JP3769752B2 - 情報処理装置および情報処理方法、データ通信システム、並びに、プログラム - Google Patents
情報処理装置および情報処理方法、データ通信システム、並びに、プログラム Download PDFInfo
- Publication number
- JP3769752B2 JP3769752B2 JP2003055145A JP2003055145A JP3769752B2 JP 3769752 B2 JP3769752 B2 JP 3769752B2 JP 2003055145 A JP2003055145 A JP 2003055145A JP 2003055145 A JP2003055145 A JP 2003055145A JP 3769752 B2 JP3769752 B2 JP 3769752B2
- Authority
- JP
- Japan
- Prior art keywords
- data
- information processing
- reception
- processing apparatus
- data transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0002—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0015—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
- H04L1/0017—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/11—Identifying congestion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/26—Flow control; Congestion control using explicit feedback to the source, e.g. choke packets
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/28—Flow control; Congestion control in relation to timing considerations
- H04L47/283—Flow control; Congestion control in relation to timing considerations in response to processing delays, e.g. caused by jitter or round trip time [RTT]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/43—Assembling or disassembling of packets, e.g. segmentation and reassembly [SAR]
- H04L47/431—Assembling or disassembling of packets, e.g. segmentation and reassembly [SAR] using padding or de-padding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/14—Systems for two-way working
- H04N7/141—Systems for two-way working between two video terminals, e.g. videophone
- H04N7/148—Interfacing a video terminal to a particular transmission medium, e.g. ISDN
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/50—Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Communication Control (AREA)
Description
【発明の属する技術分野】
本発明は、情報処理装置および情報処理方法、データ通信システム、並びに、プログラムに関し、特に、ネットワークの状況に応じて、最適なデータ伝送レートでデータの伝送ができる情報処理装置および情報処理方法、データ通信システム、並びに、プログラムに関する。
【0002】
【従来の技術】
RTP(Real Time Transfer Protocol)/RTCP(RTP Control Protocol)を用いたデータの送受信における適応的レート制御方法としては、例えば、データ受信側の装置が、データ送信側の装置に対してパケット損失率やジッタなどを通知するRTCPのRR(Receiver Report)パケットに記載されている情報を基に、送信側の装置でデータの伝送状態を推定し、送信レートを制御するという方法が提案されている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平2002−204278号公報
【0004】
この方法によると、RRパケットに含まれるパケット損失率やジッタなどの値を用いて、パケットが損失したときや、ネットワークの輻輳によりジッタが大きくなったときにデータ伝送レートを下げたりすることが可能となる。
【0005】
また、データ送信側の装置が、パケットの到着遅延からネットワークの輻輳を検出し、検出結果を基に、データ送信レートを制御するという方法が提案されている(例えば、特許文献2参照)。
【0006】
【特許文献2】
特開平11−308271号公報
【0007】
図1は、従来のデータ通信システムについて説明するための図である。図1においては、送信側端末1が送信するデータが、ネットワーク3を介して、受信側端末2に受信される。
【0008】
送信側端末1のデータ生成部11は、受信側端末2に送信するデータを生成して、データ送信部12に出力する。データ送信部12は、供給されたデータを適当な大きさに分割し、分割されたデータ毎に、シーケンス番号およびデータを送信する時刻の情報を付加して、ネットワーク3を介して、受信側端末2に送出する。この時、データ送信部12は、送信レート変更部13によって指定された送信レートにしたがって、分割するデータの大きさや分割したデータを送り出す間隔を調整することにより、送信レートを調整する。
【0009】
受信レポート受信部15は、受信側端末2から送信された受信レポートを受信し、そのレポートの内容を、ネットワークバッファデータ量計算部14に供給する。ネットワークバッファデータ量計算部14は、レポートの内容を基に、データの往復時間を計算し、計算された往復時間に基づいて、ネットワークバッファデータ量を求める。送信レート変更部13は、ネットワークバッファデータ量計算部14から、ネットワークバッファデータ量の情報を受け、予め定められている目標ネットワークバッファ量に近づくように、送信レートを決定し、データ送信部12に送信レートを指定する。
【0010】
一方、受信側端末2のデータ受信部21は、ネットワーク3を介して、シーケンス番号および送信時刻情報が付加されたデータを受信し、データ処理部22に供給する。データ処理部22は、供給されたデータに対して、例えば、復号または表示処理などを実行する。
【0011】
また、データ受信部21は、データに付加されていたシーケンス番号および送信時刻情報を基に、データを受け取った時刻、受け取ったデータ量などについての情報を計測し、計測結果を定期的に受信レポート生成部23に供給する。受信レポート生成部23は、供給された情報を基に、受信レポートの生成に必要な受信レートを計算し、受信シーケンス番号、データ送信時刻、データ受信時刻および受信レポート送信時刻の情報を付与して、受信レポート送信部24に出力する。受信レポート送信部24は、ネットワーク3を介して、供給された受信レポートを、送信側端末1の受信レポート受信部14に送信する。
【0012】
図1の送信端末1および受信側端末2によるデータの授受が、RTPを用いて行われる場合、RTCP受信者報告パケット、すなわち、RRパケットを受信した送信端末1において、RTCPのRTT(Round Trip Time)が測定されることにより、データ転送の遅延が測定される。この方法は、RTCPの標準の枠組みを使って実現可能であり、送信端末1と受信側端末2との内部時刻がずれていてもRTTを計測できるという利点がある。
【0013】
図1の送信端末1と受信側端末2とにおいては、予め目標ネットワークバッファ量が設定され、受信レートに含まれる受信ビットレートとRTTを基に、送信端末1でネットワークバッファ量が求められることにより、レート制御が行われている。
【0014】
また、送信側のレートを上下させながら、最適なレートを探し出すという方法が提案されている(例えば、特許文献3参照)。
【0015】
【特許文献3】
特開平11−341064号公報
【0016】
この方法も、基本的には特許文献2に示される場合と同じく、RTCPのSRパケットおよびRRパケットを用いて、受信端末からの情報を基に、送信側でパケットの伝送遅延(RTTを基準とした遅延)を検出することにより、送信レートを制御するものである。
【0017】
更に、データ受信側で、ネットワークの伝送帯域を推定し、これに基づいて、データ受信側がデータ送信側に対して、伝送制御指示を送信することにより、データ伝送レートを制御することができる技術がある(例えば、特許文献4参照)。
【0018】
【特許文献4】
特開2000−115245号公報
【0019】
この方法によれば、例えば、テストパケットを送信することなどにより、ネットワークの伝送帯域を求めることができる。
【0020】
【発明が解決しようとする課題】
しかしながら、一般に、RRパケットに含まれるパケット損失率やジッタなどの値を用いて、ネットワークの輻輳状態を推測することは困難である。
【0021】
また、予め目標ネットワークバッファ量を設定して、受信レートに含まれる受信ビットレートとRTTを基に、送信側でネットワークバッファ量を求めて、目標ネットワークバッファ量となるようにレート制御を行うようにした場合、ネットワークのトポロジやルータの種類が特定できない状態においては、最適な目標ネットワークバッファデータ量を予め決めるのは困難である。
【0022】
更に、RTTを測定するためには、RTCPのSR(Sender Report)パケットと、RRパケットを利用する必要があるため、受信側から送信側へのデータ伝送経路で輻輳が発生した場合、RTTは、受信側から送信側へのデータ伝送経路における輻輳を含んだ値として計測されてしまう。また、RTCPの送信間隔は実装依存(5秒おき以上であることが推奨されている)であるため、特に、無線回線のようにネットワークの状況が刻々と変化するような状況にいては、定期的にRTTを計測することにより伝送レートを制御することは困難であった。
【0023】
また、SRパケットおよびRRパケットの送受信を実装したとしても、送信側における伝送レート設定方法は、送信側で実装されているアルゴリズムに依存するものであり、受信側から通知されるRRパケットの内容に基づいて、輻輳が回避されるとは限らない。
【0024】
また、データ受信側で、ネットワークの伝送帯域を推定し、これに基づいて、データ受信側が伝送制御指示を行うようにした場合において、ネットワークの伝送帯域、いわゆる、ボトルネックリンクの速度を求めるためには、少なくとも2つのパケットサイズのパケットデータを用いる必要がある。したがって、この方法は、例えば、MPEG2−TSを、RFC(Request For Comment)2250に基づいてRTPパケット化して伝送する場合のように、固定長でパケット化されることにより実行されるデータの送受信においては、適用することができない。
【0025】
更に、データ受信側で推定されるネットワークの伝送帯域は、いわゆるボトルネックリンクの帯域であるため、例えば、クロストラフィックなどにより、実際に利用可能な帯域がボトルネックリンクの帯域より少なくなっている場合においても、ボトルネックリンクの帯域を基に、データ伝送経路が制御されてしまうため、実際のネットワークの状況に即さないデータ伝送レートで、データが送信されてしまう恐れがある。
【0026】
本発明はこのような状況に鑑みてなされたものであり、ネットワークのトポロジやルータの種類が特定できない場合や、クロストラフィックなどにより、ネットワークにおいて利用可能な帯域が変化する場合であっても、ネットワークの状況に応じて、データ伝送レートを制御することができるようにするものである。
【0027】
【課題を解決するための手段】
本発明の第1の情報処理装置は、他の情報処理装置から送信された、データの伝送状況を含む所定の情報を受信する第1の受信手段と、第1の受信手段により所定の情報が受信された時刻を計測する受信時刻計測手段と、第1の受信手段により受信された所定の情報を基に、ネットワークの輻輳を予測する輻輳予測手段と、輻輳予測手段により輻輳が予測されるか否かを基に、他の情報処理装置のデータ伝送レートを制御する第1の制御信号を生成する制御信号生成手段と、制御信号生成手段により生成された第1の制御信号を、他の情報処理装置へ送信する第1の送信手段とを備え、輻輳予測手段は、第1の受信手段により受信された所定の情報を基に、ネットワークにおけるデータ伝送の遅延を検出する遅延検出手段を備え、遅延検出手段は、所定の情報を基に、他の情報処理装置におけるデータの送信処理のためのクロックと、自分自身のデータの受信処理のためのクロックとが一致しないことを検出した場合、受信時刻計測手段により計測された複数の所定の情報の受信時刻を基に、データ伝送の遅延を含む他の情報処理装置からの初期端末間時間差を定期的に更新して、データ伝送の遅延を検出することを特徴とする。
【0028】
制御信号生成手段には、遅延検出手段により検出された、データ伝送の遅延に基づいて、他の情報処理装置のデータ伝送レートを制御する第1の制御信号を生成させるようにすることができる。
【0030】
データは、RFC1889に準拠するRTPパケットであるものとすることができる。
【0032】
データは、所定の大きさのパケットにより構成されるものとすることができ、所定の情報は、パケットの受信数およびパケットロス数の情報を含むものとすることができる。
【0033】
輻輳予測手段には、第1の受信手段により受信された所定の情報を基に、他の情報処理装置から送信されたパケットのパケットロス率を検出するパケットロス率検出手段を更に備えさせるようにすることができ、制御信号生成手段には、遅延検出手段により検出されたデータ伝送の遅延に加えて、パケットロス率検出手段により検出されたパケットロス率に基づいて、他の情報処理装置のデータ伝送レートを制御する第1の制御信号を生成させるようにすることができる。
【0034】
制御信号生成手段には、遅延検出手段により第1の所定量以上のデータ伝送の遅延の増加が検出されたか、または、パケットロス率検出手段により第2の所定量以上のパケットロス率が検出された場合、他の情報処理装置のデータ伝送レートを下げるように制御する第1の制御信号を生成させるようにすることができる。
【0035】
制御信号生成手段には、所定の時間、遅延検出手段により第1の所定量以上のデータ伝送の遅延の増加が検出されず、かつ、パケットロス率検出手段により第2の所定量以上のパケットロス率が検出されなかった場合、他の情報処理装置のデータ伝送レートを上げるように制御する第1の制御信号を生成させるようにすることができる。
【0039】
他の情報処理装置に、データを送信する第2の送信手段と、他の情報処理装置から、第2の送信手段によるデータの伝送レートを制御する第2の制御信号を受信する第2の受信手段と、第2の受信手段により受信された第2の制御信号に基づいて、第2の送信手段により送信されるデータの伝送レートを制御する制御手段とを更に備えさせるようにすることができる。
【0041】
本発明の第1の情報処理方法は、他の情報処理装置から送信された、データの伝送状況を含む所定の情報の受信を制御する受信制御ステップと、受信制御ステップの処理により受信が制御された所定の情報を基に、ネットワークの輻輳を予測する輻輳予測ステップと、輻輳予測ステップの処理により輻輳が予測されるか否かを基に、他の情報処理装置のデータ伝送レートを制御する制御信号を生成する制御信号生成ステップとを含み、輻輳予測ステップの処理においては、受信制御ステップの処理により所定の情報が受信された時刻を計測し、所定の情報を基に、他の情報処理装置におけるデータの送信処理のためのクロックと、自分自身のデータの受信処理のためのクロックとが一致しないことを検出した場合、受信制御ステップの処理により受信された所定の情報と、計測された複数の所定の情報の受信時刻を基に、データ伝送の遅延を含む他の情報処理装置からの初期端末間時間差を定期的に更新して、データ伝送の遅延を検出することを特徴とする。
【0042】
本発明の第1のプログラムは、他の情報処理装置から送信された、データの伝送状況を含む所定の情報の受信を制御する受信制御ステップと、受信制御ステップの処理により受信が制御された所定の情報を基に、ネットワークの輻輳を予測する輻輳予測ステップと、輻輳予測ステップの処理により輻輳が予測されるか否かを基に、他の情報処理装置のデータ伝送レートを制御する制御信号を生成する制御信号生成ステップとを含み、輻輳予測ステップの処理においては、受信制御ステップの処理により所定の情報が受信された時刻を計測し、所定の情報を基に、他の情報処理装置におけるデータの送信処理のためのクロックと、自分自身のデータの受信処理のためのクロックとが一致しないことを検出した場合、受信制御ステップの処理により受信された所定の情報と、計測された複数の所定の情報の受信時刻を基に、データ伝送の遅延を含む他の情報処理装置からの初期端末間時間差を定期的に更新して、データ伝送の遅延を検出することを特徴とする。
【0043】
本発明の第1の情報処理装置および情報処理方法、並びにプログラムにおいては、他の情報処理装置から送信された、データの伝送状況を含む所定の情報が受信され、所定の情報が受信された時刻が計測され、所定の情報を基に、他の情報処理装置におけるデータの送信処理のためのクロックと、自分自身のデータの受信処理のためのクロックとが一致しないことが検出された場合、受信された所定の情報と、計測された複数の所定の情報の受信時刻を基に、データ伝送の遅延を含む他の情報処理装置からの初期端末間時間差が定期的に更新されて、データ伝送の遅延が検出されて、ネットワークの輻輳が予測され、輻輳が予測されるか否かを基に、他の情報処理装置のデータ伝送レートを制御する制御信号が生成される。
【0048】
本発明のデータ通信システムは、第1の情報処理装置が、第2の情報処理装置から送信された、データの伝送状況を含む所定の情報を受信する第1の受信手段と、第1の受信手段により所定の情報が受信された時刻を計測する受信時刻計測手段と、第1の受信手段により受信された所定の情報を基に、ネットワークの輻輳を予測する輻輳予測手段と、輻輳予測手段により輻輳が予測されるか否かを基に、第2の情報処理装置のデータ伝送レートを制御する制御信号を生成する制御信号生成手段と、制御信号生成手段により生成された制御信号を、第2の情報処理装置へ送信する第1の送信手段とを備え、輻輳予測手段は、第1の受信手段により受信された所定の情報を基に、ネットワークにおけるデータ伝送の遅延を検出する遅延検出手段を備え、遅延検出手段は、所定の情報を基に、第2の情報処理装置におけるデータの送信処理のためのクロックと、自分自身のデータの受信処理のためのクロックとが一致しないことを検出した場合、受信時刻計測手段により計測された複数の所定の情報の受信時刻を基に、データ伝送の遅延を含む他の情報処理装置からの初期端末間時間差を定期的に更新して、データ伝送の遅延を検出し、第2の情報処理装置が、第1の情報処理装置に、所定の情報およびデータを送信する第2の送信手段と、第1の情報処理装置から、第2の送信手段によるデータ伝送レートを制御する制御信号を受信する第2の受信手段と、第2の受信手段により受信された制御信号に基づいて、第2の送信手段により送信されるデータのデータ伝送レートを制御する制御手段とを備えることを特徴とする。
【0049】
本発明のデータ通信システムにおいては、第1の情報処理装置で、第2の情報処理装置から送信された、データの伝送状況を含む所定の情報が受信され、所定の情報が受信された時刻が計測され、所定の情報を基に、第2の情報処理装置におけるデータの送信処理のためのクロックと、自分自身のデータの受信処理のためのクロックとが一致しないことが検出された場合、受信された所定の情報と、計測された複数の所定の情報の受信時刻を基に、データ伝送の遅延を含む他の情報処理装置からの初期端末間時間差が定期的に更新されて、データ伝送の遅延が検出されて、ネットワークの輻輳が予測され、輻輳が予測されるか否かを基に、第2の情報処理装置のデータ伝送レートを制御する制御信号が生成され、生成された制御信号が、第2の情報処理装置へ送信され、第2の情報処理装置で、第1の情報処理装置に、所定の情報およびデータが送信され、第1の情報処理装置から送信されたデータ伝送レートを制御する制御信号が受信され、受信された制御信号に基づいてデータ伝送レートが制御される。
【0050】
【発明の実施の形態】
以下、図を参照して、本発明の実施の形態について説明する。
【0051】
図2は、本発明を適用したデータ通信システムにおける、データ送信装置31およびデータ受信装置32の構成を示すブロック図である。
【0052】
データ送信装置31およびデータ受信装置32は、リアルタイム・データ転送プロトコルであるRTP(Real-time Transport Protocol)にしたがって、データの授受を行う。RTPは、例えば、映像と音声データを利用して遠隔会議を行うアプリケーションなどで利用されることを想定し、映像や音声データをリアルタイムに適した形で転送することを目的に設計されている。RTPにおいては、データが時間単位でパケットに分割されて送信される。また、RTPは、パケットロス対策や伝送時間保証などは行われていないUDP(User Datagram Protocol)タイプのプロトコルで、通常は、RTCP(RTP Control Protocol)による通信状態レポートとセットで用いられる。
【0053】
また、ネットワーク33は、例えば、組織内で運営されているLAN(Local Aria Network)であってもよいし、いわゆるインターネットのような不特定多数のネットワークが結合した、大規模なネットワークであってもよいし、または、所定の送信装置と受信装置を接続する専用回線であっても良い。
【0054】
データ送信装置31のデータ生成部41は、例えば、音声、画像、映像、テキストデータ、または、これらの混合したデータを生成し、データ送信部42に供給する。このとき生成されるデータ量は、送信レート制御部45によって制御される。
【0055】
データ送信部42は、データ生成部41から供給されたデータをRTPパケットとして送信する場合、例えば、5秒間などの所定の時間ごとに、RTCPのSR(Sender Report)パケットを付加して、ネットワーク33を介して、データ受信装置32に送信する。SRパケットとは、データ送信側の送受信統計のためのレポートであり、データ伝送の状況を示す情報が記載されている。
【0056】
図3にSRパケットのフォーマットを示す。
【0057】
ヘッダは、RTPのバージョンを識別するための2ビットの情報であるバージョン情報(V)、このパケットが1以上のパディングオクテットを含んでいるか否かを示す情報である1ビットのパディングビット(P)、このパケットに含まれるレセプションレポートブロックの数を示す5ビットのレセプションレポートカウント(RC(reception report count))、SRパケットとRRパケットを識別するために、SRパケットであることを示す定数200が記載されている8ビットのパケットタイプ(PT(packet type))、このRTCPパケットの長さを示す16ビットの情報であるパケット長(length)、および、送信元SSRC識別子(SSRC of sender)で構成されている。
【0058】
そして、送信者情報(Sender Info)は、64ビットのNTPタイムスタンプ(Network Time Protocol timestamp)、32ビットのRTPタイムスタンプ(Real-time Transport Protocol timestamp)、32ビットの送出パケット数情報(sender's packet count)、および、32ビットの送出データ量情報(sender's octet count)で構成されている。
【0059】
レポートブロックは、32ビットのSSRC識別子番号(SSRC_n (source identifier))、パケットロス率を示すフラクションロスト(fraction lost)、累積パケットロス数(cumulative number of packets lost)、シーケンスナンバーの最大値(extended highest sequence number received)、RTPパケットの到着時間間隔の変動を示すインターアライバルジッタ(interarrival jitter)、最新のSRパケット受信時のタイムスタンプの情報であるLSR(last SR)、および、LSRからの遅延を示すDLSR(delay since last SR(DLSR))で構成されている。
【0060】
また、SRパケットには、更に、特別拡張領域(profile-specific extensions)が設けられている。
【0061】
このように、SRパケットには、NTPタイムスタンプ、および、RTPタイムスタンプが含まれている。
【0062】
データ受信部43は、データ受信装置32から送信される、RTCPにおけるRR(Receiver Report)パケットを受信する。RRパケットは、データ送信側からの受信統計のためのレポートである。
【0063】
図4に、RRパケットのフォーマットを示す。
【0064】
RRパケットのフォーマットは、パケットタイプ(PT(packet type))に、RRパケットであることを示す定数201が記載され、送信元SSRC識別子(SSRC of sender)に代わって、受信したRTPパケットの送信元SSRC識別子(SSRC of packet sender)が記載されている以外は、SRパケットと同一のヘッダ構造を有しており、SRパケットに含まれていた送信者情報を含んでいないが、SRパケットと同様のレポートブロックと、特別拡張領域を有している。
【0065】
レート制御命令受信部44は、ネットワーク33を介して、データ受信装置32から、レート制御命令を受信し、送信レート制御部45に供給する。
【0066】
送信レート制御部45は、レート制御命令受信部44から供給されたレート制御命令を基に、送信レート制御信号を生成し、データ生成部41に供給する。
【0067】
データ受信装置32のデータ受信部51は、ネットワーク33を介して、データ送信装置31から、SRパケットおよびRTPパケットを受信し、RTPパケットの、例えば、映像、音声、テキストなどのデータを、データ処理部52に供給するとともに、RTPパケットの受信時刻、タイムスタンプ、パケットサイズ、シーケンス番号など、輻輳の予測に必要な情報を、輻輳予測部53に供給する。
【0068】
データ処理部52は、データ受信部51から供給されたデータに対する処理を実行する。具体的には、データ処理部52は、供給されたデータに対して、例えば、復号処理、デスクランブル処理、表示処理、または、音声再生処理などを実行する。
【0069】
データ送信部54は、データ送信装置31から送信されたRTPパケットに対して、図4を用いて説明したRRパケットを生成し、ネットワーク33を介して、データ送信装置31に送信する。
【0070】
輻輳予測部53は、データ受信部51から供給された情報を基に、データ伝送路の輻輳を予測し、その結果を基に、必要に応じて、データ受信レート(すなわち、データ受信装置32が受信するデータのデータ伝送レート)を設定して、レート制御命令を生成し、レート制御命令送信部55に供給する。
【0071】
レート制御命令送信部55は、輻輳予測部53から供給されたレート制御命令を、RTCPのAPP(Application defined RTCP packet)として、ネットワーク33を介して、データ送信装置31に送信する。APPとは、アプリケーション拡張用のパケットである。
【0072】
図5にAPPのフォーマットを示す。
【0073】
APPは、RTPのバージョンを識別するための2ビットの情報であるバージョン情報(V)、このパケットが1以上のパディングオクテットを含んでいるか否かを示す情報である1ビットのパディングビット(P)、このパケットの定義を識別するためのサブタイプ(subtype)、このパケットがAPPであることを示す定数204が記載されている8ビットのパケットタイプ(PT(packet type))、このRTCPパケットの長さを示す16ビットの情報であるパケット長(length)、SSRC識別子、または、送信関係者(ミキサーによってミックスされた場合の元の送信者ID)であるCSRC(Contributing source)識別子、ASCIIコードで記載されるAPPに固有に付けられた名称(name)、および、アプリケーションに依存する情報(application dependent data)で構成される。
【0074】
図2のデータ送信装置31およびデータ受信装置32においては、データの送受信を、複数のブロックにおいて実行するものとして説明したが、データ送信装置31は、データ送信部42、データ受信部43、および、レート制御命令受信部44が実行する処理を、1つ、または2つの送受信機能により実行することができるようにしても良いし、データ受信装置32は、データ受信部51、データ送信部54、および、レート制御命令送信部55が実行する処理を、1つ、または2つの送受信機能により実行することができるようにしても良い。
【0075】
次に、データ送信装置31およびデータ受信装置32の動作について説明する。
【0076】
データ送信装置31のデータ生成部41は、図示しない操作入力部から、ユーザの操作入力を受け、例えば、音声、画像、映像、テキストデータ、または、これらの混合したデータを生成し、データ送信部42に供給する。このとき生成されるデータ量は、送信レート制御部45によって制御される。
【0077】
データ送信部42は、データ生成部41から供給されたデータを時間単位でパケットに分割し、所定の時間ごとにSRパケットを付加して、ネットワーク33を介して、データ受信装置32に送信する。
【0078】
データ受信装置32のデータ受信部51は、ネットワーク33を介して、データ送信装置31から、RTPパケットおよびRTCP SRパケットを受信する。データ受信部51は、データ処理部52に、例えば、映像、音声、テキストなどのデータを供給するとともに、RTPパケットの受信時刻、タイムスタンプ、シーケンス番号、SRパケットに含まれている時間情報などを、輻輳予測部53に供給する。
【0079】
また、データ受信部51は、受信したパケットに、例えば、アクセスラインのビット誤りによるフレームの破棄や、ボトルネックリンクにおけるパケットの破棄などのパケットロスが発生した場合、パケットロスに関する情報を、輻輳予測部53に供給する。
【0080】
輻輳予測部53は、データ受信部51から供給された情報を基に、データの遅延やパケットロス率を求め、必要に応じて、レート制御命令を生成する。
【0081】
図6に、輻輳予測部53の機能ブロック図を示す。
【0082】
データ取得部81は、データ受信部51から、SRパケットに含まれている時間情報や、RTPパケットの受信時刻、タイムスタンプ、パケットサイズ、シーケンス番号などの、データの遅延やパケットロス率を求めるために必要な情報を取得し、データ演算部82に供給する。
【0083】
データ演算部82は、タイマ83から供給される時間情報を参照し、例えば、5秒間や10秒間などの所定時間において、データ送信装置31からデータ受信装置32へのデータ伝送における片方向遅延、パケットロス数、受信パケット数、および受信データのバイト数の総和を演算し、統計情報を生成する。
【0084】
データ送信装置31およびデータ受信装置32の、NTPによる時刻が合致している場合、RTCPのSRパケットに含まれるRTPのタイムスタンプからNTPへのマッピングを行うことにより、絶対遅延時間をNTPの時間精度で求めることが可能である。しかしながら、実際には、NTPを使えない環境も多い。
【0085】
次に、NTPが使えない場合、すなわち、データ送信装置31およびデータ受信装置32の、NTPによる時刻が合致していない場合の遅延の測定方法について説明する。
【0086】
まず、パケット毎の絶対遅延は、次の式(1)で求めることができる。
【0087】
RTPパケットの遅延
=RTPパケットの到着時刻[NTP]−RTPパケットの送信時刻[NTP]・・・(1)
【0088】
ここで、括弧[]内は、その時刻が、どの時計を参照しているかを示すものである(以下、同様)。
【0089】
データ送信装置31およびデータ受信装置32のNTPによる時刻が同期しており、RTCPのSRパケットにNTP情報が正しく入っている場合、次の式(2)が成立する。
【0090】
RTPパケットの遅延
=RTPパケットの到着時刻[NTP]−RTPタイムスタンプ・・・(2)
【0091】
そして、SRパケット内のタイムスタンプとNTPのマッピング情報より、式(3)に示されるように、RTPパケットの送信時刻とタイムスタンプを関連付けるNTPからRTPタイムスタンプへの写像関数f1を求め、式(2)のRTPタイムスタンプと置き換えた式(4)により、RTPパケットの遅延を求めることが可能となる。
【0092】
RTPタイムスタンプ=f1[NTP]・・・(3)
RTPパケットの遅延=RTPパケットの到着時刻[NTP]−f1[NTP]・・・(4)
【0093】
これに対して、例えば、SRパケットのNTPが明らかにずれていたり、SRパケットを受信することができなかったなどの理由により、RTPのタイムスタンプからNTPへのマッピングができず、式(3)が得られない場合、データ受信装置32内部の時計で遅延を計測する必要がある。この場合、実際には、あるRTPパケットの到着時刻を基点として、相対的な遅延を測定することにより、RTPパケットの遅延が求められる。
【0094】
例えば、第1のRTPパケットのタイムスタンプをTS1、第1のRTPパケットの受信時刻(単位は、ms)をTR1とする。第1のRTPパケットのタイムスタンプも、第1のRTPパケットの受信時刻も、NTPとは異なる基準で計測される時刻である。ここで、第1のRTPパケットのタイムスタンプと第1のRTPパケットの受信時刻との時刻の単位をあわせるために、受信時刻にRTPのリファレンスクロックを乗じることにする。RTP Payload format for MPEG4 Elementary Stream(RFC3016)によるデータ通信においては、リファレンスクロックとして、90KHzのクロックが用いられている。したがって、受信時刻の単位がmsであった場合、タイムスタンプのリファレンスクロックに変換するためには、次の式(5)を用いればよい。
【0095】
受信時刻[リファレンスクロック]=TR1(ms)×90・・・(5)
【0096】
ここで、第1のRTPパケット乃至第nのRTPパケットを、RTP1乃至RTPnとし、それぞれのタイムスタンプをTS1乃至TSnとした場合、ネットワーク中の輻輳やパケットロスがなかったとすると、次の式(6)は、ほぼ定数となる。
【0097】
【0098】
式(6)で示されるTSn−(TRn×90)が、データ受信装置32の内部に有する時計を用いて、RTPのリファレンスクロックで計測した場合の、データ送信装置31とデータ受信装置32との時間差である。ただし、ジッタ、および、送受信間のクロックずれは、式(6)においては無視されている。
【0099】
しかしながら、この時間差が、絶対時刻において、どの程度の時間差に相当するのかはわからない。つまり、式(6)の値が0だったとしても、パケットの遅延の大きさを求めることができない。したがって、データ演算部82は、ある時刻におけるパケットの遅延を含むデータ送信装置31とデータ受信装置32との時間差を、初期端末間時間差とし、これを基に、式(7)によって、相対的な遅延を測定する。
【0100】
【0101】
ただし、TRはRTPパケットの受信時刻(単位はms)、TSはRTPのタイムスタンプである。
【0102】
ところで、上述したように、式(6)において、ジッタ、および、送受信間のクロックずれは無視され、式(6)から求められる送受信間タイムスタンプの差は一定であると仮定されているが、実際には、式(6)に示される端末間の時間差とパケットの遅延との和は、データ送信装置31とデータ受信装置32との基本クロックのずれにより、ゆっくりと単調減少するか、もしくは、単調増加するかのいずれか一方の傾向を示す。例えば、図7に示されるように、受信時刻に対して、遅延がゆっくりと減少していく状況が発生する。
【0103】
このような場合、式(7)を用いて算出された初期時間差を、初期の値のまま使い続けると、得られる相対遅延も、単調減少、もしくは単調増加してしまう。そこで、式(7)を用いて算出される初期時間差は、定期的に更新する必要がある。
【0104】
また、データ演算部82は、更に、パケットロス数、受信パケット数、および受信データ量(受信バイト数)の供給を受けるので、タイマ83を参照し、例えば、5秒や10秒などの所定の時間における、RTPパケットの相対遅延の総和、パケットロス数、受信パケット数、および受信データ量(受信バイト数)の総和を求める。
【0105】
次に、相対遅延増加率演算部84は、データ演算部82から供給された、所定時間内の受信パケット数およびRTPパケットの相対遅延の総和を基に、次の式(8)を用いて、所定の期間(時刻t1から時刻t2の間)のRTPパケットの平均相対遅延を演算する。
【0106】
【数1】
【0107】
更に、相対遅延増加率演算部84は、式(8)を用いて算出した、RTPパケットの平均相対遅延と、1つ前の区間の平均相対遅延とを比較し、平均相対遅延増加率Dを算出する。
【0108】
そして、パケットロス率演算部85は、データ演算部82から供給された情報から、パケットロス率Lを求める。
【0109】
一般的に、RTPパケットのパケットロスは、アクセスラインのビット誤りによるフレームの破棄、または、ボトルネックリンクにおけるパケットの破棄により発生する。アクセスラインのビット誤りに関しては、誤り訂正や、リンクレイヤーでの再送(特に無線リンクの場合)などにより、ある程度防ぐことが可能ではあるが、実際の無線リンクにおいては、電波の状況により、ある程度のパケットロスが発生してしまう。また、ボトルネックリンクにおけるパケットの破棄が発生した場合、ボトルネックリンクのQueueがあふれていることによりパケットロスが発生するので、例えば、FIFO(First In First Out)型のQueueを用いている状況では、あふれた分だけパケットロスが発生することになる。
【0110】
つまり、アクセスラインのビット誤りによるパケットロスは、ある程度の確率で発生することが想定されるので、送信側のレートを下ることにより、パケットロス率が低くなるとは限らない。しかしながら、ボトルネックリンクにおけるパケットの破棄が発生した場合は、送信側のレートを下げない限り、パケットロスが発生しつづけることになる。
【0111】
ここで、パケットロス率演算部85は、次の式(9)より、パケットロス率を演算する。
【0112】
パケットロス率L=パケットロス数/(受信パケット数+パケットロス数)・・・(9)
【0113】
状態遷移制御部86は、相対遅延増加率演算部84およびパケットロス率演算部85から供給された、RTPパケットの平均相対遅延増加率、および、パケットロス率を基に、受信レートの制御状態を遷移するか否かを判断する。
【0114】
状態遷移制御部86は、式(10)を用いて、平均相対遅延増加率と所定の閾値H1とを定期的に比較し、平均相対遅延増加率が閾値H1より大きい場合、受信レートを下げるように制御状態を遷移する。
【0115】
平均相対遅延増加率D>閾値H1 ・・・(10)
【0116】
更に、状態遷移制御部86は、式(11)を用いて、所定の短い時間(例えば、数100msec乃至1secの、平均相対遅延増加率を求める場合よりも充分短い時間)内のパケットロス率と、所定の閾値H2とを定期的に比較し、パケットロス率が閾値H2より大きい場合、受信レートを下げるように制御状態を遷移する。
【0117】
パケットロス率L>閾値H2・・・(11)
【0118】
データ送信装置31とデータ受信装置32とのデータ伝送経路の伝送帯域がある程度の大きさを有するときは、ネットワーク中のQueueの長さが相対的に短くなるため、データ伝送経路の状態が不安定になることにより、パケットロス率が増加しやすくなるので、式(10)と式(11)とにおいて、式(11)が成立しやすい。それに対して、データ送信装置31とデータ受信装置32とのデータ伝送経路の伝送帯域がある比較的小さいとき、ネットワーク中のQueueの長さが相対的に長くなるため、データ伝送経路の状態が不安定になることにより、平均相対遅延増加率Dが増加しやすくなるので、式(10)と式(11)とにおいて、式(10)が成立しやすい。
【0119】
このように、式(10)と式(11)との2つの評価式により、受信レートを下げる必要があるか否かを判断するようにすることにより、データ伝送帯域が大きな場合においても、小さな場合においても、データ伝送路の状態に最適なデータ受信レートの制御が可能となる。
【0120】
また、状態遷移制御部86は、式(10)および式(11)による比較結果を基に、データ伝送状態が安定している場合、受信レートを一定に保ったり、受信レートを上げるように状態を遷移する場合がある。
【0121】
状態遷移制御部86による状態遷移図を図8に示す。
【0122】
状態には、データ受信レートを上げるように制御するUP状態、データ受信レートを下げるように制御するDown状態、および、データ受信レートを変更しないように制御するHoldの3状態がある。
【0123】
制御のはじめにおいて、状態はHold状態である。状態遷移制御部86は、Hold状態を一定時間Tだけ保っている間の、式(10)および式(11)による比較結果を基に、平均相対遅延増加率D≦閾値H1かつパケットロス率L≦閾値H2である場合、状態をUP状態に遷移し、平均相対遅延増加率D>閾値H1、または、パケットロス率L>閾値H2である場合、状態をDown状態に遷移する。
【0124】
UP状態において、状態遷移制御部86は、式(10)および式(11)による比較結果を基に、平均相対遅延増加率D≦閾値H1かつパケットロス率L≦閾値H2である場合、状態をUP状態のまま保持し、平均相対遅延増加率D>閾値H1、または、パケットロス率L>閾値H2である場合、状態をDown状態に遷移する。
【0125】
また、Down状態において、状態遷移制御部86は、式(10)および式(11)による比較結果を基に、平均相対遅延増加率D≦閾値H1かつパケットロス率L≦閾値H2である場合、状態をHold状態に遷移し、平均相対遅延増加率D>閾値H1、または、パケットロス率L>閾値H2である場合、状態をDown状態のまま保持する。
【0126】
状態遷移制御部86は、現在の状態を示す状態遷信号を、受信レート設定部87に出力する。
【0127】
受信レート設定部87は、状態遷移制御部から供給された状態遷移信号に基づいて、受信レートを設定し、レート制御命令を生成する。
【0128】
状態がDown状態である場合、受信レート設定部87は、次の式(12)により、再設定レートRを算出する。
【0129】
再設定レートR=受信レート×C1・・・(12)
【0130】
ここで、式(12)のC1は、予め定められている1以下の定数か、もしくは、別途、平均相対遅延増加率の逆数を演算することなどにより求められた1以下の値である。
【0131】
そして、状態がUP状態である場合、受信レート設定部87は、次の式(13)により、再設定レートRを算出する。
【0132】
再設定レートR=受信レート×C2・・・(13)
【0133】
ただし、C2は、予め定められている1以上の定数か、パケットロス率Lの逆数を求めることなどより算出される1以上の値である。
【0134】
なお、受信レートの上限に関しては、予め、HTTPやパケットペアなどを用いてボトルネックリンクのリンクスピード(パケットロスや、遅延の増加が発生しないネットワーク状況におけるデータ伝送スピード)を測定しておき、これを上限としてもよいし、上限を設けないようにしてもよい。
【0135】
このようにして、図8の状態遷移図に示される状態に基づいて、データ受信レートが制御されることにより、データ受信レートは、そのときのデータ伝送路の条件により、最適に制御される。図9は、図8の状態遷移図に示される状態とデータ受信レートの関係を示す図である。
【0136】
データ伝送路の状態は、その時刻によって変動する場合がある。本発明を適応したデータ受信装置32によるデータ受信レート制御によると、データ受信レートは一定の値に収束するように制御されるのではなく、データ伝送路の状況が良好で、遅延やパケットロスが発生しない状態においては、状態がUP状態となり、データ転送レートは増加するように制御される。
【0137】
このようにして、輻輳予測部53は、必要に応じて、レート制御命令を生成する。輻輳予測部53は、生成したレート制御命令を、レート制御命令送信部55に出力する。
【0138】
レート制御命令送信部55は、レート制御命令を、RTCPのAPPとして、データ送信装置31に送信する。
【0139】
データ送信装置31のレート制御命令受信部44は、レート制御命令を受信し、送信レート制御部45に供給する。
【0140】
送信レート制御部45は、レート制御命令受信部44から供給されたレート制御命令を基に、送信レート制御信号を生成し、データ生成部41に供給する。
【0141】
データ生成部41は、送信レート制御部45の制御に基づいて、データの生成量を必要に応じて変更する。したがって、データ送信部42により送信されるデータのデータレートが制御される。
【0142】
このようにして、データ送信装置31は、ネットワークの状態に応じた、最適な送信レートで、パケットデータを送信することができる。
【0143】
次に、図10のフローチャートを参照して、データ受信装置32で実行される統計情報生成処理について説明する。
【0144】
ステップS11において、データ受信部51は、ネットワーク33を介して、データ送信装置31から送信されたパケットが受信されたか否かを判断する。ステップS11において、パケットが受信されていないと判断された場合、パケットが受信されたと判断されるまで、ステップS11の処理が繰り返される。
【0145】
ステップS11において、パケットが受信されたと判断された場合、データ受信部51は、受信したRTPパケットの受信時刻、タイムスタンプ、パケットサイズ、シーケンス番号、および、受信したRTCPのSRパケットのNTP情報など、データの遅延やパケットロス率を求めるために必要な情報を輻輳予測部53に供給し、ステップS12において、輻輳予測部53のデータ演算部82は、受信したRTPパケットの受信時刻を内部のメモリに記録する。
【0146】
輻輳予測部53のデータ演算部82は、ステップS13において、上述したように、データ送信装置31からデータ受信装置32へのデータ伝送における片方向遅延時間、パケットロス数、受信パケット数、および、受信バイト数を計算し、ステップS14において、片方向遅延時間、パケットロス数、受信パケット数、および、受信バイト数のそれぞれの総和を更新する。ステップS14の処理の終了後、処理は、ステップS11に戻り、それ以降の処理が繰り返される。
【0147】
このような処理により、輻輳予測部53のデータ演算部82において、統計情報が生成される。
【0148】
次に、図11のフローチャートを参照して、図10を用いて説明した統計情報生成処理において生成された統計情報を基に実行されるレート制御処理について説明する。
【0149】
ステップS31において、状態遷移制御部86は、制御の状態を、Hold状態にセットする。
【0150】
ステップS32において、パケットロス率演算部85は、データ演算部82から、統計情報のうち、パケットロス数および受信パケット数を取得し、式(9)を用いて、パケットロス率Lを算出する。
【0151】
ステップS33において、相対遅延増加率演算部84は、データ演算部82から、統計情報のうち、RTPパケットの相対遅延の所定時間内の総和を取得し、式(8)を用いてRTPパケットの平均相対遅延を算出し、RTPパケットの平均相対遅延と、1つ前の区間の平均相対遅延とを比較して、平均相対遅延増加率Dを算出する。
【0152】
ステップS34において、状態遷移制御部86は、同一状態で一定時間が経過したか否かを判断する。ステップS34において、同一状態で一定時間が経過していないと判断された場合、処理は、ステップS32に戻り、それ以降の処理が繰り返される。
【0153】
ステップS34において、同一状態で一定時間が経過したと判断された場合、ステップS35において、状態遷移制御部86は、ステップS32において算出されたパケットロス率LおよびステップS33において算出された平均相対遅延増加率Dを基に、図8を用いて説明したように、必要に応じて、制御状態を遷移し、受信レート設定部87に、状態遷移信号を供給する。
【0154】
ステップS36において、受信レート設定部87は、状態遷移制御部86から供給される状態遷移信号に基づいて、受信ビットレートを変更するか否かを判断する。状態遷移信号がHold状態を示し、ステップS36において、受信ビットレートを変更しないと判断された場合、処理は、ステップS32に戻り、それ以降の処理が繰り返される。
【0155】
状態遷移信号がUP状態、または、Down状態を示し、ステップS36において、受信ビットレートを変更すると判断された場合、ステップS37において、受信レート設定部87は、上述した式(12)または式(13)を用いて、ビットレートを演算し、レート制御命令を生成して、レート制御命令送信部55に供給する。レート制御命令送信部55は、ネットワーク33を介して、レート制御命令をデータ送信装置31に送信する。
【0156】
ステップS37の処理の終了後、処理は、ステップS32に戻り、それ以降の処理が繰り返される。
【0157】
このような処理により、データ受信装置32において、データ伝送路(ネットワーク33)の状態に応じたレート制御命令が生成されて、データ送信装置31に送信される。
【0158】
次に、図12のフローチャートを参照して、データ送信装置31が実行する送信レート変更処理について説明する。
【0159】
ステップS51において、データ送信装置31のレート制御命令受信部44は、レート制御命令を受信したか否かを判断する。ステップS51において、レート制御命令を受信していないと判断された場合、レート制御命令を受信したと判断されるまで、ステップS51の処理が繰り返される。
【0160】
ステップS51において、レート制御命令を受信したと判断された場合、レート制御命令受信部44は、受信したレート制御命令を、送信レート制御部45に供給するので、ステップS52において、送信レート制御部45は、レート制御命令に基づいて、送信レートを制御するために、データ生成部41が生成するデータのデータ量を制御する。生成されるデータのデータ量が制御されることにより、最終的には、送信レートが制御される。
【0161】
ステップS52の処理の終了後、処理は、ステップS51に戻り、それ以降の処理が繰り返される。
【0162】
このような処理により、データ送信装置31は、受信したレート制御命令に基づいた送信レートで、データ受信装置32にデータを送信する。
【0163】
以上においては、パケットデータを送信するデータ送信装置31と、パケットデータを受信するデータ受信装置32における場合について説明したが、パケットデータの送受信が可能なデータ送受信装置間で、パケットデータを送受信する場合においても、本発明は適用可能である。
【0164】
図13は、本発明を適用したデータ通信システムの他の例における、パケットデータの送受信が可能なデータ送受信装置91−1およびデータ送受信装置91−2の構成を示すブロック図である。
【0165】
なお、図2における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
【0166】
すなわち、送受信が可能なデータ送受信装置91−1およびデータ送受信装置91−2には、図2を用いて説明したデータ送信装置31と同様の、データ生成部41、送信レート制御部45、および、レート制御命令受信部44が備えられ、データ受信装置32と同様の、データ処理部52、輻輳予測部53、および、レート制御命令送信部55が設けられている。
【0167】
そして、データ送受信装置91−1およびデータ送受信装置91−2には、更に、データ生成部41から供給されたデータをRTPパケットに分割するとともに、所定の時間間隔でSRパケットを付加して、送信レート制御部45により制御される送信レートで送信したり、パケットデータを受信した場合(すなわち、自分自身が受信側の装置となった場合)、RRパケットを生成して、ネットワーク33を介して送信するデータ送信部101、および、パケットデータの送信先から送信される、RCTPにおけるRRパケットを受信したり、ネットワーク33を介して、他の装置から、RTPパケットおよびSRパケットを受信し、SRパケットとRTPパケットに含まれているデータとを分離して、例えば、映像、音声、テキストなどのデータを、データ処理部52に供給し、RTPパケットに含まれている情報のうち、輻輳の予測に必要な情報を、輻輳予測部53に供給するデータ受信部102が設けられている。
【0168】
なお、図13を用いて説明したデータ送受信装置91−1およびデータ送受信装置91−2と、図2を用いて説明したデータ送信装置31またはデータ受信装置32とのデータ授受においても、本発明が適用可能であることは言うまでもない。
【0169】
このようにして、データ受信側の装置が、データ送信側の装置に対して、RTCP APPを用いて、レート制御命令を送信するようにしたことにより、RTCP RRパケットを用いたり、RRパケットを拡張するよりも、簡単な構成で、レート制御を実現することが可能であり、更に、データ受信側の装置における輻輳の予測が高度化した場合においても、データ送信側の構成を変更する必要がない。
【0170】
上述した一連の処理は、ソフトウェアにより実行することもできる。そのソフトウェアは、そのソフトウェアを構成するプログラムが、専用のハードウェアに組み込まれているコンピュータ、または、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどに、記録媒体からインストールされる。
【0171】
この記録媒体は、図14に示すように、コンピュータとは別に、ユーザにプログラムを提供するために配布される、プログラムが記録されている磁気ディスク151(フレキシブルディスクを含む)、光ディスク152(CD-ROM(Compact Disk-Read Only Memory),DVD(Digital Versatile Disk)を含む)、光磁気ディスク153(MD(Mini-Disk)(商標)を含む)、もしくは半導体メモリ154などよりなるパッケージメディアなどにより構成される。
【0172】
図14は、上記処理を実行するパーソナルコンピュータ131の構成例を表している。パーソナルコンピュータ131のCPU(Central Processing Unit)141は、ROM(Read Only Memory)142に記憶されているプログラム、またはHDD(Hard Disc Drive)148から、RAM(Random Access Memory)143にロードされたプログラムに従って各種の処理を実行する。RAM143にはまた、CPU141が各種の処理を実行する上において必要なデータなども適宜記憶される。
【0173】
CPU141、ROM142、およびRAM143は、内部バス144を介して相互に接続されている。この内部バス144にはまた、入出力インタフェース145も接続されている。
【0174】
入出力インタフェース145には、キーボード、マウスなどよりなる入力部146、CRT(Cathode Ray Tube)、およびLCD(Liquid Crystal Display)などよりなるディスプレイ、並びにスピーカなどよりなる出力部147、ハードディスクにより構成されるHDD148、モデム、ターミナルアダプタなどより構成されるネットワークインターフェース150が接続されている。ネットワークインターフェース150は、例えば、インターネットなどのネットワーク33を介しての通信処理を行う。
【0175】
入出力インタフェース145にはまた、必要に応じてドライブ149が接続され、磁気ディスク151、光ディスク152、光磁気ディスク153、または、半導体メモリ154などが適宜装着され、それらから読み出されたコンピュータプログラムが、必要に応じてHDD148にインストールされる。
【0176】
また、本明細書において、記録媒体に記録されるプログラムを記述するステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。
【0177】
なお、本明細書において、システムとは、複数の装置により構成される装置全体を表すものである。
【0178】
【発明の効果】
このように、本発明によれば、データを受信することができる。特に、ネットワークの状況に応じて、データ伝送レートを制御する信号を生成し、送信側の装置に送信することができる。
【0180】
更に、他の本発明によれば、2つの装置において、データを送受信することができる他、データ受信側の装置が、ネットワークの状況に応じて、データ伝送レートを制御する信号を生成し、送信側の装置に送信し、データ送信側の装置は、データ伝送レートを制御する信号に基づいて、データ伝送レートを制御することができる。
【図面の簡単な説明】
【図1】従来のデータ通信システムについて説明するための図である。
【図2】本発明を適用したデータ通信システムのデータ送信装置およびデータ受信装置の構成を示すブロック図である。
【図3】SRパケットについて説明する図である。
【図4】RRパケットについて説明する図である。
【図5】APPについて説明する図である。
【図6】図2の輻輳予測部の構成を示すブロック図である。
【図7】受信時刻による、遅延の単純減少について説明する図である。
【図8】状態遷移について説明する図である。
【図9】状態遷移とデータ送信レートについて説明する図である。
【図10】統計情報生成処理について説明するフローチャートである。
【図11】レート制御処理について説明するフローチャートである。
【図12】送信レート変更処理について説明するフローチャートである。
【図13】本発明を適用した、他のデータ通信システム例におけるデータ送受信装置の構成を示すブロック図である。
【図14】パーソナルコンピュータの構成を示すブロック図である。
【符号の説明】
31 データ送信装置, 32 データ受信装置, 33 ネットワーク, 41 データ生成部, 42 データ送信部, 43 データ受信部, 44 レート制御命令受信部, 45 送信レート制御部, 51 データ受信部, 52 データ処理部, 53 輻輳予測部, 54 データ送信部, 55 レート制御命令送信部, 81 データ取得部, 82 データ演算部, 83 タイマ, 84 相対遅延増加率演算部, 85 パケットロス率演算部, 86 状態遷移制御部, 87 受信レート設定部, 91 データ送受信装置,101 データ送信部, 102 データ受信部
Claims (11)
- 他の情報処理装置から、ネットワークを介して、データを受信する情報処理装置において、
前記他の情報処理装置から送信された、前記データの伝送状況を含む所定の情報を受信する第1の受信手段と、
前記第1の受信手段により前記所定の情報が受信された時刻を計測する受信時刻計測手段と、
前記第1の受信手段により受信された前記所定の情報を基に、前記ネットワークの輻輳を予測する輻輳予測手段と、
前記輻輳予測手段により前記輻輳が予測されるか否かを基に、前記他の情報処理装置のデータ伝送レートを制御する第1の制御信号を生成する制御信号生成手段と、
前記制御信号生成手段により生成された前記第1の制御信号を、前記他の情報処理装置へ送信する第1の送信手段と
を備え、
前記輻輳予測手段は、前記第1の受信手段により受信された前記所定の情報を基に、前記ネットワークにおけるデータ伝送の遅延を検出する遅延検出手段を備え、
前記遅延検出手段は、前記所定の情報を基に、前記他の情報処理装置における前記データの送信処理のためのクロックと、自分自身の前記データの受信処理のためのクロックとが一致しないことを検出した場合、前記受信時刻計測手段により計測された複数の前記所定の情報の受信時刻を基に、前記データ伝送の遅延を含む前記他の情報処理装置からの初期端末間時間差を定期的に更新して、前記データ伝送の遅延を検出する
ことを特徴とする情報処理装置。 - 前記制御信号生成手段は、前記遅延検出手段により検出された、前記データ伝送の遅延に基づいて、前記他の情報処理装置のデータ伝送レートを制御する前記第1の制御信号を生成する
ことを特徴とする請求項1に記載の情報処理装置。 - 前記データは、RFC1889に準拠するRTPパケットである
ことを特徴とする請求項1に記載の情報処理装置。 - 前記データは、所定の大きさのパケットにより構成され、
前記所定の情報は、前記パケットの受信数およびパケットロス数の情報を含む
ことを特徴とする請求項1に記載の情報処理装置。 - 前記輻輳予測手段は、前記第1の受信手段により受信された前記所定の情報を基に、前記他の情報処理装置から送信された前記パケットのパケットロス率を検出するパケットロス率検出手段を更に備え、
前記制御信号生成手段は、前記遅延検出手段により検出された前記データ伝送の遅延に加えて、前記パケットロス率検出手段により検出された前記パケットロス率に基づいて、前記他の情報処理装置の前記データ伝送レートを制御する前記第1の制御信号を生成する
ことを特徴とする請求項4に記載の情報処理装置。 - 前記制御信号生成手段は、前記遅延検出手段により、第1の所定量以上の前記データ伝送の遅延の増加が検出されたか、または、前記パケットロス率検出手段により第2の所定量以上の前記パケットロス率が検出された場合、前記他の情報処理装置のデータ伝送レートを下げるように制御する前記第1の制御信号を生成する
ことを特徴とする請求項5に記載の情報処理装置。 - 前記制御信号生成手段は、所定の時間、前記遅延検出手段により第1の所定量以上の前記データ伝送の遅延の増加が検出されず、かつ、前記パケットロス率検出手段により第2の所定量以上の前記パケットロス率が検出されなかった場合、前記他の情報処理装置のデータ伝送レートを上げるように制御する前記第1の制御信号を生成する
ことを特徴とする請求項5に記載の情報処理装置。 - 前記他の情報処理装置に、前記データを送信する第2の送信手段と、
前記他の情報処理装置から、前記第2の送信手段による前記データの伝送レートを制御する第2の制御信号を受信する第2の受信手段と、
前記第2の受信手段により受信された前記第2の制御信号に基づいて、前記第2の送信手段により送信される前記データの伝送レートを制御する制御手段と
を更に備えることを特徴とする請求項1に記載の情報処理装置。 - 他の情報処理装置から、ネットワークを介して、データを受信する情報処理装置の情報処理方法において、
前記他の情報処理装置から送信された、前記データの伝送状況を含む所定の情報の受信を制御する受信制御ステップと、
前記受信制御ステップの処理により受信が制御された前記所定の情報を基に、前記ネットワークの輻輳を予測する輻輳予測ステップと、
前記輻輳予測ステップの処理により前記輻輳が予測されるか否かを基に、前記他の情報処理装置のデータ伝送レートを制御する制御信号を生成する制御信号生成ステップと
を含み、
前記輻輳予測ステップの処理においては、
前記受信制御ステップの処理により前記所定の情報が受信された時刻を計測し、
前記所定の情報を基に、前記他の情報処理装置における前記データの送信処理のためのクロックと、自分自身の前記データの受信処理のためのクロックとが一致しないことを検出した場合、前記受信制御ステップの処理により受信された前記所定の情報と、計測された複数の前記所定の情報の受信時刻を基に、前記データ伝送の遅延を含む前記他の情報処理装置からの初期端末間時間差を定期的に更新して、前記データ伝送の遅延を検出する
ことを特徴とする情報処理方法。 - 他の情報処理装置から、ネットワークを介して、データを受信する処理をコンピュータに実行させるプログラムであって、
前記他の情報処理装置から送信された、前記データの伝送状況を含む所定の情報の受信を制御する受信制御ステップと、
前記受信制御ステップの処理により受信が制御された前記所定の情報を基に、前記ネットワークの輻輳を予測する輻輳予測ステップと、
前記輻輳予測ステップの処理により前記輻輳が予測されるか否かを基に、前記他の情報処理装置のデータ伝送レートを制御する制御信号を生成する制御信号生成ステップと
を含み、
前記輻輳予測ステップの処理においては、
前記受信制御ステップの処理により前記所定の情報が受信された時刻を計測し、
前記所定の情報を基に、前記他の情報処理装置における前記データの送信処理のためのクロックと、自分自身の前記データの受信処理のためのクロックとが一致しないことを検出した場合、前記受信制御ステップの処理により受信された前記所定の情報と、計測された複数の前記所定の情報の受信時刻を基に、前記データ伝送の遅延を含む前記他の情報処理装置からの初期端末間時間差を定期的に更新して、前記データ伝送の遅延を検出する
ことを特徴とするプログラム。 - 他の情報処理装置から、ネットワークを介して、データを受信する第1の情報処理装置と、
ネットワークを介して、他の情報処理装置にデータを送信する第2の情報処理装置と
で構成されるデータ通信システムにおいて、
前記第1の情報処理装置は、
前記第2の情報処理装置から送信された、前記データの伝送状況を含む所定の情報を受信する第1の受信手段と、
前記第1の受信手段により前記所定の情報が受信された時刻を計測する受信時刻計測手段と、
前記第1の受信手段により受信された前記所定の情報を基に、前記ネットワークの輻輳を予測する輻輳予測手段と、
前記輻輳予測手段により前記輻輳が予測されるか否かを基に、前記第2の情報処理装置のデータ伝送レートを制御する制御信号を生成する制御信号生成手段と、
前記制御信号生成手段により生成された前記制御信号を、前記第2の情報処理装置へ送信する第1の送信手段と
を備え、
前記輻輳予測手段は、前記第1の受信手段により受信された前記所定の情報を基に、前記ネットワークにおけるデータ伝送の遅延を検出する遅延検出手段を備え、
前記遅延検出手段は、前記所定の情報を基に、前記第2の情報処理装置における前記データの送信処理のためのクロックと、自分自身の前記データの受信処理のためのクロックとが一致しないことを検出した場合、前記受信時刻計測手段により計測された複数の前記所定の情報の受信時刻を基に、前記データ伝送の遅延を含む前記他の情報処理装置からの初期端末間時間差を定期的に更新して、前記データ伝送の遅延を検出し、
前記第2の情報処理装置は、
前記第1の情報処理装置に、前記所定の情報および前記データを送信する第2の送信手段と、
前記第1の情報処理装置から、前記第2の送信手段によるデータ伝送レートを制御する前記制御信号を受信する第2の受信手段と、
前記第2の受信手段により受信された前記制御信号に基づいて、前記第2の送信手段により送信される前記データの前記データ伝送レートを制御する制御手段と
を備えることを特徴とするデータ通信システム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003055145A JP3769752B2 (ja) | 2002-12-24 | 2003-03-03 | 情報処理装置および情報処理方法、データ通信システム、並びに、プログラム |
EP20030257726 EP1434378A3 (en) | 2002-12-24 | 2003-12-09 | Information processing apparatus, information processing method, data communication system and data communication program |
US10/744,893 US20040199659A1 (en) | 2002-12-24 | 2003-12-23 | Information processing apparatus, information processing method, data communication system and program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002371426 | 2002-12-24 | ||
JP2003055145A JP3769752B2 (ja) | 2002-12-24 | 2003-03-03 | 情報処理装置および情報処理方法、データ通信システム、並びに、プログラム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004254258A JP2004254258A (ja) | 2004-09-09 |
JP3769752B2 true JP3769752B2 (ja) | 2006-04-26 |
Family
ID=32473721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003055145A Expired - Fee Related JP3769752B2 (ja) | 2002-12-24 | 2003-03-03 | 情報処理装置および情報処理方法、データ通信システム、並びに、プログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US20040199659A1 (ja) |
EP (1) | EP1434378A3 (ja) |
JP (1) | JP3769752B2 (ja) |
Families Citing this family (193)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100608821B1 (ko) * | 2004-07-22 | 2006-08-08 | 엘지전자 주식회사 | 휴대단말기의 왕복지연시간 측정장치 및 방법 |
US9621473B2 (en) | 2004-08-18 | 2017-04-11 | Open Text Sa Ulc | Method and system for sending data |
GB2417391B (en) * | 2004-08-18 | 2007-04-18 | Wecomm Ltd | Transmitting data over a network |
US20060075449A1 (en) * | 2004-09-24 | 2006-04-06 | Cisco Technology, Inc. | Distributed architecture for digital program insertion in video streams delivered over packet networks |
US7870590B2 (en) * | 2004-10-20 | 2011-01-11 | Cisco Technology, Inc. | System and method for fast start-up of live multicast streams transmitted over a packet network |
WO2006054442A1 (ja) * | 2004-11-17 | 2006-05-26 | Sharp Kabushiki Kaisha | 送信装置、受信装置及び通信システム |
KR100706602B1 (ko) * | 2004-12-16 | 2007-04-11 | 한국전자통신연구원 | 통신 품질 측정 시스템 및 그 방법 |
CN1790974A (zh) * | 2004-12-17 | 2006-06-21 | 松下电器产业株式会社 | 用于多入多出接收机的检测方法 |
JP2006237865A (ja) * | 2005-02-23 | 2006-09-07 | Yamaha Corp | 通信装置 |
US7460588B2 (en) * | 2005-03-03 | 2008-12-02 | Adaptive Spectrum And Signal Alignment, Inc. | Digital subscriber line (DSL) state and line profile control |
JP4645281B2 (ja) * | 2005-04-19 | 2011-03-09 | ソニー株式会社 | 情報処理装置および方法、プログラム、並びに記録媒体 |
JP4688566B2 (ja) * | 2005-05-10 | 2011-05-25 | 富士通東芝モバイルコミュニケーションズ株式会社 | 送信機及び受信機 |
US20070038834A1 (en) * | 2005-07-25 | 2007-02-15 | Rolf Fritz | Method and System for Managing the Sending of Data Packets Over a Data Path |
US20070071026A1 (en) * | 2005-09-23 | 2007-03-29 | Rivulet Communications, Inc. | Compressed video packet scheduling system |
JP2007097099A (ja) * | 2005-09-30 | 2007-04-12 | Hitachi Kokusai Electric Inc | データ伝送装置 |
US7680047B2 (en) * | 2005-11-22 | 2010-03-16 | Cisco Technology, Inc. | Maximum transmission unit tuning mechanism for a real-time transport protocol stream |
US7876696B2 (en) * | 2006-01-27 | 2011-01-25 | Texas Instruments Incorporated | Adaptive upstream bandwidth estimation and shaping |
US7965771B2 (en) | 2006-02-27 | 2011-06-21 | Cisco Technology, Inc. | Method and apparatus for immediate display of multicast IPTV over a bandwidth constrained network |
US8218654B2 (en) | 2006-03-08 | 2012-07-10 | Cisco Technology, Inc. | Method for reducing channel change startup delays for multicast digital video streams |
US20070263824A1 (en) * | 2006-04-18 | 2007-11-15 | Cisco Technology, Inc. | Network resource optimization in a video conference |
US8326927B2 (en) * | 2006-05-23 | 2012-12-04 | Cisco Technology, Inc. | Method and apparatus for inviting non-rich media endpoints to join a conference sidebar session |
US7796532B2 (en) * | 2006-05-31 | 2010-09-14 | Cisco Technology, Inc. | Media segment monitoring |
US8358763B2 (en) * | 2006-08-21 | 2013-01-22 | Cisco Technology, Inc. | Camping on a conference or telephony port |
US8031701B2 (en) | 2006-09-11 | 2011-10-04 | Cisco Technology, Inc. | Retransmission-based stream repair and stream join |
US7847815B2 (en) * | 2006-10-11 | 2010-12-07 | Cisco Technology, Inc. | Interaction based on facial recognition of conference participants |
US7693190B2 (en) * | 2006-11-22 | 2010-04-06 | Cisco Technology, Inc. | Lip synchronization for audio/video transmissions over a network |
US8121277B2 (en) * | 2006-12-12 | 2012-02-21 | Cisco Technology, Inc. | Catch-up playback in a conferencing system |
US8769591B2 (en) | 2007-02-12 | 2014-07-01 | Cisco Technology, Inc. | Fast channel change on a bandwidth constrained network |
JP2008236477A (ja) * | 2007-03-22 | 2008-10-02 | Oki Electric Ind Co Ltd | 通信遅延時間推定方法、通信遅延時間推定プログラム、車載通信器 |
WO2008126311A1 (ja) * | 2007-03-30 | 2008-10-23 | Fujitsu Limited | 動画記録方法および情報処理装置 |
US20100325255A1 (en) * | 2007-04-05 | 2010-12-23 | Gene Cheung | Data transmission system and method |
US20080253369A1 (en) | 2007-04-16 | 2008-10-16 | Cisco Technology, Inc. | Monitoring and correcting upstream packet loss |
US7724780B2 (en) * | 2007-04-19 | 2010-05-25 | Cisco Technology, Ink. | Synchronization of one or more source RTP streams at multiple receiver destinations |
US8549099B2 (en) * | 2007-07-12 | 2013-10-01 | Viasat, Inc. | Methods and systems for javascript parsing |
US20100146415A1 (en) * | 2007-07-12 | 2010-06-10 | Viasat, Inc. | Dns prefetch |
US8966053B2 (en) * | 2007-07-12 | 2015-02-24 | Viasat, Inc. | Methods and systems for performing a prefetch abort operation for network acceleration |
US20090016222A1 (en) * | 2007-07-12 | 2009-01-15 | Viasat, Inc. | Methods and systems for implementing time-slice flow control |
US8171135B2 (en) * | 2007-07-12 | 2012-05-01 | Viasat, Inc. | Accumulator for prefetch abort |
US7944836B2 (en) * | 2007-08-29 | 2011-05-17 | Ericsson Ab | Adaptive method and apparatus for adjusting network traffic volume reporting |
KR101522641B1 (ko) * | 2007-09-11 | 2015-05-26 | 삼성전자주식회사 | 고속 송수신을 위한 지그비 통신 장치 및 방법 |
US8289362B2 (en) * | 2007-09-26 | 2012-10-16 | Cisco Technology, Inc. | Audio directionality control for a multi-display switched video conferencing system |
WO2009045963A1 (en) | 2007-10-01 | 2009-04-09 | Viasat, Inc. | Methods and systems for secure data transmission between a client and a server via a proxy |
US9654328B2 (en) | 2007-10-15 | 2017-05-16 | Viasat, Inc. | Methods and systems for implementing a cache model in a prefetching system |
US8036240B2 (en) * | 2007-12-14 | 2011-10-11 | Microsoft Corporation | Software defined cognitive radio |
JP5034998B2 (ja) * | 2008-02-08 | 2012-09-26 | 日本電気株式会社 | 通信装置、通信システム、通信方法及び通信プログラム |
US8787153B2 (en) | 2008-02-10 | 2014-07-22 | Cisco Technology, Inc. | Forward error correction based data recovery with path diversity |
US20090213435A1 (en) * | 2008-02-22 | 2009-08-27 | Larry Cohen | Certified inbound facsimile service |
JP5536059B2 (ja) * | 2008-07-28 | 2014-07-02 | ヴァントリックス コーポレーション | 経時変化する容量を有する接続のフローレート適合 |
TW201019649A (en) * | 2008-11-06 | 2010-05-16 | Inst Information Industry | Network system, adjusting method of data transmission rate and computer program procut thereof |
US20100180082A1 (en) * | 2009-01-12 | 2010-07-15 | Viasat, Inc. | Methods and systems for implementing url masking |
JP5030986B2 (ja) * | 2009-03-16 | 2012-09-19 | 三菱電機株式会社 | 映像伝送装置及び映像伝送システム |
US10348571B2 (en) * | 2009-06-11 | 2019-07-09 | Talari Networks, Inc. | Methods and apparatus for accessing dynamic routing information from networks coupled to a wide area network (WAN) to determine optimized end-to-end routing paths |
US9069727B2 (en) | 2011-08-12 | 2015-06-30 | Talari Networks Incorporated | Adaptive private network with geographically redundant network control nodes |
FR2946820B1 (fr) * | 2009-06-16 | 2012-05-11 | Canon Kk | Procede de transmission de donnees et dispositif associe. |
US8427949B2 (en) * | 2009-08-07 | 2013-04-23 | Future Wei Technologies, Inc. | System and method for adapting a source rate |
GB2476116A (en) * | 2009-12-14 | 2011-06-15 | Dublin Inst Of Technology | Real-time VoIP transmission quality predictor and quality-driven de jitter buffer |
KR101818243B1 (ko) * | 2010-01-22 | 2018-02-22 | 삼성전자주식회사 | 통신 시스템의 적응적인 버퍼 관리 방법 및 장치 |
JP5510000B2 (ja) * | 2010-03-31 | 2014-06-04 | ソニー株式会社 | コンテンツ送信装置、コンテンツ再生システム、コンテンツ送信方法、およびプログラム |
JP5772395B2 (ja) * | 2011-08-29 | 2015-09-02 | 富士通株式会社 | 送信レート制御のためのプログラム、制御方法及び情報処理装置 |
US9386127B2 (en) | 2011-09-28 | 2016-07-05 | Open Text S.A. | System and method for data transfer, including protocols for use in data transfer |
US10103949B2 (en) * | 2012-03-15 | 2018-10-16 | Microsoft Technology Licensing, Llc | Count tracking in distributed environments |
US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
US10200263B2 (en) | 2013-04-19 | 2019-02-05 | Nec Corporation | Data transmission device, data transmission method, and program therefor |
JP2015082149A (ja) * | 2013-10-21 | 2015-04-27 | 株式会社リコー | 通信システム、通信方法及び通信プログラム |
US9584759B2 (en) | 2014-02-14 | 2017-02-28 | Telefonaktiebolaget Lm Ericsson (Publ) | Determination of bit rate request |
US11504192B2 (en) | 2014-10-30 | 2022-11-22 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
JP6499018B2 (ja) * | 2015-06-05 | 2019-04-10 | 株式会社東芝 | 通信装置、通信システム、推定方法及びプログラム |
GB2542984B (en) * | 2015-07-31 | 2020-02-19 | Imagination Tech Ltd | Identifying network congestion based on a processor load and receiving delay |
GB2535819B (en) | 2015-07-31 | 2017-05-17 | Imagination Tech Ltd | Monitoring network conditions |
EP3668039A4 (en) * | 2017-08-08 | 2020-06-17 | Sony Corporation | SEND TERMINAL, SEND METHOD, INFORMATION PROCESSING TERMINAL, AND INFORMATION PROCESSING METHOD |
US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11229436B2 (en) | 2017-10-30 | 2022-01-25 | Cilag Gmbh International | Surgical system comprising a surgical tool and a surgical hub |
US11510741B2 (en) | 2017-10-30 | 2022-11-29 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
US11317919B2 (en) | 2017-10-30 | 2022-05-03 | Cilag Gmbh International | Clip applier comprising a clip crimping system |
US11564756B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11311342B2 (en) | 2017-10-30 | 2022-04-26 | Cilag Gmbh International | Method for communicating with surgical instrument systems |
US11026687B2 (en) | 2017-10-30 | 2021-06-08 | Cilag Gmbh International | Clip applier comprising clip advancing systems |
US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
US11291510B2 (en) | 2017-10-30 | 2022-04-05 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11103268B2 (en) | 2017-10-30 | 2021-08-31 | Cilag Gmbh International | Surgical clip applier comprising adaptive firing control |
US11051876B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Surgical evacuation flow paths |
US11076921B2 (en) | 2017-12-28 | 2021-08-03 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
US20190201118A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Display arrangements for robot-assisted surgical platforms |
US11147607B2 (en) | 2017-12-28 | 2021-10-19 | Cilag Gmbh International | Bipolar combination device that automatically adjusts pressure based on energy modality |
US10932872B2 (en) | 2017-12-28 | 2021-03-02 | Ethicon Llc | Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set |
US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
US11832899B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical systems with autonomously adjustable control programs |
US11659023B2 (en) | 2017-12-28 | 2023-05-23 | Cilag Gmbh International | Method of hub communication |
US10944728B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Interactive surgical systems with encrypted communication capabilities |
US11069012B2 (en) | 2017-12-28 | 2021-07-20 | Cilag Gmbh International | Interactive surgical systems with condition handling of devices and data capabilities |
US11132462B2 (en) | 2017-12-28 | 2021-09-28 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
US11602393B2 (en) | 2017-12-28 | 2023-03-14 | Cilag Gmbh International | Surgical evacuation sensing and generator control |
US11678881B2 (en) | 2017-12-28 | 2023-06-20 | Cilag Gmbh International | Spatial awareness of surgical hubs in operating rooms |
US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
US11045591B2 (en) | 2017-12-28 | 2021-06-29 | Cilag Gmbh International | Dual in-series large and small droplet filters |
US11786245B2 (en) * | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Surgical systems with prioritized data transmission capabilities |
US11464535B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Detection of end effector emersion in liquid |
US11160605B2 (en) | 2017-12-28 | 2021-11-02 | Cilag Gmbh International | Surgical evacuation sensing and motor control |
US11446052B2 (en) | 2017-12-28 | 2022-09-20 | Cilag Gmbh International | Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue |
US11324557B2 (en) | 2017-12-28 | 2022-05-10 | Cilag Gmbh International | Surgical instrument with a sensing array |
US11771487B2 (en) | 2017-12-28 | 2023-10-03 | Cilag Gmbh International | Mechanisms for controlling different electromechanical systems of an electrosurgical instrument |
US11633237B2 (en) | 2017-12-28 | 2023-04-25 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
US11253315B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Increasing radio frequency to create pad-less monopolar loop |
US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US11786251B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11559308B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method for smart energy device infrastructure |
US10943454B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Detection and escalation of security responses of surgical instruments to increasing severity threats |
US11529187B2 (en) | 2017-12-28 | 2022-12-20 | Cilag Gmbh International | Surgical evacuation sensor arrangements |
US11317937B2 (en) | 2018-03-08 | 2022-05-03 | Cilag Gmbh International | Determining the state of an ultrasonic end effector |
US11423007B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Adjustment of device control programs based on stratified contextual data in addition to the data |
US11100631B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Use of laser light and red-green-blue coloration to determine properties of back scattered light |
US11424027B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11308075B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity |
US11540855B2 (en) | 2017-12-28 | 2023-01-03 | Cilag Gmbh International | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
US10892995B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11559307B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method of robotic hub communication, detection, and control |
US10987178B2 (en) | 2017-12-28 | 2021-04-27 | Ethicon Llc | Surgical hub control arrangements |
US11576677B2 (en) | 2017-12-28 | 2023-02-14 | Cilag Gmbh International | Method of hub communication, processing, display, and cloud analytics |
US11179208B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Cloud-based medical analytics for security and authentication trends and reactive measures |
US11273001B2 (en) | 2017-12-28 | 2022-03-15 | Cilag Gmbh International | Surgical hub and modular device response adjustment based on situational awareness |
US11278281B2 (en) | 2017-12-28 | 2022-03-22 | Cilag Gmbh International | Interactive surgical system |
US11257589B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
US11304720B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Activation of energy devices |
US11304763B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use |
US11096693B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing |
US11666331B2 (en) | 2017-12-28 | 2023-06-06 | Cilag Gmbh International | Systems for detecting proximity of surgical end effector to cancerous tissue |
US10966791B2 (en) | 2017-12-28 | 2021-04-06 | Ethicon Llc | Cloud-based medical analytics for medical facility segmented individualization of instrument function |
US11969142B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
US11410259B2 (en) | 2017-12-28 | 2022-08-09 | Cilag Gmbh International | Adaptive control program updates for surgical devices |
US11234756B2 (en) | 2017-12-28 | 2022-02-01 | Cilag Gmbh International | Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter |
US11291495B2 (en) | 2017-12-28 | 2022-04-05 | Cilag Gmbh International | Interruption of energy due to inadvertent capacitive coupling |
US10849697B2 (en) | 2017-12-28 | 2020-12-01 | Ethicon Llc | Cloud interface for coupled surgical devices |
US11419630B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Surgical system distributed processing |
US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11432885B2 (en) | 2017-12-28 | 2022-09-06 | Cilag Gmbh International | Sensing arrangements for robot-assisted surgical platforms |
US20190206569A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Method of cloud based data analytics for use with the hub |
US11013563B2 (en) | 2017-12-28 | 2021-05-25 | Ethicon Llc | Drive arrangements for robot-assisted surgical platforms |
US11389164B2 (en) | 2017-12-28 | 2022-07-19 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US11844579B2 (en) | 2017-12-28 | 2023-12-19 | Cilag Gmbh International | Adjustments based on airborne particle properties |
US11464559B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
US11364075B2 (en) | 2017-12-28 | 2022-06-21 | Cilag Gmbh International | Radio frequency energy device for delivering combined electrical signals |
US11304699B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11109866B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Method for circular stapler control algorithm adjustment based on situational awareness |
US11311306B2 (en) | 2017-12-28 | 2022-04-26 | Cilag Gmbh International | Surgical systems for detecting end effector tissue distribution irregularities |
US10892899B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Self describing data packets generated at an issuing instrument |
US11056244B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks |
US12096916B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US11818052B2 (en) | 2017-12-28 | 2023-11-14 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
US11266468B2 (en) | 2017-12-28 | 2022-03-08 | Cilag Gmbh International | Cooperative utilization of data derived from secondary sources by intelligent surgical hubs |
US11903601B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Surgical instrument comprising a plurality of drive systems |
WO2019133143A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical hub and modular device response adjustment based on situational awareness |
US12127729B2 (en) | 2017-12-28 | 2024-10-29 | Cilag Gmbh International | Method for smoke evacuation for surgical hub |
US11896322B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
US10595887B2 (en) | 2017-12-28 | 2020-03-24 | Ethicon Llc | Systems for adjusting end effector parameters based on perioperative information |
US11832840B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical instrument having a flexible circuit |
US11589888B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Method for controlling smart energy devices |
US10758310B2 (en) | 2017-12-28 | 2020-09-01 | Ethicon Llc | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
US11376002B2 (en) | 2017-12-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
US11202570B2 (en) | 2017-12-28 | 2021-12-21 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
US11937769B2 (en) | 2017-12-28 | 2024-03-26 | Cilag Gmbh International | Method of hub communication, processing, storage and display |
US11419667B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location |
US11672605B2 (en) | 2017-12-28 | 2023-06-13 | Cilag Gmbh International | Sterile field interactive control displays |
US11166772B2 (en) | 2017-12-28 | 2021-11-09 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
US11284936B2 (en) | 2017-12-28 | 2022-03-29 | Cilag Gmbh International | Surgical instrument having a flexible electrode |
US11612408B2 (en) | 2017-12-28 | 2023-03-28 | Cilag Gmbh International | Determining tissue composition via an ultrasonic system |
US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
US11571234B2 (en) | 2017-12-28 | 2023-02-07 | Cilag Gmbh International | Temperature control of ultrasonic end effector and control system therefor |
US11304745B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical evacuation sensing and display |
US11617597B2 (en) | 2018-03-08 | 2023-04-04 | Cilag Gmbh International | Application of smart ultrasonic blade technology |
US11589915B2 (en) | 2018-03-08 | 2023-02-28 | Cilag Gmbh International | In-the-jaw classifier based on a model |
US11259830B2 (en) | 2018-03-08 | 2022-03-01 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
US11090047B2 (en) | 2018-03-28 | 2021-08-17 | Cilag Gmbh International | Surgical instrument comprising an adaptive control system |
US11259806B2 (en) | 2018-03-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein |
US10973520B2 (en) | 2018-03-28 | 2021-04-13 | Ethicon Llc | Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature |
US11406382B2 (en) | 2018-03-28 | 2022-08-09 | Cilag Gmbh International | Staple cartridge comprising a lockout key configured to lift a firing member |
US11278280B2 (en) | 2018-03-28 | 2022-03-22 | Cilag Gmbh International | Surgical instrument comprising a jaw closure lockout |
US11219453B2 (en) | 2018-03-28 | 2022-01-11 | Cilag Gmbh International | Surgical stapling devices with cartridge compatible closure and firing lockout arrangements |
US11471156B2 (en) | 2018-03-28 | 2022-10-18 | Cilag Gmbh International | Surgical stapling devices with improved rotary driven closure systems |
US11207067B2 (en) | 2018-03-28 | 2021-12-28 | Cilag Gmbh International | Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing |
US11096688B2 (en) | 2018-03-28 | 2021-08-24 | Cilag Gmbh International | Rotary driven firing members with different anvil and channel engagement features |
WO2019223000A1 (zh) | 2018-05-25 | 2019-11-28 | 华为技术有限公司 | 传输数据的方法和装置 |
CN111436048B (zh) * | 2019-02-03 | 2022-03-01 | 维沃移动通信有限公司 | 支持时间敏感通信的方法及通信设备 |
US11259807B2 (en) | 2019-02-19 | 2022-03-01 | Cilag Gmbh International | Staple cartridges with cam surfaces configured to engage primary and secondary portions of a lockout of a surgical stapling device |
US11317915B2 (en) | 2019-02-19 | 2022-05-03 | Cilag Gmbh International | Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers |
US11464511B2 (en) | 2019-02-19 | 2022-10-11 | Cilag Gmbh International | Surgical staple cartridges with movable authentication key arrangements |
US11369377B2 (en) | 2019-02-19 | 2022-06-28 | Cilag Gmbh International | Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout |
US11357503B2 (en) | 2019-02-19 | 2022-06-14 | Cilag Gmbh International | Staple cartridge retainers with frangible retention features and methods of using same |
USD964564S1 (en) | 2019-06-25 | 2022-09-20 | Cilag Gmbh International | Surgical staple cartridge retainer with a closure system authentication key |
USD950728S1 (en) | 2019-06-25 | 2022-05-03 | Cilag Gmbh International | Surgical staple cartridge |
USD952144S1 (en) | 2019-06-25 | 2022-05-17 | Cilag Gmbh International | Surgical staple cartridge retainer with firing system authentication key |
WO2022123677A1 (ja) * | 2020-12-09 | 2022-06-16 | 日本電信電話株式会社 | パケットキャプチャ装置、タイムスタンプ補正方法、パケットキャプチャ方法およびパケットキャプチャプログラム |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2337895B (en) * | 1995-06-05 | 2000-01-19 | Fujitsu Ltd | Detecting congestion in ATM networks |
US6687752B1 (en) * | 2000-03-01 | 2004-02-03 | Ezenial Inc. | Dynamic RTP/RTCP timestamp validation |
US7333439B2 (en) * | 2000-08-24 | 2008-02-19 | Matsushita Electric Industrial Co., Ltd. | Sending/receiving method, and device for the same |
JP3769468B2 (ja) * | 2001-03-21 | 2006-04-26 | 株式会社エヌ・ティ・ティ・ドコモ | 通信品質制御方法、通信品質制御システム、パケット解析装置及びデータ送信端末装置 |
JP2002300274A (ja) * | 2001-03-30 | 2002-10-11 | Fujitsu Ltd | ゲートウェイ装置及び音声データ転送方法 |
JP3882187B2 (ja) * | 2001-04-19 | 2007-02-14 | 日本電気株式会社 | フロー制御システムおよび方法 |
JP3900413B2 (ja) * | 2002-02-14 | 2007-04-04 | Kddi株式会社 | 映像情報伝送方式およびプログラム |
-
2003
- 2003-03-03 JP JP2003055145A patent/JP3769752B2/ja not_active Expired - Fee Related
- 2003-12-09 EP EP20030257726 patent/EP1434378A3/en not_active Withdrawn
- 2003-12-23 US US10/744,893 patent/US20040199659A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
EP1434378A3 (en) | 2007-10-03 |
JP2004254258A (ja) | 2004-09-09 |
US20040199659A1 (en) | 2004-10-07 |
EP1434378A2 (en) | 2004-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3769752B2 (ja) | 情報処理装置および情報処理方法、データ通信システム、並びに、プログラム | |
JP3769468B2 (ja) | 通信品質制御方法、通信品質制御システム、パケット解析装置及びデータ送信端末装置 | |
JP4219930B2 (ja) | 伝送パラメータ制御装置 | |
KR100641159B1 (ko) | Rtcp패킷 기반의 적응적 멀티미디어 데이터 전송률추정방법 | |
US7583666B2 (en) | Protocol information processing system and method information processing device and method recording medium and program | |
US7151749B2 (en) | Method and System for providing adaptive bandwidth control for real-time communication | |
RU2304364C2 (ru) | Устройство и способ для измерения времени задержки на двустороннее распространение для мультимедийных данных с переменной скоростью передачи битов | |
JP2004343698A (ja) | マルチメディア・ストリーミング環境におけるサーバベースのレート制御 | |
JP5147858B2 (ja) | 複合および非複合rtcpパケット間のrtcp帯域幅の分割 | |
WO2006086691A2 (en) | A network for providing a streaming service | |
JP4600513B2 (ja) | データ送信装置、送信レート制御方法およびプログラム | |
JP2004215201A (ja) | 情報処理装置および情報処理方法、データ通信システム、記録媒体、並びにプログラム | |
JP4042396B2 (ja) | データ通信システム、データ送信装置、データ受信装置、および方法、並びにコンピュータ・プログラム | |
TWI801835B (zh) | 往返估算 | |
JP3906678B2 (ja) | データ通信システム、データ送信装置、データ受信装置、および方法、並びにコンピュータ・プログラム | |
Bae et al. | TCP-friendly flow control of wireless multimedia using ECN marking | |
JP2005269364A (ja) | 通信路状態検出方法及び装置 | |
KR20030029546A (ko) | 인터넷 멀티미디어 통신에서 사용자 이동성 보장을 위한서비스 품질 제어 방법 | |
Hoang et al. | An adaptive control scheme for multimedia flows over wireless networks | |
KR20050068433A (ko) | 통신 시스템에서의 혼잡 제어 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050809 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050811 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050929 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060116 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060129 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090217 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100217 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |