JP3776344B2 - 蒸発燃料処理装置の故障診断装置 - Google Patents
蒸発燃料処理装置の故障診断装置 Download PDFInfo
- Publication number
- JP3776344B2 JP3776344B2 JP2001307041A JP2001307041A JP3776344B2 JP 3776344 B2 JP3776344 B2 JP 3776344B2 JP 2001307041 A JP2001307041 A JP 2001307041A JP 2001307041 A JP2001307041 A JP 2001307041A JP 3776344 B2 JP3776344 B2 JP 3776344B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- engine
- valve
- determination
- detecting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M25/00—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
- F02M25/08—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
- F02M25/0809—Judging failure of purge control system
- F02M25/0827—Judging failure of purge control system by monitoring engine running conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/04—Engine intake system parameters
- F02D2200/0414—Air temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/06—Fuel or fuel supply system parameters
- F02D2200/0606—Fuel temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/042—Introducing corrections for particular operating conditions for stopping the engine
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、燃料タンク内で発生する蒸発燃料を一時的に貯蔵し、貯蔵した蒸発燃料を内燃機関に供給する蒸発燃料処理装置の故障を診断する故障診断装置に関する。
【0002】
【従来の技術】
燃料タンク内で発生する蒸発燃料を一時的に貯蔵し、貯蔵した蒸発燃料を内燃機関に供給する蒸発燃料処理装置において、漏れが発生すると大気中に蒸発燃料が放出されるため、種々の漏れ判定手法が提案されている。例えば特開平11−336626号公報には、内燃機関の作動中ではなく、停止後に漏れ判定を行う手法が示されている。
この手法によれば、機関停止後に蒸発燃料処理装置内の圧力と大気圧との差圧の推移を検出し、その差圧の変動量に基づいて、漏れの判定が行われる。
【0003】
【発明が解決しようとする課題】
上記従来の手法によれば、機関停止後の燃料タンク内の温度変化に起因する蒸発燃料処理装置内の圧力変化に基づいて、漏れの判定が行われる。そのため、機関を作動させてすぐに停止した場合のように、燃料タンク内の温度上昇が不十分であるときには、機関停止後の温度変化が小さく、したがって圧力変化も小さくなり、誤判定の可能性が高くなる。
【0004】
本発明はこの点に着目してなされたものであり、機関停止後に蒸発燃料処理装置の漏れ判定を行う場合における誤判定を防止し、精度の高い判定を行うことができる故障診断装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するため請求項1に記載の発明は、燃料タンクと、大気に連通する空気通路が設けられ、前記燃料タンク内で発生する蒸発燃料を吸着する吸着剤を有するキャニスタと、該キャニスタと前記燃料タンクとを接続する第1の通路と、前記キャニスタと内燃機関の吸気系とを接続する第2の通路と、前記空気通路を開閉するベントシャット弁と、前記第2の通路に設けられたパージ制御弁とを備えた蒸発燃料処理装置の故障を診断する故障診断装置において、前記蒸発燃料処理装置内の圧力を検出する圧力検出手段と、前記機関の停止を検出する機関停止検出手段と、該機関停止検出手段により前記機関の停止が検出されたときに、前記パージ制御弁及びベントシャット弁を閉弁し、その後の所定判定期間中の前記圧力検出手段による検出圧力(PTANK)に基づいて、前記蒸発燃料処理装置の漏れの有無を判定する判定手段と、前記燃料タンク内の気層温度(TTG)を検出する気層温度検出手段と、外気温(TAT)を検出する外気温検出手段と、前記機関の停止時に検出された気層温度と外気温との差(TTG−TAT)が所定閾値(ΔT1)以下であるときは、前記判定手段による判定を禁止する禁止手段とを備えることを特徴とする。
【0006】
この構成によれば、機関の停止が検出されたときに、パージ制御弁及びベントシャット弁が閉弁され、その後の所定判定期間中の前記圧力検出手段による検出圧力に基づいて、蒸発燃料処理装置の漏れが判定される。ただし、機関の停止時に検出された気層温度と外気温との差が所定閾値以下であるときは、前記漏れの判定が禁止される。したがって、燃料タンク内の気層温度が外気温に比べてあまり高くなっていないような場合には、漏れの判定が禁止され、誤判定を防止することができる。
【0007】
前記禁止手段は、前記圧力検出手段及び前記ベントシャット弁の少なくとも一方の故障を検出する故障検出手段を備え、該故障検出手段により故障が検出されたときは、前記判定手段による判定を禁止することが望ましい。
これにより、圧力検出手段やベントシャット弁の故障によって、誤判定が発生することを防止することができる。
【0008】
【発明の実施の形態】
以下本発明の実施の形態を図面を参照して説明する。
図1は、本発明の一実施形態に係る蒸発燃料処理装置及び内燃機関の制御装置の構成を示す図である。同図において、1は例えば4気筒を有する内燃機関(以下単に「エンジン」という)であり、エンジン1の吸気管2の途中にはスロットル弁3が配されている。また、スロットル弁3にはスロットル弁開度(THA)センサ4が連結されており、当該スロットル弁3の開度に応じた電気信号を出力して電子コントロールユニット(以下「ECU」という)5に供給する。
【0009】
燃料噴射弁6は、吸気管2の途中であってエンジン1とスロットル弁3との間の図示しない吸気弁の少し上流側に各気筒毎に設けられている。また、各燃料噴射弁6は燃料供給管7を介して燃料タンク9に接続されており、燃料供給管7の途中には燃料ポンプ8が設けられている。燃料タンク9は給油のための給油口10を有しており、給油口10にはフィラーキャップ11が取付けられている。
【0010】
燃料噴射弁6はECU5に電気的に接続され、該ECU5からの信号によりその開弁時間が制御される。吸気管2のスロットル弁3の下流側には吸気管内絶対圧PBAを検出する吸気管内絶対圧(PBA)センサ13、及び吸気温TAを検出する吸気温(TA)センサ14が装着されている。
【0011】
エンジン1の図示しないカム軸周囲又はクランク軸周囲にはエンジン回転数を検出するエンジン回転数(NE)センサ17が取付けられている。エンジン回転数センサ17はエンジン1のクランク軸の180度回転毎に所定のクランク角度位置でパルス(TDC信号パルス)を出力する。エンジン1の冷却水温TWを検出するエンジン水温センサ18及びエンジン1の排気中の酸素濃度を検出する酸素濃度センサ(以下「LAFセンサ」という)19が設けれられており、これらのセンサ13〜19の検出信号はECU5に供給される。LAFセンサ19は、排気中の酸素濃度(エンジン1に供給される混合気の空燃比)にほぼ比例する信号を出力する広域空燃比センサとして機能するものである。
【0012】
ECU5にはさらに、外気温TATを検出する外気温センサ41及びイグニッションスイッチ42が接続されており、外気温センサ41の検出信号及びイグニッションスイッチ42の切替信号がECU5に供給される。
燃料タンク9は、チャージ通路31を介してキャニスタ33に接続され、キャニスタ33は、吸気管2のスロットル弁3の下流側にパージ通路32を介して接続されている。
【0013】
チャージ通路31には、二方向弁35が設けられている。二方向弁35は、燃料タンク9内の圧力が大気圧より第1所定圧(例えば2.7kPa(20mmHg))以上高いとき開弁する正圧弁と、燃料タンク9内の圧力がキャニスタ33内の圧力より第2所定圧以上低いとき開弁する負圧弁とからなる。
【0014】
二方向弁35をバイパスするバイパス通路31aが設けられており、バイパス通路31aには、バイバス弁(開閉弁)36が設けられている。バイパス弁36は、通常は閉弁状態とされ、後述する故障診断実行中開閉される電磁弁であり、その動作はECU5により制御される。
【0015】
チャージ通路31には、二方向弁35と燃料タンク9との間に圧力センサ15が設けられており、その検出信号はECU5に供給される。圧力センサ15の出力PTANKは、キャニスタ33及び燃料タンク9内の圧力が安定している定常状態では、燃料タンク内の圧力に等しくなるが、キャニスタ33または燃料タンク9内の圧力が変化しているとき、実際のタンク内圧とは異なる圧力を示す。以下の説明では、圧力センサ15の出力を「タンク内圧PTANK」という。
【0016】
キャニスタ33は、燃料タンク9内の蒸発燃料を吸着するための活性炭を内蔵する。キャニスタ33には、空気通路37が接続されており、キャニスタ33は空気通路37を介して大気に連通可能となっている。
空気通路37の途中にはベントシャット弁(開閉弁)38が設けられている。ベントシャット弁38は、ECU5によりその作動が制御される電磁弁であり、給油時またはパージ実行中に開弁される。またベントシャット弁38は、後述する故障診断実行時に開閉される。ベントシャット弁38は、駆動信号が供給されないときは、開弁する常開型の電磁弁である。
【0017】
パージ通路32のキャニスタ33と吸気管2との間には、パージ制御弁34が設けられている。パージ制御弁34は、その制御信号のオン−オフデューティ比(制御弁の開度)を変更することにより流量を連続的に制御することができるように構成された電磁弁であり、その作動はECU5により制御される。
【0018】
燃料タンク9には、燃料タンク内の気層(空気と蒸発燃料とからなる混合気層)の温度を検出する気層温度検出手段としての気層温度センサ39が設けられている。気層温度センサ39の検出信号は、ECU5に供給される。
燃料タンク9、チャージ通路31、バイパス通路31a、キャニスタ33、パージ通路32、二方向弁35、バイパス弁36、パージ制御弁34、空気通路37、及びベントシャット弁38により、蒸発燃料処理装置40が構成される。
【0019】
本実施形態では、イグニッションスイッチ42がオフされても、後述する故障診断を実行する期間中は、ECU5、バイパス弁36及びベントシャット弁38には電源が供給される。なおパージ制御弁34は、イグニッションスイッチ42がオフされると、電源が供給されなくなり、閉弁状態を維持する。
【0020】
燃料タンク9の給油時に蒸発燃料が大量に発生すると、二方向弁35が開弁し、キャニスタ33に蒸発燃料が貯蔵される。エンジン1の所定運転状態において、パージ制御弁34のデューティ制御が行われ、適量の蒸発燃料がキャニスタ33から吸気管2に供給される。
【0021】
ECU5は各種センサ等からの入力信号波形を整形し、電圧レベルを所定レベルに修正し、アナログ信号値をデジタル信号値に変換する等の機能を有する入力回路、中央演算処理ユニット(以下「CPU」という)、CPUで実行される演算プログラム及び演算結果等を記憶する記憶回路のほか、燃料噴射弁6、パージ制御弁34、バイパス弁36及びベントシャット弁38に駆動信号を供給する出力回路等から構成される。
【0022】
ECU5のCPUは、エンジン回転数センサ17、吸気管内絶対圧センサ13、エンジン水温センサ18などの各種センサの出力信号に応じてエンジン1に供給する燃料量制御、パージ制御弁のデューティ制御等を行う。
【0023】
図2は、エンジン停止後に実行される故障診断を説明するためのタイムチャートである。なお、タンク内圧PTANKは実際には絶対圧として検出されるが、図2では大気圧を基準とした差圧で示されている。
エンジンが停止すると、バイパス弁(BPV)36が開弁され、ベントシャット弁(VSV)38の開弁状態が維持される(時刻t1)。これにより、蒸発燃料処理装置40が大気に開放され、タンク内圧PTANKは大気圧と等しくなる。なお、パージ制御弁34はエンジン停止時に閉弁する。
【0024】
時刻t2から第1判定モードが開始される。すなわち、ベントシャット弁38が閉弁され、蒸発燃料処理装置40が閉じた状態とされる。この状態は第1判定時間TPHASE1(例えば900秒)に亘って維持される。タンク内圧PTANKは破線L1で示すように第1所定タンク内圧PTANK1(例えば大気圧+1.3kPa(10mmHg))を越えて上昇したときは、直ちに蒸発燃料処理装置40は正常(漏れが無い)と判定される(時刻t3)。タンク内圧PTANKが実線L2で示すように変化したときは、最大タンク内圧PTANKMAXが記憶される(時刻t4)。
【0025】
次にベントシャット弁38が開弁され(時刻t4)、蒸発燃料処理装置が大気に開放される。
時刻t5から第2判定モードが開始される。すなわちベントシャット弁38が閉弁され、この状態が第2判定時間TPHASE2(例えば2400秒)に亘って維持される。タンク内圧PTANKが破線L3で示すように第2所定タンク内圧PTANK2(例えば大気圧−1.3kPa(10mmHg))より低くなったときは(時刻t6)、直ちに蒸発燃料処理装置40は正常(漏れが無い)と判定される。タンク内圧PTANKが実線L4で示すように変化したときは、最小タンク内圧PTANKMINが記憶される(時刻t7)。
【0026】
時刻t7においてバイパス弁36が閉弁されるとともに、ベントシャット弁38が開弁される。記憶した最大タンク内圧PTANKMAXと最小タンク内圧PTANKMINとの圧力差ΔPが判定閾値ΔPTHより大きいときは、蒸発燃料処理装置40は正常と判定され、圧力差ΔPが判定閾値ΔPTH以下であるときは、蒸発燃料処理装置40は故障した(漏れが有る)と判定される。漏れが有る場合には、タンク内圧PTANKは大気圧からの変化量が小さくなり、圧力差ΔPが小さくなるからである。
【0027】
図3は、故障診断許可フラグFDETの設定を行う処理のフローチャートである。この処理は、所定時間(例えば100ミリ秒)毎にECU5のCPUで実行される。
ステップS11では、今回イグニッションスイッチ42がオフされたか否かを判別し、オフされなかったときは直ちに本処理を終了する。オフされたときは、異常検出フラグFCSが「1」であるか否かを判別する(ステップS12)。異常検出フラグFCSは、図6の処理により、圧力センサ15の断線若しくはショート、バイパス弁36の断線若しくはショート、またはベントシャット弁38の断線若しくはショートが検出されたとき、「1」に設定される。
【0028】
FCS=1であるときは、ステップS18に進み、故障診断許可フラグFDETが「0」に設定され、故障診断が禁止される。FCS=0であるときは、前回(本処理の前回実行時において)エンジン1が作動していたか否かを判別する(ステップS13)。この答が否定(NO)のときは直ちに本処理を終了し、肯定(YES)であってエンジン停止直後であるときは、外気温センサ41の検出値TATを読み込み(ステップS14)、次いで気層温度センサ39の検出値TTGを読み込む(ステップS15)。
【0029】
続くステップS16では、気層温度TTGと外気温TATとの差(TTG−TAT)が所定温度差ΔT1(例えば5℃)より大きいか否かを判別する。この答が否定(NO)であるとき、すなわち気層温度TTGと外気温TATとの差が小さいときは、故障診断を実行すると誤判定を起こす可能性が高いので、ステップS18に進み、故障診断を禁止する。一方ステップS16の答が肯定(YES)であるときは、故障診断許可フラグFDETが「1」に設定され(ステップS17)、故障診断が許可される。
【0030】
図3の処理により、気層温度TTGと外気温TATとの差(TTG−TAT)が所定温度差ΔT1以下であるときは、エンジン停止後の故障診断を禁止するようにしたので、誤判定を防止し判定精度を高めることができる。
【0031】
図4及び5は故障診断を実行する処理のフローチャートである。この処理は、所定時間(例えば100ミリ秒)毎にECU5のCPUで実行される。
ステップS21では、エンジン1が停止したか否かを判別する。エンジン1が作動中であるときは、第1アップカウントタイマTM1の値を「0」にセットし(ステップS23)、本処理を終了する。エンジン1が停止すると、ステップS21からステップS22に進み、故障診断許可フラグFDETが「1」であるか否かを判別する。FDET=0であるときは前記ステップS23に進み、FDET=1であるときは、第1アップカウントタイマTM1の値が第1大気開放時間TOTA1(例えば120秒)を越えたか否かを判別する(ステップS24)。最初はこの答は否定(NO)であるので、バイパス弁36を開弁し、ベントシャット弁38の開弁状態を維持する(ステップS25)(図2,時刻t1)。次いで第2アップカウントタイマTM2の値を「0」に設定し(ステップS26)、本処理を終了する。
【0032】
第1アップカウントタイマTM1の値が第1大気開放時間TOTA1に達すると(時刻t2)、ステップS24からステップS27に進み、第2アップカウントタイマTM2の値が第1判定時間TPHASE1より大きいか否かを判別する。最初はこの答は否定(NO)であるので、ベントシャット弁38を閉弁し(ステップS28)、タンク内圧PTANKが第1所定タンク内圧PTANK1より高いか否かを判別する(ステップS29)。最初はこの答は否定(NO)となるので、第3アップカウントタイマTM3の値を「0」に設定し(ステップS31)、タンク内圧PTANKが最大タンク内圧PTANKMAXより高いか否かを判別する(ステップS32)。最大タンク内圧PTANKMAXの初期値は、大気圧より低い値に設定されているため、最初はこの答は肯定(YES)となり、そのときのタンク内圧PTANKが最大タンク内圧PTANKMAXに設定される(ステップS33)。ステップS32の答が否定(NO)であるときは、直ちに本処理を終了する。ステップS32及びS33により、第1判定モードにおける最大タンク内圧PTANKMAXが得られる。
【0033】
ステップS29の答が肯定(YES)となったときは(図2,破線L1,時刻t3参照)、タンク内圧PTANKの上昇が大きいので蒸発燃料処理装置40は正常(漏れは無い)と判定し(ステップS30)、故障診断を終了する。
第2アップカウントタイマTM2の値が第1判定時間TPHASE1に達すると(時刻t4)、ステップS27からステップS34に進む。ステップS34では、第3アップカウントタイマTM3の値が第2大気開放時間TOTA2(例えば120秒)より大きいか否かを判別する。この答は最初は否定(NO)であるので、ベントシャット弁38を開弁し(ステップS35)、第4アップカウントタイマTM4の値を「0」に設定し(ステップS36)、本処理を終了する。
【0034】
第3アップカウントタイマTM3の値が第2大気開放時間TOTA2に達すると(時刻t5)、ステップS34からステップS41(図5)に進み、第4アップカウントタイマTM4の値が第2判定時間TPHASE2より大きいか否かを判別する。最初はこの答は否定(NO)であるので、ベントシャット弁38を閉弁し(ステップS42)、タンク内圧PTANKが第2所定タンク内圧PTANK2より低いか否かを判別する(ステップS43)。最初はこの答は否定(NO)となるので、タンク内圧PTANKが最小タンク内圧PTANKMINより低いか否かを判別する(ステップS45)。最小タンク内圧PTANKMINの初期値は、大気圧より高い値に設定されているため、最初はこの答は肯定(YES)となり、そのときのタンク内圧PTANKが最小タンク内圧PTANKMINに設定される(ステップS46)。ステップS45の答が否定(NO)であるときは、直ちに本処理を終了する。ステップS45及びS46により、第2判定モードにおける最小タンク内圧PTANKMINが得られる。
【0035】
ステップS43の答が肯定(YES)となったときは(図2,破線L3,時刻t6参照)、タンク内圧PTANKの減少が大きいので蒸発燃料処理装置40は正常(漏れは無い)と判定し(ステップS44)、故障診断を終了する。
第4アップカウントタイマTM4の値が第2判定時間TPHASE2に達すると(時刻t7)、バイパス弁36を閉弁するとともにベントシャット弁38を開弁する(ステップS47)。次いで最大タンク内圧PTANKMAXと最小タンク内圧PTANKMINとの圧力差ΔP(PTANKMAX−PTANKMIN)を算出し(ステップS48)、圧力差ΔPが判定閾値ΔPTHより大きいか否かを判別する(ステップS49)。その結果、ΔP>ΔPTHであるときは、蒸発燃料処理装置40は正常と判定して故障診断を終了し(ステップS50)、ΔP≦ΔPTHであるときは、蒸発燃料処理装置40は故障した(漏れが有る)と判定して故障診断を終了する(ステップS51)。
【0036】
図6は、異常検出フラグFCSの設定を行う処理のフローチャートである。この処理は、ECU5のCPUで所定時間(例えば100ミリ秒)毎に実行される。
ステップS61では、図4及び5の故障診断処理を実行しているか否かを判別し、実行してないときは直ちに本処理を終了する。故障診断処理を実行しているときは、ステップS62〜S81の処理を実行する。
【0037】
ステップS62では、圧力センサ15の断線・ショート検知処理を実行する。この処理では、圧力センサ15の出力電圧及び出力電流から、断線またはショートの発生が検出される。ステップS63では、バイパス弁36の断線・ショート検知処理を実行する。この処理では、バイパス弁36の入力電圧及び入力電流から、断線またはショートの発生が検出される。ステップS64では、ベントシャット弁38の断線・ショート検知処理を実行する。この処理では、ベントシャット弁38の入力電圧及び入力電流から、断線またはショートの発生が検出される。
【0038】
次いで圧力センサ15の断線が検出されたか否かを判別し(ステップS65)、検出されていないときは圧力センサ15のショートが検出されたか否かを判別する(ステップS66)。この答が否定(NO)であるときは、バイパス弁36の断線が検出されたか否かを判別し(ステップS67)、検出されていないときはバイパス弁36のショートが検出されたか否かを判別する(ステップS68)。この答が否定(NO)であるときは、ベントシャット弁38の断線が検出されたか否かを判別し(ステップS69)、検出されていないときはベントシャット弁38のショートが検出されたか否かを判別する(ステップS70)。
【0039】
そして、ステップS65〜S70のいずれかの答が肯定(YES)であるときは、異常検出フラグFCSを「1」に設定し(ステップS81)、ステップS65〜S70の全ての答が否定(NO)であるときは、異常検出フラグFCSを「0」に設定する(ステップS80)。
【0040】
このように、故障診断の実行に直接関わる圧力センサ15、バイパス弁36及びベントシャット弁38の断線またはショートが検出されたときは、異常検出フラグFCSが「1」に設定され、故障診断が禁止されるので、圧力センサ15、バイパス弁36またはベントシャット弁38の故障によって、誤判定が発生することを防止することができる。
【0041】
本実施形態では、ECU5が判定手段、禁止手段、及び故障検出手段を構成する。より具体的には、図4及び5の処理が判定手段に相当し、図3のステップS16〜S18が禁止手段に相当し、図6の処理が故障検出手段に相当する。また圧力センサ15が蒸発燃料処理装置内の圧力を検出する圧力検出手段に相当する。
【0042】
なお上述した実施形態では、外気温センサ41を吸気温センサ14とは別に設けたが、吸気温センサ14により検出される吸気温TAを外気温TATとして用いてもよい。また上述した実施形態では、圧力センサ15はチャージ通路31に設けたが、燃料タンク9に設けるようにしてもよい。
【0043】
【発明の効果】
以上詳述したように本発明によれば、機関の停止が検出されたときに、パージ制御弁及びベントシャット弁が閉弁され、その後の所定判定期間中の前記圧力検出手段による検出圧力に基づいて、蒸発燃料処理装置の漏れが判定される。ただし、機関の停止時に検出された気層温度と外気温との差が所定閾値以下であるときは、前記漏れの判定が禁止される。したがって、燃料タンク内の気層温度が外気温に比べてあまり高くなっていないような場合には、漏れの判定が禁止され、誤判定を防止することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態にかかる蒸発燃料処理装置及び内燃機関の制御装置の構成を示す図である。
【図2】故障診断の概要を説明するためのタイムチャートである。
【図3】故障診断許可フラグ(FDET)の設定を行う処理のフローチャートである。
【図4】故障診断を実行する処理のフローチャートである。
【図5】故障診断を実行する処理のフローチャートである。
【図6】異常検出フラグ(FCS)の設定を行う処理のフローチャートである。
【符号の説明】
1 内燃機関
2 吸気管
5 電子コントロールユニット(判定手段、禁止手段)
9 燃料タンク
15 圧力センサ(圧力検出手段)
31 チャージ通路(第1の通路)
32 パージ通路(第2の通路)
33 キャニスタ
34 パージ制御弁
36 バイパス弁
37 空気通路
38 ベントシャット弁
39 気層温度センサ(気層温度検出手段)
40 蒸発燃料処理装置
41 外気温センサ(外気温検出手段)
42 イグニッションスイッチ(機関停止検出手段)
【発明の属する技術分野】
本発明は、燃料タンク内で発生する蒸発燃料を一時的に貯蔵し、貯蔵した蒸発燃料を内燃機関に供給する蒸発燃料処理装置の故障を診断する故障診断装置に関する。
【0002】
【従来の技術】
燃料タンク内で発生する蒸発燃料を一時的に貯蔵し、貯蔵した蒸発燃料を内燃機関に供給する蒸発燃料処理装置において、漏れが発生すると大気中に蒸発燃料が放出されるため、種々の漏れ判定手法が提案されている。例えば特開平11−336626号公報には、内燃機関の作動中ではなく、停止後に漏れ判定を行う手法が示されている。
この手法によれば、機関停止後に蒸発燃料処理装置内の圧力と大気圧との差圧の推移を検出し、その差圧の変動量に基づいて、漏れの判定が行われる。
【0003】
【発明が解決しようとする課題】
上記従来の手法によれば、機関停止後の燃料タンク内の温度変化に起因する蒸発燃料処理装置内の圧力変化に基づいて、漏れの判定が行われる。そのため、機関を作動させてすぐに停止した場合のように、燃料タンク内の温度上昇が不十分であるときには、機関停止後の温度変化が小さく、したがって圧力変化も小さくなり、誤判定の可能性が高くなる。
【0004】
本発明はこの点に着目してなされたものであり、機関停止後に蒸発燃料処理装置の漏れ判定を行う場合における誤判定を防止し、精度の高い判定を行うことができる故障診断装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するため請求項1に記載の発明は、燃料タンクと、大気に連通する空気通路が設けられ、前記燃料タンク内で発生する蒸発燃料を吸着する吸着剤を有するキャニスタと、該キャニスタと前記燃料タンクとを接続する第1の通路と、前記キャニスタと内燃機関の吸気系とを接続する第2の通路と、前記空気通路を開閉するベントシャット弁と、前記第2の通路に設けられたパージ制御弁とを備えた蒸発燃料処理装置の故障を診断する故障診断装置において、前記蒸発燃料処理装置内の圧力を検出する圧力検出手段と、前記機関の停止を検出する機関停止検出手段と、該機関停止検出手段により前記機関の停止が検出されたときに、前記パージ制御弁及びベントシャット弁を閉弁し、その後の所定判定期間中の前記圧力検出手段による検出圧力(PTANK)に基づいて、前記蒸発燃料処理装置の漏れの有無を判定する判定手段と、前記燃料タンク内の気層温度(TTG)を検出する気層温度検出手段と、外気温(TAT)を検出する外気温検出手段と、前記機関の停止時に検出された気層温度と外気温との差(TTG−TAT)が所定閾値(ΔT1)以下であるときは、前記判定手段による判定を禁止する禁止手段とを備えることを特徴とする。
【0006】
この構成によれば、機関の停止が検出されたときに、パージ制御弁及びベントシャット弁が閉弁され、その後の所定判定期間中の前記圧力検出手段による検出圧力に基づいて、蒸発燃料処理装置の漏れが判定される。ただし、機関の停止時に検出された気層温度と外気温との差が所定閾値以下であるときは、前記漏れの判定が禁止される。したがって、燃料タンク内の気層温度が外気温に比べてあまり高くなっていないような場合には、漏れの判定が禁止され、誤判定を防止することができる。
【0007】
前記禁止手段は、前記圧力検出手段及び前記ベントシャット弁の少なくとも一方の故障を検出する故障検出手段を備え、該故障検出手段により故障が検出されたときは、前記判定手段による判定を禁止することが望ましい。
これにより、圧力検出手段やベントシャット弁の故障によって、誤判定が発生することを防止することができる。
【0008】
【発明の実施の形態】
以下本発明の実施の形態を図面を参照して説明する。
図1は、本発明の一実施形態に係る蒸発燃料処理装置及び内燃機関の制御装置の構成を示す図である。同図において、1は例えば4気筒を有する内燃機関(以下単に「エンジン」という)であり、エンジン1の吸気管2の途中にはスロットル弁3が配されている。また、スロットル弁3にはスロットル弁開度(THA)センサ4が連結されており、当該スロットル弁3の開度に応じた電気信号を出力して電子コントロールユニット(以下「ECU」という)5に供給する。
【0009】
燃料噴射弁6は、吸気管2の途中であってエンジン1とスロットル弁3との間の図示しない吸気弁の少し上流側に各気筒毎に設けられている。また、各燃料噴射弁6は燃料供給管7を介して燃料タンク9に接続されており、燃料供給管7の途中には燃料ポンプ8が設けられている。燃料タンク9は給油のための給油口10を有しており、給油口10にはフィラーキャップ11が取付けられている。
【0010】
燃料噴射弁6はECU5に電気的に接続され、該ECU5からの信号によりその開弁時間が制御される。吸気管2のスロットル弁3の下流側には吸気管内絶対圧PBAを検出する吸気管内絶対圧(PBA)センサ13、及び吸気温TAを検出する吸気温(TA)センサ14が装着されている。
【0011】
エンジン1の図示しないカム軸周囲又はクランク軸周囲にはエンジン回転数を検出するエンジン回転数(NE)センサ17が取付けられている。エンジン回転数センサ17はエンジン1のクランク軸の180度回転毎に所定のクランク角度位置でパルス(TDC信号パルス)を出力する。エンジン1の冷却水温TWを検出するエンジン水温センサ18及びエンジン1の排気中の酸素濃度を検出する酸素濃度センサ(以下「LAFセンサ」という)19が設けれられており、これらのセンサ13〜19の検出信号はECU5に供給される。LAFセンサ19は、排気中の酸素濃度(エンジン1に供給される混合気の空燃比)にほぼ比例する信号を出力する広域空燃比センサとして機能するものである。
【0012】
ECU5にはさらに、外気温TATを検出する外気温センサ41及びイグニッションスイッチ42が接続されており、外気温センサ41の検出信号及びイグニッションスイッチ42の切替信号がECU5に供給される。
燃料タンク9は、チャージ通路31を介してキャニスタ33に接続され、キャニスタ33は、吸気管2のスロットル弁3の下流側にパージ通路32を介して接続されている。
【0013】
チャージ通路31には、二方向弁35が設けられている。二方向弁35は、燃料タンク9内の圧力が大気圧より第1所定圧(例えば2.7kPa(20mmHg))以上高いとき開弁する正圧弁と、燃料タンク9内の圧力がキャニスタ33内の圧力より第2所定圧以上低いとき開弁する負圧弁とからなる。
【0014】
二方向弁35をバイパスするバイパス通路31aが設けられており、バイパス通路31aには、バイバス弁(開閉弁)36が設けられている。バイパス弁36は、通常は閉弁状態とされ、後述する故障診断実行中開閉される電磁弁であり、その動作はECU5により制御される。
【0015】
チャージ通路31には、二方向弁35と燃料タンク9との間に圧力センサ15が設けられており、その検出信号はECU5に供給される。圧力センサ15の出力PTANKは、キャニスタ33及び燃料タンク9内の圧力が安定している定常状態では、燃料タンク内の圧力に等しくなるが、キャニスタ33または燃料タンク9内の圧力が変化しているとき、実際のタンク内圧とは異なる圧力を示す。以下の説明では、圧力センサ15の出力を「タンク内圧PTANK」という。
【0016】
キャニスタ33は、燃料タンク9内の蒸発燃料を吸着するための活性炭を内蔵する。キャニスタ33には、空気通路37が接続されており、キャニスタ33は空気通路37を介して大気に連通可能となっている。
空気通路37の途中にはベントシャット弁(開閉弁)38が設けられている。ベントシャット弁38は、ECU5によりその作動が制御される電磁弁であり、給油時またはパージ実行中に開弁される。またベントシャット弁38は、後述する故障診断実行時に開閉される。ベントシャット弁38は、駆動信号が供給されないときは、開弁する常開型の電磁弁である。
【0017】
パージ通路32のキャニスタ33と吸気管2との間には、パージ制御弁34が設けられている。パージ制御弁34は、その制御信号のオン−オフデューティ比(制御弁の開度)を変更することにより流量を連続的に制御することができるように構成された電磁弁であり、その作動はECU5により制御される。
【0018】
燃料タンク9には、燃料タンク内の気層(空気と蒸発燃料とからなる混合気層)の温度を検出する気層温度検出手段としての気層温度センサ39が設けられている。気層温度センサ39の検出信号は、ECU5に供給される。
燃料タンク9、チャージ通路31、バイパス通路31a、キャニスタ33、パージ通路32、二方向弁35、バイパス弁36、パージ制御弁34、空気通路37、及びベントシャット弁38により、蒸発燃料処理装置40が構成される。
【0019】
本実施形態では、イグニッションスイッチ42がオフされても、後述する故障診断を実行する期間中は、ECU5、バイパス弁36及びベントシャット弁38には電源が供給される。なおパージ制御弁34は、イグニッションスイッチ42がオフされると、電源が供給されなくなり、閉弁状態を維持する。
【0020】
燃料タンク9の給油時に蒸発燃料が大量に発生すると、二方向弁35が開弁し、キャニスタ33に蒸発燃料が貯蔵される。エンジン1の所定運転状態において、パージ制御弁34のデューティ制御が行われ、適量の蒸発燃料がキャニスタ33から吸気管2に供給される。
【0021】
ECU5は各種センサ等からの入力信号波形を整形し、電圧レベルを所定レベルに修正し、アナログ信号値をデジタル信号値に変換する等の機能を有する入力回路、中央演算処理ユニット(以下「CPU」という)、CPUで実行される演算プログラム及び演算結果等を記憶する記憶回路のほか、燃料噴射弁6、パージ制御弁34、バイパス弁36及びベントシャット弁38に駆動信号を供給する出力回路等から構成される。
【0022】
ECU5のCPUは、エンジン回転数センサ17、吸気管内絶対圧センサ13、エンジン水温センサ18などの各種センサの出力信号に応じてエンジン1に供給する燃料量制御、パージ制御弁のデューティ制御等を行う。
【0023】
図2は、エンジン停止後に実行される故障診断を説明するためのタイムチャートである。なお、タンク内圧PTANKは実際には絶対圧として検出されるが、図2では大気圧を基準とした差圧で示されている。
エンジンが停止すると、バイパス弁(BPV)36が開弁され、ベントシャット弁(VSV)38の開弁状態が維持される(時刻t1)。これにより、蒸発燃料処理装置40が大気に開放され、タンク内圧PTANKは大気圧と等しくなる。なお、パージ制御弁34はエンジン停止時に閉弁する。
【0024】
時刻t2から第1判定モードが開始される。すなわち、ベントシャット弁38が閉弁され、蒸発燃料処理装置40が閉じた状態とされる。この状態は第1判定時間TPHASE1(例えば900秒)に亘って維持される。タンク内圧PTANKは破線L1で示すように第1所定タンク内圧PTANK1(例えば大気圧+1.3kPa(10mmHg))を越えて上昇したときは、直ちに蒸発燃料処理装置40は正常(漏れが無い)と判定される(時刻t3)。タンク内圧PTANKが実線L2で示すように変化したときは、最大タンク内圧PTANKMAXが記憶される(時刻t4)。
【0025】
次にベントシャット弁38が開弁され(時刻t4)、蒸発燃料処理装置が大気に開放される。
時刻t5から第2判定モードが開始される。すなわちベントシャット弁38が閉弁され、この状態が第2判定時間TPHASE2(例えば2400秒)に亘って維持される。タンク内圧PTANKが破線L3で示すように第2所定タンク内圧PTANK2(例えば大気圧−1.3kPa(10mmHg))より低くなったときは(時刻t6)、直ちに蒸発燃料処理装置40は正常(漏れが無い)と判定される。タンク内圧PTANKが実線L4で示すように変化したときは、最小タンク内圧PTANKMINが記憶される(時刻t7)。
【0026】
時刻t7においてバイパス弁36が閉弁されるとともに、ベントシャット弁38が開弁される。記憶した最大タンク内圧PTANKMAXと最小タンク内圧PTANKMINとの圧力差ΔPが判定閾値ΔPTHより大きいときは、蒸発燃料処理装置40は正常と判定され、圧力差ΔPが判定閾値ΔPTH以下であるときは、蒸発燃料処理装置40は故障した(漏れが有る)と判定される。漏れが有る場合には、タンク内圧PTANKは大気圧からの変化量が小さくなり、圧力差ΔPが小さくなるからである。
【0027】
図3は、故障診断許可フラグFDETの設定を行う処理のフローチャートである。この処理は、所定時間(例えば100ミリ秒)毎にECU5のCPUで実行される。
ステップS11では、今回イグニッションスイッチ42がオフされたか否かを判別し、オフされなかったときは直ちに本処理を終了する。オフされたときは、異常検出フラグFCSが「1」であるか否かを判別する(ステップS12)。異常検出フラグFCSは、図6の処理により、圧力センサ15の断線若しくはショート、バイパス弁36の断線若しくはショート、またはベントシャット弁38の断線若しくはショートが検出されたとき、「1」に設定される。
【0028】
FCS=1であるときは、ステップS18に進み、故障診断許可フラグFDETが「0」に設定され、故障診断が禁止される。FCS=0であるときは、前回(本処理の前回実行時において)エンジン1が作動していたか否かを判別する(ステップS13)。この答が否定(NO)のときは直ちに本処理を終了し、肯定(YES)であってエンジン停止直後であるときは、外気温センサ41の検出値TATを読み込み(ステップS14)、次いで気層温度センサ39の検出値TTGを読み込む(ステップS15)。
【0029】
続くステップS16では、気層温度TTGと外気温TATとの差(TTG−TAT)が所定温度差ΔT1(例えば5℃)より大きいか否かを判別する。この答が否定(NO)であるとき、すなわち気層温度TTGと外気温TATとの差が小さいときは、故障診断を実行すると誤判定を起こす可能性が高いので、ステップS18に進み、故障診断を禁止する。一方ステップS16の答が肯定(YES)であるときは、故障診断許可フラグFDETが「1」に設定され(ステップS17)、故障診断が許可される。
【0030】
図3の処理により、気層温度TTGと外気温TATとの差(TTG−TAT)が所定温度差ΔT1以下であるときは、エンジン停止後の故障診断を禁止するようにしたので、誤判定を防止し判定精度を高めることができる。
【0031】
図4及び5は故障診断を実行する処理のフローチャートである。この処理は、所定時間(例えば100ミリ秒)毎にECU5のCPUで実行される。
ステップS21では、エンジン1が停止したか否かを判別する。エンジン1が作動中であるときは、第1アップカウントタイマTM1の値を「0」にセットし(ステップS23)、本処理を終了する。エンジン1が停止すると、ステップS21からステップS22に進み、故障診断許可フラグFDETが「1」であるか否かを判別する。FDET=0であるときは前記ステップS23に進み、FDET=1であるときは、第1アップカウントタイマTM1の値が第1大気開放時間TOTA1(例えば120秒)を越えたか否かを判別する(ステップS24)。最初はこの答は否定(NO)であるので、バイパス弁36を開弁し、ベントシャット弁38の開弁状態を維持する(ステップS25)(図2,時刻t1)。次いで第2アップカウントタイマTM2の値を「0」に設定し(ステップS26)、本処理を終了する。
【0032】
第1アップカウントタイマTM1の値が第1大気開放時間TOTA1に達すると(時刻t2)、ステップS24からステップS27に進み、第2アップカウントタイマTM2の値が第1判定時間TPHASE1より大きいか否かを判別する。最初はこの答は否定(NO)であるので、ベントシャット弁38を閉弁し(ステップS28)、タンク内圧PTANKが第1所定タンク内圧PTANK1より高いか否かを判別する(ステップS29)。最初はこの答は否定(NO)となるので、第3アップカウントタイマTM3の値を「0」に設定し(ステップS31)、タンク内圧PTANKが最大タンク内圧PTANKMAXより高いか否かを判別する(ステップS32)。最大タンク内圧PTANKMAXの初期値は、大気圧より低い値に設定されているため、最初はこの答は肯定(YES)となり、そのときのタンク内圧PTANKが最大タンク内圧PTANKMAXに設定される(ステップS33)。ステップS32の答が否定(NO)であるときは、直ちに本処理を終了する。ステップS32及びS33により、第1判定モードにおける最大タンク内圧PTANKMAXが得られる。
【0033】
ステップS29の答が肯定(YES)となったときは(図2,破線L1,時刻t3参照)、タンク内圧PTANKの上昇が大きいので蒸発燃料処理装置40は正常(漏れは無い)と判定し(ステップS30)、故障診断を終了する。
第2アップカウントタイマTM2の値が第1判定時間TPHASE1に達すると(時刻t4)、ステップS27からステップS34に進む。ステップS34では、第3アップカウントタイマTM3の値が第2大気開放時間TOTA2(例えば120秒)より大きいか否かを判別する。この答は最初は否定(NO)であるので、ベントシャット弁38を開弁し(ステップS35)、第4アップカウントタイマTM4の値を「0」に設定し(ステップS36)、本処理を終了する。
【0034】
第3アップカウントタイマTM3の値が第2大気開放時間TOTA2に達すると(時刻t5)、ステップS34からステップS41(図5)に進み、第4アップカウントタイマTM4の値が第2判定時間TPHASE2より大きいか否かを判別する。最初はこの答は否定(NO)であるので、ベントシャット弁38を閉弁し(ステップS42)、タンク内圧PTANKが第2所定タンク内圧PTANK2より低いか否かを判別する(ステップS43)。最初はこの答は否定(NO)となるので、タンク内圧PTANKが最小タンク内圧PTANKMINより低いか否かを判別する(ステップS45)。最小タンク内圧PTANKMINの初期値は、大気圧より高い値に設定されているため、最初はこの答は肯定(YES)となり、そのときのタンク内圧PTANKが最小タンク内圧PTANKMINに設定される(ステップS46)。ステップS45の答が否定(NO)であるときは、直ちに本処理を終了する。ステップS45及びS46により、第2判定モードにおける最小タンク内圧PTANKMINが得られる。
【0035】
ステップS43の答が肯定(YES)となったときは(図2,破線L3,時刻t6参照)、タンク内圧PTANKの減少が大きいので蒸発燃料処理装置40は正常(漏れは無い)と判定し(ステップS44)、故障診断を終了する。
第4アップカウントタイマTM4の値が第2判定時間TPHASE2に達すると(時刻t7)、バイパス弁36を閉弁するとともにベントシャット弁38を開弁する(ステップS47)。次いで最大タンク内圧PTANKMAXと最小タンク内圧PTANKMINとの圧力差ΔP(PTANKMAX−PTANKMIN)を算出し(ステップS48)、圧力差ΔPが判定閾値ΔPTHより大きいか否かを判別する(ステップS49)。その結果、ΔP>ΔPTHであるときは、蒸発燃料処理装置40は正常と判定して故障診断を終了し(ステップS50)、ΔP≦ΔPTHであるときは、蒸発燃料処理装置40は故障した(漏れが有る)と判定して故障診断を終了する(ステップS51)。
【0036】
図6は、異常検出フラグFCSの設定を行う処理のフローチャートである。この処理は、ECU5のCPUで所定時間(例えば100ミリ秒)毎に実行される。
ステップS61では、図4及び5の故障診断処理を実行しているか否かを判別し、実行してないときは直ちに本処理を終了する。故障診断処理を実行しているときは、ステップS62〜S81の処理を実行する。
【0037】
ステップS62では、圧力センサ15の断線・ショート検知処理を実行する。この処理では、圧力センサ15の出力電圧及び出力電流から、断線またはショートの発生が検出される。ステップS63では、バイパス弁36の断線・ショート検知処理を実行する。この処理では、バイパス弁36の入力電圧及び入力電流から、断線またはショートの発生が検出される。ステップS64では、ベントシャット弁38の断線・ショート検知処理を実行する。この処理では、ベントシャット弁38の入力電圧及び入力電流から、断線またはショートの発生が検出される。
【0038】
次いで圧力センサ15の断線が検出されたか否かを判別し(ステップS65)、検出されていないときは圧力センサ15のショートが検出されたか否かを判別する(ステップS66)。この答が否定(NO)であるときは、バイパス弁36の断線が検出されたか否かを判別し(ステップS67)、検出されていないときはバイパス弁36のショートが検出されたか否かを判別する(ステップS68)。この答が否定(NO)であるときは、ベントシャット弁38の断線が検出されたか否かを判別し(ステップS69)、検出されていないときはベントシャット弁38のショートが検出されたか否かを判別する(ステップS70)。
【0039】
そして、ステップS65〜S70のいずれかの答が肯定(YES)であるときは、異常検出フラグFCSを「1」に設定し(ステップS81)、ステップS65〜S70の全ての答が否定(NO)であるときは、異常検出フラグFCSを「0」に設定する(ステップS80)。
【0040】
このように、故障診断の実行に直接関わる圧力センサ15、バイパス弁36及びベントシャット弁38の断線またはショートが検出されたときは、異常検出フラグFCSが「1」に設定され、故障診断が禁止されるので、圧力センサ15、バイパス弁36またはベントシャット弁38の故障によって、誤判定が発生することを防止することができる。
【0041】
本実施形態では、ECU5が判定手段、禁止手段、及び故障検出手段を構成する。より具体的には、図4及び5の処理が判定手段に相当し、図3のステップS16〜S18が禁止手段に相当し、図6の処理が故障検出手段に相当する。また圧力センサ15が蒸発燃料処理装置内の圧力を検出する圧力検出手段に相当する。
【0042】
なお上述した実施形態では、外気温センサ41を吸気温センサ14とは別に設けたが、吸気温センサ14により検出される吸気温TAを外気温TATとして用いてもよい。また上述した実施形態では、圧力センサ15はチャージ通路31に設けたが、燃料タンク9に設けるようにしてもよい。
【0043】
【発明の効果】
以上詳述したように本発明によれば、機関の停止が検出されたときに、パージ制御弁及びベントシャット弁が閉弁され、その後の所定判定期間中の前記圧力検出手段による検出圧力に基づいて、蒸発燃料処理装置の漏れが判定される。ただし、機関の停止時に検出された気層温度と外気温との差が所定閾値以下であるときは、前記漏れの判定が禁止される。したがって、燃料タンク内の気層温度が外気温に比べてあまり高くなっていないような場合には、漏れの判定が禁止され、誤判定を防止することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態にかかる蒸発燃料処理装置及び内燃機関の制御装置の構成を示す図である。
【図2】故障診断の概要を説明するためのタイムチャートである。
【図3】故障診断許可フラグ(FDET)の設定を行う処理のフローチャートである。
【図4】故障診断を実行する処理のフローチャートである。
【図5】故障診断を実行する処理のフローチャートである。
【図6】異常検出フラグ(FCS)の設定を行う処理のフローチャートである。
【符号の説明】
1 内燃機関
2 吸気管
5 電子コントロールユニット(判定手段、禁止手段)
9 燃料タンク
15 圧力センサ(圧力検出手段)
31 チャージ通路(第1の通路)
32 パージ通路(第2の通路)
33 キャニスタ
34 パージ制御弁
36 バイパス弁
37 空気通路
38 ベントシャット弁
39 気層温度センサ(気層温度検出手段)
40 蒸発燃料処理装置
41 外気温センサ(外気温検出手段)
42 イグニッションスイッチ(機関停止検出手段)
Claims (1)
- 燃料タンクと、大気に連通する空気通路が接続され、前記燃料タンク内で発生する蒸発燃料を吸着する吸着剤を有するキャニスタと、該キャニスタと前記燃料タンクとを接続する第1の通路と、前記キャニスタと内燃機関の吸気系とを接続する第2の通路と、前記空気通路を開閉するベントシャット弁と、前記第2の通路に設けられたパージ制御弁とを備えた蒸発燃料処理装置の故障を診断する故障診断装置において、
前記蒸発燃料処理装置内の圧力を検出する圧力検出手段と、
前記機関の停止を検出する機関停止検出手段と、
該機関停止検出手段により前記機関の停止が検出されたときに、前記パージ制御弁及びベントシャット弁を閉弁し、その後の所定判定期間中の前記圧力検出手段による検出圧力に基づいて、前記蒸発燃料処理装置の漏れの有無を判定する判定手段と、
前記燃料タンク内の気層温度を検出する気層温度検出手段と、
外気温を検出する外気温検出手段と、
前記機関の停止時に検出された気層温度と外気温との差が所定閾値以下であるときは、前記判定手段による判定を禁止する禁止手段とを備えることを特徴とする故障診断装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001307041A JP3776344B2 (ja) | 2001-10-03 | 2001-10-03 | 蒸発燃料処理装置の故障診断装置 |
US10/246,732 US6789523B2 (en) | 2001-10-03 | 2002-09-19 | Failure diagnosis apparatus for evaporative fuel processing system |
DE10246020A DE10246020B4 (de) | 2001-10-03 | 2002-10-02 | Fehlerdiagnosevorrichtung und -verfahren für ein Kraftstoffdampf-Behandlungssystem |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001307041A JP3776344B2 (ja) | 2001-10-03 | 2001-10-03 | 蒸発燃料処理装置の故障診断装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003113743A JP2003113743A (ja) | 2003-04-18 |
JP3776344B2 true JP3776344B2 (ja) | 2006-05-17 |
Family
ID=19126574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001307041A Expired - Fee Related JP3776344B2 (ja) | 2001-10-03 | 2001-10-03 | 蒸発燃料処理装置の故障診断装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US6789523B2 (ja) |
JP (1) | JP3776344B2 (ja) |
DE (1) | DE10246020B4 (ja) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10150420A1 (de) * | 2001-10-11 | 2003-04-30 | Bosch Gmbh Robert | Verfahren zur Überprüfung der Funktionsfähigkeit eines Tankentlüftungsventils einer Tankentlüftungsanlage |
JP3930437B2 (ja) * | 2002-04-11 | 2007-06-13 | 株式会社日本自動車部品総合研究所 | 蒸発燃料処理装置の故障診断方法および故障診断装置 |
JP4165369B2 (ja) * | 2003-01-24 | 2008-10-15 | 株式会社デンソー | エンジン制御装置 |
JP3923473B2 (ja) * | 2003-05-21 | 2007-05-30 | 本田技研工業株式会社 | 蒸発燃料処理装置の故障診断装置 |
DE10335152B4 (de) * | 2003-07-31 | 2005-08-04 | Siemens Ag | Betriebsverfahren und Überwachungsvorrichtung für eine gasbetriebene Brennkraftmaschine |
JP4433174B2 (ja) * | 2004-05-21 | 2010-03-17 | スズキ株式会社 | 内燃機関の蒸発燃料制御装置 |
JP4497293B2 (ja) * | 2004-05-21 | 2010-07-07 | スズキ株式会社 | 内燃機関の蒸発燃料制御装置 |
JP4191115B2 (ja) * | 2004-09-07 | 2008-12-03 | 本田技研工業株式会社 | 蒸発燃料処理装置の故障診断装置 |
DE102007043908B4 (de) * | 2007-09-14 | 2009-11-26 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine |
EP2619435A4 (en) * | 2010-09-24 | 2017-03-29 | Karma Automotive LLC | System for evaporative and refueling emission control for a vehicle |
JP2012149592A (ja) * | 2011-01-20 | 2012-08-09 | Toyota Motor Corp | エバポ系リーク診断装置 |
US9222446B2 (en) * | 2011-08-11 | 2015-12-29 | GM Global Technology Operations LLC | Fuel storage system for a vehicle |
US9316558B2 (en) * | 2013-06-04 | 2016-04-19 | GM Global Technology Operations LLC | System and method to diagnose fuel system pressure sensor |
US20150046026A1 (en) * | 2013-08-08 | 2015-02-12 | Ford Global Technologies, Llc | Engine-off leak detection based on pressure |
US20150096355A1 (en) * | 2013-10-09 | 2015-04-09 | Aisan Kogyo Kabushiki Kaisha | Failure determination devices for fuel vapor processing systems |
JP6287581B2 (ja) * | 2014-05-27 | 2018-03-07 | 日産自動車株式会社 | 蒸発燃料処理装置 |
JP2016003575A (ja) * | 2014-06-13 | 2016-01-12 | 株式会社デンソー | エバポガスパージシステムの異常診断装置 |
US9751396B2 (en) * | 2015-02-24 | 2017-09-05 | Ford Global Technologies, Llc | Fuel tank pressure sensor rationality for a hybrid vehicle during refueling |
US9845759B2 (en) | 2015-12-07 | 2017-12-19 | GM Global Technology Operations LLC | System and method for inducing a fuel system fault |
FR3081515B1 (fr) * | 2018-05-24 | 2020-06-05 | Continental Automotive France | Procede de diagnostic d'une etancheite dans un systeme de recyclage des vapeurs de carburant et systeme de recyclage afferent |
CN113484003B (zh) * | 2021-07-01 | 2023-12-29 | 中车制动系统有限公司 | 制动控制电磁阀故障监测方法与监测设备 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5299545A (en) * | 1991-09-13 | 1994-04-05 | Honda Giken Kogyo Kabushiki Kaisha | Evaporative fuel-processing system for internal combustion engines |
US5263462A (en) * | 1992-10-29 | 1993-11-23 | General Motors Corporation | System and method for detecting leaks in a vapor handling system |
US5396873A (en) * | 1992-12-18 | 1995-03-14 | Honda Giken Kogyo Kabushiki Kaisha | Evaporative fuel-processing system for internal combustion engines |
JP3183431B2 (ja) * | 1993-06-07 | 2001-07-09 | 本田技研工業株式会社 | 内燃エンジンの蒸発燃料処理装置 |
US5775307A (en) * | 1996-04-26 | 1998-07-07 | Honda Giken Kogyo Kabushiki Kaisha | Evaporative fuel-processing system for internal combustion engines |
JP3227389B2 (ja) * | 1996-07-26 | 2001-11-12 | 本田技研工業株式会社 | 内燃エンジンの蒸発燃料処理装置 |
US6089081A (en) * | 1998-01-27 | 2000-07-18 | Siemens Canada Limited | Automotive evaporative leak detection system and method |
DE19818697A1 (de) * | 1998-04-25 | 1999-10-28 | Opel Adam Ag | Verfahren zur Bestimmung von Leckagen im Kraftstoffversorgungssystem eines Kraftfahrzeuges |
US6164116A (en) * | 1999-05-06 | 2000-12-26 | Cymer, Inc. | Gas module valve automated test fixture |
JP2001193580A (ja) * | 2000-01-14 | 2001-07-17 | Honda Motor Co Ltd | 蒸発燃料放出防止装置の異常診断装置 |
US6564780B2 (en) * | 2000-06-23 | 2003-05-20 | Toyota Jidosha Kabushiki Kaisha | Diagnostic apparatus and method for fuel vapor purge system |
-
2001
- 2001-10-03 JP JP2001307041A patent/JP3776344B2/ja not_active Expired - Fee Related
-
2002
- 2002-09-19 US US10/246,732 patent/US6789523B2/en not_active Expired - Fee Related
- 2002-10-02 DE DE10246020A patent/DE10246020B4/de not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE10246020B4 (de) | 2007-08-23 |
US6789523B2 (en) | 2004-09-14 |
DE10246020A1 (de) | 2003-05-08 |
US20030061871A1 (en) | 2003-04-03 |
JP2003113743A (ja) | 2003-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3776344B2 (ja) | 蒸発燃料処理装置の故障診断装置 | |
JP2688674B2 (ja) | 燃料タンク内圧センサの故障検出装置及び故障補償装置 | |
JP3627787B2 (ja) | 内燃機関の燃料供給系異常診断装置 | |
JP2001193580A (ja) | 蒸発燃料放出防止装置の異常診断装置 | |
JP3325518B2 (ja) | 圧力センサの故障検出装置 | |
US6736117B2 (en) | Abnormality detecting device for evaporative fuel processing system | |
JP3923279B2 (ja) | 蒸発燃料処理装置の故障検出装置 | |
JP3243413B2 (ja) | 内燃エンジンの蒸発燃料処理装置 | |
JPH08121226A (ja) | 内燃エンジンの燃料供給系の異常検出装置 | |
JP2785238B2 (ja) | 蒸発燃料処理装置 | |
JP4892878B2 (ja) | 燃料レベルゲージの故障診断装置 | |
JP2010163932A (ja) | 内燃機関の触媒劣化診断装置 | |
JP4004911B2 (ja) | 内燃機関制御デバイスの故障診断装置 | |
JP2001329894A (ja) | 内燃機関の燃料系異常診断装置 | |
JP4001231B2 (ja) | 蒸発燃料処理系のリークを判定する装置 | |
JP4132789B2 (ja) | 内燃機関の吸気系故障診断装置 | |
JP3882832B2 (ja) | 内燃機関の燃料供給系異常診断装置 | |
JP3808797B2 (ja) | 蒸発燃料処理系のリークを判定する装置 | |
JP4104848B2 (ja) | 内燃機関の吸気系故障診断装置およびフェールセーフ装置 | |
JPH1047130A (ja) | 内燃機関の異常検出装置 | |
JP2004183643A (ja) | 蒸発燃料処理系のリークを判定する装置 | |
JP2004150302A (ja) | エンジンの異常判定装置 | |
JP2001082261A (ja) | 蒸発燃料放出防止装置の異常診断装置 | |
JP4055331B2 (ja) | 診断装置 | |
JP3880926B2 (ja) | 燃料レベル検出器の異常診断装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060131 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060222 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |