[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3781762B2 - 3D coordinate calibration system - Google Patents

3D coordinate calibration system Download PDF

Info

Publication number
JP3781762B2
JP3781762B2 JP2005013852A JP2005013852A JP3781762B2 JP 3781762 B2 JP3781762 B2 JP 3781762B2 JP 2005013852 A JP2005013852 A JP 2005013852A JP 2005013852 A JP2005013852 A JP 2005013852A JP 3781762 B2 JP3781762 B2 JP 3781762B2
Authority
JP
Japan
Prior art keywords
dimensional
measurement
coordinate
measured
calibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2005013852A
Other languages
Japanese (ja)
Other versions
JP2005121674A (en
Inventor
敦忠 中辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Engineering Ltd
Original Assignee
NEC Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Engineering Ltd filed Critical NEC Engineering Ltd
Priority to JP2005013852A priority Critical patent/JP3781762B2/en
Publication of JP2005121674A publication Critical patent/JP2005121674A/en
Application granted granted Critical
Publication of JP3781762B2 publication Critical patent/JP3781762B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Image Processing (AREA)

Description

本発明は、複数の三次元形状計測装置を用いて被測定物の計測を行う場合に、各計測装置の原点と座標軸とからなる座標系を一致させる方法に関する。   The present invention relates to a method for matching a coordinate system composed of an origin and a coordinate axis of each measuring device when measuring an object to be measured using a plurality of three-dimensional shape measuring devices.

三次元形状を非接触で計測する方法として、縞走査を用いた投影法が知られている。この方法は、概略以下のようにして行われる。正弦波状に濃淡値が印刷されている格子を通して、光源から物体に対して正弦波状の輝度分布を持つ光パターンを投影する。そして、物体上の縞画像を上記の光源とは別のところに設置されたカメラで撮影する。物体を静止させたままで、格子を縞と直角方向へと、波長の1/NずつN回ずらしながら画像を撮影して行く。撮影された画像は、物体に投影された正弦波光パターンが2π/Nラジアンずつ進行して行くように見える。計測点の輝度値を投影方向から計測し、各輝度値より格子パターンの位相値を計算する。計測点の高さ変位に応じて格子パターンの位相が変調するため、この位相の変調量を計算し、光学装置の幾何関係式に代入することにより、物体の高さ変位量を計算し、三次元形状を求める。   As a method for measuring a three-dimensional shape in a non-contact manner, a projection method using fringe scanning is known. This method is generally performed as follows. A light pattern having a sinusoidal luminance distribution is projected from a light source to an object through a grid in which light and shade values are printed in a sinusoidal form. Then, the fringe image on the object is photographed by a camera installed at a place different from the light source. The image is taken while shifting the grating N times by 1 / N of the wavelength in the direction perpendicular to the stripe while the object is stationary. The photographed image appears as if the sine wave light pattern projected on the object travels by 2π / N radians. The luminance value at the measurement point is measured from the projection direction, and the phase value of the lattice pattern is calculated from each luminance value. Since the phase of the grating pattern is modulated according to the height displacement of the measurement point, the amount of modulation of this phase is calculated and substituted into the geometric relational expression of the optical device to calculate the height displacement of the object. Find the original shape.

特開平1−119708号公報Japanese Patent Laid-Open No. 1-1119708

しかし、上記の計測方法では、被測定物の裏側を計測することができない。また、被測定物が大きい場合には、1台の三次元形状計測装置では計測できないこともある。このような場合には、表裏や上下左右等に複数の三次元形状計測装置を配置して計測することになる。ここで、各三次元形状計測装置は、独自の原点と座標軸で計測しているので、各装置の計測データを単純につなぎ合わせることができず、各計測装置の原点と座標軸とからなる座標系を一致させる必要がある。   However, the above measurement method cannot measure the back side of the object to be measured. In addition, when the object to be measured is large, it may not be possible to measure with a single three-dimensional shape measuring apparatus. In such a case, measurement is performed by arranging a plurality of three-dimensional shape measuring devices on the front, back, top, bottom, left and right. Here, since each 3D shape measurement device measures with its own origin and coordinate axes, the measurement data of each device cannot be simply connected, and the coordinate system consisting of the origin and coordinate axes of each measurement device Need to match.

そこで、本発明は、複数台の三次元形状測定の原点や座標軸といった座標系を一致させ、複数の三次元形状計測装置の測定値を統合し、被測定物の裏側を計測したり、被測定物が大きい場合でも三次元形状を計測することを可能とする方法を提供することを目的とする。   Therefore, the present invention matches the coordinate systems such as the origin and coordinate axes of a plurality of three-dimensional shape measurements, integrates the measurement values of a plurality of three-dimensional shape measurement devices, measures the back side of the object to be measured, It is an object to provide a method capable of measuring a three-dimensional shape even when an object is large.

上記目的を達成するため、本発明では、各々独自の原点と座標軸とからなる座標系を有する複数の三次元計測装置から計測可能な位置に配置され、表裏対となる2面を被測定面とする平面板形状の校正用立体物と、前記複数の三次元計測装置は、各三次元計測装置毎に計測対象とする各被測定面上の3点以上の三次元座標値を、前記各三次元計測装置独自の座標系によって計測し、前記各三次元計測装置独自の座標系毎に前記3点以上の三次元座標値から前記各被測定面の各平面方程式を算出する平面方程式算出手段と、前記校正用立体物の表裏対となる2面の各被測定面の各平面方程式から前記校正用立体物を挟んで向かい合う各三次元計測装置同士の座標系を一致させるために用いられる回転行列を算出する回転行列算出手段と、前記複数の三次元計測装置のうち前記校正用立体物を挟んで向かい合う各三次元計測装置が各々計測対象とする各被測定面上で表裏対称に位置する二つの各計測点の各三次元座標値を、前記各三次元計測装置独自の座標系によって計測し、前記各三次元計測装置から前記各計測点までの各計測ベクトル値を算出し、前記各計測ベクトル値を基に前記各三次元計測装置独自の座標系を一致させるための平行ベクトルを算出する平行ベクトル算出手段とを有することを特徴とする。 In order to achieve the above-mentioned object, in the present invention, two surfaces which are arranged at positions that can be measured from a plurality of three-dimensional measuring apparatuses each having a coordinate system having a unique origin and coordinate axes are used as the measured surface. A three-dimensional calibration object having a flat plate shape and a plurality of three-dimensional measurement devices, each of the three-dimensional measurement devices; A plane equation calculating means for measuring by a coordinate system unique to the original measuring device and calculating each plane equation of each surface to be measured from three or more three-dimensional coordinate values for each coordinate system unique to each of the three-dimensional measuring devices; The rotation matrix used to match the coordinate systems of the three-dimensional measuring devices facing each other across the calibration three-dimensional object from the plane equations of the two measured surfaces that are the front and back pairs of the calibration three-dimensional object Rotation matrix calculating means for calculating The three-dimensional coordinate values of two measurement points located symmetrically on the measurement surface of each three-dimensional measurement device facing each other across the calibration three-dimensional object among the three-dimensional measurement devices of , Each three-dimensional measurement device is measured by its own coordinate system, each measurement vector value from each three-dimensional measurement device to each measurement point is calculated, and each three-dimensional measurement device based on each measurement vector value And parallel vector calculation means for calculating a parallel vector for matching the unique coordinate system.

以上説明したように、本発明にかかる方法によれば、複数の三次元形状計測装置の測定値を統合し、被測定物の裏側を計測したり、被測定物が大きい場合でも三次元形状を計測することが可能となる。   As described above, according to the method of the present invention, the measurement values of a plurality of three-dimensional shape measuring devices are integrated to measure the back side of the object to be measured, or the three-dimensional shape can be obtained even when the object to be measured is large. It becomes possible to measure.

次に、本発明にかかる複数の三次元形状計測装置の座標系を一致させる方法の実施の形態の具体例について図面を参照して詳細に説明する。   Next, a specific example of an embodiment of a method for matching coordinate systems of a plurality of three-dimensional shape measuring apparatuses according to the present invention will be described in detail with reference to the drawings.

図1は、三次元形状計測装置の外観を示す斜視図である。三次元形状計測装置は、2つのカメラ100と、2つのプロジェクタ101とから構成されている。   FIG. 1 is a perspective view showing an appearance of a three-dimensional shape measuring apparatus. The three-dimensional shape measuring apparatus includes two cameras 100 and two projectors 101.

そして、これらのプロジェクタ101より正弦波状の縞画像を、対象となる立体物に照射し、その立体物を2つのカメラ100により撮影することで立体物の三次元計測を行っている。その際、対象物の空間位置の原点(O)と座標軸X、Y、Zとからなる座標系102を用いて測定物の形状を示すことになる。   Then, a three-dimensional measurement of the three-dimensional object is performed by irradiating a target three-dimensional object with a sinusoidal stripe image from these projectors 101 and photographing the three-dimensional object with two cameras 100. At that time, the shape of the object to be measured is shown using the coordinate system 102 composed of the origin (O) of the spatial position of the object and the coordinate axes X, Y, and Z.

このような構成の三次元形状計測装置を複数台配置して、測定対象物の三次元計測を行う。図2は、4台の三次元形状計測装置103、104、105、106を用いた計測装置の外観を示す斜視図である。この装置では、図1に示した三次元形状計測装置を上下左右に1台ずつ設置している。各三次元形状計測装置は、剛性の大きいフレームに固定されている。   A plurality of three-dimensional shape measuring apparatuses having such a configuration are arranged to perform three-dimensional measurement of a measurement object. FIG. 2 is a perspective view showing an appearance of a measuring device using four three-dimensional shape measuring devices 103, 104, 105, and 106. FIG. In this apparatus, one three-dimensional shape measuring apparatus shown in FIG. Each three-dimensional shape measuring device is fixed to a rigid frame.

測定対象物107は、図2に示しているように、各装置の略々中心に位置し、左上部の三次元形状計測装置104が、測定対象物107の左上部を計測し、左下部の三次元形状計測装置103が、測定対象物107の左下部を計測する。同様に、三次元形状計測装置106が、測定対象物107の右上部を計測し、三次元形状計測装置105が、測定対象物107の右下部を計測する。従って、この4台の三次元形状計測装置で測定対象物107の略々全周を計測できる構成になっている。   As shown in FIG. 2, the measurement object 107 is positioned approximately at the center of each apparatus, and the upper left three-dimensional shape measurement apparatus 104 measures the upper left part of the measurement object 107, and the lower left part. The three-dimensional shape measuring apparatus 103 measures the lower left part of the measurement object 107. Similarly, the three-dimensional shape measurement apparatus 106 measures the upper right part of the measurement object 107, and the three-dimensional shape measurement apparatus 105 measures the lower right part of the measurement object 107. Accordingly, the four three-dimensional shape measuring devices can measure almost the entire circumference of the measurement object 107.

計測動作は、まず、三次元形状計測装置103から計測を開始して、対象となる測定対象物107の左下部を計測する。順に、他の三次元形状計測装置104、105、106で同様の計測を行い、各装置で計測された計測データが図示しないパソコン等に4台分出力される。   In the measurement operation, first, measurement is started from the three-dimensional shape measurement apparatus 103, and the lower left portion of the measurement object 107 to be measured is measured. Sequentially, the same measurement is performed by the other three-dimensional shape measuring apparatuses 104, 105, and 106, and the measurement data measured by each apparatus is output to four personal computers (not shown).

しかし、各三次元形状計測装置103、104、105、106には、測定対象物107の三次元計測を行うための原点・座標軸からなる座標系が存在する。これらの原点と座標軸は、計測装置一台毎に固有のものであり、計測装置が異なれば原点・座標軸も異なっている。そのため、各4台の三次元形状計測装置の計測データを統合させることができない。そこで、各三次元形状計測装置の原点・座標軸に座標変換を施し、各三次元形状計測装置の原点・座標軸を一致させることが必要となる。   However, each three-dimensional shape measuring apparatus 103, 104, 105, 106 has a coordinate system including an origin and coordinate axes for performing three-dimensional measurement of the measurement object 107. These origins and coordinate axes are unique to each measuring device, and the origin and coordinate axes are different for different measuring devices. For this reason, the measurement data of each of the four three-dimensional shape measurement apparatuses cannot be integrated. Therefore, it is necessary to perform coordinate conversion on the origin and coordinate axes of each three-dimensional shape measurement apparatus so that the origin and coordinate axes of each three-dimensional shape measurement apparatus coincide.

図3は、座標系110から座標系111へと座標変換をする原理を示す図である。2台の三次元形状計測装置において、一方の三次元形状計測装置の座標系110上の点P(X1、Y1、Z1)が、他方の三次元形状計測装置の座標系111上では(X2、Y2、Z2)になるとする。これらをベクトル表示すれば、ベクトルr1=(X1、Y1、Z1)、r2=(X2、Y2、Z2)となる。図のT112は平行ベクトルを示し、R113は回転行列を示す。図3から、以下の式が成り立つ。   FIG. 3 is a diagram showing the principle of coordinate conversion from the coordinate system 110 to the coordinate system 111. In the two three-dimensional shape measuring apparatuses, the point P (X1, Y1, Z1) on the coordinate system 110 of one three-dimensional shape measuring apparatus is (X2, Y2, Z2). If these are displayed as vectors, the vector r1 = (X1, Y1, Z1) and r2 = (X2, Y2, Z2). T112 in the figure indicates a parallel vector, and R113 indicates a rotation matrix. From FIG. 3, the following equation holds.

Figure 0003781762
上記の式(1)から、座標系111を座標系110に一致させるには、座標軸を回転させる3×3の行列R113と、原点を移動させる平行ベクトルT112を求めることに帰着する。
Figure 0003781762
From the above equation (1), in order to make the coordinate system 111 coincide with the coordinate system 110, the result is to obtain a 3 × 3 matrix R113 for rotating the coordinate axis and a parallel vector T112 for moving the origin.

この回転行列R113と平行ベクトルT112を求めるため、図4に示す校正用立体物としての平面板120を図5で示す位置に設置し、その平面板120を4台の三次元形状計測装置103〜106で各々計測を行う。   In order to obtain the rotation matrix R113 and the parallel vector T112, the flat plate 120 as the calibration three-dimensional object shown in FIG. 4 is installed at the position shown in FIG. 5, and the flat plate 120 is provided with four three-dimensional shape measuring devices 103 to 103. Each measurement is performed at 106.

図4に示す平面板120は、ベース122に肌色の塗料を塗布し、その上に黒色の格子状のライン121を塗装したもので、全く同じものが平面板120の両面に塗装されている。ライン121の位置も表裏で一致するようにしている。   The flat plate 120 shown in FIG. 4 is obtained by applying a flesh-colored paint to the base 122 and applying black grid-like lines 121 thereon, and the same plate is applied on both surfaces of the flat plate 120. The position of the line 121 is also matched on the front and back.

まず、回転行列R113を求めるための動作から説明する。三次元形状計測装置104で、図4に示す平面板120の一方の面を被測定面として、この面上の3点を計測する。計測データは、第1点(x1、y1、z1)、第2点(x2、y2、z2)、第3点(x3、y3、z3)のように各座標値として求められる。これら3点は、同一直線上には並ばないように選ばれている。3点の座標が求められれば、平面が決まるので、計測している平面板の当てはめ平面方程式を求めることができる。   First, the operation for obtaining the rotation matrix R113 will be described. With the three-dimensional shape measuring apparatus 104, one surface of the flat plate 120 shown in FIG. The measurement data is obtained as coordinate values such as a first point (x1, y1, z1), a second point (x2, y2, z2), and a third point (x3, y3, z3). These three points are selected so as not to line up on the same straight line. If the coordinates of the three points are obtained, the plane is determined, so that the fitting plane equation of the plane plate being measured can be obtained.

ここで、当てはめ平面方程式は、以下のようにして求められる。
平面の方程式の法線ベクトルを(α、β、−1)とした場合
Here, the fitting plane equation is obtained as follows.
When the normal vector of the plane equation is (α, β, -1)

Figure 0003781762
と表すことができる。この式(2)に、計測した被測定面の上記3点の座標、第1点(x1、y1、z1)、第2点(x2、y2、z2)、第3点(x3、y3、z3)を代入すれば、3つの式(2)ができ、これらからα、β、dの値を求めることができる。
Figure 0003781762
It can be expressed as. In this equation (2), the coordinates of the three points of the measured surface to be measured, the first point (x1, y1, z1), the second point (x2, y2, z2), the third point (x3, y3, z3) ) Can be substituted to obtain three equations (2), from which the values of α, β, and d can be obtained.

しかし、上記の計測した座標の値には、計測誤差が含まれているので、算出されたα、β、dの値は正確なものではない。そこで、計測誤差の二乗和Eを求める。   However, since the measured coordinate values include measurement errors, the calculated values of α, β, and d are not accurate. Therefore, a square sum E of measurement errors is obtained.

誤差の二乗和Eは、   The sum of squared error E is

Figure 0003781762
となる。そして、誤差が最も小さくなるときにこの関数が極値を持つ条件から、最終的に当てはめ平面の平面方程式の未知数α、β、dは以下の行列を解くことにより求められる。
Figure 0003781762
It becomes. Then, from the condition that this function has an extreme value when the error becomes the smallest, the unknowns α, β, d of the plane equation of the fitted plane are finally obtained by solving the following matrix.

Figure 0003781762
この1次元連立方程式の数値解析を行い、未知数α、β、dを決定し、これにより、当てはめ平面の方程式を決定する。
Figure 0003781762
Numerical analysis of the one-dimensional simultaneous equations is performed to determine the unknowns α, β, and d, thereby determining the equation of the fitting plane.

図6は、2台の三次元形状計測装置104と106とで平面板120を表裏両面を被測定面として計測する状態を示す図で、(a)は斜視図、(b)は三次元形状計測装置104の当てはめ平面の図、(c)は三次元形状計測装置106の当てはめ平面の図である。上述のようにして装置104から計測した当てはめ平面130の方程式と装置106から計測した当てはめ平面131の方程式を求めることができる。   FIGS. 6A and 6B are diagrams showing a state in which the two-dimensional shape measuring devices 104 and 106 measure the flat plate 120 with the front and back surfaces being measured surfaces, where FIG. 6A is a perspective view and FIG. 6B is a three-dimensional shape. FIG. 4C is a drawing of a fitting plane of the measuring device 104, and FIG. 5C is a drawing of a fitting plane of the three-dimensional shape measuring device 106. As described above, the equation of the fitting plane 130 measured from the apparatus 104 and the equation of the fitting plane 131 measured from the apparatus 106 can be obtained.

各々の単位法線ベクトルをn1、n2とした場合、回転行列Rは、次式   When each unit normal vector is n1 and n2, the rotation matrix R is given by

Figure 0003781762
から求まる。
Figure 0003781762
Obtained from

次に、平行ベクトルTの求め方について述べる。図7は、2台の三次元形状計測装置104と106とで平面板120の表裏の対応点を計測する状態を示す図で、(a)は斜視図、(b)は平行ベクトルTの求め方を示す図である。図4に示す平面板120の表裏に肌色をベース122として、黒色のライン121が塗装されている。この黒色のラインは、縦ラインと横ラインがあり、交点が複数存在する。そこで図7に示すように、ある交点をPとして、その交点の裏面に対応する交点をP'とする。   Next, how to obtain the parallel vector T will be described. 7A and 7B are diagrams showing a state in which corresponding points on the front and back of the flat plate 120 are measured by the two three-dimensional shape measuring devices 104 and 106, where FIG. 7A is a perspective view and FIG. 7B is a calculation of a parallel vector T. FIG. A black line 121 is painted on the front and back of the flat plate 120 shown in FIG. This black line has a vertical line and a horizontal line, and there are a plurality of intersections. Therefore, as shown in FIG. 7, an intersection point is P, and an intersection point corresponding to the back surface of the intersection point is P ′.

ここで、三次元形状計測装置104の原点132から交点PへのベクトルをT1、三次元形状計測装置106の原点133から交点P'へのベクトルをT3、交点Pから交点P'をT2とすると、求める平行ベクトルT(装置106の原点から装置104の原点へ)は、   Here, T1 is a vector from the origin 132 of the three-dimensional shape measurement apparatus 104 to the intersection P, T3 is a vector from the origin 133 to the intersection P ′ of the three-dimensional shape measurement apparatus 106, and T2 is an intersection P ′ from the intersection P. The desired parallel vector T (from the origin of the device 106 to the origin of the device 104) is

Figure 0003781762
となる。
Figure 0003781762
It becomes.

また、T1、T3は、交点Pと交点P'の三次元座標が計測データより解っているので、求めることができる。但し、計測の誤差を小さくするため、交点Pと交点P'の三次元座標が計測データを通過し、図6に示す当てはめ平面方程式の法線ベクトルと同じ向きを持つ直線を求め、その直線と当てはめ平面との交点を解析上の点Paと点Pa'の三次元座標として求める。   T1 and T3 can be obtained because the three-dimensional coordinates of the intersection point P and the intersection point P ′ are known from the measurement data. However, in order to reduce the measurement error, the three-dimensional coordinates of the intersection point P and the intersection point P ′ pass through the measurement data, and a straight line having the same direction as the normal vector of the fitting plane equation shown in FIG. The intersection point with the fitting plane is obtained as the three-dimensional coordinates of the point Pa and the point Pa ′ in the analysis.

従って、解析上の点Paと点Pa'からT1、T3を求めることができる。ところで、ベクトルT2の方向は、図6で示す当てはめ平面方程式の法線ベクトルから、大きさは平面板の板厚より求められ、ベクトルT2を求めることができる。よって、これらより、ベクトルT1、T2、T3が求められ、式(6)からベクトルTが求められる。   Accordingly, T1 and T3 can be obtained from the point Pa and the point Pa ′ in the analysis. By the way, the direction of the vector T2 can be obtained from the normal vector of the fitting plane equation shown in FIG. 6 from the plate thickness of the flat plate, and the vector T2 can be obtained. Therefore, from these, vectors T1, T2, and T3 are obtained, and vector T is obtained from Equation (6).

以上によって、三次元形状計測装置106について三次元形状計測装置104座標系へ座標変換することができる。同様にして、三次元形状計測装置105について三次元形状計測装置104座標系へ座標変換し、三次元形状計測装置103について三次元形状計測装置104座標系へ座標変換し、4台すべての座標系を三次元形状計測装置104の座標と一致させることが可能となる。   As described above, the coordinate transformation of the three-dimensional shape measuring device 106 to the coordinate system of the three-dimensional shape measuring device 104 can be performed. Similarly, the coordinate transformation of the three-dimensional shape measurement device 105 to the coordinate system of the three-dimensional shape measurement device 104 is performed, and the coordinate transformation of the three-dimensional shape measurement device 103 to the coordinate system of the three-dimensional shape measurement device 104 is performed. Can be matched with the coordinates of the three-dimensional shape measuring apparatus 104.

尚、上記実施例において、図4に示した平面板120の代わりに、図8に示すような平面板140を校正用立体物として使用することができる。この実施例では、図4の黒色ライン121の代わりに、溝141が削られている。図4の実施例と同様にして、削られていない面142を被測定面とし、これから平面板140の当てはめ平面方程式を求め、それら回転行列Rを求める。また、溝141の交点Pとその裏面の対応する図示しない交点から平行ベクトルTを求めることができる。   In the above embodiment, a flat plate 140 as shown in FIG. 8 can be used as a three-dimensional object for calibration instead of the flat plate 120 shown in FIG. In this embodiment, a groove 141 is cut instead of the black line 121 of FIG. In the same manner as in the embodiment of FIG. 4, the uncut surface 142 is used as a surface to be measured, and a fitting plane equation of the plane plate 140 is obtained therefrom, and their rotation matrix R is obtained. Further, the parallel vector T can be obtained from the intersection point P of the groove 141 and the corresponding intersection point (not shown) on the back surface thereof.

また、図4に示す平面板120の代わりに、図9に示すような三角柱150を校正用立体物として使用することもできる。これは、120度おきに三次元形状計測装置201、202、203が並んでいる場合に使用する。三次元形状計測装置201が三角柱150の被測定面151の当てはめ平面方程式を求め、三次元形状計測装置202が被測定面152の当てはめ平面方程式を、また、三次元形状計測装置203が被測定面153の当てはめ平面方程式を求める。その後、各被測定面151、152、153の交差する角度から同様にして、回転行列Rを求める。また校正用立体物150の各被測定面151、152、153上に隆起形状あるいは塗装によるライン等を設けて測定点を決め、これらの測定点の相互位置関係から平行ベクトルTを求める。   Further, instead of the flat plate 120 shown in FIG. 4, a triangular prism 150 as shown in FIG. 9 can be used as a three-dimensional object for calibration. This is used when the three-dimensional shape measuring apparatuses 201, 202, and 203 are arranged every 120 degrees. The three-dimensional shape measuring apparatus 201 obtains a fitting plane equation of the measured surface 151 of the triangular prism 150, the three-dimensional shape measuring apparatus 202 calculates the fitting plane equation of the measured surface 152, and the three-dimensional shape measuring apparatus 203 is measured. A fitting plane equation of 153 is obtained. Thereafter, the rotation matrix R is obtained in the same manner from the angles at which the measured surfaces 151, 152, 153 intersect. Further, a measuring point is determined by providing a raised shape or a line by painting on the measured surfaces 151, 152, 153 of the three-dimensional object 150 for calibration, and a parallel vector T is obtained from the mutual positional relationship of these measuring points.

図4に示す平面板120の代わりに、図10に示すような六面体160を校正用立体物として使用することもできる。この六面体160の表面は、何も加工されていない。この六面体160の各表面を被測定面として当てはめ平面の方程式を求め、上記の実施例と同様に、回転行列Rを求める。六面体160のエッジ点Pより平行ベクトルTを求める。   Instead of the flat plate 120 shown in FIG. 4, a hexahedron 160 as shown in FIG. 10 can be used as a three-dimensional object for calibration. Nothing is processed on the surface of the hexahedron 160. An equation of a fitting plane is obtained by using each surface of the hexahedron 160 as a surface to be measured, and a rotation matrix R is obtained in the same manner as in the above embodiment. A parallel vector T is obtained from the edge point P of the hexahedron 160.

以上の実施例においては、校正用立体物の被測定面は平面であったが、本発明では平面に限定されない。例えば、校正用立体物として球を使用することも可能である。その他にも、被測定面の面形状が既知のものであればよく、被測定面が複数ある場合には、相互の位置関係が既知であればよい。このように平面以外の面を使用することもあるので、上記実施例の当てはめ平面は、当てはめ面の下位概念ということになる。尚、三次元形状計測装置の計測方法は、レーザを使用するもの等種々のものに応用可能で、特定のものに限定されない。   In the above embodiments, the surface to be measured of the calibration three-dimensional object is a flat surface, but the present invention is not limited to a flat surface. For example, it is possible to use a sphere as the calibration solid object. In addition, it is only necessary that the surface shape of the surface to be measured is known, and when there are a plurality of surfaces to be measured, it is only necessary that the mutual positional relationship is known. Since a surface other than a plane may be used in this way, the fitting plane in the above embodiment is a subordinate concept of the fitting surface. The measuring method of the three-dimensional shape measuring apparatus can be applied to various types such as those using a laser, and is not limited to a specific one.

三次元形状計測装置の外観を示す斜視図である。It is a perspective view which shows the external appearance of a three-dimensional shape measuring apparatus. 4台の三次元形状計測装置を用いた計測装置の外観を示す斜視図である。It is a perspective view which shows the external appearance of the measuring device using four three-dimensional shape measuring devices. 一の座標系から他の座標系へと座標変換をする原理を示す図である。It is a figure which shows the principle which performs coordinate conversion from one coordinate system to another coordinate system. 校正用立体物としての平面板を示す図であって、(a)は正面図、(b)は平面図、(c)は側面図、(d)は斜視図である。It is a figure which shows the plane board as a three-dimensional object for calibration, Comprising: (a) is a front view, (b) is a top view, (c) is a side view, (d) is a perspective view. 4台の三次元形状計測装置と平面板の配置を示す図であって、(a)は正面図、(b)は上面図、(c)は側面図である。It is a figure which shows arrangement | positioning of four 3D shape measuring apparatuses and a plane board, Comprising: (a) is a front view, (b) is a top view, (c) is a side view. 2台の三次元形状計測装置で平面板を計測する状態を示す図であって、(a)は斜視図、(b)、(c)は当てはめ平面の図である。It is a figure which shows the state which measures a plane board with two 3D shape measuring devices, Comprising: (a) is a perspective view, (b), (c) is a figure of a fitting plane. 2台の三次元形状計測装置で平面板の表裏の対応点を計測する状態を示す図であって、(a)は斜視図、(b)は平行ベクトルの求め方を示す図である。It is a figure which shows the state which measures the corresponding point of the front and back of a plane plate with two 3D shape measuring apparatuses, Comprising: (a) is a perspective view, (b) is a figure which shows the calculation method of a parallel vector. 校正用立体物として溝のある平面図を示す斜視図である。It is a perspective view which shows the top view with a groove | channel as a three-dimensional object for calibration. 校正用立体物として三角柱を用いた状態を示す図である。It is a figure which shows the state which used the triangular prism as the three-dimensional object for calibration. 校正用立体物として六面体を用いた状態を示す図である。It is a figure which shows the state which used the hexahedron as a three-dimensional object for calibration.

符号の説明Explanation of symbols

100 カメラ
101 プロジェクタ
102 座標系
103 三次元形状計測装置
104 三次元形状計測装置
105 三次元形状計測装置
106 三次元形状計測装置
107 測定対象物
110 一の三次元形状計測装置の原点と座標軸
111 他の三次元形状計測装置の原点と座標軸
112 平行ベクトルT
113 回転行列R
120 校正用立体物(平面板)
121 ライン
122 ベース
130 一の三次元形状計測装置の当てはめ(平)面
131 他の三次元形状計測装置の当てはめ(平)面
140 校正用立体物(平面板)
141 溝
142 面
150 三角柱
151 被測定面
152 被測定面
153 被測定面
160 六面体
201 三次元形状計測装置
202 三次元形状計測装置
203 三次元形状計測装置
DESCRIPTION OF SYMBOLS 100 Camera 101 Projector 102 Coordinate system 103 Three-dimensional shape measuring device 104 Three-dimensional shape measuring device 105 Three-dimensional shape measuring device 106 Three-dimensional shape measuring device 107 Measurement object 110 Origin and coordinate axis 111 of one three-dimensional shape measuring device Other The origin and coordinate axis 112 of the 3D shape measuring device Parallel vector T
113 Rotation matrix R
120 Three-dimensional object for calibration (flat plate)
121 Line 122 Base 130 Fitting (flat) surface 131 of one three-dimensional shape measuring device 131 Fitting (flat) surface 140 of another three-dimensional shape measuring device 140 Solid object for calibration (flat plate)
141 groove 142 surface 150 triangular prism 151 measured surface 152 measured surface 153 measured surface 160 hexahedron 201 three-dimensional shape measuring device 202 three-dimensional shape measuring device 203 three-dimensional shape measuring device

Claims (5)

各々独自の原点と座標軸とからなる座標系を有する複数の三次元計測装置から計測可能な位置に配置され、表裏対となる2面を被測定面とする平面板形状の校正用立体物と、
前記複数の三次元計測装置は、各三次元計測装置毎に計測対象とする各被測定面上の3点以上の三次元座標値を、前記各三次元計測装置独自の座標系によって計測し、前記各三次元計測装置独自の座標系毎に前記3点以上の三次元座標値から前記各被測定面の各平面方程式を算出する平面方程式算出手段と、
前記校正用立体物の表裏対となる2面の各被測定面の各平面方程式から前記校正用立体物を挟んで向かい合う各三次元計測装置同士の座標系を一致させるために用いられる回転行列を算出する回転行列算出手段と、
前記複数の三次元計測装置のうち前記校正用立体物を挟んで向かい合う各三次元計測装置が各々計測対象とする各被測定面上で表裏対称に位置する二つの各計測点の各三次元座標値を、前記各三次元計測装置独自の座標系によって計測し、前記各三次元計測装置から前記各計測点までの各計測ベクトル値を算出し、前記各計測ベクトル値を基に前記各三次元計測装置独自の座標系を一致させるための平行ベクトルを算出する平行ベクトル算出手段とを有することを特徴とする三次座標校正システム。
A three-dimensional calibration object in the form of a flat plate, which is arranged at a position that can be measured from a plurality of three-dimensional measuring devices each having a coordinate system composed of an original origin and coordinate axes, and has two surfaces that are front and back pairs as a surface to be measured;
The plurality of three-dimensional measuring devices measure three-dimensional coordinate values of three or more points on each measurement target surface to be measured for each three-dimensional measuring device by using a coordinate system unique to each three-dimensional measuring device, A plane equation calculation means for calculating each plane equation of each surface to be measured from three or more three-dimensional coordinate values for each coordinate system unique to each of the three-dimensional measurement devices;
A rotation matrix used for matching the coordinate systems of the three-dimensional measuring devices facing each other across the calibration three-dimensional object from the plane equations of the two measured surfaces that are the front and back pairs of the calibration three-dimensional object. A rotation matrix calculating means for calculating;
Each three-dimensional coordinate of each of the two measurement points located symmetrically on each measured surface of each three-dimensional measurement device facing each other across the calibration three-dimensional object among the plurality of three-dimensional measurement devices The value is measured by the coordinate system unique to each three-dimensional measurement device, each measurement vector value from each three-dimensional measurement device to each measurement point is calculated, and each three-dimensional value is calculated based on each measurement vector value. A tertiary coordinate calibration system, comprising: parallel vector calculation means for calculating a parallel vector for matching a coordinate system unique to the measurement apparatus.
前記回転行列算出手段は、表裏対象となる2面の被測定面の各平面方程式から得られる二つの法線ベクトルに基づいて回転行列を算出する手段を含むことを特徴とする請求項1記載の三次元座標校正システム。 The rotation matrix calculation means includes means for calculating a rotation matrix based on two normal vectors obtained from the respective plane equations of the two measured surfaces to be front and back. 3D coordinate calibration system. 前記平面方程式算出手段は、前記3点以上の三次元座標値から誤差の二乗和を算出する手段と、前記二乗和の極値から前記各平面方程式を算出する手段とを含むことを特徴とする請求項1乃至2のうち何れか記載の三次座標校正システム。 The plane equation calculating means includes means for calculating a square sum of errors from three or more three-dimensional coordinate values, and means for calculating each plane equation from the extreme value of the square sum. The tertiary coordinate calibration system according to any one of claims 1 and 2. 前記平行ベクトル算出手段は、前記各計測ベクトル値と前記各計測点間のベクトル値とから算出する手段を有することを特徴とする請求項1乃至3のうち何れか記載の三次元座標校正システム。 The three-dimensional coordinate calibration system according to any one of claims 1 to 3 , wherein the parallel vector calculation means includes means for calculating from each measurement vector value and a vector value between the measurement points. 前記校正用立体物の前記各被測定面に塗装または溝によって複数本の線を設け、前記複数本の線の交点を前記各計測点とすることを特徴とする請求項1乃至4のうち何れか記載の三次元座標校正システム。
A plurality of wires by painting or groove in the respective surface to be measured of the calibration three-dimensional object, any one of claims 1 to 4 an intersection of the plurality of lines, characterized in that said measurement points Or 3D coordinate calibration system.
JP2005013852A 2005-01-21 2005-01-21 3D coordinate calibration system Expired - Lifetime JP3781762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005013852A JP3781762B2 (en) 2005-01-21 2005-01-21 3D coordinate calibration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005013852A JP3781762B2 (en) 2005-01-21 2005-01-21 3D coordinate calibration system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002093777A Division JP2003294433A (en) 2002-03-29 2002-03-29 Method for synchronizing coordinate systems of plural three dimensional shape measuring devices

Publications (2)

Publication Number Publication Date
JP2005121674A JP2005121674A (en) 2005-05-12
JP3781762B2 true JP3781762B2 (en) 2006-05-31

Family

ID=34617131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005013852A Expired - Lifetime JP3781762B2 (en) 2005-01-21 2005-01-21 3D coordinate calibration system

Country Status (1)

Country Link
JP (1) JP3781762B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4863006B2 (en) * 2006-12-28 2012-01-25 パルステック工業株式会社 3D shape measurement method
JP7515979B2 (en) 2019-12-09 2024-07-16 株式会社ミツトヨ Three-dimensional shape measuring device and three-dimensional shape measuring method

Also Published As

Publication number Publication date
JP2005121674A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
JP5757950B2 (en) Non-contact object measurement
JP5643645B2 (en) System and method for three-dimensional measurement of the shape of a tangible object
JP5689681B2 (en) Non-contact probe
EP2631740A2 (en) System for reproducing virtual objects
US20150116691A1 (en) Indoor surveying apparatus and method
US9449433B2 (en) System for reproducing virtual objects
US11640673B2 (en) Method and system for measuring an object by means of stereoscopy
JP2016100698A (en) Calibration device, calibration method, and program
CN109443239A (en) Structural light measurement method, apparatus, equipment, storage medium and system
CN107907055A (en) Pattern projection module, three-dimensional information obtain system, processing unit and measuring method
US11727635B2 (en) Hybrid photogrammetry
WO2020012707A1 (en) Three-dimensional measurement device and method
US20120056999A1 (en) Image measuring device and image measuring method
JP3781762B2 (en) 3D coordinate calibration system
JP4382430B2 (en) Head three-dimensional shape measurement system
US20210041543A1 (en) Laser calibration device, calibration method therefor, and image input device including laser calibration device
JP2022536614A (en) Method and system for optically measuring objects with specular and/or partially specular reflective surfaces and corresponding measurement apparatus
CN207600393U (en) Pattern projection module, three-dimensional information obtain system and processing unit
US20160349045A1 (en) A method of measurement of linear dimensions of three-dimensional objects
JP4429135B2 (en) Three-dimensional shape measurement system and measurement method
JP2003294433A (en) Method for synchronizing coordinate systems of plural three dimensional shape measuring devices
JP5786999B2 (en) Three-dimensional shape measuring device, calibration method for three-dimensional shape measuring device
JP3607688B2 (en) Three-dimensional shape measuring apparatus and rotation axis determination method in three-dimensional shape measurement
Kim et al. Shape Acquisition System Using an Handheld Line Laser Pointer Without Markers
US20170104969A1 (en) Apparatus, method and non-transitory computer-readable storage medium

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060307

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7