に示した成分を有する鋼を電気炉にて
溶製し、熱間圧延によって直径38mmの丸棒を製造して供
試材とした。表1に示す鋼のうち、A〜D鋼は本発明の
請求項1の化学組成を有する鋼であり、E〜G鋼は請求
項2の化学組成を有する鋼である。またH〜K鋼は比較
鋼であり、H鋼は本発明に対してC 含有量が少なく、I
鋼はAl、B 、Ti、Zrが本発明の請求含有量を満足してお
らず、J鋼はN 含有量が本発明の請求含有量を超えてお
り、K鋼はMn含有量が本発明の請求含有量を超えてい
る。
Example 1 Steel having the components shown in Table 1 was melted in an electric furnace, and a round bar having a diameter of 38 mm was produced by hot rolling to obtain a test material. Among the steels shown in Table 1, A to D steels have the chemical composition according to claim 1 of the present invention, and E to G steels have the chemical composition according to claim 2. H to K steels are comparative steels, and H steel has a lower C content than that of the present invention.
In steel, Al, B, Ti, and Zr do not satisfy the claimed content of the present invention, J steel has an N content exceeding the claimed content of the present invention, and K steel has a Mn content of the present invention. Exceeds the claimed content.

【0036】[0036]

【表1】 [Table 1]

【0037】表1に示す成分を有する直径38mmの熱間圧
延鋼材より、直径20mm、高さ40mmの丸棒形状の試験片W
1を機械加工した後、図1(a)および(b)に示す要
領で、据込冷間鍛造(ダイス11、12からなる凹状の
下金型内へ試験片W1を上金型10にて加圧する)を行
い、据込加工率70% の試験材W2への変形に伴う変形荷
重を求めた。なお試験片はボンデ処理を行い、冷間鍛造
には800T油圧鍛造プレス機を用いた。
From a hot-rolled steel material having a diameter of 38 mm having the components shown in Table 1, a round bar-shaped test piece W having a diameter of 20 mm and a height of 40 mm was prepared.
1 is machined, and a test piece W1 is put into a concave lower die composed of dies 11 and 12 by an upper die 10 in the manner shown in FIGS. 1 (a) and 1 (b). Pressure) to determine the deformation load associated with the deformation of the test material W2 having an upsetting rate of 70%. The test piece was subjected to a bond treatment, and an 800T hydraulic forging press was used for cold forging.

【0038】これら冷間鍛造品を、加熱温度350 ℃にて
30分間の熱処理(時効硬化指数K値=517)を行い、硬さ
を測定した。なお硬さ測定は熱間圧延鋼材および冷間鍛
造後についても行った。各供試材の性能評価結果を表2
に示す。
These cold forged products were heated at a heating temperature of 350 ° C.
Heat treatment (age hardening index K value = 517) was performed for 30 minutes, and the hardness was measured. The hardness was also measured on hot-rolled steel and after cold forging. Table 2 shows the performance evaluation results for each sample.
Shown in

【0039】[0039]

【表2】 [Table 2]

【0040】表2に示すように、本発明のA〜G鋼の鍛
造素材は、いずれもHV120 〜HV180の硬さ範囲を満足す
るフェライト・パーライト組織となっており、冷間鍛造
における変形抵抗は100tf 以下と良好な鍛造性を示し
た。また熱処理後の硬さはいずれもHV260 以上の高強度
が得られているのがわかる。熱処理後の硬さと冷間鍛造
後の硬さの差から、熱処理による時効硬化量を求めると
本発明のA〜G鋼は、ΔHV32〜44の大きな時効硬化を生
じていることがわかる。
As shown in Table 2, the forged materials of the A to G steels of the present invention all have a ferrite-pearlite structure satisfying the hardness range of HV120 to HV180. It showed good forgeability of 100tf or less. Further, it can be seen that the hardness after the heat treatment was as high as HV260 or more. From the difference between the hardness after the heat treatment and the hardness after the cold forging, when the amount of age hardening due to the heat treatment is determined, it can be seen that the A to G steels of the present invention have a large age hardening of ΔHV32 to 44.

【0041】一方、C 量が低いH鋼は、鍛造素材の硬さ
が低いため、変形荷重が小さく鍛造性は良好であるが、
熱処理後の硬さが低く、所定の強度が得られない。Al、
B 、Ti、Zrが所定量含有されていないI鋼は、鍛造素材
の硬さがHV120 〜180 の範囲にあるにもかかわらず、変
形抵抗が高く、鍛造性が悪い。また時効硬化量も小さ
い。N を過剰に含有するJ鋼も、I鋼と同様に鍛造素材
の硬さがHV120 〜180 の範囲にあるにもかかわらず、変
形抵抗が高く、鍛造性が悪い。Mn量が過剰であるK鋼
は、鍛造素材の硬さが高く、変形抵抗も高い。
On the other hand, H steel having a low C content has a low deformation load and good forgeability because the hardness of the forged material is low.
Hardness after heat treatment is low, and a predetermined strength cannot be obtained. Al,
Steel I, which does not contain predetermined amounts of B, Ti, and Zr, has high deformation resistance and poor forgeability even though the hardness of the forged material is in the range of HV120-180. Also, the amount of age hardening is small. The J steel containing an excessive amount of N also has high deformation resistance and poor forgeability, despite the hardness of the forged material being in the range of HV120 to 180, like the I steel. K steel with an excessive amount of Mn has a high hardness of the forged material and a high deformation resistance.

【0042】[0042]

【実施例2】表1に示したA鋼について実施例1と同様
の試験片加工を行い、据込冷間鍛造を行った。なお冷間
加工率は10〜80% に変化させた。その後、実施例1と同
様に加熱温度350 ℃にて30分間の熱処理(時効硬化指数
K値=517)を行い、硬さを測定した。図2に評価結果を
示す。
Example 2 The same test piece processing as in Example 1 was performed on steel A shown in Table 1 and upsetting cold forging was performed. The cold working rate was changed to 10-80%. Thereafter, a heat treatment (age hardening index K value = 517) was performed at a heating temperature of 350 ° C. for 30 minutes in the same manner as in Example 1, and the hardness was measured. FIG. 2 shows the evaluation results.

【0043】[0043]

【図2】FIG. 2

【0044】図2には冷間加工ままの状態の硬さと冷間
加工率の関係を黒丸で、冷間加工後上記熱処理した状態
の硬さと冷間加工率との関係を白丸で示した。これよ
り、冷間加工率の増加するにつれて、冷間加工後熱処理
した硬さと冷間加工後の硬さとの差ΔH が増加し、冷間
加工率50% 以上で、ΔHvが30Hv以上となっていることが
わかる。これより冷間加工率50% 以上でその後適切な熱
処理を施すことにより、十分な時効硬化が得られること
が分かる。なお本例においても冷間加工率が50% 以上で
あればHV260 以上の高強度が安定して得られることもわ
かる。
FIG. 2 shows the relationship between the hardness in the cold-worked state and the cold-working rate by black circles, and the relationship between the hardness in the heat-treated state after the cold-working and the cold-working rate by white circles. From this, as the cold working rate increases, the difference ΔH between the hardness after cold working and the hardness after cold working increases, and at a cold working rate of 50% or more, ΔHv becomes 30 Hv or more. You can see that there is. From this, it can be seen that sufficient age hardening can be obtained by performing an appropriate heat treatment at a cold working ratio of 50% or more. Also in this example, it can be seen that high strength of HV260 or more can be stably obtained if the cold working ratio is 50% or more.

【0045】[0045]

【実施例3】表1に示したA鋼について実施例1と同様
の試験片加工を行い、据込率70% の冷間鍛造を行った。
その後、加熱温度および時間を各種変化させることによ
り時効硬化指数K値を変化させた熱処理を行い、硬さを
測定した。図3に評価結果を示す。
Example 3 The same test piece processing as in Example 1 was performed on steel A shown in Table 1 and cold forging was performed at an upsetting rate of 70%.
Thereafter, heat treatment was performed in which the age hardening index K was changed by changing the heating temperature and time in various ways, and the hardness was measured. FIG. 3 shows the evaluation results.

【0046】[0046]

【図3】FIG. 3

【0047】図3において、黒丸は冷間加工70% 後の硬
さを、白丸は前記冷間加工後、各種時効硬化処理指数K
値で熱処理したときの硬さを示す。図3より時効処理指
数K値が400 〜800 の範囲において時効硬化量がΔHvが
30〜40Hv程度となり、十分な時効硬化による硬さの向上
が見られることがわかる。時効処理指数K値が400 より
小さいもしくは800 より大きくなるとΔHvが30Hv以下と
なり十分な硬さの向上が得られない。なお本例において
も時効処理指数K値が400 〜800 の範囲にあればHV260
以上の高強度が安定して得られることもわかる。
In FIG. 3, black circles indicate hardness after 70% cold working, and white circles indicate various age hardening indexes K after cold working.
The value indicates the hardness when heat-treated. As shown in FIG. 3, when the aging index K is in the range of 400 to 800, the age hardening amount is ΔHv.
It is about 30 to 40 Hv, and it can be seen that the hardness is improved by sufficient age hardening. If the aging treatment index K value is smaller than 400 or larger than 800, ΔHv becomes 30 Hv or less, and a sufficient improvement in hardness cannot be obtained. In this example, if the aging index K is in the range of 400 to 800, the HV260
It can also be seen that the above high strength can be obtained stably.

【0048】[0048]

【発明の効果】本発明は、変形抵抗に代表される冷間鍛
造性が良好で、冷間加工硬化と時効硬化により、ひずみ
変形の大きな焼入焼き戻し等の熱処理を行うことなく、
寸法精度の優れた高強度な冷間鍛造部品を提供するもの
である。また金型寿命の向上、仕掛プレスの小型化、あ
るいは焼入焼き戻し処理の省略等による冷間鍛造部品の
コスト低減、および部品寸法精度向上による冷間鍛造部
品のネットシェイプ化に大きく貢献するもので、工業的
意義の大きいものである。
According to the present invention, the cold forgeability represented by deformation resistance is good, and by cold work hardening and age hardening, heat treatment such as quenching and tempering with large strain deformation can be performed.
It is intended to provide a high-strength cold forged part having excellent dimensional accuracy. In addition, it greatly contributes to cost reduction of cold forged parts by improving mold life, miniaturization of in-process press, or elimination of quenching and tempering processing, and to net formation of cold forged parts by improving part dimensional accuracy. It is of great industrial significance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る据込冷間鍛造工程の金型および
試験材の関係を示す断面図である。
FIG. 1 is a cross-sectional view showing a relationship between a die and a test material in an upsetting cold forging process according to the present invention.

【図2】 本発明における冷間加工のまま及び冷間加工
後熱処理したものの硬さに及ぼす冷間加工率の影響を示
す説明図である。
FIG. 2 is an explanatory view showing the effect of the cold working rate on the hardness of the cold-processed and heat-treated steel after cold working in the present invention.

【図3】 本発明における冷間加工後熱処理したものの
硬さに及ぼす時効硬化指数K値の影響を示す説明図であ
る。
FIG. 3 is an explanatory diagram showing the effect of an age hardening index K value on the hardness of a material subjected to heat treatment after cold working in the present invention.

【符号の説明】[Explanation of symbols]

W1、W2:試験材、 10:上金型、 11、12:ダイス W1, W2: test material, 10: upper die, 11, 12: die

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量比にしてC:0.12〜0.40% 、Si:0.01
〜0.35% 、Mn:0.10 〜1.40% 、P:0.030%以下、S:0.035%
以下、N:0.015%以下、O:0.003%以下を含有し、さらにA
l:0.005〜0.200%、B:0.0005〜0.0050% 、Ti:0.005〜0.0
5% 、Zr:0.005〜0.05% の一種または二種以上を含有
し、残部がFeおよび不純物元素からなる硬さHV120 〜HV
180のフェライト・パーライト組織を有する素材を、冷
間加工率が50% 以上となる冷間鍛造工程と、下記の式で
求められる時効処理指数K値が400〜800 にあるの熱処
理工程を順に施すことにより、硬さがHV260 以上とする
ことを特徴とする高強度冷間鍛造部品の製造方法。 K=T× logt ただし、Tは加熱温度(℃)を示し、その範囲は200 〜
450 ℃である。tは加熱時間(分)を示す。
1. A weight ratio of C: 0.12-0.40%, Si: 0.01
~ 0.35%, Mn: 0.10 ~ 1.40%, P: 0.030% or less, S: 0.035%
Below, N: 0.015% or less, O: 0.003% or less, further A
l: 0.005 ~ 0.200%, B: 0.0005 ~ 0.0050%, Ti: 0.005 ~ 0.0
Hardness HV120-HV containing one or more of 5%, Zr: 0.005-0.05%, with the balance being Fe and impurity elements
A material having a ferrite-pearlite structure of 180 is sequentially subjected to a cold forging process in which the cold working ratio is 50% or more, and a heat treatment process in which the aging treatment index K value obtained by the following equation is 400 to 800. A method for producing a high-strength cold-forged part, wherein the hardness is HV260 or more. K = T × logt where T indicates a heating temperature (° C.), and the range is 200 to
450 ° C. t indicates a heating time (minute).
【請求項2】 重量比にしてC:0.12〜0.40% 、Si:0.01
〜0.35% 、Mn:0.10 〜1.40% 、P:0.030%以下、S:0.035%
以下、N:0.015%以下、O:0.003%以下を含有し、さらにA
l:0.005〜0.200%、B:0.0005〜0.0050% 、Ti:0.005〜0.0
5% 、Zr:0.005〜0.05% の一種または二種以上およびPb:
0.25%以下、Bi: 0.15% 以下、Ca:0.01%以下の一種また
は二種以上を含有し、残部がFeおよび不純物元素からな
る硬さHV120 〜HV180のフェライト・パーライト組織を
有する素材を、冷間加工率が50% 以上となる冷間鍛造工
程と、下記の式で求められる時効処理指数K値が400 〜
800にある熱処理工程を順に施すことにより、硬さがHV2
60 以上とすることを特徴とする高強度冷間鍛造部品の
製造方法。 K=T× logt ただし、Tは加熱温度(℃)を示し、その範囲は200 〜
450 ℃である。tは加熱時間(分)を示す。
2. C: 0.12 to 0.40% by weight, Si: 0.01
~ 0.35%, Mn: 0.10 ~ 1.40%, P: 0.030% or less, S: 0.035%
Below, N: 0.015% or less, O: 0.003% or less, further A
l: 0.005 ~ 0.200%, B: 0.0005 ~ 0.0050%, Ti: 0.005 ~ 0.0
5%, Zr: 0.005 to 0.05% of one or more kinds and Pb:
0.25% or less, Bi: 0.15% or less, Ca: 0.01% or less containing one or more kinds, and the balance is made of a material having a ferrite-pearlite structure with a hardness of HV120 to HV180 consisting of Fe and impurity elements, A cold forging process in which the working ratio is 50% or more, and an aging treatment index K value obtained by the following equation is 400 to
By applying the heat treatment process in order of 800, the hardness is HV2
A method for producing a high-strength cold-forged part, wherein the method is 60 or more. K = T × logt where T indicates a heating temperature (° C.), and the range is 200 to
450 ° C. t indicates a heating time (minute).
JP9171497A 1997-03-25 1997-03-25 Production of high strength cold forging parts Pending JPH10265841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9171497A JPH10265841A (en) 1997-03-25 1997-03-25 Production of high strength cold forging parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9171497A JPH10265841A (en) 1997-03-25 1997-03-25 Production of high strength cold forging parts

Publications (1)

Publication Number Publication Date
JPH10265841A true JPH10265841A (en) 1998-10-06

Family

ID=14034190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9171497A Pending JPH10265841A (en) 1997-03-25 1997-03-25 Production of high strength cold forging parts

Country Status (1)

Country Link
JP (1) JPH10265841A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266023A (en) * 2001-03-08 2002-09-18 Aichi Steel Works Ltd Method for producing automobile chassis forging
JP2004124221A (en) * 2002-10-07 2004-04-22 Nippon Steel Corp Steel plate of excellent hardenability after hot working, and method for using the same
WO2007038789A1 (en) * 2005-09-29 2007-04-05 Hydril Llc Methods for heat treating thick-walled forgings
WO2011115279A1 (en) * 2010-03-19 2011-09-22 Jfeスチール株式会社 Hot-rolled steel sheet having excellent cold working properties and hardening properties, and method for producing same
CN104498846A (en) * 2014-12-26 2015-04-08 西安交通大学 Method for preparing semi-solid metal blank
CN105861930A (en) * 2016-05-23 2016-08-17 安徽鑫宏机械有限公司 Casting method for valve body of high-temperature-resistant composite check valve

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266023A (en) * 2001-03-08 2002-09-18 Aichi Steel Works Ltd Method for producing automobile chassis forging
JP2004124221A (en) * 2002-10-07 2004-04-22 Nippon Steel Corp Steel plate of excellent hardenability after hot working, and method for using the same
WO2007038789A1 (en) * 2005-09-29 2007-04-05 Hydril Llc Methods for heat treating thick-walled forgings
EA012791B1 (en) * 2005-09-29 2009-12-30 ХАЙДРИЛ ЮЭсЭй МЭНЬЮФЭКЧУРИНГ ЭлЭлСи Methods for heat treating thick-walled forgings
WO2011115279A1 (en) * 2010-03-19 2011-09-22 Jfeスチール株式会社 Hot-rolled steel sheet having excellent cold working properties and hardening properties, and method for producing same
JP2011195882A (en) * 2010-03-19 2011-10-06 Jfe Steel Corp Hot rolled steel sheet having excellent cold workability and hardenability, and method for producing the same
US9194017B2 (en) 2010-03-19 2015-11-24 Jfe Steel Corporation Hot-rolled steel sheet having excellent cold formability and hardenability and method for manufacturing the same
CN104498846A (en) * 2014-12-26 2015-04-08 西安交通大学 Method for preparing semi-solid metal blank
CN105861930A (en) * 2016-05-23 2016-08-17 安徽鑫宏机械有限公司 Casting method for valve body of high-temperature-resistant composite check valve

Similar Documents

Publication Publication Date Title
JP5126857B2 (en) Manufacturing method of case-hardened steel pipe with excellent workability
KR20020088425A (en) Hot rolled wire or steel bar for machine structural use capable of dispensing with annealing, and method for producing the same
JP7247078B2 (en) Mechanical structural steel for cold working and its manufacturing method
EP0133959B1 (en) Case hardening steel suitable for high temperature carburizing
JP4328924B2 (en) Manufacturing method of high-strength shaft parts
JPH09279295A (en) Steel for soft-nitriding excellent in cold forgeability
JPH10265841A (en) Production of high strength cold forging parts
JPS6159379B2 (en)
JPH01176055A (en) Non-heat treated steel for hot forging having excellent machinability
JPH11124623A (en) Manufacture of boron-containing steel for cold forging
JP2007513259A (en) Steel wire for cold heading having excellent low temperature impact characteristics and method for producing the same
JPH07188858A (en) Steel for cold forging
JP3724142B2 (en) Method for producing coarse grain-resistant case-hardened steel
JPH0526850B2 (en)
JPH10265840A (en) Production of cold forging parts
JPH09202921A (en) Production of wire for cold forging
JPH09279296A (en) Steel for soft-nitriding excellent in cold forgeability
JP3474544B2 (en) Linear or rod-shaped steel with reduced deformation resistance at room temperature and in the heating area
JP3419333B2 (en) Cold work steel excellent in induction hardenability, component for machine structure, and method of manufacturing the same
JPH07310118A (en) Production of case hardening steel suitable for cold-working
JP3242336B2 (en) Cold forging steel excellent in cold forgeability and fatigue strength and method for producing cold forged member
JPH10265891A (en) Ferrite/pearlite type non-heat treated steel
JPH11106863A (en) Steel for mechanical structure excellent in cold workability and its production
WO2023248556A1 (en) Steel for high-frequency hardening
JPH08246051A (en) Production of medium carbon steel sheet excellent in workability