JP3765251B2 - 光スキャナ装置及び光スキャナ装置の駆動方法 - Google Patents
光スキャナ装置及び光スキャナ装置の駆動方法 Download PDFInfo
- Publication number
- JP3765251B2 JP3765251B2 JP2001191371A JP2001191371A JP3765251B2 JP 3765251 B2 JP3765251 B2 JP 3765251B2 JP 2001191371 A JP2001191371 A JP 2001191371A JP 2001191371 A JP2001191371 A JP 2001191371A JP 3765251 B2 JP3765251 B2 JP 3765251B2
- Authority
- JP
- Japan
- Prior art keywords
- unit
- frequency
- vibration
- mirror
- driving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Mechanical Optical Scanning Systems (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Description
【発明の属する技術分野】
本発明は、光源から照射された光を弾性変形部材を介して片持ち梁状に支持されたミラー部により反射して対象物に照射するとともに、前記ミラー部を振動させることによって前記対象物に照射する光を走査する光スキャナ装置、及びこのような光スキャナ装置の駆動方法に関する。
【0002】
【従来の技術】
従来、光源から出射されたレーザ光を2次元方向に走査しながら対象物に照射させる光スキャナ装置が提案されており、例えば、車両用2次元レーザレーダに適用されている。車両用2次元レーザレーダは、光スキャナ装置を用いて車両周囲の対象物にレーザ光を照射させ、この対象物からの反射戻り光を検出して、光スキャナ装置からの出射レーザ光と対象物からの反射戻り光との関係に基づいて、対象物までの距離や水平方向及び水平方向の角度等を検出するものである。このような車両用2次元レーザレーダを車両に搭載すれば、車両周囲の状況を適切且つ確実に把握することができるので、車両の走行時における安全性を高める技術として注目を集めている。
【0003】
従来の光スキャナ装置としては、例えば特開平9−101474号公報に開示されている構成が知られている。この従来例は、共振駆動による2次元光スキャナ装置に関するものであり、反射ミラーの周囲に互いに直交する2つの両持ち梁状の捩り振動梁が配設されている。そして、振動軸として機能するこれら2つの捩り振動梁の基底部に圧電アクチュエータを配設し、振動軸の曲げ及び捩りの共振周波数に応じた交流電圧を圧電アクチュエータに合成して印加することにより、曲げ及び捩りの振動を同時に反射ミラーに付与し、これによって2次元走査を可能としている。
【0004】
また、この従来例は、捩り振動梁の基底部に圧電センサを配設した構成とされている。そして、この圧電センサによって反射ミラーの振れ角を応力信号として検出し、この応力信号を自励発振回路に印加して圧電アクチュエータに増幅して帰還することにより、圧電アクチュエータの発振周波数を各々の捩り振動梁の捩り固有振動数に一致させるとともに、発振振幅を一定の値に制御するようにしている。これにより、温度変化等によるダンピング係数や共振周波数の変化に対応して、反射ミラーを安定して振動させることができ、高精度の2次元走査を実現することが可能となっている。
【0005】
【発明が解決しようとする課題】
ところで、上述した従来例における光スキャナ装置は、曲げ及び捩りの2つの両持ち梁で反射ミラーを支持しており、これら2つの両持ち梁の捩れの振動を利用する構造とされている。このため、共振周波数の前後の周波数域において梁の振幅(すなわち振れ角)が均等に減衰し、良好な共振特性を得ることが容易である。したがって、梁の固有振動数に合わせた周波数を維持しながら反射ミラーの共振を継続させるに際して、自励発振回路等のような簡略な制御回路を用いることが可能である。
【0006】
しかしながら、上述した従来例における光スキャナ装置は、反射ミラーを2つの両持ち梁で支持する構造とされていることから、装置構成が複雑であり、低コスト化を図ることに限界がある。
【0007】
そこで、装置構成を簡素化して大幅な低コスト化を実現する方法として、例えば、反射ミラーを単独の片持ち梁で支持し、この片持ち梁を曲げ方向と捩り方向とにそれぞれ振動させることによって、2次元走査を行うようにする方法が考えられている。しかしながら、この場合には、広範囲の走査に対応して大きな捩れ振動を得ようとすると、図16に示すように、いわゆるハードスプリング効果と称される現象が生じて、共振周波数の前後の周波数域において梁の振幅の減衰特性が非対称となり、極めて非線形性の強い振動形態となってしまうといった問題があった。このような非線形性の強い共振振動は、自励発振回路を用いた帰還制御により安定して動作させることが困難である。
【0008】
したがって、従来例における光スキャナ装置は、高周波成分を含む振動などの外乱が生じた場合に、帰還制御系が発散してしまい、共振周波数よりも僅かでも高い周波数域で振動させるように制御回路が動作すると共振が停止してしまう虞があった。また、共振が停止した後に動作を再開させる場合に、帰還制御系の過度な応答により、不安定な共振形態となりがちである。
【0009】
このため、従来例における光スキャナ装置は、例えば車両用2次元レーザレーダに適用した場合には、高周波成分を含む車両の振動などにより動作が不安定となり易く、また共振の停止が頻発するなどして、十分な信頼性を得ることが困難である。
【0010】
一方、光スキャナ装置においては、例えば、反射ミラーを支持する梁を駆動するために、外部から印加される磁界に応じて変化する応力を発生する磁歪膜を梁の裏面に形成した構造とすることが考えられる。この場合には、図17に示すように、磁歪膜に生じるヒステリシスによる影響が顕著となる。
【0011】
具体的には、例えば、共振周波数よりも高い周波数域にずれて共振が停止した後で動作を再開するときに、本来の共振周波数よりも遙かに低い周波数から共振周波数まで反射ミラーを駆動する周波数を逐次スイープする手法、或いは直流磁界を印加することにより磁歪膜内部の磁気モーメントを共振が停止する前の状態に反転させた後に共振を再開する手法を採用することが必要となる。しかしながら、何れの手法によっても、一時的に反射ミラーの振動動作を停止させることとなってしまう。
【0012】
したがって、このような光スキャナ装置は、車両の周囲の物体を常時検出することが要求される車両用2次元レーザレーダに適用することが困難となっている。
【0013】
本発明は、上述した従来の実情に鑑みてなされたものであり、装置構成を簡略化して大幅な低コスト化を実現するとともに、安定した走査を継続して行うことが可能な光スキャナ装置、及びこのような光スキャナ装置の駆動方法を提供することを目的としている。
【0014】
【課題を解決するための手段】
請求項1に記載の発明は、光源から照射された光を弾性変形部材を介して片持ち梁状に支持されたミラー部により反射して対象物に照射するとともに、前記ミラー部を振動させることによって前記対象物に照射する光を走査し、前記ミラー部の振動状態が最適となるように前記ミラー部の振動周波数及び振動振幅を検出して帰還制御を行う光スキャナ装置において、前記弾性変形部材を変形させて前記ミラー部を振動させる駆動手段と、前記駆動手段の動作を制御する駆動制御手段と、前記弾性変形部材の変形量を検出する変形量検出手段と、前記変形量検出手段から出力される信号を処理して、前記ミラー部の振動周波数を検出する周波数検出手段とを備え、前記駆動制御手段が、前記ミラー部の振動中に前記駆動手段の動作を一時的に停止させ、当該駆動手段の動作が一時的に停止されている間に前記周波数検出手段により検出される振動周波数に基づいて、前記駆動手段の動作を再開させるときの動作周波数を決定することを特徴とするものである。
【0015】
また、請求項2に記載の発明は、請求項1に記載の光スキャナ装置において、前記駆動制御手段が、前記駆動手段の動作が一時的に停止されている間に前記周波数検出手段により検出される振動周波数の値から所定の値を減算し、減算された周波数の値に基づいて、前記駆動手段の動作を再開させるときの動作周波数を決定することを特徴とするものである。
【0016】
また、請求項3に記載の発明は、請求項1又は2に記載の光スキャナ装置において、少なくとも電源投入時において、前記駆動手段に対してパルス電圧を印加するパルス電圧印加手段を更に備え、前記駆動制御手段が、前記パルス電圧印加手段によるパルス電圧の印加が行われたときは、前記駆動手段にパルス電圧が印加されてから所定時間経過後の時点で前記周波数検出手段により検出される振動周波数に基づいて前記駆動手段の動作周波数を決定し、その後、決定した動作周波数で前記駆動手段を動作させ、前記ミラー部の振動中に前記駆動手段の動作を一時的に停止させて、当該駆動手段の動作が一時的に停止されている間に前記周波数検出手段により検出される振動周波数に基づいて、前記駆動手段の動作を再開させるときの動作周波数を決定することを特徴とするものである。
【0017】
また、請求項4に記載の発明は、請求項1に記載の光スキャナ装置において、前記駆動手段が、前記弾性変形部材を捩り方向に変形させる第1の駆動部と、前記弾性変形部材を曲げ方向に変形させる第2の駆動部とを備え、前記変形量検出手段が、前記弾性変形部材の捩り変形量を検出する捩り変形量検出部と、前記弾性変形部材の曲げ変形量を検出する曲げ変形量検出部とを備え、前記周波数検出手段が、前記捩り変形量検出部から出力される信号を処理して捩り振動周波数を検出する捩り周波数検出部と、前記曲げ変形量検出部から出力される信号を処理して曲げ振動周波数を検出する曲げ周波数検出部とを備え、前記駆動手段が前記弾性変形部材を捩り方向と曲げ方向とにそれぞれ変形させることにより、光源からの光を前記対象物に対して2次元走査することを特徴とするものである。
【0018】
また、請求項5に記載の発明は、請求項4に記載の光スキャナ装置において、前記駆動制御手段が、前記ミラー部の振動中に前記第1の駆動部の動作を一時的に停止させ、当該第1の駆動部の動作が一時的に停止されている間に前記捩り周波数検出部により検出される捩り振動周波数に基づいて、前記第1の駆動部の動作を再開させるときの動作周波数を決定するとともに、自励発振回路により生成される信号に基づいて前記第2の駆動部の動作を制御することを特徴とするものである。
【0019】
また、請求項6に記載の発明は、請求項4又は5に記載の光スキャナ装置において、前記駆動制御手段が、前記第1の駆動部の動作が一時的に停止されている間に前記捩り周波数検出部により検出される捩り振動周波数の値から所定の値を減算し、減算された周波数の値に基づいて、前記第1の駆動部の動作を再開させるときの動作周波数を決定することを特徴とするものである。
【0020】
また、請求項7に記載の発明は、請求項4乃至6の何れかに記載の光スキャナ装置において、少なくとも電源投入時において、前記第1の駆動部に対してパルス電圧を印加するパルス電圧印加手段を更に備え、前記駆動制御手段が、前記パルス電圧印加手段によるパルス電圧の印加が行われたときは、前記第1の駆動部にパルス電圧が印加されてから所定時間経過後の時点で前記捩り周波数検出部により検出される捩り振動周波数に基づいて前記第1の駆動部の動作周波数を決定し、その後、決定した動作周波数で前記第1の駆動部を動作させ、前記ミラー部の振動中に前記第1の駆動部の動作を一時的に停止させて、当該第1の駆動部の動作が一時的に停止されている間に前記捩り周波数検出部により検出される捩り振動周波数に基づいて、前記第1の駆動部の動作を再開させるときの動作周波数を決定することを特徴とするものである。
【0021】
また、請求項8に記載の発明は、光源から照射された光を弾性変形部材を介して片持ち梁状に支持されたミラー部により反射して対象物に照射するとともに、駆動手段の動作により前記弾性変形部材を変形させて前記ミラー部を振動させることによって前記対象物に照射する光を走査し、前記ミラー部の振動状態が最適となるように前記ミラー部の振動周波数及び振動振幅を検出して帰還制御を行う光スキャナ装置の駆動方法において、前記ミラー部の振動中に前記駆動手段の動作を一時的に停止させ、当該駆動手段の動作が一時的に停止されている間に検出される前記ミラー部の振動周波数に基づいて、前記駆動手段の動作を再開させるときの動作周波数を決定することを特徴とするものである。
【0022】
また、請求項9に記載の発明は、請求項8に記載の光スキャナ装置の駆動方法において、前記駆動手段の動作が一時的に停止されている間に検出される前記ミラー部の振動周波数の値から所定の値を減算し、減算された周波数の値に基づいて、前記駆動手段の動作を再開させるときの動作周波数を決定することを特徴とするものである。
【0023】
また、請求項10に記載の発明は、請求項8又は9に記載の光スキャナ装置の駆動方法において、少なくとも電源投入時において、前記駆動手段にパルス電圧を印加し、前記駆動手段にパルス電圧が印加されてから所定時間経過後の時点で検出される前記ミラー部の振動周波数に基づいて前記駆動手段の動作周波数を決定し、その後、決定した動作周波数で前記駆動手段を動作させ、前記ミラー部の振動中に前記駆動手段の動作を一時的に停止させて、当該駆動手段の動作が一時的に停止されている間に検出される前記ミラー部の振動周波数に基づいて、前記駆動手段の動作を再開させるときの動作周波数を決定することを特徴とするものである。
【0024】
また、請求項11に記載の発明は、請求項8に記載の光スキャナ装置の駆動方法において、前記駆動手段が、前記弾性変形部材を捩り方向に変形させる第1の駆動部と、前記弾性変形部材を曲げ方向に変形させる第2の駆動部とを有し、前記ミラー部を2次元方向に振動させることで、光源からの光を前記対象物に対して2次元走査するとともに、前記弾性変形部材の捩り変形量と曲げ変形量とに基づいて、前記ミラー部の捩り振動周波数と曲げ振動周波数とをそれぞれ検出することを特徴とするものである。
【0025】
また、請求項12に記載の発明は、請求項11に記載の光スキャナ装置の駆動方法において、前記第1の駆動部の動作が一時的に停止されている間に検出される前記ミラー部の捩り振動周波数に基づいて、前記第1の駆動部の動作を再開させるときの動作周波数を決定するとともに、自励発振回路により生成される信号に基づいて、前記第2の駆動部の動作を制御することを特徴とするものである。
【0026】
また、請求項13に記載の発明は、請求項11又は12に記載の光スキャナ装置の駆動方法において、前記第1の駆動部の動作が一時的に停止されている間に検出される前記ミラー部の捩り振動周波数の値から所定の値を減算し、減算された周波数の値に基づいて、前記第1の駆動部の動作を再開させるときの動作周波数を決定することを特徴とするものである。
【0027】
また、請求項14に記載の発明は、請求項11乃至13の何れかに記載の光スキャナ装置の駆動方法において、少なくとも電源投入時において、前記第1の駆動部にパルス電圧を印加し、前記第1の駆動部にパルス電圧が印加されてから所定時間経過後の時点で検出される前記ミラー部の捩り振動周波数に基づいて前記第1の駆動部の動作周波数を決定し、その後、決定した動作周波数で前記第1の駆動部を動作させ、前記ミラー部の振動中に前記第1の駆動部の動作を一時的に停止させて、当該第1の駆動部の動作が一時的に停止されている間に検出される前記ミラー部の捩り振動周波数に基づいて、前記第1の駆動部の動作を再開させるときの動作周波数を決定することを特徴とするものである。
【0028】
【発明の効果】
請求項1に係る光スキャナ装置によれば、ミラー部の振動中に弾性変形部材を変形させる駆動手段の動作を一時的に停止させ、当該駆動手段の動作が一時的に停止されている間に検出されるミラー部の振動周波数に基づいて駆動手段の動作を再開させるときの動作周波数を決定することにより、ミラー部を支持する弾性変形部材にハードスプリング効果が生じた場合であっても、例えばヒステリシスが比較的小さい磁歪膜を駆動手段として用いることで、温度変化に対応して常に安定した共振動作を維持することができる。また、ミラー部が片持ち梁状に支持された構造とされていることから、装置構成を簡略化して低コスト化を実現することができる。したがって、特に車両用レーザレーダに用いた場合に、車両の振動などに起因する走査動作の停止を有効に防止することができ、装置の信頼性を向上して、車両の走行時における安全性を十分に確保することができる。
【0029】
また、請求項2に係る光スキャナ装置によれば、請求項1の効果に加えて、ヒステリシスが比較的小さい磁歪膜を駆動手段として用いることで急激な外乱振動が加わった場合であっても、駆動手段の動作が一時的に停止されている間に検出されるミラー部の振動周波数の値から所定の値を減算した周波数の値に基づいて駆動手段の動作を再開させるときの動作周波数を決定することから、この外乱振動による影響を有効に抑制して、安定した共振動作を維持することができる。したがって、特に車両用レーザレーダに用いた場合において、車両の振動による影響を更に効果的に低減して、装置の動作が停止してしまう不都合を更に適切に防止することができる。
【0030】
また、請求項3に係る光スキャナ装置によれば、請求項1又は2の効果に加えて、例えば装置の周辺の環境温度が極めて高い場合、或いは極めて低い場合などのような極端な動作環境下においても、電源投入時にミラー部の共振動作を確実且つ安定して行うことができる。したがって、例えば熱帯地域や寒冷地域などに提供される車両に搭載して用いられる場合であっても、装置の信頼性を十分に確保することができる。
【0031】
また、請求項4に係る光スキャナ装置によれば、請求項1の効果に加えて、ミラー部を捩り方向と曲げ方向とにそれぞれ駆動制御することができ、光源からの光を対象物に対して2次元走査することができる。
【0032】
また、請求項5に係る光スキャナ装置によれば、請求項4の効果に加えて、ハードスプリング効果及び磁気的なヒステリシスによる影響が顕著となる捩り振動に対してのみ、駆動手段の動作が一時的に停止されている間に検出されるミラー部の振動周波数に基づいた同調制御を行い、曲げ振動に対しては安価な自励発振回路による帰還制御を行うことができる。したがって、装置に搭載する回路規模を小さくすることができ、小型軽量化を図ることができるとともに、更なる低コスト化を実現することができる。
【0033】
また、請求項6に係る光スキャナ装置によれば、請求項4又は5の効果に加えて、ヒステリシスが比較的小さい磁歪膜を駆動手段として用いることで急激な外乱振動が加わった場合であっても、弾性変形部材を捩り方向に変形させる第1の駆動部の動作が一時的に停止されている間に検出されるミラー部の捩り振動周波数の値から所定の値を減算した周波数の値に基づいて第1の駆動部の動作を再開させるときの動作周波数を決定することから、この外乱振動による影響を有効に抑制して、安定した共振動作を維持することができる。したがって、特に車両用2次元レーザレーダに用いた場合において、車両の振動による影響を効果的に低減して、装置の動作が停止してしまう不都合を更に適切に防止することができる。
【0034】
また、請求項7に係る光スキャナ装置によれば、請求項4乃至6の何れかの効果に加えて、例えば装置の周辺の環境温度が極めて高い場合、或いは極めて低い場合などのような極端な動作環境下においても、電源投入時にミラー部の共振動作を確実且つ安定して行うことができる。したがって、例えば熱帯地域や寒冷地域などに提供される車両に搭載して用いる場合であっても、装置の信頼性を十分に確保することができる。
【0035】
また、請求項8に係る光スキャナ装置の駆動方法によれば、ミラー部の振動中に弾性変形部材を変形させる駆動手段の動作を一時的に停止させ、当該駆動手段の動作が一時的に停止されている間に検出されるミラー部の振動周波数に基づいて駆動手段の動作を再開させるときの動作周波数を決定することにより、ミラー部を支持する弾性変形部材にハードスプリング効果が生じた場合であっても、例えばヒステリシスが比較的小さい磁歪膜によりミラー部を駆動することで、温度変化に対応して常に安定した共振動作を維持することができる。また、ミラー部が片持ち梁状に支持された構造とされていることから、装置構成を簡略化して低コスト化を実現することができる。したがって、特に光スキャナ装置を車両用レーザレーダに用いた場合に、車両の振動などに起因する走査動作の停止を防止することができ、車両の走行時における光スキャナ装置の信頼性及び安全性を十分に確保することができる。
【0036】
また、請求項9に係る光スキャナ装置の駆動方法によれば、請求項8の効果に加えて、ヒステリシスが比較的小さい磁歪膜によりミラー部を駆動することで急激な外乱振動が加わった場合であっても、駆動手段の動作が一時的に停止されている間に検出されるミラー部の振動周波数の値から所定の値を減算した周波数の値に基づいて駆動手段の動作を再開させるときの動作周波数を決定することから、この外乱振動による影響を抑制して、安定した共振動作を維持することができる。したがって、特に光スキャナ装置を車両用レーザレーダに用いた場合において、車両の振動による影響を低減して、光スキャナ装置の動作が停止してしまう不都合を更に適切に防止することができる。
【0037】
また、請求項10に係る光スキャナ装置の駆動方法によれば、請求項8又は9の効果に加えて、例えば装置の周辺の環境温度が極めて高い場合、或いは極めて低い場合などのような極端な動作環境下においても、電源投入時にミラー部の共振動作を確実且つ安定して行うことができる。したがって、光スキャナ装置が例えば熱帯地域や寒冷地域などに提供される車両に搭載して用いられる場合であっても、光スキャナ装置の信頼性を十分に確保することができる。
【0038】
また、請求項11に係る光スキャナ装置の駆動方法によれば、請求項8の効果に加えて、ミラー部を捩り方向と曲げ方向とにそれぞれ駆動制御することができ、光源からの光を対象物に対して2次元走査することができる。
【0039】
また、請求項12に係る光スキャナ装置の駆動方法によれば、請求項11の効果に加えて、ハードスプリング効果及び磁気的なヒステリシスによる影響が顕著となる捩れ振動に対してのみ、駆動手段の動作が一時的に停止されている間に検出されるミラー部の振動周波数に基づいた同調制御を行い、曲げ振動に対しては安価な自励発振回路による帰還制御を行うことができる。したがって、光スキャナ装置に搭載する回路規模を小さくすることができ、光スキャナ装置の小型軽量化を図ることができるとともに、さらなる低コスト化を実現することができる。
【0040】
また、請求項13に係る光スキャナ装置の駆動方法によれば、請求項11又は12の効果に加えて、ヒステリシスが比較的小さい磁歪膜によりミラー部を駆動することで急激な外乱振動が加わった場合であっても、弾性変形部材を捩り方向に変形させる第1の駆動部の動作が一時的に停止されている間に検出されるミラー部の捩り振動周波数の値から所定の値を減算した周波数の値に基づいて第1の駆動部の動作を再開させるときの動作周波数を決定することから、この外乱振動による影響を有効に抑制して、安定した共振動作を維持することができる。したがって、特に光スキャナ装置を車両用2次元レーザレーダに用いた場合において、車両の振動による影響を効果的に低減して、光スキャナ装置の動作が停止してしまう不都合を更に適切に防止することができる。
【0041】
また、請求項14に係る光スキャナ装置の駆動方法によれば、請求項11乃至13の何れかの効果に加えて、例えば光スキャナ装置の周辺の環境温度が極めて高い場合、或いは極めて低い場合などのような極端な動作環境下においても、電源投入時にミラー部の共振動作を確実且つ安定して行うことができる。したがって、例えば熱帯地域や寒冷地域などに提供される車両に搭載して用いる場合であっても、光スキャナ装置の信頼性を十分に確保することができる。
【0042】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。以下では、本発明を、車両用2次元レーザレーダ装置に適用した例について具体的に説明する。
【0043】
(第1の実施形態)
第1の実施形態として示す2次元レーザレーダ装置は、図1に示すように、対象物100に対して照射するレーザ光を出射するレーザダイオード10と、このレーザダイオード10を駆動するレーザダイオード駆動回路11と、レーザダイオード駆動回路11に対してレーザダイオード10の発光タイミングを出力する制御回路12とを備える。
【0044】
また、この2次元レーザレーダ装置は、レーザダイオード10から出射されたレーザ光が対象物100により反射されて戻ってきた戻り光を受光するフォトディテクタ13と、フォトディテクタ13からの出力信号に対して各種信号処理を施す受光回路14とを備える。受光回路14は、フォトディテクタ13からの出力信号に基づいて、所定の信号を制御回路12に出力する。そして制御回路12は、受光回路14からの出力信号に応じて、レーザ光がレーザダイオード10から出射されてから対象物100に反射してフォトディテクタ13によって検出されるまでの伝播遅延時間に基づいて、自車周囲に存在する対象物100までの距離や水平方向及び垂直方向の角度等、対象物100の位置情報を算出する。また、制御回路は、算出した対象物100の位置情報に基づいて、レーザダイオード10の発光タイミングをレーザダイオード駆動回路11に出力する。
【0045】
また、この2次元レーザレーダ装置は、レーザダイオード10から出射されたレーザ光を水平方向及び垂直方向に反射して2次元状に走査するスキャナ部15と、スキャナ部15によって走査されたレーザ光を反射して、例えば車両の前方に照射する反射ミラー16とを備える。
【0046】
スキャナ部15は、図1乃至図3に示すように、レーザ光を反射するミラー部20と、このミラー部20を捩り方向及び曲げ方向とに駆動する磁歪素子(図1乃至図3においては図示せず。)と、ミラー部20の捩り変形量及び曲げ変形量をそれぞれ検出する第1のピエゾ抵抗素子21a及び第2のピエゾ抵抗素子21bと、磁歪素子に対して外部磁界を印加する磁界印加手段22とを備える。
【0047】
また、この2次元レーザレーダ装置は、第1のピエゾ抵抗素子21a及び第2のピエゾ抵抗素子21bからの出力信号に基づいてミラー部20の捩り振動周波数及び曲げ振動周波数を検出し、この検出結果に応じて磁界印加手段22により印加する外部磁界を制御する駆動制御回路23を備えている。そして、この2次元レーザレーダ装置は、駆動制御回路23が制御回路12に接続されて、相互に各種信号の入出力を行うように構成されており、制御回路12によって装置全体の動作が制御される構成とされている。
【0048】
次に、スキャナ部15の構成について、図2及び図3を参照しながら詳細に説明する。
【0049】
スキャナ部15は、図2及び図3に示すように、外形を略矩形平板状に形成されており、例えばシリコンウエハを各種マイクロマシニング加工技術によって加工することなどによりコ字状に形成されたスリット部30によって分断されてなるミラー部20と、このミラー部20を囲むフレーム部31とを備える。ミラー部20は、一端部がフレーム部31と一体に形成されており、フレーム部31に対して片持ち梁状に支持されている。このミラー部20とフレーム部31との境界部(以下、片持ち梁部32と称する。)は、捩り方向と曲げ方向とに弾性変形自在とされている。
【0050】
ミラー部20は、例えばシリコンウエハの主面に対してアルミ蒸着により高反射コーティングを施すことにより形成されており、照射されるレーザ光に対して十分な反射率を有している。
【0051】
また、片持ち梁部32に位置して、ミラー部20が形成された面とは反対側の面には、図示を省略する磁歪素子が薄膜状に形成されている。この磁歪素子は、所定の磁場の下で形成されることにより、例えば図2中に示す矢印A方向に対して概ね22.5度の傾斜角を有する方向に磁化容易軸が設定されている。
【0052】
また、片持ち梁部32には、図2中に示す矢印D方向に対するミラー部20の曲げ方向及び捩り方向の変位量をそれぞれ検出する第1のピエゾ抵抗素子21a及び第2のピエゾ抵抗素子21bが形成されている。これら第1及び第2のピエゾ抵抗素子21a,21bからの出力信号は、フレーム部31の端部に形成された電極部33を介して外部に出力される。
【0053】
また、スキャナ部15は、図3に示すように、フレーム部31が外フレーム部34に取り付けられた状態で、この外フレーム部34の周囲に磁界印加手段22が配設されてなる。なお、図3(a)は、スキャナ部15が外フレーム部34に取り付けられた状態における平面図であり、図3(b)は、この状態における側面図である。
【0054】
磁界印加手段22は、駆動制御回路23による制御に応じて、図2中に示す矢印D方向に対するミラー部20における曲げ方向及び捩り方向のそれぞれの共振周波数の2成分が重なった交番磁界を磁歪素子に対して印加する。
【0055】
以上のように構成されたスキャナ部15は、磁界印加手段22によって交番磁界を印加されることにより磁歪素子が駆動し、片持ち梁部32が図2中の矢印Bに示す曲げ方向、及び図2中の矢印Cに示す捩り方向に変形する。これにより、ミラー部20は、曲げ方向と捩り方向とに振動動作することとなる。また、ミラー部20の振動は、片持ち梁部32に形成された第1及び第2のピエゾ抵抗素子21a,21bによって検出され、駆動制御回路23に出力される。
【0056】
ここで、スキャナ部15の具体的な一構成例について説明する。片持ち梁部32によって片持ち梁状に支持されるミラー部20の外形形状は、例えば、長さが10mm、幅が5mm、厚さが約20μmとされる。また、このミラー部20は、例えば、捩り共振周波数が2kHzとされ、曲げ共振周波数が200Hzとされる。また、各々の共振周波数におけるミラー部20のフレーム部31に対する変位角度は、例えば、捩り方向に5度、曲げ方向に20度とされる。なお、これら変位角度は、磁界印加手段22によって印加する交番磁界に応じて自在に制御可能である。
【0057】
なお、上述の説明においては、磁歪素子の磁化容易軸の傾斜角を22.5度としたが、この値に限定されるものではない。ただし、片持ち梁部32の機械的特性から、捩り振動に対しては、磁歪素子の磁化容易軸の傾斜角を45度とすることが望ましく、曲げ振動に対しては、傾斜角を0度とすることが望ましい。本例においては、ミラー部20を捩り方向と曲げ方向との双方で振動させることから、0度と45度との中間値である22.5度を選択することが望ましい。
【0058】
また、上述の説明においては、片持ち梁部32に形成した磁歪素子と磁界発生手段22とによりミラー部20を振動させる構成としたが、ミラー部20を振動駆動するに際しては、このような構成に限定されるものではなく、例えば、圧電素子を用いるようにしてもよいし、クーロン力などの各種駆動力を利用するようにしてもよい。
【0059】
また、図3に示すようにしてスキャナ部15を外フレーム部34に取り付けるに際しては、所定の厚さの(例えば3mm)各種スペーサ等を配設することが望ましい。これにより、ミラー部20が大きな振れ角で振動した場合であっても、このミラー部20が外フレーム部34や2次元レーザレーダ装置の他の各部材に干渉してしまうことを防止することができる。
【0060】
また、上述した磁界印加手段22としては、例えば、線径が0.1mmのエナメル線が500回巻回されてなるコイルなどを用いることができる。
【0061】
次に、上述した駆動制御回路23の具体的な回路構成の一例について以下に説明する。
【0062】
駆動制御回路23は、図4に示すように、スキャナ部15に形成された第1及び第2のピエゾ抵抗素子21a,21bからの出力信号をそれぞれ増幅する第1及び第2のシグナルコンディショナ41a,41bと、これら第1及び第2のシグナルコンディショナ41a,41bによって増幅された信号がそれぞれ入力され、それぞれミラー部20の曲げ振動周波数及び捩り振動周波数を検出する第1及び第2の周波数検出器42a,42bと、これら第1及び第2の周波数検出器42a,42bにより検出した振動周波数の値がそれぞれ入力端子ch1及び入力端子ch2に入力されるCPU43とを備えている。CPU43には、後述する処理手順を示すプログラムが記憶されるメモリ部44が接続されている。そして、CPU43は、メモリ部44に記憶されたプログラムに従って、入力された振動周波数の値に応じて各種演算処理を行い、ミラー部20の曲げ振動及び捩り振動を駆動する電圧値及び周波数値を、それぞれ出力端子ch3及び出力端子ch4から出力する。
【0063】
また、駆動制御回路23は、CPU43の出力端子ch3及び出力端子ch4から出力される電圧値及び周波数値がそれぞれ入力され、この入力信号に応じた正弦波をそれぞれ出力する第1及び第2の発振器45a,45bを備え、さらに、第1及び第2の断続器46a,46bと、第1及び第2の出力アンプ47a,47bと、加算器48とを備えている。
【0064】
第1及び第2の発振器45a,45bから出力された正弦波は、それぞれ第1及び第2の断続器46a,46bを介して第1及び第2の出力アンプ47a,47bに入力される。第1及び第2の出力アンプ47a,47bは、入力された正弦波をそれぞれ増幅して加算器48に出力する。加算器48は、第1及び第2の出力アンプ47a,47bから入力された正弦波を加算した後、磁界印加手段22に出力する。これにより、光スキャナ装置においては、磁界印加手段22から交番磁界が磁歪素子に対して印加され、ミラー部20が曲げ方向と捩り方向とにそれぞれ振動することとなる。
【0065】
一方、第1及び第2のシグナルコンディショナ41a,41bから出力される信号は、制御回路12にも出力される。そして、制御回路12は、入力された信号に基づいて、フォトディテクタ13により検出された戻り光がどの方向や距離から反射されたものかを検出する。これにより、2次元レーザレーダ装置は、対象物100までの距離や水平方向及び垂直方向の角度などのような対象物100に関する位置情報を検出することが可能とされている。
【0066】
また、第1及び第2の断続器46a,46bは、CPU43の出力端子ch5及び出力端子ch6から出力される信号がそれぞれ入力されており、このCPU43からの制御に応じて、第1及び第2の発振器45a,45bから出力される正弦波の第1及び第2の出力アンプ47a,47bに対する出力を適宜遮断することが可能とされている。
【0067】
ここで、以上のように構成された2次元レーザレーダ装置が備える駆動制御回路23による処理の一例について、図5及び図6を参照しながら具体的に説明する。
【0068】
2次元レーザレーダ装置の電源が投入されて動作が開始されると、図5中のステップS10において、CPU43の出力端子ch5から第1の断続器46aを遮断する信号を出力する。なお、この時点におけるミラー部20の振動振幅を、図6中において時刻T1で示す。この時刻T1以降、磁界印加手段22からはミラー部20を捩り方向のみに励起する磁場が磁歪素子に対して印加されることとなるが、ミラー部20は、残響共振による影響によって時刻T1以前の周波数から徐々に曲げ固有振動周波数に漸近させつつ振幅を弱めながら、振動を継続する。
【0069】
次に、ステップS11において、CPU43は、時刻T1から所定の時間(例えば20msec)が経過したか否かを判断する。この結果、所定の時間が経過している場合には次のステップS12に進み、経過していなかった場合には、ステップS11の判断処理を繰り返す。
【0070】
ここで、ステップS11からステップS12に移行するまでの経過時間を20msecに設定するのは、本発明者が実験により経験的に決定した最適値である。具体的には、約200Hzの曲げ共振周波数においてミラー部20の変位角を20度に設定した場合に、時刻T1において曲げ方向の駆動を遮断してから20msec経過した時点でのミラー部の振動振幅は約16度であった。このように曲げ方向の駆動を遮断したときに、16度の曲げ角が得られれば、レーザ光の水平スキャン角度として32度を確保することができ、車両用のレーザレーダ装置としては十分な水平スキャン角度を確保することができる。
【0071】
一方、本例におけるステップS11からステップS12への移行時間を20msecよりも短く設定すると、ミラー部20における曲げ固有振動周波数への移行が完了せず、次のステップS12において誤った振動周波数を計測してしまうといった不具合が生じる。また、本例における移行時間を20msecよりも長く設定すると、残響振動によるミラー部20の曲げ角度が小さくなりすぎてしまい、レーザ光の水平スキャン角度が十分に確保されず、対象物100の検知機能が制約されてしまう。
【0072】
以上のような理由から、本例においては、次のステップS12におけるミラー部20の曲げ固有振動周波数の検出を正確に計測するための最適な経過時間として、20msecを設定した。なお、本例におけるミラー部20の振動減衰率は、20%であった。
【0073】
次に、ステップS12において、第1のピエゾ抵抗素子21aからの出力信号に基づいて、第1の周波数検出器42aによりミラー部20の曲げ固有振動周波数と振動振幅とを検出する。なお、この時点におけるミラー部20の振動振幅を、図6中において時刻T2で示す。また、このとき検出された曲げ固有振動周波数及び振動振幅は、CPU43によってメモリ部44に一時的に記憶される。
【0074】
次に、ステップS13において、CPU43は、ステップS12において検出された曲げ固有振動周波数及び振動振幅と、予めメモリ部44に記録された初期値とを比較して差を算出し、この差に基づいて調整した最適振幅値を得る。
【0075】
次に、ステップS14において、CPU43は、ステップS12で検出した曲げ固有振動周波数とステップS13で得た最適振幅値とを出力端子ch3を介して第1の発振器45aに出力する。この時点では、ミラー部20は磁界印加手段22によって印加される磁界によって捩り方向のみの振動をしている。
【0076】
次に、ステップS15において、CPU43は、出力端子ch5を介して第1の断続器46aを接続する要求を出力する。これにより、磁界印加手段22からは、捩り振動とともに曲げ振動に対応した交番磁界が磁歪素子に印加されることとなり、ミラー部20は、捩り方向と曲げ方向との2方向に振動する。なお、この時点におけるミラー部20の振動振幅を図6中において時刻T3で示す。
【0077】
次に、ステップS16において、CPU43は、出力端子ch6から第2の断続器46bを遮断する信号を出力する。なお、以降で説明する第2の断続器46bを遮断する動作においては、ミラー部20の振動振幅の変化が、上述したようにして第1の断続器46aを遮断した場合と略々同等であることから、このステップS16の時点におけるミラー部20の振動振幅を便宜的に、図6中において上述の説明で用いた時刻T1で示す。この時刻T1以降、磁界印加手段22からはミラー部20を曲げ方向のみに励起する磁場が磁歪素子に対して印加されることとなるが、ミラー部20は、残響共振による影響によって時刻T1以前の周波数から徐々に捩り固有振動周波数に漸近させつつ振幅を弱めながら、振動を継続する。
【0078】
次に、ステップS17において、CPU43は、時刻T1から所定の時間(例えば10msec)が経過したか否かを判断する。この結果、所定の時間が経過している場合には次のステップS18に進み、経過していなかった場合には、ステップS17における判断を繰り返す。
【0079】
ここで、ステップS17からステップS18に移行するまでの経過時間を10msecに設定するのは、本発明者が実験により経験的に決定した最適値である。具体的には、本例における外形形状とされたミラー部20の捩り変位角が5度であり、時刻T1において捩り方向の駆動を遮断してから10msec経過した時点でのミラー部の振動振幅は約4度であった。このように捩り方向の駆動を遮断したときに、4度の捩り角が得られれば、レーザ光のスキャン角度として垂直方向に8度を確保することができ、車両用のレーザレーダ装置としては十分な垂直スキャン角度を確保することができる。
【0080】
一方、本例におけるステップS17からステップS18への移行時間を10msecよりも短く設定すると、ミラー部20における捩り固有振動周波数への移行が完了せず、次のステップS18において誤った振動周波数を計測してしまうといった不具合が生じる。また、本例における移行時間を10msecよりも長く設定すると、残響振動によるミラー部20の捩り角度が小さくなりすぎてしまい、レーザ光の垂直スキャン角度が十分に確保されず、対象物100の検知機能が制約されてしまう。
【0081】
以上のような理由から、本例においては、次のステップS17におけるミラー部20の捩り固有振動周波数の検出を正確に計測するための最適な経過時間として、10msecを設定した。なお、本例におけるミラー部20の振動減衰率は、20%であった。
【0082】
次に、ステップS18において、第2のピエゾ抵抗素子21bからの出力信号に基づいて、第2の周波数検出器42bによりミラー部20の捩り固有振動周波数と振動振幅とを検出する。なお、この時点におけるミラー部20の振動振幅を、図6中において時刻T2で示す。このとき検出された捩り固有振動周波数及び振動振幅は、CPU43によってメモリ部44に一時的に記憶される。
【0083】
次に、ステップS19において、CPU43は、ステップS18において検出された捩り固有振動周波数及び振動振幅と、予めメモリ部44に記録された初期値とを比較して差を算出し、この差に基づいて調整した最適振幅値を得る。
【0084】
次に、ステップS20において、CPU43は、ステップS18で検出した曲げ固有振動周波数とステップS19で得た最適振幅値とを出力端子ch4を介して第2の発振器45bに出力する。この時点では、ミラー部20は磁界印加手段22によって印加される磁界によって曲げ方向のみの振動をしている。
【0085】
次に、ステップS21において、CPU43は、出力端子ch6を介して第2の断続器46bを接続する要求を出力する。これにより、磁界印加手段22からは、曲げ振動とともに捩り振動に対応した交番磁界が磁歪素子に印加されることとなり、ミラー部20は、曲げ方向と捩り方向との2方向に振動する。なお、この時点におけるミラー部20の振動振幅を図6中において時刻T3で示す。
【0086】
次に、ステップS22において、CPU43は、ステップS21の処理から所定の時間(例えば100sec)が経過したか否かを判断する。この結果、所定の時間が経過している場合には処理をステップS10に戻して、ミラー部20の曲げ方向及び捩り方向の振動制御を繰り返す。なお、このようにして再び上述した処理を繰り返したときに、上述した時刻T1,T2,T3に相当する時刻を、図6中においてそれぞれ時刻T1’,T2’,T3’として示す。また、判断の結果、所定の時間が経過していなかった場合には、ステップS22における判断を繰り返す。
【0087】
本例の2次元レーザレーダ装置は、駆動制御回路23において以上のような処理が行われることにより、ミラー部20における曲げ振動と捩り振動との共振状態を独立して検出し、検出結果に基づいてミラー部20を曲げ方向と捩り方向とで双方に最適な振動制御を行うことが可能とされている。これにより、ミラー部20を支持する弾性変形部材としての片持ち梁部32ににハードスプリング効果が生じた場合であっても、例えばヒステリシスが比較的小さい磁歪膜を用いることにより、温度変化に対応して常に安定した共振動作を維持することができる。また、ミラー部20が片持ち梁状に支持された構造とされていることから、装置構成を簡略化して低コスト化を実現することができる。したがって、特に車両に搭載して用いる場合に、車両の振動などに起因する走査動作の停止を防止することができ、装置の信頼性を向上して、走行時の安全性を十分に確保することができる。
【0088】
なお、以上の例では、ミラー部20が曲げ及び捩りの2方向に振動駆動される構成として、レーザ光を2次元状に走査する場合について説明したが、本発明は、以上の例に限定されるものではなく、各種の光スキャナ装置に広く適用することができる。例えば、レーザ光を直線状に走査する1次元光スキャナ装置に本発明を適用してもよい。
【0089】
(第2の実施形態)
次に、第2の実施形態として、第1及び/又は第2の周波数検出器42a,42bによって検出される振動周波数の値から所定の値を減算した周波数の値に基づいてミラー部20の振動状態を制御する構成とされた2次元レーザレーダ装置について説明する。
【0090】
本例に係る2次元レーザレーダ装置は、例えば、図4に示した駆動制御回路23における第1及び/又は第2の周波数検出器42a,42bとCPU43との間に、それぞれ例えば各種電子回路等により構成した減算回路を配設することにより実現することができる。また、CPU43における演算処理の中で、第1及び第2の周波数検出器42a,42bから入力される周波数の値から、ソフトウエア的に減算処理を行うことによっても実現することができる。なお、減算する値は、例えば、減算回路を構成する電子素子等を組み合わせることにより設定されていてもよいし、CPU43の処理手順を示すプログラム中に記述されていてもよい。
【0091】
ここで、ソフトウエア的に減算処理を行う構成とされた第2の実施形態の2次元レーザレーダ装置が備える駆動制御回路23における処理の一例について、図7を参照しながら具体的に説明する。なお、この駆動制御回路23における処理が上述した第1の実施形態で説明した処理と異なる点は、減算処理を行う点のみであるので、第1の実施形態で説明した処理と同様の処理については、ここでは詳細な説明は省略する。
【0092】
この駆動制御回路23による処理では、図7に示すように、ステップS14の前段で、ステップS12で検出した曲げ振動周波数から、CPU43によって所定の値(例えば3Hz)を減算処理するステップS30を有する。そして、このステップS30で減算した後の曲げ振動周波数を、ステップS14において第1の発振器45aに出力する。また、ステップS20の前段で、ステップS18で検出した捩り振動周波数から、CPU43によって所定の値(例えば30Hz)を減算処理するステップS31を有する。そして、このステップS31で減算した後の捩り振動周波数を、ステップS20において第2の発振器45bに出力する。
【0093】
このようにして減算する値は、予めメモリ部44に記憶しておくようにしてもよいし、また、CPU43の処理手順を示すプログラム中で適宜算出するようにしてもよい。
【0094】
第2の実施形態の2次元レーザレーダでは、以上のようにして、ミラー部20における振動周波数の検出値から所定の値を減算処理した周波数値に基づいて、このミラー部20の振動制御を行う構成とされている。これにより、ミラー部20の曲げ方向及び捩り方向の固有振動周波数よりも高い周波数の振動が外乱として印加された場合であっても、この外乱振動による影響を抑制して、安定した共振動作を維持することができる。したがって、特に車両に搭載して用いる場合において、車両の振動による影響を低減して、装置の動作が停止してしまうことを十分に防止することができる。
【0095】
なお、上述の説明で挙げた減算値の具体例(3Hz及び30Hz)は、搭載する車両に生じる振動などに基づいて、本発明者により実験的に求められた最適値である。すなわち、減算を行う値は、予め適宜設定しておけばよい。
【0096】
また、ステップS30及びステップS31における減算処理は、常に行うようにしなくてもよく、例えば、第1及び第2のシグナルコンディショナ41a,41bからの出力信号をCPU43によって監視し、この出力信号が所定の値を下回った場合についてのみ行うようにしてもよい。また、例えば、過度の外乱振動によって、ミラー部20の共振動作が停止してしまった後で、この共振動作を再開する場合について行うようにしてもよい。
【0097】
(第3の実施形態)
次に、第3の実施形態として、ミラー部20を捩り方向のみについて上述と同様の振動制御を行い、曲げ方向については自励発振器による比較的簡略な帰還制御を行う構成とされた2次元レーザレーダ装置について、図8及び図9を参照しながら説明する。なお、この第3の実施形態の2次元レーザレーダ装置が、上述した第1の実施形態に係る2次元レーザレーダ装置と異なる点は、曲げ方向の振動制御のみであるので、第1の実施形態と同様な部分については、図中同一の符号を付して、詳細な説明を省略する。
【0098】
この2次元レーザレーダ装置では、図8に示すように、駆動制御回路23において、第1のシグナルコンディショナ41aからの出力信号が自励発振器50に入力されており、第1の発振器45a及び第1の断続器46bが省略されている。そして、この2次元レーザレーダ装置は、ミラー部20の曲げ方向の振動について、自励発振器50による比較的単純な帰還制御が行われ、図9に示す駆動制御回路23における処理手順のとおり、ミラー部20の捩り方向の振動についてのみ第1のピエゾ抵抗素子21aにより検出した周波数に基づいて振動制御が行われる。
【0099】
以上のように構成された2次元レーザレーダ装置では、ハードスプリング効果及び磁気的なヒステリシスによる影響が顕著となる捩れ振動に対して、検出した振動周波数に基づいた同調制御を行いことができるとともに、ハードスプリング効果及び磁気的なヒステリシスによる影響が比較的小さい曲げ振動に対しては安価な自励発振器50による帰還制御を行うことができる。したがって、装置に搭載する回路規模を小さくすることができ、小型軽量化を図ることができるとともに、装置構成を簡略化して、さらなる低コスト化を実現することができる。
【0100】
なお、この2次元レーザレーダ装置は、例えば、第1の周波数検出器42aや、CPU43における入出力端子ch1,ch5,ch3などをさらに省略することもでき、これによって、より一層の低コスト化・小型軽量化を達成することができる。
【0101】
また、この2次元レーザレーダ装置においては、図10に示すように、第2の実施形態と同様にして、ステップS20の前段で、ステップS18で検出した捩り振動周波数から、CPU43によって所定の値(例えば30Hz)を減算処理するステップS31を有し、このステップS31で減算した後の捩り振動周波数を、ステップS20において第2の発振器45bに出力するようにしてもよい。これにより、ミラー部20に対する捩り方向の振動制御を行うに際して、外乱振動による影響を抑制して、安定した共振動作を維持することができる。
【0102】
(第4の実施形態)
次に、第4の実施形態として、駆動制御回路23が、磁界印加手段22に対してパルス電圧を印加するパルスジェネレータを備える構成とされた2次元レーザレーダ装置について、図11及び図12を参照しながら説明する。なお、この第4の実施形態の2次元レーザレーダ装置が、上述した第1の実施形態に係る2次元レーザレーダ装置と異なる点は、駆動制御回路23にパルスジェネレータを備えた点のみであるので、第1の実施形態と同様な部分については、図中同一の符号を付して、詳細な説明を省略する。
【0103】
この2次元レーザレーダ装置では、図11に示すように、駆動制御回路23に、所定のパルス電圧をそれぞれ出力する第1及び第2のパルスジェネレータ60a,60bが設けられている。これら第1及び第2のパルスジェネレータ60a,60bは、CPU43の出力端子ch7,ch8から出力されるタイミング信号がそれぞれ入力される構成とされており、このタイミング信号が入力されたときに、所定のパルス電圧をそれぞれ第1及び第2の出力アンプ47a,47bに出力する。
【0104】
また、この2次元レーザレーダ装置では、例えば、図12に示すように、電源が投入されて動作が開始された直後に、駆動制御回路23において一連のパルス駆動処理を行ってミラー部20の振動駆動を安定させ、この後に、第1の実施形態と同様な処理を行うように構成されている。
【0105】
すなわち、この2次元レーザレーダ装置では、図12に示すステップS40において電源が投入されると、ステップS41において、駆動制御回路23のCPU43の出力端子ch7から第1のパルスジェネレータ60aに対してパルス電圧を印加する要求が出力される。
【0106】
次に、ステップS42において、第1のパルスジェネレータ60aは、例えばメモリ部44に予め記憶されている初期振幅値の5倍程度の電圧値で、5msec程度のパルス幅を有する矩形波状のパルス電圧を第1の出力アンプ47aに出力する。ここで、パルス電圧の電圧値を初期振幅値の5倍とし、パルス幅を5msecとした理由は、ミラー部20の曲げ方向の共振周波数が200Hzであることから、パルス幅を共振周期の1周期分の長さに相当する5msecに設定し、このパルス幅のパルス電圧で通常の曲げ方向の振れ角をミラー部20に発生させる電圧値として、初期振幅値の5倍を設定した。
【0107】
なお、第1及び第2のパルスジェネレータ60a,60bから出力するパルス電圧の電圧値やパルス幅は、ミラー部20の共振特性などに応じて適宜設定すればよい。また、このステップS42の時点でのミラー部20の振動振幅を、図13において時刻T4で示す。
【0108】
次に、ステップS43において、CPU43は、ステップS42でパルス電圧を出力してから所定の時間(例えば20msec)が経過したか否かを判断する。この結果、経過している場合には次のステップS44に進み、経過していない場合にはステップS43の判断を繰り返す。
【0109】
次に、ステップS44において、第1のピエゾ抵抗素子21aからの出力信号に基づいて、第1の周波数検出器42aによりミラー部20の曲げ固有振動周波数検出する。なお、この時点におけるミラー部20の振動振幅を、図13において時刻T5で示す。また、このとき検出された曲げ固有振動周波数は、CPU43によってメモリ部44に一時的に記憶される。
【0110】
次に、ステップS45において、CPU43は、ステップS44において検出された曲げ固有振動周波数と、予めメモリ部44に記録された初期振幅値とに基づき、出力端子ch3を介して所定の波形信号を第1の発振器45aに出力する。
【0111】
次に、ステップS46において、CPU43は、出力端子ch8から第2のパルスジェネレータ60bに対してパルス電圧を印加する要求を出力する。
【0112】
次に、ステップS47において、第2のパルスジェネレータ60bは、例えばメモリ部44に予め記憶されている初期振幅値の2倍程度の電圧値で、2msec程度のパルス幅を有する矩形波状のパルス電圧を第2の出力アンプ47bに出力する。ここで、パルス電圧の電圧値を初期振幅値の2倍とし、パルス幅を2msecとした理由は、ミラー部20の捩り方向の共振周波数が2kHzであることから、パルス幅を共振周期の1周期分の長さ(0.5msec)と、第2のパルスジェネレータ60bを構成する回路の応答性とを考慮して、2msecに設定した。また、このパルス幅のパルス電圧で通常の捩り方向の振れ角をミラー部20に発生させる電圧値として、初期振幅値の2倍を設定した。なお、このステップS47の時点でのミラー部20の振動振幅を、図13において便宜的に時刻T4で示す。
【0113】
次に、ステップS48において、CPU43は、ステップS47でパルス電圧を出力してから所定の時間(例えば10msec)が経過したか否かを判断する。この結果、経過している場合には次のステップS49に進み、経過していない場合にはステップS48の判断を繰り返す。
【0114】
次に、ステップS49において、第2のピエゾ抵抗素子21bからの出力信号に基づいて、第2の周波数検出器42bによりミラー部20の捩り固有振動周波数検出する。なお、この時点におけるミラー部20の振動振幅を、図13において時刻T5で示す。また、このとき検出された捩り固有振動周波数は、CPU43によってメモリ部44に一時的に記憶される。
【0115】
次に、ステップS50において、CPU43は、ステップS49において検出された捩り固有振動周波数と、予めメモリ部44に記録された初期振幅値とに基づき、出力端子ch4を介して所定の波形信号を第1の発振器45aに出力する。
【0116】
このステップS50以降は、図12に示すように、上述した第2の実施形態と同様な処理であるので、ここでは説明を省略する。
【0117】
以上のような2次元レーザレーダ装置では、少なくとも電源投入時において、磁界印加手段22に対してパルス電圧を印加し、このパルス電圧を印加してから所定時間経過後の時点でミラー部20の振動周波数を検出して、この検出結果に基づいてミラー部20に対する振動制御を行う。このため、例えば装置の周辺の環境温度が極めて高い場合、或いは極めて低い場合などのような極端な動作環境下においても、電源投入時にミラー部20の共振動作を確実且つ安定して行うことができる。したがって、例えば熱帯地域や寒冷地域などに提供される車両に搭載して用いる場合であっても、装置の信頼性を十分に確保することができる。
【0118】
なお、この2次元レーザレーダ装置においては、例えば、図12に示すステップS30やステップS31を省略するようにしてもよい。ただし、第2の実施形態で説明したように、ステップS30やステップS31において減算処理を行うようにした場合には、外乱振動による影響を抑制して、より安定して共振動作を維持することができる。
【0119】
(第5の実施形態)
次に、第5の実施形態として、ミラー部20を捩り方向のみについて上述と同様の振動制御を行い、曲げ方向については自励発振器による比較的簡略な帰還制御を行うとともに、駆動制御回路23が、磁界印加手段22に対してパルス電圧を印加するパルスジェネレータを備える構成とされた2次元レーザレーダ装置について、図14及び図15を参照しながら説明する。なお、この第5の実施形態の2次元レーザレーダ装置は、上述した第3の実施形態と第4の実施形態とを組み合わせた場合に相当するものであるので、第3の実施形態及び第4の実施形態と同様な部分については、図中同一の符号を付して、詳細な説明を省略する。
【0120】
この2次元レーザレーダ装置では、図14に示すように、駆動制御回路23において、第1のシグナルコンディショナ41aからの出力信号が自励発振器50に入力されており、第1の発振器45a及び第1の断続器46bが省略されている。そして、この2次元レーザレーダ装置は、ミラー部20の曲げ方向の振動について、自励発振器50による比較的単純な帰還制御が行われ、図15に示す駆動制御回路23における処理手順のとおり、ミラー部20の捩り方向の振動についてのみ第1のピエゾ抵抗素子21aにより検出した周波数に基づいて振動制御が行われる。また、この2次元レーザレーダ装置では、駆動制御回路23に、CPU43の出力端子ch8から出力される要求に応じて、所定のパルス電圧を第2の出力アンプ47bに出力する第2のパルスジェネレータ60bが設けられている。
【0121】
そして、この2次元レーザレーダ装置では、図15に示すように、ステップS40において電源が投入されると、駆動制御回路23において、ステップS46乃至ステップS50の一連のパルス駆動処理を、ミラー部20の捩り方向のみについて行う。そして、この一連のパルス駆動処理が終了して、ミラー部20が安定した振動動作を行うようになると、第3の実施形態と同様にして、ミラー部20の曲げ方向の振動について、自励発振器50による比較的単純な帰還制御を行うとともに、図15に示す処理手順のとおり、ミラー部20の捩り方向の振動についてのみ第1のピエゾ抵抗素子21aにより検出した周波数に基づいた振動制御を行う。
【0122】
以上のような2次元レーザレーダ装置では、少なくとも電源投入時において、磁界印加手段22に対してパルス電圧を印加し、このパルス電圧を印加してから所定時間経過後の時点でミラー部20の振動周波数を検出して、この検出結果に基づいてミラー部20に対する振動制御を行う。このため、例えば装置の周辺の環境温度が極めて高い場合、或いは極めて低い場合などのような極端な動作環境下においても、電源投入時にミラー部20の共振動作を確実且つ安定して行うことができる。したがって、例えば熱帯地域や寒冷地域などに提供される車両に搭載して用いる場合であっても、装置の信頼性を十分に確保することができる。
【0123】
また、ハードスプリング効果及び磁気的なヒステリシスによる影響が顕著となる捩れ振動に対して、検出した振動周波数に基づいた同調制御を行いことができるとともに、ハードスプリング効果及び磁気的なヒステリシスによる影響が比較的小さい曲げ振動に対しては安価な自励発振器50による帰還制御を行うことができる。したがって、装置に搭載する回路規模を小さくすることができ、小型軽量化を図ることができるとともに、装置構成を簡略化して、さらなる低コスト化を実現することができる。
【0124】
したがって、この2次元レーザレーダ装置は、これらの相乗効果により、より安定して高精度にレーザ光を走査することが可能となるだけでなく、装置全体の低コスト化を一層進めるとともに、信頼性を著しく向上させることができる。
【図面の簡単な説明】
【図1】第1の実施形態の2次元レーザレーダ装置の全体構成を概略的に示すブロック図である。
【図2】前記2次元レーザレーダ装置が備えるスキャナ部を模式的に示す平面図である。
【図3】前記2次元レーザレーダ装置が備えるスキャナ部を示す図であり、(a)はミラー部が形成された側からみた平面図であり、(b)は側面図である。
【図4】前記2次元レーザレーダ装置が備える駆動制御回路を示す回路構成図である。
【図5】前記2次元レーザレーダ装置が備える駆動制御回路における処理の一例を示すフローチャートである。
【図6】前記駆動制御回路により制御されるミラー部の振動振幅と経過時間との関係を示す模式図である。
【図7】第2の実施形態の2次元レーザレーダ装置が備える駆動制御回路における処理の一例を示すフローチャートである。
【図8】第3の実施形態の2次元レーザレーダ装置が備える駆動制御回路を示す回路構成図である。
【図9】第3の実施形態の2次元レーザレーダ装置が備える駆動制御回路における処理の一例を示すフローチャートである。
【図10】第3の実施形態の2次元レーザレーダ装置が備える駆動制御回路における処理の他の例を示すフローチャートである。
【図11】第4の実施形態の2次元レーザレーダ装置が備える駆動制御回路を示す回路構成図である。
【図12】第4の実施形態の2次元レーザレーダ装置が備える駆動制御回路における処理の一例を示すフローチャートである。
【図13】第4の実施形態の2次元レーザレーダ装置が備える駆動制御回路により制御されるミラー部の振動振幅と経過時間との関係を示す模式図である。
【図14】第5の実施形態の2次元レーザレーダ装置が備える駆動制御回路を示す回路構成図である。
【図15】第5の実施形態の2次元レーザレーダ装置が備える駆動制御回路における処理の一例を示すフローチャートである。
【図16】従来の光スキャナ装置において問題となる、反射ミラーに生じるハードスプリング効果を説明する図であり、反射ミラーの振動周波数と振動振幅との関係を示す模式図である。
【図17】従来の光スキャナ装置において問題となる、反射ミラーを駆動するための磁歪膜に生じるヒステリシスを説明する図であり、反射ミラーの振動周波数と振動振幅との関係を示す模式図である。
【符号の説明】
10 レーザダイオード
11 レーザダイオード駆動回路
12 制御回路
13 フォトディテクタ
14 受光回路
15 スキャナ部
16 反射ミラー
20 ミラー部
21 ピエゾ抵抗素子
22 磁界印加手段
23 駆動制御回路
30 スリット部
31 フレーム部
32 片持ち梁部
33 電極部
34 外フレーム部
41 シグナルコンディショナ
42 周波数検出器
43 CPU
44 メモリ部
45 発振器
46 断続器
47 出力アンプ
48 加算器
50 自励発振回路
60 パルスジェネレータ
Claims (14)
- 光源から照射された光を弾性変形部材を介して片持ち梁状に支持されたミラー部により反射して対象物に照射するとともに、前記ミラー部を振動させることによって前記対象物に照射する光を走査し、前記ミラー部の振動状態が最適となるように前記ミラー部の振動周波数及び振動振幅を検出して帰還制御を行う光スキャナ装置において、
前記弾性変形部材を変形させて前記ミラー部を振動させる駆動手段と、
前記駆動手段の動作を制御する駆動制御手段と、
前記弾性変形部材の変形量を検出する変形量検出手段と、
前記変形量検出手段から出力される信号を処理して、前記ミラー部の振動周波数を検出する周波数検出手段とを備え、
前記駆動制御手段が、前記ミラー部の振動中に前記駆動手段の動作を一時的に停止させ、当該駆動手段の動作が一時的に停止されている間に前記周波数検出手段により検出される振動周波数に基づいて、前記駆動手段の動作を再開させるときの動作周波数を決定することを特徴とする光スキャナ装置。 - 前記駆動制御手段は、前記駆動手段の動作が一時的に停止されている間に前記周波数検出手段により検出される振動周波数の値から所定の値を減算し、減算された周波数の値に基づいて、前記駆動手段の動作を再開させるときの動作周波数を決定することを特徴とする請求項1に記載の光スキャナ装置。
- 少なくとも電源投入時において、前記駆動手段に対してパルス電圧を印加するパルス電圧印加手段を更に備え、
前記駆動制御手段は、前記パルス電圧印加手段によるパルス電圧の印加が行われたときは、前記駆動手段にパルス電圧が印加されてから所定時間経過後の時点で前記周波数検出手段により検出される振動周波数に基づいて前記駆動手段の動作周波数を決定し、その後、決定した動作周波数で前記駆動手段を動作させ、前記ミラー部の振動中に前記駆動手段の動作を一時的に停止させて、当該駆動手段の動作が一時的に停止されている間に前記周波数検出手段により検出される振動周波数に基づいて、前記駆動手段の動作を再開させるときの動作周波数を決定することを特徴とする請求項1又は2に記載の光スキャナ装置。 - 前記駆動手段は、前記弾性変形部材を捩り方向に変形させる第1の駆動部と、前記弾性変形部材を曲げ方向に変形させる第2の駆動部とを備え、
前記変形量検出手段は、前記弾性変形部材の捩り変形量を検出する捩り変形量検出部と、前記弾性変形部材の曲げ変形量を検出する曲げ変形量検出部とを備え、
前記周波数検出手段は、前記捩り変形量検出部から出力される信号を処理して捩り振動周波数を検出する捩り周波数検出部と、前記曲げ変形量検出部から出力される信号を処理して曲げ振動周波数を検出する曲げ周波数検出部とを備え、
前記駆動手段が前記弾性変形部材を捩り方向と曲げ方向とにそれぞれ変形させることにより、光源からの光を前記対象物に対して2次元走査することを特徴とする請求項1に記載の光スキャナ装置。 - 前記駆動制御手段は、前記ミラー部の振動中に前記第1の駆動部の動作を一時的に停止させ、当該第1の駆動部の動作が一時的に停止されている間に前記捩り周波数検出部により検出される捩り振動周波数に基づいて、前記第1の駆動部の動作を再開させるときの動作周波数を決定するとともに、自励発振回路により生成される信号に基づいて前記第2の駆動部の動作を制御することを特徴とする請求項4に記載の光スキャナ装置。
- 前記駆動制御手段は、前記第1の駆動部の動作が一時的に停止されている間に前記捩り周波数検出部により検出される捩り振動周波数の値から所定の値を減算し、減算された周波数の値に基づいて、前記第1の駆動部の動作を再開させるときの動作周波数を決定することを特徴とする請求項4又は5に記載の光スキャナ装置。
- 少なくとも電源投入時において、前記第1の駆動部に対してパルス電圧を印加するパルス電圧印加手段を更に備え、
前記駆動制御手段は、前記パルス電圧印加手段によるパルス電圧の印加が行われたときは、前記第1の駆動部にパルス電圧が印加されてから所定時間経過後の時点で前記捩り周波数検出部により検出される捩り振動周波数に基づいて前記第1の駆動部の動作周波数を決定し、その後、決定した動作周波数で前記第1の駆動部を動作させ、前記ミラー部の振動中に前記第1の駆動部の動作を一時的に停止させて、当該第1の駆動部の動作が一時的に停止されている間に前記捩り周波数検出部により検出される捩り振動周波数に基づいて、前記第1の駆動部の動作を再開させるときの動作周波数を決定することを特徴とする請求項4乃至6の何れかに記載の光スキャナ装置。 - 光源から照射された光を弾性変形部材を介して片持ち梁状に支持されたミラー部により反射して対象物に照射するとともに、駆動手段の動作により前記弾性変形部材を変形させて前記ミラー部を振動させることによって前記対象物に照射する光を走査し、前記ミラー部の振動状態が最適となるように前記ミラー部の振動周波数及び振動振幅を検出して帰還制御を行う光スキャナ装置の駆動方法において、
前記ミラー部の振動中に前記駆動手段の動作を一時的に停止させ、当該駆動手段の動作が一時的に停止されている間に検出される前記ミラー部の振動周波数に基づいて、前記駆動手段の動作を再開させるときの動作周波数を決定することを特徴とする光スキャナ装置の駆動方法。 - 前記駆動手段の動作が一時的に停止されている間に検出される前記ミラー部の振動周波数の値から所定の値を減算し、減算された周波数の値に基づいて、前記駆動手段の動作を再開させるときの動作周波数を決定することを特徴とする請求項8に記載の光スキャナ装置の駆動方法。
- 少なくとも電源投入時において、前記駆動手段にパルス電圧を印加し、前記駆動手段にパルス電圧が印加されてから所定時間経過後の時点で検出される前記ミラー部の振動周波数に基づいて前記駆動手段の動作周波数を決定し、その後、決定した動作周波数で前記駆動手段を動作させ、前記ミラー部の振動中に前記駆動手段の動作を一時的に停止させて、当該駆動手段の動作が一時的に停止されている間に検出される前記ミラー部の振動周波数に基づいて、前記駆動手段の動作を再開させるときの動作周波数を決定することを特徴とする請求項8又は9に記載の光スキャナの駆動方法。
- 前記駆動手段が、前記弾性変形部材を捩り方向に変形させる第1の駆動部と、前記弾性変形部材を曲げ方向に変形させる第2の駆動部とを有し、前記ミラー部を2次元方向に振動させることで、光源からの光を前記対象物に対して2次元走査するとともに、
前記弾性変形部材の捩り変形量と曲げ変形量とに基づいて、前記ミラー部の捩り振動周波数と曲げ振動周波数とをそれぞれ検出することを特徴とする請求項8に記載の光スキャナ装置の駆動方法。 - 前記第1の駆動部の動作が一時的に停止されている間に検出される前記ミラー部の捩り振動周波数に基づいて、前記第1の駆動部の動作を再開させるときの動作周波数を決定するとともに、自励発振回路により生成される信号に基づいて、前記第2の駆動部の動作を制御することを特徴とする請求項11に記載の光スキャナ装置の駆動方法。
- 前記第1の駆動部の動作が一時的に停止されている間に検出される前記ミラー部の捩り振動周波数の値から所定の値を減算し、減算された周波数の値に基づいて、前記第1の駆動部の動作を再開させるときの動作周波数を決定することを特徴とする請求項11又は12に記載の光スキャナ装置の駆動方法。
- 少なくとも電源投入時において、前記第1の駆動部にパルス電圧を印加し、前記第1の駆動部にパルス電圧が印加されてから所定時間経過後の時点で検出される前記ミラー部の捩り振動周波数に基づいて前記第1の駆動部の動作周波数を決定し、その後、決定した動作周波数で前記第1の駆動部を動作させ、前記ミラー部の振動中に前記第1の駆動部の動作を一時的に停止させて、当該第1の駆動部の動作が一時的に停止されている間に検出される前記ミラー部の捩り振動周波数に基づいて、前記第1の駆動部の動作を再開させるときの動作周波数を決定することを特徴とする請求項11乃至13の何れかに記載の光スキャナ装置の駆動方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001191371A JP3765251B2 (ja) | 2001-06-25 | 2001-06-25 | 光スキャナ装置及び光スキャナ装置の駆動方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001191371A JP3765251B2 (ja) | 2001-06-25 | 2001-06-25 | 光スキャナ装置及び光スキャナ装置の駆動方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003005123A JP2003005123A (ja) | 2003-01-08 |
JP3765251B2 true JP3765251B2 (ja) | 2006-04-12 |
Family
ID=19030005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001191371A Expired - Fee Related JP3765251B2 (ja) | 2001-06-25 | 2001-06-25 | 光スキャナ装置及び光スキャナ装置の駆動方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3765251B2 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2404286A (en) * | 2003-07-23 | 2005-01-26 | Ford Global Tech Llc | Mechanically operated beam scanner |
JP2006350092A (ja) * | 2005-06-17 | 2006-12-28 | Sony Corp | 移動機構及びこれを備えた撮像装置 |
JP5065116B2 (ja) | 2007-06-14 | 2012-10-31 | キヤノン株式会社 | 揺動体装置、光偏向装置、及びその制御方法 |
JP5446513B2 (ja) * | 2009-06-30 | 2014-03-19 | ブラザー工業株式会社 | 光スキャナ、この光スキャナを備えた画像表示装置、光スキャナの駆動方法 |
KR101911601B1 (ko) * | 2016-09-05 | 2018-10-24 | 한양대학교 산학협력단 | 광학식 거리계 시스템 |
DE102016014001B4 (de) * | 2016-11-23 | 2020-11-12 | Blickfeld GmbH | MEMS Scanmodul für einen Lichtscanner mit mindestens zwei Stützelementen |
-
2001
- 2001-06-25 JP JP2001191371A patent/JP3765251B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003005123A (ja) | 2003-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2981600B2 (ja) | 光スキャナおよびそれを用いた光センサ装置 | |
JP5524535B2 (ja) | アクチュエータの駆動装置 | |
JP5769941B2 (ja) | アクチュエータの駆動装置 | |
JP5404102B2 (ja) | 揺動体装置、及びそれを用いる光偏向装置 | |
JP2011180294A (ja) | 光走査装置の駆動制御装置 | |
JP3765251B2 (ja) | 光スキャナ装置及び光スキャナ装置の駆動方法 | |
WO2017183368A1 (ja) | ミラー装置、ミラーの駆動方法、光照射装置及び画像取得装置 | |
KR101278862B1 (ko) | 요동체 장치, 광 편향 장치 및 그 제어 방법 | |
WO2007072621A1 (ja) | 走査型プローブ顕微鏡 | |
JP5188315B2 (ja) | 揺動体装置、光偏向装置、及びそれを用いた光学機器 | |
US20020051332A1 (en) | Apparatus and method for driving actuator | |
JP3147772B2 (ja) | センサ装置 | |
JP2009265285A (ja) | 揺動体装置 | |
JP2012093325A (ja) | 原子間力顕微鏡用のカンチレバー、原子間力顕微鏡、および、原子間力の測定方法 | |
JP3785785B2 (ja) | 材料物性測定装置 | |
JP3114397B2 (ja) | 光学装置 | |
JP2014240895A (ja) | 光走査装置、画像形成装置および映像投射装置 | |
JP5884577B2 (ja) | 光スキャナ | |
JPH10174464A (ja) | 振動アクチュエータ駆動装置 | |
JPH10267950A (ja) | 横励振摩擦力顕微鏡 | |
JP2004028753A (ja) | レーダ装置 | |
JP2000028511A (ja) | カンチレバー振幅測定方法および非接触原子間力顕微鏡 | |
JP3641902B2 (ja) | 駆動装置 | |
JP2009042579A (ja) | 光偏向装置、及び揺動体のジッタ抑制方法 | |
JP4058945B2 (ja) | 圧電アクチュエータの検査方法、圧電アクチュエータの調整方法および圧電アクチュエータの検査装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050317 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050506 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060117 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100203 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110203 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120203 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120203 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130203 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |