[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005121674A - Method for synchronizing coordinates system of a plurality of three-dimensional shape measuring devices - Google Patents

Method for synchronizing coordinates system of a plurality of three-dimensional shape measuring devices Download PDF

Info

Publication number
JP2005121674A
JP2005121674A JP2005013852A JP2005013852A JP2005121674A JP 2005121674 A JP2005121674 A JP 2005121674A JP 2005013852 A JP2005013852 A JP 2005013852A JP 2005013852 A JP2005013852 A JP 2005013852A JP 2005121674 A JP2005121674 A JP 2005121674A
Authority
JP
Japan
Prior art keywords
dimensional shape
shape measuring
measured
dimensional
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005013852A
Other languages
Japanese (ja)
Other versions
JP3781762B2 (en
Inventor
Atsutada Nakatsuji
敦忠 中辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Engineering Ltd
Original Assignee
NEC Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Engineering Ltd filed Critical NEC Engineering Ltd
Priority to JP2005013852A priority Critical patent/JP3781762B2/en
Publication of JP2005121674A publication Critical patent/JP2005121674A/en
Application granted granted Critical
Publication of JP3781762B2 publication Critical patent/JP3781762B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Image Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for matching the origins and axes of two or more three-dimensional shape measuring devices, when they are used for measurement. <P>SOLUTION: A known-shaped solid body 120 for calibration (a plane board painted with a black line on its surface) is measured by using a plurality of three-dimensional shape measuring devices 103, 104, 105, 106 to obtain a fitting plane equation for respective three-dimensional shape measuring devices. Then, both a rotational matrix R113 and a parallel vector T112 for providing coordinates conversion to the origins/coordinates axes of each fitting plane equation are obtained to match coordinates systems 110, 111, comprising a plurality of origins/coordinate axes of a plurality of three-dimensional shape measuring devices with the coordinates system of one three-dimensional shape measuring apparatus. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、複数の三次元形状計測装置を用いて被測定物の計測を行う場合に、各計測装置の原点と座標軸とからなる座標系を一致させる方法に関する。   The present invention relates to a method for matching a coordinate system composed of an origin and a coordinate axis of each measuring device when measuring an object to be measured using a plurality of three-dimensional shape measuring devices.

三次元形状を非接触で計測する方法として、縞走査を用いた投影法が知られている。この方法は、概略以下のようにして行われる。正弦波状に濃淡値が印刷されている格子を通して、光源から物体に対して正弦波状の輝度分布を持つ光パターンを投影する。そして、物体上の縞画像を上記の光源とは別のところに設置されたカメラで撮影する。物体を静止させたままで、格子を縞と直角方向へと、波長の1/NずつN回ずらしながら画像を撮影して行く。撮影された画像は、物体に投影された正弦波光パターンが2π/Nラジアンずつ進行して行くように見える。計測点の輝度値を投影方向から計測し、各輝度値より格子パターンの位相値を計算する。計測点の高さ変位に応じて格子パターンの位相が変調するため、この位相の変調量を計算し、光学装置の幾何関係式に代入することにより、物体の高さ変位量を計算し、三次元形状を求める。   As a method for measuring a three-dimensional shape in a non-contact manner, a projection method using fringe scanning is known. This method is generally performed as follows. A light pattern having a sinusoidal luminance distribution is projected from a light source to an object through a grid in which light and shade values are printed in a sine wave shape. Then, the fringe image on the object is photographed by a camera installed at a place different from the light source. The image is taken while shifting the grating N times by 1 / N of the wavelength in the direction perpendicular to the stripe while the object is stationary. The photographed image appears as if the sine wave light pattern projected on the object travels by 2π / N radians. The luminance value at the measurement point is measured from the projection direction, and the phase value of the lattice pattern is calculated from each luminance value. Since the phase of the grating pattern is modulated according to the height displacement of the measurement point, the amount of modulation of this phase is calculated and substituted into the geometric relational expression of the optical device to calculate the height displacement of the object. Find the original shape.

特開平1−119708号公報Japanese Patent Laid-Open No. 1-1119708

しかし、上記の計測方法では、被測定物の裏側を計測することができない。また、被測定物が大きい場合には、1台の三次元形状計測装置では計測できないこともある。このような場合には、表裏や上下左右等に複数の三次元形状計測装置を配置して計測することになる。ここで、各三次元形状計測装置は、独自の原点と座標軸で計測しているので、各装置の計測データを単純につなぎ合わせることができず、各計測装置の原点と座標軸とからなる座標系を一致させる必要がある。   However, the above measurement method cannot measure the back side of the object to be measured. In addition, when the object to be measured is large, it may not be possible to measure with a single three-dimensional shape measuring apparatus. In such a case, measurement is performed by arranging a plurality of three-dimensional shape measuring devices on the front, back, top, bottom, left and right. Here, since each 3D shape measurement device measures with its own origin and coordinate axes, the measurement data of each device cannot be simply connected, and the coordinate system consisting of the origin and coordinate axes of each measurement device Need to match.

そこで、本発明は、複数台の三次元形状測定の原点や座標軸といった座標系を一致させ、複数の三次元形状計測装置の測定値を統合し、被測定物の裏側を計測したり、被測定物が大きい場合でも三次元形状を計測することを可能とする方法を提供することを目的とする。   Therefore, the present invention matches the coordinate systems such as the origins and coordinate axes of a plurality of three-dimensional shape measurements, integrates the measured values of a plurality of three-dimensional shape measuring devices, measures the back side of the object to be measured, It is an object to provide a method capable of measuring a three-dimensional shape even when an object is large.

上記目的を達成するため、請求項1記載の発明は、複数の三次元形状計測装置の座標系を一致させる方法であって、各々独自の原点と座標軸とからなる座標系を有する複数の三次元形状計測装置から計測可能な位置に、一の被測定面または相対位置が既知の2以上の被測定面を有する校正用立体物を配置し、各三次元形状計測装置によって前記被測定面上の異なる3点以上について計測して各点の三次元位置を求め、計測した値から被測定面の当てはめ面方程式を算出し、各当てはめ面の対象となった被測定面相互間の位置関係から一の当てはめ面方程式の座標系により他の当てはめ面方程式の座標変換を行うことを特徴とする。
そして、請求項1記載の発明によれば、1台の三次元形状計測装置で計測できない大きな対象物や、測定対象物の裏側の形状を複数台の三次元形状計測装置で計測する場合に、全ての原点・座標系を一致させることができ、三次元形状を高速に計測することが可能になる。また、1台の三次元形状計測装置では高精度に計測することが難しい形状の複雑な部分を複数台の三次元形状計測装置で計測することで、より高精度に対象物の形状データを求めることが可能となる。
In order to achieve the above object, the invention described in claim 1 is a method for matching the coordinate systems of a plurality of three-dimensional shape measuring apparatuses, each of which has a coordinate system having a unique origin and coordinate axes. A calibration three-dimensional object having one measurement surface or two or more measurement surfaces whose relative positions are known is arranged at a position that can be measured from the shape measurement device, and is measured on the measurement surface by each three-dimensional shape measurement device. Measure three or more different points to determine the three-dimensional position of each point, calculate the fitted surface equation of the measured surface from the measured value, and calculate the relationship from the measured relative relationship between the measured surfaces. It is characterized in that the coordinate transformation of another fitting surface equation is performed by the coordinate system of the fitting surface equation.
And according to invention of Claim 1, when measuring the big object which cannot be measured with one 3D shape measuring device, and the shape of the back side of a measuring object with a plurality of 3D shape measuring devices, All the origins and coordinate systems can be matched, and a three-dimensional shape can be measured at high speed. Moreover, the shape data of an object can be obtained with higher accuracy by measuring a complicated portion of a shape that is difficult to measure with high accuracy with a single 3D shape measurement device, using multiple 3D shape measurement devices. It becomes possible.

請求項2記載の発明は、請求項1記載の複数の三次元形状計測装置の座標系を一致させる方法において、前記当てはめ面方程式が、前記3点以上の計測データについて、計測誤差を最小にすることにより求められることを特徴とする。
請求項2記載の発明によれば、3点以上の計測データについて、計測誤差が最小になることにより前記当てはめ面方程式を求めるため、複数台の三次元形状計測装置でより高精度に対象物の形状データを求めることが可能となる。
According to a second aspect of the present invention, in the method for matching the coordinate systems of the plurality of three-dimensional shape measuring apparatuses according to the first aspect, the fitting surface equation minimizes a measurement error for the three or more points of measurement data. It is calculated | required by this.
According to the second aspect of the present invention, since the fitting surface equation is obtained for measurement data of three or more points by minimizing a measurement error, a plurality of three-dimensional shape measuring devices can be used to accurately detect the object. Shape data can be obtained.

請求項3記載の発明は、請求項2記載の複数の三次元形状計測装置の座標系を一致させる方法の好ましい一形態として、前記各三次元形状計測装置が計測した各点の三次元位置の計測値について、誤差の二乗和の極値から前記当てはめ面方程式を求めることを特徴とする。   According to a third aspect of the present invention, as a preferred form of the method for matching the coordinate systems of the plurality of three-dimensional shape measuring apparatuses according to the second aspect, the three-dimensional position of each point measured by each of the three-dimensional shape measuring apparatuses is used. For the measured value, the fitting surface equation is obtained from the extreme value of the sum of squared errors.

請求項4記載の発明は、請求項1、2または3記載の複数の三次元形状計測装置の座標系を一致させる方法において、前記被測定面が平面で、当てはめ面が当てはめ平面となることを特徴とする。
請求項4記載の発明によれば、被測定面を平面としたため、平行な表裏の平面を計測すればよく、また、平面度も工作機械により高精度に製作できるので、各三次元形状計測装置の原点・座標軸を高精度で一致させることができる。また、校正用立体物の作成が容易で安価にできる。
According to a fourth aspect of the present invention, in the method for matching the coordinate systems of the plurality of three-dimensional shape measuring apparatuses according to the first, second, or third aspect, the measured surface is a plane and the fitting surface is a fitting plane. Features.
According to the invention described in claim 4, since the surface to be measured is a flat surface, it is only necessary to measure parallel front and back planes, and the flatness can be manufactured with high accuracy by a machine tool. The origin and coordinate axes can be matched with high accuracy. In addition, it is easy and inexpensive to create a three-dimensional object for calibration.

請求項5記載の発明は、請求項1乃至4のいずれかに記載の複数の三次元形状計測装置の座標系を一致させる方法の好ましい一形態として、前記座標変換を、回転行列と平行ベクトルを求めることにより行うことを特徴とする。   According to a fifth aspect of the present invention, as a preferred mode of the method for matching the coordinate systems of the plurality of three-dimensional shape measuring apparatuses according to any one of the first to fourth aspects, the coordinate transformation is performed using a rotation matrix and a parallel vector. It is characterized by being performed by obtaining.

以上説明したように、本発明にかかる方法によれば、複数の三次元形状計測装置の測定値を統合し、被測定物の裏側を計測したり、被測定物が大きい場合でも三次元形状を計測することが可能となる。   As described above, according to the method of the present invention, the measurement values of a plurality of three-dimensional shape measuring devices are integrated to measure the back side of the object to be measured, or the three-dimensional shape can be obtained even when the object to be measured is large. It becomes possible to measure.

次に、本発明にかかる複数の三次元形状計測装置の座標系を一致させる方法の実施の形態の具体例について図面を参照して詳細に説明する。   Next, a specific example of an embodiment of a method for matching coordinate systems of a plurality of three-dimensional shape measuring apparatuses according to the present invention will be described in detail with reference to the drawings.

図1は、三次元形状計測装置の外観を示す斜視図である。三次元形状計測装置は、2つのカメラ100と、2つのプロジェクタ101とから構成されている。   FIG. 1 is a perspective view showing an appearance of a three-dimensional shape measuring apparatus. The three-dimensional shape measuring apparatus includes two cameras 100 and two projectors 101.

そして、これらのプロジェクタ101より正弦波状の縞画像を、対象となる立体物に照射し、その立体物を2つのカメラ100により撮影することで立体物の三次元計測を行っている。その際、対象物の空間位置の原点(O)と座標軸X、Y、Zとからなる座標系102を用いて測定物の形状を示すことになる。   A three-dimensional measurement of the three-dimensional object is performed by irradiating a target three-dimensional object with a sinusoidal striped image from these projectors 101 and photographing the three-dimensional object with the two cameras 100. At that time, the shape of the object to be measured is shown using the coordinate system 102 composed of the origin (O) of the spatial position of the object and the coordinate axes X, Y, and Z.

このような構成の三次元形状計測装置を複数台配置して、測定対象物の三次元計測を行う。図2は、4台の三次元形状計測装置103、104、105、106を用いた計測装置の外観を示す斜視図である。この装置では、図1に示した三次元形状計測装置を上下左右に1台ずつ設置している。各三次元形状計測装置は、剛性の大きいフレームに固定されている。   A plurality of three-dimensional shape measuring apparatuses having such a configuration are arranged to perform three-dimensional measurement of a measurement object. FIG. 2 is a perspective view showing an appearance of a measuring device using four three-dimensional shape measuring devices 103, 104, 105, and 106. FIG. In this apparatus, one three-dimensional shape measuring apparatus shown in FIG. Each three-dimensional shape measuring device is fixed to a rigid frame.

測定対象物107は、図2に示しているように、各装置の略々中心に位置し、左上部の三次元形状計測装置104が、測定対象物107の左上部を計測し、左下部の三次元形状計測装置103が、測定対象物107の左下部を計測する。同様に、三次元形状計測装置106が、測定対象物107の右上部を計測し、三次元形状計測装置105が、測定対象物107の右下部を計測する。従って、この4台の三次元形状計測装置で測定対象物107の略々全周を計測できる構成になっている。   As shown in FIG. 2, the measurement object 107 is positioned approximately at the center of each apparatus, and the upper left three-dimensional shape measurement apparatus 104 measures the upper left part of the measurement object 107, and the lower left part. The three-dimensional shape measuring apparatus 103 measures the lower left part of the measurement object 107. Similarly, the three-dimensional shape measurement apparatus 106 measures the upper right part of the measurement object 107, and the three-dimensional shape measurement apparatus 105 measures the lower right part of the measurement object 107. Accordingly, the four three-dimensional shape measuring devices can measure almost the entire circumference of the measurement object 107.

計測動作は、まず、三次元形状計測装置103から計測を開始して、対象となる測定対象物107の左下部を計測する。順に、他の三次元形状計測装置104、105、106で同様の計測を行い、各装置で計測された計測データが図示しないパソコン等に4台分出力される。   In the measurement operation, first, measurement is started from the three-dimensional shape measurement apparatus 103, and the lower left portion of the measurement object 107 to be measured is measured. Sequentially, the same measurement is performed by the other three-dimensional shape measuring apparatuses 104, 105, and 106, and the measurement data measured by each apparatus is output to four personal computers (not shown).

しかし、各三次元形状計測装置103、104、105、106には、測定対象物107の三次元計測を行うための原点・座標軸からなる座標系が存在する。これらの原点と座標軸は、計測装置一台毎に固有のものであり、計測装置が異なれば原点・座標軸も異なっている。そのため、各4台の三次元形状計測装置の計測データを統合させることができない。そこで、各三次元形状計測装置の原点・座標軸に座標変換を施し、各三次元形状計測装置の原点・座標軸を一致させることが必要となる。   However, each three-dimensional shape measuring apparatus 103, 104, 105, 106 has a coordinate system including an origin and coordinate axes for performing three-dimensional measurement of the measurement object 107. These origins and coordinate axes are unique to each measuring device, and the origin and coordinate axes are different for different measuring devices. For this reason, the measurement data of each of the four three-dimensional shape measurement apparatuses cannot be integrated. Therefore, it is necessary to perform coordinate conversion on the origin and coordinate axes of each three-dimensional shape measurement apparatus so that the origin and coordinate axes of each three-dimensional shape measurement apparatus coincide.

図3は、座標系110から座標系111へと座標変換をする原理を示す図である。2台の三次元形状計測装置において、一方の三次元形状計測装置の座標系110上の点P(X1、Y1、Z1)が、他方の三次元形状計測装置の座標系111上では(X2、Y2、Z2)になるとする。これらをベクトル表示すれば、ベクトルr1=(X1、Y1、Z1)、r2=(X2、Y2、Z2)となる。図のT112は平行ベクトルを示し、R113は回転行列を示す。図3から、以下の式が成り立つ。   FIG. 3 is a diagram illustrating the principle of coordinate conversion from the coordinate system 110 to the coordinate system 111. In the two three-dimensional shape measuring apparatuses, the point P (X1, Y1, Z1) on the coordinate system 110 of one three-dimensional shape measuring apparatus is (X2, Y2, Z2). If these are displayed as vectors, the vector r1 = (X1, Y1, Z1) and r2 = (X2, Y2, Z2). T112 in the figure indicates a parallel vector, and R113 indicates a rotation matrix. From FIG. 3, the following equation holds.

Figure 2005121674
上記の式(1)から、座標系111を座標系110に一致させるには、座標軸を回転させる3×3の行列R113と、原点を移動させる平行ベクトルT112を求めることに帰着する。
Figure 2005121674
From the above equation (1), in order to make the coordinate system 111 coincide with the coordinate system 110, the result is to obtain a 3 × 3 matrix R113 for rotating the coordinate axis and a parallel vector T112 for moving the origin.

この回転行列R113と平行ベクトルT112を求めるため、図4に示す校正用立体物としての平面板120を図5で示す位置に設置し、その平面板120を4台の三次元形状計測装置103〜106で各々計測を行う。   In order to obtain the rotation matrix R113 and the parallel vector T112, the flat plate 120 as the calibration three-dimensional object shown in FIG. 4 is installed at the position shown in FIG. 5, and the flat plate 120 is provided with four three-dimensional shape measuring devices 103 to 103. Each measurement is performed at 106.

図4に示す平面板120は、ベース122に肌色の塗料を塗布し、その上に黒色の格子状のライン121を塗装したもので、全く同じものが平面板120の両面に塗装されている。ライン121の位置も表裏で一致するようにしている。   The flat plate 120 shown in FIG. 4 is obtained by applying a flesh-colored paint to the base 122 and applying black grid-like lines 121 thereon, and the same plate is applied on both surfaces of the flat plate 120. The position of the line 121 is also matched on the front and back.

まず、回転行列R113を求めるための動作から説明する。三次元形状計測装置104で、図4に示す平面板120の一方の面を被測定面として、この面上の3点を計測する。計測データは、第1点(x1、y1、z1)、第2点(x2、y2、z2)、第3点(x3、y3、z3)のように各座標値として求められる。これら3点は、同一直線上には並ばないように選ばれている。3点の座標が求められれば、平面が決まるので、計測している平面板の当てはめ平面方程式を求めることができる。   First, the operation for obtaining the rotation matrix R113 will be described. With the three-dimensional shape measuring apparatus 104, one surface of the flat plate 120 shown in FIG. The measurement data is obtained as coordinate values such as a first point (x1, y1, z1), a second point (x2, y2, z2), and a third point (x3, y3, z3). These three points are selected so as not to line up on the same straight line. If the coordinates of the three points are obtained, the plane is determined, so that the fitting plane equation of the plane plate being measured can be obtained.

ここで、当てはめ平面方程式は、以下のようにして求められる。
平面の方程式の法線ベクトルを(α、β、−1)とした場合
Here, the fitting plane equation is obtained as follows.
When the normal vector of the plane equation is (α, β, -1)

Figure 2005121674
と表すことができる。この式(2)に、計測した被測定面の上記3点の座標、第1点(x1、y1、z1)、第2点(x2、y2、z2)、第3点(x3、y3、z3)を代入すれば、3つの式(2)ができ、これらからα、β、dの値を求めることができる。
Figure 2005121674
It can be expressed as. In this equation (2), the coordinates of the three points of the measured surface to be measured, the first point (x1, y1, z1), the second point (x2, y2, z2), the third point (x3, y3, z3) ) Is substituted, three equations (2) can be obtained, from which the values of α, β, and d can be obtained.

しかし、上記の計測した座標の値には、計測誤差が含まれているので、算出されたα、β、dの値は正確なものではない。そこで、計測誤差の二乗和Eを求める。   However, since the measured coordinate values include measurement errors, the calculated values of α, β, and d are not accurate. Therefore, a square sum E of measurement errors is obtained.

誤差の二乗和Eは、   The sum of squared error E is

Figure 2005121674
となる。そして、誤差が最も小さくなるときにこの関数が極値を持つ条件から、最終的に当てはめ平面の平面方程式の未知数α、β、dは以下の行列を解くことにより求められる。
Figure 2005121674
It becomes. Then, from the condition that this function has an extreme value when the error becomes the smallest, the unknowns α, β, d of the plane equation of the fitted plane are finally obtained by solving the following matrix.

Figure 2005121674
この1次元連立方程式の数値解析を行い、未知数α、β、dを決定し、これにより、当てはめ平面の方程式を決定する。
Figure 2005121674
Numerical analysis of the one-dimensional simultaneous equations is performed to determine the unknowns α, β, and d, thereby determining the equation of the fitting plane.

図6は、2台の三次元形状計測装置104と106とで平面板120を表裏両面を被測定面として計測する状態を示す図で、(a)は斜視図、(b)は三次元形状計測装置104の当てはめ平面の図、(c)は三次元形状計測装置106の当てはめ平面の図である。上述のようにして装置104から計測した当てはめ平面130の方程式と装置106から計測した当てはめ平面131の方程式を求めることができる。   FIGS. 6A and 6B are diagrams showing a state in which the two-dimensional shape measuring devices 104 and 106 measure the flat plate 120 with the front and back surfaces being measured surfaces, where FIG. 6A is a perspective view and FIG. 6B is a three-dimensional shape. FIG. 4C is a drawing of a fitting plane of the measuring device 104, and FIG. 5C is a drawing of a fitting plane of the three-dimensional shape measuring device 106. As described above, the equation of the fitting plane 130 measured from the apparatus 104 and the equation of the fitting plane 131 measured from the apparatus 106 can be obtained.

各々の単位法線ベクトルをn1、n2とした場合、回転行列Rは、次式   When each unit normal vector is n1 and n2, the rotation matrix R is given by

Figure 2005121674
から求まる。
Figure 2005121674
Obtained from

次に、平行ベクトルTの求め方について述べる。図7は、2台の三次元形状計測装置104と106とで平面板120の表裏の対応点を計測する状態を示す図で、(a)は斜視図、(b)は平行ベクトルTの求め方を示す図である。図4に示す平面板120の表裏に肌色をベース122として、黒色のライン121が塗装されている。この黒色のラインは、縦ラインと横ラインがあり、交点が複数存在する。そこで図7に示すように、ある交点をPとして、その交点の裏面に対応する交点をP'とする。   Next, how to obtain the parallel vector T will be described. 7A and 7B are diagrams showing a state in which corresponding points on the front and back of the flat plate 120 are measured by the two three-dimensional shape measuring devices 104 and 106, where FIG. 7A is a perspective view and FIG. 7B is a calculation of a parallel vector T. FIG. A black line 121 is painted on the front and back of the flat plate 120 shown in FIG. This black line has a vertical line and a horizontal line, and there are a plurality of intersections. Therefore, as shown in FIG. 7, an intersection point is P, and an intersection point corresponding to the back surface of the intersection point is P ′.

ここで、三次元形状計測装置104の原点132から交点PへのベクトルをT1、三次元形状計測装置106の原点133から交点P'へのベクトルをT3、交点Pから交点P'をT2とすると、求める平行ベクトルT(装置106の原点から装置104の原点へ)は、   Here, T1 is a vector from the origin 132 of the three-dimensional shape measurement apparatus 104 to the intersection P, T3 is a vector from the origin 133 to the intersection P ′ of the three-dimensional shape measurement apparatus 106, and T2 is an intersection P ′ from the intersection P. The desired parallel vector T (from the origin of the device 106 to the origin of the device 104) is

Figure 2005121674
となる。
Figure 2005121674
It becomes.

また、T1、T3は、交点Pと交点P'の三次元座標が計測データより解っているので、求めることができる。但し、計測の誤差を小さくするため、交点Pと交点P'の三次元座標が計測データを通過し、図6に示す当てはめ平面方程式の法線ベクトルと同じ向きを持つ直線を求め、その直線と当てはめ平面との交点を解析上の点Paと点Pa'の三次元座標として求める。   T1 and T3 can be obtained because the three-dimensional coordinates of the intersection point P and the intersection point P ′ are known from the measurement data. However, in order to reduce the measurement error, the three-dimensional coordinates of the intersection point P and the intersection point P ′ pass through the measurement data, and a straight line having the same direction as the normal vector of the fitting plane equation shown in FIG. The intersection point with the fitting plane is obtained as the three-dimensional coordinates of the point Pa and the point Pa ′ in the analysis.

従って、解析上の点Paと点Pa'からT1、T3を求めることができる。ところで、ベクトルT2の方向は、図6で示す当てはめ平面方程式の法線ベクトルから、大きさは平面板の板厚より求められ、ベクトルT2を求めることができる。よって、これらより、ベクトルT1、T2、T3が求められ、式(6)からベクトルTが求められる。   Accordingly, T1 and T3 can be obtained from the point Pa and the point Pa ′ in the analysis. By the way, the direction of the vector T2 can be obtained from the normal vector of the fitting plane equation shown in FIG. 6 from the plate thickness of the flat plate, and the vector T2 can be obtained. Therefore, from these, vectors T1, T2, and T3 are obtained, and vector T is obtained from Equation (6).

以上によって、三次元形状計測装置106について三次元形状計測装置104座標系へ座標変換することができる。同様にして、三次元形状計測装置105について三次元形状計測装置104座標系へ座標変換し、三次元形状計測装置103について三次元形状計測装置104座標系へ座標変換し、4台すべての座標系を三次元形状計測装置104の座標と一致させることが可能となる。   As described above, the coordinate transformation of the three-dimensional shape measuring device 106 to the coordinate system of the three-dimensional shape measuring device 104 can be performed. Similarly, the coordinate transformation of the three-dimensional shape measurement device 105 to the coordinate system of the three-dimensional shape measurement device 104 is performed, and the coordinate transformation of the three-dimensional shape measurement device 103 to the coordinate system of the three-dimensional shape measurement device 104 is performed. Can be matched with the coordinates of the three-dimensional shape measuring apparatus 104.

尚、上記実施例において、図4に示した平面板120の代わりに、図8に示すような平面板140を校正用立体物として使用することができる。この実施例では、図4の黒色ライン121の代わりに、溝141が削られている。図4の実施例と同様にして、削られていない面142を被測定面とし、これから平面板140の当てはめ平面方程式を求め、それら回転行列Rを求める。また、溝141の交点Pとその裏面の対応する図示しない交点から平行ベクトルTを求めることができる。   In the above embodiment, a flat plate 140 as shown in FIG. 8 can be used as a three-dimensional object for calibration instead of the flat plate 120 shown in FIG. In this embodiment, a groove 141 is cut instead of the black line 121 of FIG. In the same manner as in the embodiment of FIG. 4, the uncut surface 142 is used as a surface to be measured, and a fitting plane equation of the plane plate 140 is obtained therefrom, and their rotation matrix R is obtained. Further, the parallel vector T can be obtained from the intersection point P of the groove 141 and the corresponding intersection point (not shown) on the back surface thereof.

また、図4に示す平面板120の代わりに、図9に示すような三角柱150を校正用立体物として使用することもできる。これは、120度おきに三次元形状計測装置201、202、203が並んでいる場合に使用する。三次元形状計測装置201が三角柱150の被測定面151の当てはめ平面方程式を求め、三次元形状計測装置202が被測定面152の当てはめ平面方程式を、また、三次元形状計測装置203が被測定面153の当てはめ平面方程式を求める。その後、各被測定面151、152、153の交差する角度から同様にして、回転行列Rを求める。また校正用立体物150の各被測定面151、152、153上に隆起形状あるいは塗装によるライン等を設けて測定点を決め、これらの測定点の相互位置関係から平行ベクトルTを求める。   Further, instead of the flat plate 120 shown in FIG. 4, a triangular prism 150 as shown in FIG. 9 can be used as a three-dimensional object for calibration. This is used when the three-dimensional shape measuring apparatuses 201, 202, and 203 are arranged every 120 degrees. The three-dimensional shape measuring apparatus 201 obtains a fitting plane equation of the measured surface 151 of the triangular prism 150, the three-dimensional shape measuring apparatus 202 obtains a fitting plane equation of the measured surface 152, and the three-dimensional shape measuring apparatus 203 is measured. A fitting plane equation of 153 is obtained. Thereafter, the rotation matrix R is obtained in the same manner from the angles at which the measured surfaces 151, 152, 153 intersect. Further, a measuring point is determined by providing a raised shape or a line by painting on the measured surfaces 151, 152, 153 of the calibration three-dimensional object 150, and a parallel vector T is obtained from the mutual positional relationship of these measuring points.

図4に示す平面板120の代わりに、図10に示すような六面体160を校正用立体物として使用することもできる。この六面体160の表面は、何も加工されていない。この六面体160の各表面を被測定面として当てはめ平面の方程式を求め、上記の実施例と同様に、回転行列Rを求める。六面体160のエッジ点Pより平行ベクトルTを求める。   Instead of the flat plate 120 shown in FIG. 4, a hexahedron 160 as shown in FIG. 10 can be used as a three-dimensional object for calibration. Nothing is processed on the surface of the hexahedron 160. An equation of a fitting plane is obtained by using each surface of the hexahedron 160 as a surface to be measured, and a rotation matrix R is obtained in the same manner as in the above embodiment. A parallel vector T is obtained from the edge point P of the hexahedron 160.

以上の実施例においては、校正用立体物の被測定面は平面であったが、本発明では平面に限定されない。例えば、校正用立体物として球を使用することも可能である。その他にも、被測定面の面形状が既知のものであればよく、被測定面が複数ある場合には、相互の位置関係が既知であればよい。このように平面以外の面を使用することもあるので、上記実施例の当てはめ平面は、当てはめ面の下位概念ということになる。尚、三次元形状計測装置の計測方法は、レーザを使用するもの等種々のものに応用可能で、特定のものに限定されない。   In the above embodiments, the surface to be measured of the calibration three-dimensional object is a flat surface, but the present invention is not limited to a flat surface. For example, it is possible to use a sphere as the calibration solid object. In addition, it is only necessary that the surface shape of the surface to be measured is known, and when there are a plurality of surfaces to be measured, it is only necessary that the mutual positional relationship is known. Since a surface other than a plane may be used in this way, the fitting plane in the above embodiment is a subordinate concept of the fitting surface. The measuring method of the three-dimensional shape measuring apparatus can be applied to various types such as those using a laser, and is not limited to a specific one.

三次元形状計測装置の外観を示す斜視図である。It is a perspective view which shows the external appearance of a three-dimensional shape measuring apparatus. 4台の三次元形状計測装置を用いた計測装置の外観を示す斜視図である。It is a perspective view which shows the external appearance of the measuring device using four three-dimensional shape measuring devices. 一の座標系から他の座標系へと座標変換をする原理を示す図である。It is a figure which shows the principle which performs coordinate conversion from one coordinate system to another coordinate system. 校正用立体物としての平面板を示す図であって、(a)は正面図、(b)は平面図、(c)は側面図、(d)は斜視図である。It is a figure which shows the plane board as a three-dimensional object for calibration, Comprising: (a) is a front view, (b) is a top view, (c) is a side view, (d) is a perspective view. 4台の三次元形状計測装置と平面板の配置を示す図であって、(a)は正面図、(b)は上面図、(c)は側面図である。It is a figure which shows arrangement | positioning of four 3D shape measuring apparatuses and a plane board, Comprising: (a) is a front view, (b) is a top view, (c) is a side view. 2台の三次元形状計測装置で平面板を計測する状態を示す図であって、(a)は斜視図、(b)、(c)は当てはめ平面の図である。It is a figure which shows the state which measures a plane board with two 3D shape measuring devices, Comprising: (a) is a perspective view, (b), (c) is a figure of a fitting plane. 2台の三次元形状計測装置で平面板の表裏の対応点を計測する状態を示す図であって、(a)は斜視図、(b)は平行ベクトルの求め方を示す図である。It is a figure which shows the state which measures the corresponding point of the front and back of a plane plate with two 3D shape measuring apparatuses, Comprising: (a) is a perspective view, (b) is a figure which shows how to obtain | require a parallel vector. 校正用立体物として溝のある平面図を示す斜視図である。It is a perspective view which shows the top view with a groove | channel as a three-dimensional object for calibration. 校正用立体物として三角柱を用いた状態を示す図である。It is a figure which shows the state which used the triangular prism as the three-dimensional object for calibration. 校正用立体物として六面体を用いた状態を示す図である。It is a figure which shows the state which used the hexahedron as a three-dimensional object for calibration.

符号の説明Explanation of symbols

100 カメラ
101 プロジェクタ
102 座標系
103 三次元形状計測装置
104 三次元形状計測装置
105 三次元形状計測装置
106 三次元形状計測装置
107 測定対象物
110 一の三次元形状計測装置の原点と座標軸
111 他の三次元形状計測装置の原点と座標軸
112 平行ベクトルT
113 回転行列R
120 校正用立体物(平面板)
121 ライン
122 ベース
130 一の三次元形状計測装置の当てはめ(平)面
131 他の三次元形状計測装置の当てはめ(平)面
140 校正用立体物(平面板)
141 溝
142 面
150 三角柱
151 被測定面
152 被測定面
153 被測定面
160 六面体
201 三次元形状計測装置
202 三次元形状計測装置
203 三次元形状計測装置
DESCRIPTION OF SYMBOLS 100 Camera 101 Projector 102 Coordinate system 103 Three-dimensional shape measuring device 104 Three-dimensional shape measuring device 105 Three-dimensional shape measuring device 106 Three-dimensional shape measuring device 107 Measurement object 110 Origin and coordinate axis 111 of one three-dimensional shape measuring device Other The origin and coordinate axis 112 of the 3D shape measuring device Parallel vector T
113 Rotation matrix R
120 Three-dimensional object for calibration (flat plate)
121 Line 122 Base 130 Fitting (flat) surface 131 of one three-dimensional shape measuring device 131 Fitting (flat) surface 140 of another three-dimensional shape measuring device 140 Solid object for calibration (flat plate)
141 groove 142 surface 150 triangular prism 151 measured surface 152 measured surface 153 measured surface 160 hexahedron 201 three-dimensional shape measuring device 202 three-dimensional shape measuring device 203 three-dimensional shape measuring device

Claims (5)

各々独自の原点と座標軸とからなる座標系を有する複数の三次元形状計測装置から計測可能な位置に、一の被測定面または相対位置が既知の2以上の被測定面を有する校正用立体物を配置し、各三次元形状計測装置によって前記被測定面上の異なる3点以上について計測して各点の三次元位置を求め、計測した値から被測定面の当てはめ面方程式を算出し、各当てはめ面の対象となった被測定面相互間の位置関係から一の当てはめ面方程式の座標系により他の当てはめ面方程式の座標変換を行うことを特徴とする複数の三次元形状計測装置の座標系を一致させる方法。 A calibration three-dimensional object having one measured surface or two or more measured surfaces whose relative positions are known at positions that can be measured from a plurality of three-dimensional shape measuring apparatuses each having a coordinate system composed of an original origin and coordinate axes. And measuring three or more different points on the surface to be measured by each three-dimensional shape measuring device to obtain a three-dimensional position of each point, calculating a fitting surface equation of the surface to be measured from the measured values, A coordinate system of a plurality of three-dimensional shape measuring devices, wherein the coordinate system of one fitting surface equation is transformed by the coordinate system of one fitting surface equation from the positional relationship between the measured surfaces that are the objects of the fitting surface How to match. 前記当てはめ面方程式が、前記3点以上の計測データについて、計測誤差を最小にすることにより求められることを特徴とする請求項1記載の複数の三次元形状計測装置の座標系を一致させる方法。 2. The method for matching coordinate systems of a plurality of three-dimensional shape measuring apparatuses according to claim 1, wherein the fitting surface equation is obtained by minimizing a measurement error for the measurement data of the three or more points. 前記各三次元形状計測装置が計測した各点の三次元位置の計測値について、誤差の二乗和の極値から前記当てはめ面方程式を求めることを特徴とする請求項2記載の複数の三次元形状計測装置の座標系を一致させる方法。 3. The plurality of three-dimensional shapes according to claim 2, wherein the fitting surface equation is obtained from the extreme value of the sum of squares of errors for the measured value of the three-dimensional position of each point measured by each of the three-dimensional shape measuring devices. A method of matching the coordinate system of a measuring device. 前記被測定面が平面で、当てはめ面が当てはめ平面となることを特徴とする請求項1、2または3記載の複数の三次元形状計測装置の座標系を一致させる方法。 4. The method for matching coordinate systems of a plurality of three-dimensional shape measuring apparatuses according to claim 1, wherein the surface to be measured is a plane and the fitting surface is a fitting plane. 前記座標変換を、回転行列と平行ベクトルを求めることにより行うことを特徴とする請求項1乃至4のいずれかに記載の複数の三次元形状計測装置の座標系を一致させる方法。
5. The method of matching coordinate systems of a plurality of three-dimensional shape measuring apparatuses according to claim 1, wherein the coordinate transformation is performed by obtaining a rotation matrix and a parallel vector.
JP2005013852A 2005-01-21 2005-01-21 3D coordinate calibration system Expired - Lifetime JP3781762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005013852A JP3781762B2 (en) 2005-01-21 2005-01-21 3D coordinate calibration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005013852A JP3781762B2 (en) 2005-01-21 2005-01-21 3D coordinate calibration system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002093777A Division JP2003294433A (en) 2002-03-29 2002-03-29 Method for synchronizing coordinate systems of plural three dimensional shape measuring devices

Publications (2)

Publication Number Publication Date
JP2005121674A true JP2005121674A (en) 2005-05-12
JP3781762B2 JP3781762B2 (en) 2006-05-31

Family

ID=34617131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005013852A Expired - Lifetime JP3781762B2 (en) 2005-01-21 2005-01-21 3D coordinate calibration system

Country Status (1)

Country Link
JP (1) JP3781762B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164493A (en) * 2006-12-28 2008-07-17 Pulstec Industrial Co Ltd Method for measuring three-dimensional shape, and calibrating body
JP7515979B2 (en) 2019-12-09 2024-07-16 株式会社ミツトヨ Three-dimensional shape measuring device and three-dimensional shape measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164493A (en) * 2006-12-28 2008-07-17 Pulstec Industrial Co Ltd Method for measuring three-dimensional shape, and calibrating body
JP7515979B2 (en) 2019-12-09 2024-07-16 株式会社ミツトヨ Three-dimensional shape measuring device and three-dimensional shape measuring method

Also Published As

Publication number Publication date
JP3781762B2 (en) 2006-05-31

Similar Documents

Publication Publication Date Title
US10282855B2 (en) Determining object properties with respect to particular optical measurement
JP5757950B2 (en) Non-contact object measurement
JP5689681B2 (en) Non-contact probe
EP2631740A2 (en) System for reproducing virtual objects
US20150116691A1 (en) Indoor surveying apparatus and method
CN110672039A (en) Object omnibearing three-dimensional measurement method based on plane reflector
Peng Algorithms and models for 3-D shape measurement using digital fringe projections
CN109443239A (en) Structural light measurement method, apparatus, equipment, storage medium and system
CN107907055A (en) Pattern projection module, three-dimensional information obtain system, processing unit and measuring method
JP2013178174A (en) Three-dimensional shape measuring apparatus using a plurality of gratings
US11727635B2 (en) Hybrid photogrammetry
US20120056999A1 (en) Image measuring device and image measuring method
KR100733396B1 (en) Apparatus and method for three dimension measurement data acquisition
JP4382430B2 (en) Head three-dimensional shape measurement system
JP3781762B2 (en) 3D coordinate calibration system
CN207600393U (en) Pattern projection module, three-dimensional information obtain system and processing unit
US20160349045A1 (en) A method of measurement of linear dimensions of three-dimensional objects
JP4429135B2 (en) Three-dimensional shape measurement system and measurement method
JP2003294433A (en) Method for synchronizing coordinate systems of plural three dimensional shape measuring devices
JP2019207153A (en) Simulation device, simulation method, and program
RU164082U1 (en) DEVICE FOR MONITORING LINEAR SIZES OF THREE-DIMENSIONAL OBJECTS
JP3607688B2 (en) Three-dimensional shape measuring apparatus and rotation axis determination method in three-dimensional shape measurement
JP2014149303A (en) Three-dimensional shape measuring device, calibration block, and calibration method for the three-dimensional shape measuring device
Harding et al. Geometric errors in 3D optical metrology systems
Kim et al. Shape Acquisition System Using an Handheld Line Laser Pointer Without Markers

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060307

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7